JP5984411B2 - 燃料電池の保管方法 - Google Patents

燃料電池の保管方法 Download PDF

Info

Publication number
JP5984411B2
JP5984411B2 JP2012023154A JP2012023154A JP5984411B2 JP 5984411 B2 JP5984411 B2 JP 5984411B2 JP 2012023154 A JP2012023154 A JP 2012023154A JP 2012023154 A JP2012023154 A JP 2012023154A JP 5984411 B2 JP5984411 B2 JP 5984411B2
Authority
JP
Japan
Prior art keywords
water
fuel cell
fuel
polymer electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012023154A
Other languages
English (en)
Other versions
JP2013161678A (ja
Inventor
松本 明
明 松本
山▲崎▼ 修
修 山▲崎▼
河合 秀樹
秀樹 河合
神家 規寿
規寿 神家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012023154A priority Critical patent/JP5984411B2/ja
Publication of JP2013161678A publication Critical patent/JP2013161678A/ja
Application granted granted Critical
Publication of JP5984411B2 publication Critical patent/JP5984411B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子電解質膜を燃料極及び酸素極で挟んで構成されるセルを複数積層して備える固体高分子形燃料電池を発電停止させた後の保管方法に関する。
固体高分子形燃料電池は、固体高分子電解質膜を燃料極及び酸素極で挟んで構成されるセルを複数積層して備えて構成される。固体高分子形燃料電池を発電運転させるとき、燃料極には燃料ガス(水素)を供給し、酸素極には酸素含有ガス(酸素(空気))を供給する。固体高分子電解質膜は、燃料極で発生した水素イオンを酸素極まで移動させる役割を担っている。特に、固体高分子形燃料電池で用いられる固体高分子電解質膜は、適度に湿潤した状態では良好な水素イオン伝導性を発揮するが、湿潤状態が低下すると良好な水素イオン伝導性を発揮できない。そのため、固体高分子電解質膜を適度な湿潤状態に維持することが、固体高分子形燃料電池の性能を発揮させる上で重要となる。尚、固体高分子形燃料電池の発電運転中は、酸素極側で生成される水が固体高分子電解質膜に拡散されるため、固体高分子電解質膜の湿潤状態が低下することは抑制されている。
このような固体高分子形燃料電池を発電運転した後で停止させる場合、セルを外部から隔離して封止する保管方法が一般的に実施される。従って、発電運転を停止した直後又は停止してから所定期間内であれば、固体高分子電解質膜はある程度の湿潤状態を保っているため、再び発電運転を開始したとしても、固体高分子電解質膜はある程度の水素イオン伝導性を発揮すると考えられる。
しかし、発電運転の停止後、保管する期間が長期化すると、セル内の水が蒸発し、徐々に固体高分子電解質膜の湿潤状態が低下するという問題がある。例えば、保管する期間が長期化する例としては、顧客の住戸や施設に固体高分子形燃料電池を設置して試運転を行った後で停止させ、顧客に固体高分子形燃料電池を引き渡した後、顧客の都合(例えば、住戸や施設に未だ入居しない等の都合)によって長期間にわたって運転されないような場合、顧客が長期間にわたって不在になる場合などがある。他にも、建売住宅等に固体高分子形燃料電池を設置及び試運転した上で住宅販売業者等に引き渡した場合であれば、少なくともその建売住宅が売れるまでは固体高分子形燃料電池は停止され、その停止期間が長期化することも想定される。
特許文献1には、発電休止中においても高分子電解質膜の湿潤状態を維持し、長期間の休止後でも優れた発電特性を維持できる燃料電池を提供することが記載されている。具体的には、特許文献1に記載された燃料電池は、内部に固体高分子電解質膜を湿潤可能な液体を収容し、且つ、その液体を固体高分子電解質膜に供給するリザーバーを備える。そして、発電運転の休止中においても、固体高分子電解質膜はリザーバーに収容された液体と常に接触しているため、液体は接触部分から固体高分子電解質膜へと浸透していき、高分子電解質全体に行き渡る。これにより、固体高分子電解質膜は常に湿潤状態を維持することができるようになっている。
特開2011−14256号公報
しかし、特許文献1に記載の方法では、固体高分子電解質膜とリザーバーに収容された液体とが常に接触するように、セルスタックにリザーバータンクを併設する構成を採用しているため、燃料電池が大型化するという問題がある。
また、特許文献1に記載の方法では、積層される全てのセルの固体高分子電解質膜をリザーバーに接触させるように組立てなければならないため、精度の高い組立て技術が必要となり、生産コストのアップにつながるという問題がある。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、発電停止させて保管した後に固体高分子形燃料電池の発電運転を行うとき、固体高分子電解質膜の湿潤状態が良好であることを確保しておくことができる燃料電池の保管方法を提供する点にある。
上記目的を達成するための本発明に係る燃料電池の保管方法の特徴構成は、固体高分子電解質膜を燃料極及び酸素極で挟んで構成されるセルを複数積層して備える固体高分子形燃料電池を発電停止させた後の保管方法であって、前記固体高分子形燃料電池が保管開始から発電停止状態で保管されている保管継続期間を計測する保管期間計測工程と、前記保管期間計測工程で計測される前記保管継続期間の長さが設定期間に到達したか否かを判定する判定工程と、前記判定工程で前記保管継続期間の長さが前記設定期間に到達したと判定したとき、前記固体高分子電解質膜に水を供給する給水工程と、前記給水工程の終了後に再び前記固体高分子形燃料電池の発電停止状態での保管を開始する保管再開工程とを有し、前記給水工程において、
