JP6497472B1 - 送受信方法、および送受信システム - Google Patents

送受信方法、および送受信システム Download PDF

Info

Publication number
JP6497472B1
JP6497472B1 JP2018118353A JP2018118353A JP6497472B1 JP 6497472 B1 JP6497472 B1 JP 6497472B1 JP 2018118353 A JP2018118353 A JP 2018118353A JP 2018118353 A JP2018118353 A JP 2018118353A JP 6497472 B1 JP6497472 B1 JP 6497472B1
Authority
JP
Japan
Prior art keywords
propagation path
transmission
pseudo
data
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018118353A
Other languages
English (en)
Other versions
JP2019220900A (ja
Inventor
マリア 瀧川
マリア 瀧川
佳祐 原
佳祐 原
現一郎 太田
現一郎 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokosuka Telecom Research Park Inc
Original Assignee
Yokosuka Telecom Research Park Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokosuka Telecom Research Park Inc filed Critical Yokosuka Telecom Research Park Inc
Priority to JP2018118353A priority Critical patent/JP6497472B1/ja
Application granted granted Critical
Publication of JP6497472B1 publication Critical patent/JP6497472B1/ja
Priority to EP19821513.9A priority patent/EP3813277A4/en
Priority to PCT/JP2019/024090 priority patent/WO2019244885A1/ja
Priority to CN201980041469.0A priority patent/CN112753177B/zh
Priority to US17/253,931 priority patent/US11271789B2/en
Publication of JP2019220900A publication Critical patent/JP2019220900A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/002Transmission systems not characterised by the medium used for transmission characterised by the use of a carrier modulation
    • H04B14/008Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Transmission System (AREA)

Abstract

【課題】リソースブロックにおける周波数利用効率の向上を図る送受信方法および送受信システムを提供する。
【解決手段】送受信システムSにおいて、送受信方法は、受信側が、通信伝搬路の伝搬路特性を測定し、送信側が、伝搬路特性の測定結果に基づいて、伝搬路特性に類似する伝搬路特性を有する複数の疑似伝搬路特性を相互に低い相互相関性を確保するように生成し、送信側のベースバンド内において複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成し、疑似伝搬路特性をデータに1つずつ重畳して生成された複数の重畳データを合成して送信信号とし、複数の疑似伝搬路特性に関する複数の疑似伝搬路特性情報および送信信号を送信する。受信側が、送信側から先行して送信された複数の疑似伝搬路特性情報と後続して送信された通信信号を受信し、複数の疑似伝搬路特性情報に基づいて通信信号から複数のデータを個別に抽出する。
【選択図】図1

Description

本発明は、無線通信ならびに光通信等の電磁波を利用する分野における周波数利用効率向上を必要とするシステムを対象とする多重化方式を用いた送受信方法、および送受信システムに関する。
図27において、無線基地局101は、所定の帯域幅の電波周波数帯102を用いて、通信を行う。電波周波数帯102の幅は、第4世代移動通信においては、数MHz以上の広帯域とすることが規定されている。この電波周波数帯102を加入者端末A103に送信するとき、伝搬環境内に反射物体A104が存在すると、加入者端末A103は、直接に伝搬する直接波105と、反射物体A104に入射する入射波106により反射物体A104で反射する反射波107との合成波108を受信することとなる。
反射波107は、幾何学的にも直接波105よりも伝搬経路が長くなり、時間的に遅延する。さらに反射物体A104の素材や構造により、入射波106と反射波107の間に位相回転や直交性の変化が発生するため、合成波108の信号振幅は周波数により不均等になる。前述のとおり、電波周波数帯102の周波数幅は、十分に広いために、周波数依存のこの現象は、山谷の間が1:10,000を超える電力差を生む。これは周波数選択性マルチパス・フェージングと呼ばれるものである。
このとき、同一の無線基地局101が通信対応する加入者端末B109が存在するとする。加入者端末A103と加入者端末B109の幾何学的距離110は、電波周波数帯102に用いる周波数帯の波長よりも長いものとする。電波周波数帯102は加入者端末B(109)にも送信される。無線基地局101と加入者端末B109との伝搬環境内には、反射物体B111が存在すると、加入者端末B109は、直接に伝搬する直接波112と、反射物体B111に入射する電波113により反射物体B111で反射