燃料ガス供給路を介した前記燃料極への水の供給と燃料極排ガス路を介した前記燃料極からの水の排出、
燃料極排ガス路を介した前記燃料極への水の供給と燃料ガス供給路を介した前記燃料極からの水の排出、
酸素含有ガス供給路を介した前記酸素極への水の供給と酸素極排ガス路を介した前記酸素極からの水の排出、及び、
酸素極排ガス路を介した前記酸素極への水の供給と酸素含有ガス供給路を介した前記酸素極からの水の排出、
以上のうち少なくとも何れか一つを行うことで、前記固体高分子電解質膜への水の供給を行う点にある。
上記特徴構成によれば、固体高分子形燃料電池を発電停止状態で保管している間の所定タイミングで上記給水工程を行うことで、固体高分子電解質膜の湿潤状態を高めることができる。また、給水工程を行うタイミングは、保管期間計測工程で計測される保管継続期間の長さが設定期間に到達したか否かを判定される。つまり、保管継続期間が長くなって固体高分子電解質膜の湿潤状態が所定レベル未満に低下したタイミングで、上記給水工程を行って固体高分子電解質膜の湿潤状態を高めることができる。従って、固体高分子形燃料電池が発電停止状態で保管されている保管継続期間の間のどのタイミングで固体高分子形燃料電池の発電運転が再開されたとしても、その時点での固体高分子電解質膜の湿潤状態が所定レベル以上であることを確保できる。
従って、発電停止させて保管した後に固体高分子形燃料電池の発電運転を行うとき、固体高分子電解質膜の湿潤状態が良好であることを確保しておくことができる燃料電池の保管方法を提供できる。
さらに上記特徴構成によれば、給水工程において、
燃料ガス供給路を介した燃料極への水の供給と燃料極排ガス路を介した燃料極からの水の排出、
燃料極排ガス路を介した燃料極への水の供給と燃料ガス供給路を介した燃料極からの水の排出、
酸素含有ガス供給路を介した酸素極への水の供給と酸素極排ガス路を介した酸素極からの水の排出、及び、
酸素極排ガス路を介した酸素極への水の供給と酸素含有ガス供給路を介した酸素極からの水の排出、
以上のうち少なくとも何れか一つを行うので、固体高分子電解質膜へ水を供給するための特別な流路を設置する必要がなくなる。その結果、燃料電池の大型化を抑制できる。
加えて、給水工程において燃料極及び酸素極に水を供給した場合、固体高分子電解質膜を加湿できるという効果の他に、燃料極及び酸素極を洗浄できるという効果も得られる。例えば、固体高分子形燃料電池を発電運転した後で停止して保管している間、発電運転中に燃料極及び酸素極のガス拡散層及び触媒層に供給されていた燃料ガス及び酸素含有ガスに含まれていた物質がガス拡散層及び触媒層の表面に滞留又は析出する可能性ある。また、空気中に浮遊していた微生物などがガス拡散層及び触媒層の表面で繁殖する可能性もある。ところが本特徴構成のような給水工程を行えば、ガス拡散層及び触媒層などに滞留又は析出していた物質や生存・繁殖していた微生物を洗い流すことも期待できる。
本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、前記燃料極への水の供給を行うとき、前記固体高分子形燃料電池を発電運転するときの前記燃料ガス供給路での燃料ガスの流通方向とは逆方向に水を流し、前記酸素極への水の供給を行うとき、前記固体高分子形燃料電池を発電運転するときの前記酸素含有ガス供給路での酸素含有ガスの流通方向とは逆方向に水を流す点にある。
セルの内部の燃料極及び酸素極の両方とも、発電運転中に燃料ガス及び酸素含有ガスが燃料極及び酸素極に最初に流入してくる上流側部位に異物が滞留又は析出しやすい状況にある。従って、燃料極及び酸素極への水の供給を行うとき、固体高分子形燃料電池を発電運転するときの燃料ガス供給路での燃料ガスの流通方向及び酸素含有ガス供給路での酸素含有ガスの流通方法と同じ方向に水を流すと、洗い流された異物が、その上流側部位から下流側部位へ向かってセル全体に拡散してしまう可能性がある。
ところが本特徴構成によれば、給水工程において燃料極及び酸素極の内部を流れる水は、その異物が滞留又は析出しやすい部位を下流側にして流れるため、洗い流された異物がセル全体に拡散してしまうことはない。
本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、前記燃料極及び前記酸素極への水の供給を同時に行うとき、前記燃料極へ与えられる水圧と前記酸素極へ与えられる水圧との圧力差を設定圧力差以内に調整する点にある。
上記特徴構成によれば、燃料極及び酸素極への水の供給を同時に行うと、燃料極及び酸素極に挟まれている固体高分子電解質膜には燃料極側及び酸素極側の両側から水圧が加わることになるが、燃料極へ与えられる水圧と酸素極へ与えられる水圧との圧力差を設定圧力差以内に調整しておけば、燃料極と酸素極との中間部分に存在する固体高分子電解質膜でその両側からの水圧がほぼ釣り合うため、固体高分子電解質膜が水圧により変形するなどの問題も発生しない。
本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、前記固体高分子形燃料電池の発電運転時に前記セルの冷却水として利用するために用意されている水を前記固体高分子電解質膜に供給する点にある。
上記特徴構成によれば、固体高分子電解質膜に供給する水を特別に用意しなくてもよくなる。その結果、燃料電池の大型化を抑制できる。
本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記固体高分子形燃料電池は、前記固体高分子形燃料電池から排出される熱を回収して蓄熱すると共に所定温度に昇温して熱利用装置に供給できる排熱回収装置を有し、
前記排熱回収装置は、前記固体高分子形燃料電池から熱を与えられた湯水を蓄える貯湯タンクと、前記貯湯タンクに蓄えられた湯水を昇温する補助熱源機とを有し、
前記給水工程において、前記貯湯タンクに蓄えられた温水、または前記補助熱源機で昇温された温水を前記固体高分子電解質膜に供給する点にある。
上記特徴構成によれば、固体高分子電解質膜に供給する水を特別に用意しなくてもよくなる。その結果、燃料電池の大型化を抑制できる。更に、温度の高い温水が燃料極及び酸素極に供給されるので、微生物などがガス拡散層及び触媒層の表面で生存しているとしてもそれらを死滅させる効果が期待できる。
本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、水に含まれているイオン性物質の濃度を低減させる処理を施した水を前記固体高分子電解質膜に供給する点にある。
上記特徴構成によれば、固体高分子電解質膜に対してイオン性物質の濃度が低い水を供給できる。従って、固体高分子電解質膜がイオン性物質によって汚染されることを防止できる。
本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、水に含まれている有機物の濃度を低減させる処理を施した水を前記固体高分子電解質膜に供給する点にある。
上記特徴構成によれば、固体高分子電解質膜に対して有機物の濃度が低い水を供給できる。従って、固体高分子電解質膜が有機物によって汚染されることを防止できる。
本発明に係る燃料電池の保管方法の更に別の特徴構成は、前記給水工程において、前記燃料極及び前記酸素極の少なくとも何れか一方に供給する水を、超音波振動発生手段によって振動させる点にある。
上記特徴構成によれば、給水工程において、超音波振動発生手段を動作させれば、燃料極及び酸素極の少なくとも何れか一方に供給する水を振動させることができる。つまり、この超音波振動によって水分子を揺り動かしながら燃料極及び酸素極の少なくとも何れか一方に水を供給することで、燃料極及び酸素極の少なくとも何れか一方を洗浄する効果を高めることができる。
燃料電池システムの構成を説明する図である。 燃料電池の保管方法を示すフローチャートである。 給水工程を行うための給水機構を説明する図である。 燃料電池の保管方法を実施した場合の効果を説明する図である。 別の燃料電池システムの構成を説明する図である。 燃料電池の別実施形態を説明する図である。
<第1実施形態>
以下に図面を参照して本発明に係る燃料電池の保管方法が実施される燃料電池システムの構成について説明する。
図1は、燃料電池システムの構成を説明する図である。燃料電池システムは、固体高分子形燃料電池FC(以下、単に「燃料電池FC」と記載する)を備える。燃料電池FCは固体高分子電解質膜4を燃料極3及び酸素極5で挟んで構成されるセルCを複数積層して備える。尚、図1中では簡略化のため単一のセルCのみを記載している。また、燃料電池FCは、発電時に発生する熱を回収することで燃料電池FCを冷却する冷却部6を備える。本実施形態では水冷式の冷却部6を設けている。具体的には、この冷却部6には後述する回収水循環路19を循環する水(以下、「回収水」と記載する)が供給されて、燃料電池FCの冷却が行われる。冷却部6を通過することで温度が上昇した回収水は、回収水循環路19の途中に設けられた熱交換器8に流入する。詳細は後述するが、この熱交換器8において、回収水は、排熱回収路25を流れる湯水と熱交換して燃料電池FCから回収した排熱をその湯水に渡す。湯水は、貯湯タンク7に貯えられ、そこで蓄熱が行われる。
改質器1には、炭化水素を含む原燃料(例えば、メタンを含む都市ガスなど)が供給され、及び、回収水循環路19から分岐した改質用水供給路20を介して水が供給される。改質器1は、併設される燃焼器2から与えられる燃焼熱を利用して、原燃料の水蒸気改質を行う。改質器1での水蒸気改質により得られた水素を主成分とする燃料ガスは、燃料ガス供給路14を介して燃料極3に供給される。
燃料極3では、供給された全ての燃料ガスが発電反応で消費される訳ではない。そのため、燃料極3から排出される燃料極排ガスの中には水素等の燃料ガスの成分が残存している。そこで、燃焼器2での燃焼用ガスとして、燃料極排ガスを利用している。具体的には、燃料極3から燃焼器2へ、燃料極排ガス路15を介して燃料極排ガスを供給する。燃焼器2で燃焼された後の燃焼排ガスは、燃焼排ガス路16を介して外部に排出される。
燃料極排ガス及び燃焼排ガスには水分が含まれている。そのため、その水分を回収する目的で、燃料極排ガス路15及び燃焼排ガス路16の途中に水回収器21、22を設けている。水回収器21、22は、例えば、凝縮器とドレントラップとを組み合わせて構成される。つまり、燃料極排ガス及び燃焼排ガスに含まれる水分が凝縮器によって凝縮され、その凝縮水がドレントラップによって取り出される。ドレントラップによって取り出された水は水回収タンク10へと回収され、回収水循環路19を循環する水として再利用される。
このように、回収水循環路19を流れる回収水は、燃料極排ガス中に含まれていた水分や、燃焼排ガス中に含まれていた水分が混入しているため、電解質や水に溶解しない不純物などを含んでいることが想定される。そのため、本実施形態の燃料電池システムは、回収水循環路19を流れる回収水が、回収水循環路19の途中に設けられる水処理装置9によって処理されるように構成してある。本実施形態において、水処理装置9は、回収水中に存在している有機物などを吸着可能な吸着材9aと、回収水中に溶存しているイオンを除去可能なイオン交換樹脂9bとを含む。水処理装置9は、これら吸着材9a及びイオン交換樹脂9bの一方のみで構成されてもよく、或いは、これら以外の手段を備えてもよい。例えば逆浸透膜などを併用してもよい。
イオン交換樹脂9bは、回収水に溶存している電解質のイオン(例えば、イオン化して溶存している塩類やアンモニアなど)を例えばH+、OH-と交換することで、回収水に含まれる電解質の濃度を相対的に低くさせる(即ち、電気伝導度を低くさせる)機能を果たす。例えば、水処理装置9よりも下流側の回収水循環路19を流れる回収水の電気伝導度は、1μS/cm〜10μS/cm程度であることが好ましい。
吸着材9aは例えば活性炭等を備えて構成され、回収水に含まれる有機物(例えば、シロキサン、無極性又は極性有機分子、微生物や微生物の分泌物、油分等)などの被吸着物を吸着するという機能を発揮する。例えば、水処理装置9よりも下流側の回収水循環路19を流れる回収水の油分濃度は、0.01wtppm〜1wtppm程度であることが好ましい。
上述した熱交換器8において回収水から回収した排熱(即ち、燃料電池FCから回収した排熱)は、排熱回収路25を流れる湯水に与えられ、その湯水は貯湯タンク7に貯えられる。本実施形態において、燃料電池FCの排熱を回収する排熱回収装置12は、貯湯タンク7と補助熱源機11とを備える。具体的には、排熱回収装置12は、貯湯タンク7に貯えている湯水が貯湯タンク7と熱交換器8との間で循環する排熱回収路25を有する。排熱回収路25における湯水の流速はポンプP2によって調整される。また、排熱回収装置12は、貯湯タンク7に蓄えている湯水が補助熱源機11を経由して熱利用装置13に供給される湯水循環路26を有する。湯水循環路26における湯水の流速はポンプP3によって調整される。熱利用装置13が、湯水の熱のみを利用する床暖房装置などの場合、熱利用装置13で熱が利用された後の湯水は湯水循環路26を通って貯湯タンク7に帰還する。或いは、熱利用装置13が、湯水自体を利用する給湯装置などの場合、貯湯タンク7には湯水は帰還しない。補助熱源機11は、熱利用装置13で要求される湯水を所定温度に昇温した上で熱利用装置13に供給する際に使用される。
〔燃料電池の発電運転〕
燃料電池FCが発電運転を行っている間、運転制御装置27は、燃料ガス供給路14の途中に設けている三方弁V6を、改質器1側から燃料極3側に通流させる方向に開弁して改質器1から燃料ガスを燃料極3に供給し、及び、酸素含有ガス供給路17の途中に設けている三方弁V7を、空気供給源側から酸素極5側に通流させる方向に開弁して空気を酸素極5に供給する。その結果、セルCでは発電反応が行われ、電気負荷(図示せず)やインバータ(図示せず)などに対して電力が出力される。
運転制御装置27は、燃料電池FCの発電運転を行っている間、燃料極排ガス路15の途中に設けている三方弁V5を、燃料極3側から燃焼器2側に通流させる方向に開弁して燃料極排ガスを燃焼器2に供給する。その結果、燃焼器2では、燃料極排ガスに残存している水素が燃焼される。
また、運転制御装置27は、燃料電池FCの発電運転を行っている間、酸素極排ガス路18の途中に設けている三方弁V4を、酸素極5側から排出側に通流させる方向に開弁して酸素極排ガスを外部に排出させる。
尚、運転制御装置27は、改質器1で燃料ガスを生成するとき、改質器1に原燃料を供給し、且つ、回収水循環路19に設けているポンプP1を動作させると共に回収水循環路19から分岐した改質用水供給路20に設けている弁V2を開弁して改質器1に改質用水を供給する。改質器1には上述したように燃焼器2で発生される燃焼熱が与えられて、水蒸気改質反応が促進される。
〔燃料電池の発電運転の停止〕
運転制御装置27は、電気負荷やインバータなどと燃料電池FCのセルCとの電気的な接続を解除して、燃料電池FCでの発電により得られた電力の出力を停止する。例えば、運転制御装置27は、燃料電池FCでの発電により得られた電力の出力を停止する前に、改質器1で生成される燃料ガスの量を減少させることで燃料電池FCへの燃料ガスの供給量を減少させ、及び、燃料電池FCへの空気の供給量を減少させる。その後、運転制御装置27は、燃料電池FCへの燃料ガス及び空気の供給を停止させると共に、電気負荷やインバータなどと燃料電池FCのセルCとの電気的な接続を解除して、燃料電池FCでの発電により得られた電力の出力を停止する。このようにして、運転制御装置27は、燃料電池FCを発電停止状態に移行させる。
加えて、運転制御装置27は、燃料電池FCを発電停止状態に移行させる工程中に、燃料極3の上流側及び下流側、並びに、酸素極5の上流側及び下流側を閉止して、燃料電池FCのセルCを外部から隔離する処理を行なう。例えば、運転制御装置27は、三方弁V6を用いて燃料極3の上流側を閉止し、三方弁V5を用いて燃料極3の下流側を閉止し、三方弁V7を用いて酸素極5の上流側を閉止し、三方弁V4を用いて酸素極5の下流側を閉止することで、燃料電池FCのセルCを外部から隔離することができる。尚、この隔離処理を行なうと共に、燃料電池FCのセルCを不活性ガス、原燃料ガス、水などで封止してもよい。
〔燃料電池の発電運転停止後の保管〕
燃料電池FCは、発電運転停止後、その発電停止状態のままで上述したようにセルCを外部から隔離した状態で保管される。尚、完全な隔離状態を長期間維持し続けることは困難である。従って、燃料電池FCを保管している間にセルCの内部の水分が外部に抜け出すこともある。その場合、発電運転の停止時点でセルCの固体高分子電解質膜4が湿潤していたとしても、その後、セルCの固体高分子電解質膜4から水分が抜け出してその湿潤状態が低下する可能性がある。
尚、固体高分子電解質膜4の湿潤状態が低下した状態で燃料電池FCの運転が再び開始された場合、固体高分子電解質膜4のイオン伝導性が低いため、出力される電圧が低下するという問題が生じる。
そこで、本発明に係る燃料電池FCの保管方法では、燃料電池FCを発電停止させた後の保管中、適切なタイミングで固体高分子電解質膜4に水を給水することで、固体高分子電解質膜4の湿潤状態を高める処理を行なう。
図2は、本発明に係る燃料電池FCの保管方法を示すフローチャートである。本実施形態では、運転制御装置27は、燃料電池FCを発電停止させた後、この保管処理制御を開始する。例えば、この保管処理制御の開始タイミングは、燃料電池FCでの発電により得られた電力の出力が停止され、且つ、燃料電池FCのセルCが外部から隔離されたタイミングである。
工程#1において運転制御装置27は、燃料電池FCの保管開始から発電停止状態で保管されている保管継続期間を計測する保管期間計測工程を行う。本実施形態では、保管継続期間は、燃料電池FCでの発電により得られた電力の出力が停止され、且つ、燃料電池FCのセルCが外部から隔離されたタイミングから開始される。この保管継続期間が長くなるほど、上述したようにセルCの固体高分子電解質膜4から水分が抜け出してその湿潤状態が低下している可能性が高くなる。
次に、運転制御装置27は、上記保管期間計測工程で計測される保管継続期間の長さが設定期間に到達したか否かを判定する判定工程を行い(工程#2)、その判定工程で保管継続期間の長さが設定期間に到達したと判定したとき、固体高分子電解質膜4に水を供給する給水工程を行う(工程#3)。これら判定工程及び給水工程は、保管継続期間が長くなれば固体高分子電解質膜4の湿潤状態が低下することを考慮して、即ち、保管継続期間が設定期間に到達して以後に燃料電池FCの運転が再び開始された場合、固体高分子電解質膜4のイオン伝導性が低いため出力される電圧が低下するという課題に鑑みて行われる。従って、判定工程において判定基準とされる「設定期間」は、保管継続期間中にセルCの固体高分子電解質膜4から水分が抜け出して固体高分子電解質膜4の湿潤状態が低下しても、固体高分子電解質膜4のイオン伝導性が燃料電池FCの出力電圧の大きな減衰が生じない程度以上には保たれる期間に対応する。この「設定期間」は燃料電池FC毎に適宜設定可能であり、更に、気温が高く乾燥が促進されるような場合には設定期間を短くするなど、気候等の環境に応じて適宜変更してもよい。
図3は、給水工程を行うための給水機構を説明する図である。本実施形態では、給水工程において、燃料電池FCの発電運転時にセルCの冷却水として利用するために用意されている水を固体高分子電解質膜4に供給する給水機構を採用している。具体的には、給水工程において、運転制御装置27は、回収水循環路19に設けているポンプP1を動作させ、弁V1を開弁し且つ弁V2を閉弁すると共に、冷却部6の下流側に設けている三方弁V3を水供給路23側に通流させる方向に開弁して回収水(冷却水)を水供給路23に流す。加えて、運転制御装置27は、三方弁V5を水供給路23側から燃料極3側に通流させる方向に開弁して回収水を燃料極3に供給させ、三方弁V4を水供給路23側から酸素極5側に通流させる方向に開弁して回収水を酸素極5に供給させる。また、運転制御装置27は、三方弁V6を燃料極3側から水排出路24側に通流させる方向に開弁して、燃料極3に流入した回収水が三方弁V6を経由して水排出路24へと排出される流路を形成し、及び、三方弁V7を酸素極5側から水排出路24側に通流させる方向に開弁して、酸素極5に流入した回収水が三方弁V7を経由して水排出路24へと排出される流路を形成する。更に、運転制御装置27は、熱交換器8と水回収水タンクとの間の回収水循環路19の途中に設けている三方弁V8を水排出路24側から水回収タンク10側に通流させる方向に開弁して、水排出路24へと排出された回収水を回収水循環路19に戻す。
このように、給水工程では、燃料ガス供給路14を介した燃料極3への水の供給及び酸素含有ガス供給路17を介した酸素極5への水の供給が行われる。図示は省略するが、燃料極3及び酸素極5のそれぞれはガス拡散層及び触媒層を有して構成され、供給された回収水はそれらガス拡散層及び触媒層を通過して固体高分子電解質膜4まで到達可能である。従って、燃料ガス供給路14を介した燃料極3への水の供給及び酸素含有ガス供給路17を介した酸素極5への水の供給を行うことで、固体高分子電解質膜4への水の供給を行うことができる。その結果、固体高分子電解質膜4の湿潤状態を高めることができる。尚、給水工程でどれだけの量の水を供給するのかは適宜設定可能である。
上述のように燃料極3及び酸素極5への水の供給を同時に行うとき、燃料極3へ与えられる水圧と酸素極5へ与えられる水圧との圧力差を設定圧力差以内に調整することが好ましい。例えば、三方弁V3から燃料極3に至る間の圧損と、三方弁V3から酸素極5に至る間の圧損とを調整した装置設計を行うことで、燃料極3へ与えられる水圧と酸素極5へ与えられる水圧との圧力差を設定圧力差以内に調整できる。本実施形態のように燃料極3及び酸素極5への水の供給を同時に行うと、燃料極3及び酸素極5に挟まれている固体高分子電解質膜4には燃料極3側及び酸素極5側の両側から水圧が加わることになる。但し、燃料極3へ与えられる水圧と酸素極5へ与えられる水圧との圧力差を設定圧力差以内に調整しておけば、燃料極3と酸素極5との中間部分に存在する固体高分子電解質膜4でその両側からの水圧がほぼ釣り合うため、固体高分子電解質膜4が水圧により変形するなどの問題も発生しない。このような設定圧力差は、発電運転時に燃料極3へ与えられるガス圧と酸素極5へ与えられるガス圧との間で許容される圧力差と同様である。
給水工程において燃料極3及び酸素極5に水を供給した場合、固体高分子電解質膜4を加湿できるという効果の他に、燃料極3及び酸素極5を洗浄できるという効果も得られる。例えば、燃料電池FCを発電運転した後で停止して保管している間、発電運転中に燃料極3及び酸素極5のガス拡散層及び触媒層に供給されていた燃料ガス及び酸素含有ガスに含まれていた物質(例えば、燃料ガス及び酸素含有ガスを加湿した上で燃料極3及び酸素極5に供給する場合には、その加湿水に含まれていたフッ化物イオン、塩化物イオン、亜硝酸イオン、硝酸イオン、リン酸イオン、硫酸イオン、ナトリウムイオン、カリウムイオン、アンモニウムイオン、カルシウム、マグネシウムなど)がガス拡散層及び触媒層の表面に滞留又は析出する可能性がある。また、空気中に浮遊していた微生物などがガス拡散層及び触媒層の表面で繁殖する可能性もある。ところが本実施形態のような給水工程を行えば、ガス拡散層及び触媒層などに滞留又は析出していた物質や生存・繁殖していた微生物を洗い流すことも期待できる。
特に、本実施形態では、燃料極3への水の供給を行うとき、固体高分子形燃料電池FCを発電運転するときの燃料ガス供給路14での燃料ガスの流通方向とは逆方向に水を流し、酸素極5への水の供給を行うとき、固体高分子形燃料電池FCを発電運転するときの酸素含有ガス供給路17での酸素含有ガスの流通方向とは逆方向に水を流している。
セルCの内部の燃料極3及び酸素極5の両方とも、発電運転中に燃料ガス及び酸素含有ガスが燃料極3及び酸素極5に最初に流入してくる上流側部位に異物が滞留又は析出しやすい状況にある。従って、燃料極3及び酸素極5への水の供給を行うとき、燃料電池FCを発電運転するときの燃料ガス供給路14での燃料ガスの流通方向及び酸素含有ガス供給路17での酸素含有ガスの流通方法と同じ方向に水を流すと、洗い流された異物が、その上流側部位から下流側部位へ向かってセルCの全体に拡散してしまう可能性がある。
ところが本実施形態では、給水工程においてセルCの内部の燃料極3及び酸素極5を流れる水は、その異物が滞留又は析出しやすい部位を下流側にして流れるため、洗い流された異物がセルCの全体に拡散してしまうことなく、水排出路24へと排出される。
更に、給水工程で燃料極3及び酸素極5に供給される回収水は、水処理装置9のイオン交換樹脂9bによってイオン性物質の濃度を低減させる処理を施した水であり、水処理装置9の吸着材9aによって有機物の濃度を低減させる処理を施した水である。従って、燃料電池FCの燃料極3及び酸素極5に対して不純物(イオン性物質や有機物など)の濃度が低い水を供給できる。
以上のような給水工程が終了すると、運転制御装置27は、その給水工程の終了後に再び固体高分子形燃料電池FCの発電停止状態での保管を開始する保管再開工程を行う(工程#4)。具体的には、運転制御装置27は、三方弁V6を用いて燃料極3の上流側を閉止し、三方弁V5を用いて燃料極3の下流側を閉止し、三方弁V7を用いて酸素極5の上流側を閉止し、三方弁V4を用いて酸素極5の下流側を閉止することで、燃料電池FCのセルCを外部から隔離して、その状態(即ち、発電停止状態)を維持する。
図4は、本発明に係る燃料電池FCの保管方法を実施した場合の効果を説明する図である。具体的には、図4に示すのは、燃料電池FCの運転継続中に出力される平均セル電圧である。尚、図4中で黒丸印で示すのは、燃料電池FCを試運転した直後に運転開始してからの平均セル電圧の推移である。図4中で黒三角印で示すのは、燃料電池FCを試運転した後、燃料電池FCを発電停止状態のまま30日間保管し、その後で運転開始してからの平均セル電圧の推移である。図4中で白四角印で示すのは、燃料電池FCを試運転した後、燃料電池FCを発電停止状態のまま30日間保管し、その後で上記給水工程を行った上で運転開始した場合の平均セル電圧の推移である。この「30日間」という期間は、先に説明した「設定期間」の一例である。
図4に示す3種類のデータで、本発明に係る燃料電池FCの保管方法に類似するのは白四角印に示す例である。
図4に示したように、燃料電池FCを試運転した直後に運転開始してからの平均セル電圧(初期:黒丸印)は、運転初期から非常に高い数値を維持し続けている。
これに対して、燃料電池FCを発電停止状態のまま30日間保管した後で運転開始してからの平均セル電圧(黒三角印)は、運転初期から非常に低い数値を示し、運転を30時間経過した後であっても平均セル電圧は低いままである。これは、燃料電池FCを発電停止状態のまま長期間保管したことで、その間に固体高分子電解質膜4の湿潤状態が低下したためであると考えられる。尚、黒三角印で示しているように、運転継続期間が長くなるにつれて平均セル電圧は僅かに上昇傾向にあるが、これは燃料電池FCを発電運転することでセルC内部に発生した水分や燃料ガスと共にセルC内部に供給された水分などで固体高分子電解質膜4の湿潤状態が高くなったことによる効果であると考えられる。
本発明に係る燃料電池FCの保管方法に類似する白四角印に示すデータでは、燃料電池FCの運転初期から比較的高い平均セル電圧を示すことができている。この運転初期の平均セル電圧は、黒三角印で示した30時間運転後の平均セル電圧よりも遥かに高い値である。つまり、本発明のような固体高分子電解質膜4への給水処理を行なうことで得られる効果は、単に燃料電池FCを長時間運転しただけでは得ることができない効果である。
<第2実施形態>
上記実施形態では、燃料電池FCの発電運転時にセルCの冷却水として利用するために用意されている水を固体高分子電解質膜4に供給する例を説明したが、他の水を固体高分子電解質膜4に供給してもよい。図2は、第1実施形態とは別の燃料電池システムの構成を説明する図である。
図2に示す燃料電池システムでは、固体高分子電解質膜4に水を供給するための水供給路23が、湯水循環路26から分岐するように構成されている。具体的には、湯水循環路26の貯湯タンク7と補助熱源機11との間に三方弁V9を設け、貯湯タンク7に貯えている湯水を補助熱源機11側又は水供給路23の何れかに流すことができるように構成してある。この水供給路23は、燃料極排ガス路15の途中に設けられる三方弁V5、及び、酸素極排ガス路18の途中に設けられる三方弁V4に接続されている。
給水工程において運転制御装置27は、湯水循環路26に設けているポンプP3を動作させると共に、三方弁V9を水供給路23側に通流させる方向に開弁して湯水を水供給路23に流す。加えて、運転制御装置27は、三方弁V5を水供給路23側から燃料極3側に通流させる方向に開弁して湯水を燃料極3に供給させ、三方弁V4を水供給路23側から酸素極5側に通流させる方向に開弁して湯水を酸素極5に供給させる。このようにして、給水工程において固体高分子電解質膜4に対して水(湯水)を供給して、固体高分子電解質膜4の湿潤状態を高めることができる。更に、本実施形態では、貯湯タンク7に貯えている比較的温度の高い(例えば、45℃以上)の湯水が燃料極3及び酸素極5に供給されるので、微生物などが燃料極3及び酸素極5のガス拡散層及び触媒層の表面で生存しているとしてもそれらを死滅させる効果が期待できる。
<別実施形態>
<1>
上記実施形態では、給水工程において燃料極3及び酸素極5の両方に同時に流す例を説明したが、燃料極3及び酸素極5のうちの片方のみに流してもよい。
また、上記実施形態とは異なり、給水工程において、固体高分子形燃料電池FCを発電運転するときの燃料ガス供給路14での燃料ガスの流通方向と同方向に水を流し、酸素極5への水の供給を行うとき、固体高分子形燃料電池FCを発電運転するときの酸素含有ガス供給路17での酸素含有ガスの流通方向と同方向に水を流してもよい。この場合、水供給路23を燃料電池FCのセルCの上流側(即ち、発電運転時に燃料ガスが流入する側)に接続し、水排出路24を燃料電池FCのセルCの下流側(即ち、発電運転時に酸素含有ガスが流入する側)に接続すればよい。
<2>
上記実施形態では、燃料電池システムの構成を具体例を挙げて説明したが、それらの構成は適宜変更可能である。例えば、燃料電池FCから回収した水を改質用水及び冷却水として再利用するようなシステム構成を示したが、必ずしもそのようなシステム構成が必須になる訳ではない。また、図5では、貯湯タンク7に貯えられている湯水が、水供給路23に供給される構成を例示したが、補助熱源機11で昇温された湯水が水供給路23に供給されるように構成してもよい。
また、図6に示すように燃料電池FCのセルCを収容している筐体28に超音波振動発生器29(超音波振動発生手段の一例)を装着した構成を採用してもよい。この場合、運転制御装置27が、上記給水工程において、超音波振動発生器29を動作させれば、燃料極3及び酸素極5の少なくとも何れか一方に供給する水を振動させることができる。つまり、この超音波振動によって水分子を揺り動かしながら燃料極3及び酸素極5の少なくとも何れか一方に水を供給することで、燃料極3及び酸素極5の少なくとも何れか一方を洗浄する効果を高めることができる。
<3>
上記実施形態において、セルCの冷却水として利用するために用意されている水(即ち、回収水)の凍結を予防するための運転を行ってもよい。例えば、外気温や冷却水の温度を検出可能な温度センサを設け、運転制御装置27が、温度センサの検出温度が設定温度以下になったと判定した場合に、回収水循環路19に設けているポンプP1を動作させて回収水を流動させることで、その回収水の凍結を予防できる。更に、この凍結予防の運転時に、上記給水工程と同様の流路で回収水を流通させれば(即ち、回収水(冷却水)が水供給路23を経由してセルCに供給されるように流通させれば)、セルCの内部(燃料極3、固体高分子電解質膜4及び酸素極5)に残存する水の凍結を予防する効果も得られる。
本発明は、固体高分子形燃料電池を発電停止させた後の保管を、簡単な装置構成を用いて実施可能な燃料電池の保管方法に利用できる。
3 燃料極(セル C)
4 固体高分子電解質膜(セル C)
5 酸素極(セル C)
13 熱利用装置
14 燃料ガス供給路
17 酸素含有ガス供給路
29 超音波振動発生器(超音波振動発生手段)
FC 固体高分子形燃料電池

Claims (8)

  1. 固体高分子電解質膜を燃料極及び酸素極で挟んで構成されるセルを複数積層して備える固体高分子形燃料電池を発電停止させた後の保管方法であって、
    前記固体高分子形燃料電池が保管開始から発電停止状態で保管されている保管継続期間を計測する保管期間計測工程と、
    前記保管期間計測工程で計測される前記保管継続期間の長さが設定期間に到達したか否かを判定する判定工程と、
    前記判定工程で前記保管継続期間の長さが前記設定期間に到達したと判定したとき、前記固体高分子電解質膜に水を供給する給水工程と、
    前記給水工程の終了後に再び前記固体高分子形燃料電池の発電停止状態での保管を開始する保管再開工程とを有し、
    前記給水工程において、
    燃料ガス供給路を介した前記燃料極への水の供給と燃料極排ガス路を介した前記燃料極からの水の排出、
    燃料極排ガス路を介した前記燃料極への水の供給と燃料ガス供給路を介した前記燃料極からの水の排出、
    酸素含有ガス供給路を介した前記酸素極への水の供給と酸素極排ガス路を介した前記酸素極からの水の排出、及び、
    酸素極排ガス路を介した前記酸素極への水の供給と酸素含有ガス供給路を介した前記酸素極からの水の排出、
    以上のうち少なくとも何れか一つを行うことで、前記固体高分子電解質膜への水の供給を行う燃料電池の保管方法。
  2. 前記給水工程において、
    前記燃料極への水の供給を行うとき、前記固体高分子形燃料電池を発電運転するときの前記燃料ガス供給路での燃料ガスの流通方向とは逆方向に水を流し、
    前記酸素極への水の供給を行うとき、前記固体高分子形燃料電池を発電運転するときの前記酸素含有ガス供給路での酸素含有ガスの流通方向とは逆方向に水を流す請求項に記載の燃料電池の保管方法。
  3. 前記給水工程において、前記燃料極及び前記酸素極への水の供給を同時に行うとき、前記燃料極へ与えられる水圧と前記酸素極へ与えられる水圧との圧力差を設定圧力差以内に調整する請求項1又は2に記載の燃料電池の保管方法。
  4. 前記給水工程において、前記固体高分子形燃料電池の発電運転時に前記セルの冷却水として利用するために用意されている水を前記固体高分子電解質膜に供給する請求項1〜の何れか一項に記載の燃料電池の保管方法。
  5. 前記固体高分子形燃料電池は、前記固体高分子形燃料電池から排出される熱を回収して蓄熱すると共に所定温度に昇温して熱利用装置に供給できる排熱回収装置を有し、
    前記排熱回収装置は、前記固体高分子形燃料電池から熱を与えられた湯水を蓄える貯湯タンクと、前記貯湯タンクに蓄えられた湯水を昇温する補助熱源機とを有し、
    前記給水工程において、前記貯湯タンクに蓄えられた温水、または前記補助熱源機で昇温された温水を前記固体高分子電解質膜に供給する請求項1〜の何れか一項に記載の燃料電池の保管方法。
  6. 前記給水工程において、水に含まれているイオン性物質の濃度を低減させる処理を施した水を前記固体高分子電解質膜に供給する請求項1〜の何れか一項に記載の燃料電池の保管方法。
  7. 前記給水工程において、水に含まれている有機物の濃度を低減させる処理を施した水を前記固体高分子電解質膜に供給する請求項1〜の何れか一項に記載の燃料電池の保管方法。
  8. 前記給水工程において、前記燃料極及び前記酸素極の少なくとも何れか一方に供給する水を、超音波振動発生手段によって振動させる請求項1〜の何れか一項に記載の燃料電池の保管方法。
JP2012023154A 2012-02-06 2012-02-06 燃料電池の保管方法 Active JP5984411B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023154A JP5984411B2 (ja) 2012-02-06 2012-02-06 燃料電池の保管方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023154A JP5984411B2 (ja) 2012-02-06 2012-02-06 燃料電池の保管方法

Publications (2)

Publication Number Publication Date
JP2013161678A JP2013161678A (ja) 2013-08-19
JP5984411B2 true JP5984411B2 (ja) 2016-09-06

Family

ID=49173764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023154A Active JP5984411B2 (ja) 2012-02-06 2012-02-06 燃料電池の保管方法

Country Status (1)

Country Link
JP (1) JP5984411B2 (ja)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338533Y2 (ja) * 1981-06-23 1988-10-11
JPH0927334A (ja) * 1995-07-10 1997-01-28 Honda Motor Co Ltd 固体高分子電解質膜型燃料電池およびその制御方法
JP2001325974A (ja) * 2000-05-15 2001-11-22 Sanyo Electric Co Ltd 燃料電池発電システム
JP4632501B2 (ja) * 2000-09-11 2011-02-16 大阪瓦斯株式会社 燃料電池の停止保管方法
JP2002367642A (ja) * 2001-06-05 2002-12-20 Mitsubishi Heavy Ind Ltd 燃料電池システム
JP3915476B2 (ja) * 2001-11-06 2007-05-16 ダイキン工業株式会社 燃料電池システム
JP2003317771A (ja) * 2002-04-19 2003-11-07 Matsushita Electric Ind Co Ltd 燃料電池発電システムおよびその運転方法
JP2005122921A (ja) * 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd 燃料電池
JP4633403B2 (ja) * 2004-08-23 2011-02-16 東芝燃料電池システム株式会社 燃料電池システム及びその起動・停止方法
JP4772473B2 (ja) * 2005-11-24 2011-09-14 三菱電機株式会社 燃料電池発電システム
JP2008097832A (ja) * 2006-10-05 2008-04-24 Nissan Motor Co Ltd 燃料電池の内部乾燥防止装置
JP2008310970A (ja) * 2007-06-12 2008-12-25 Toshiba Corp 固体高分子電解質型燃料電池スタックの洗浄方法および洗浄装置
JP5049729B2 (ja) * 2007-10-12 2012-10-17 株式会社東芝 燃料電池の洗浄方法および洗浄装置
JP2011009130A (ja) * 2009-06-29 2011-01-13 Panasonic Corp 燃料電池システム

Also Published As

Publication number Publication date
JP2013161678A (ja) 2013-08-19

Similar Documents

Publication Publication Date Title
JP6100066B2 (ja) 燃料電池システム及びその制御方法
JP5057295B2 (ja) 燃料電池装置
JP2008171803A (ja) 水除去、凍結耐久性、パージエネルギー効率及び停止/始動サイクルに起因した電圧劣化の改善
WO2002015315A1 (fr) Systeme de pile a combustible
JP2003031247A (ja) 固体高分子型燃料電池発電システム
JP5984411B2 (ja) 燃料電池の保管方法
JP6501562B2 (ja) 固体高分子形燃料電池の運転方法
JP2009104814A (ja) 燃料電池発電システム
CN103329324A (zh) 固体高分子型燃料电池系统的运转方法以及固体高分子型燃料电池系统
JP2007087623A (ja) 燃料電池発電システム及びその運転方法
JP2008282664A (ja) 燃料電池発電システム及びその制御方法
JP2008276948A (ja) 燃料電池装置
JP2006338984A (ja) 燃料電池システム
JP4926298B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2019091658A (ja) 燃料電池システム
JP5618525B2 (ja) 燃料電池装置
JP7361560B2 (ja) 燃料電池装置
JP2005259663A (ja) 燃料電池発電方法および燃料電池発電システム
JP5534775B2 (ja) 燃料電池コージェネレーションシステム
KR100823928B1 (ko) 연료전지를 이용한 제습 장치
JP2010009752A (ja) 燃料電池装置
JP5132144B2 (ja) 燃料電池装置およびその運転方法
JP2008243590A (ja) 燃料電池装置
JP5178020B2 (ja) 燃料電池装置
JP2022160262A (ja) 燃料電池システム、制御装置、及び制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5984411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150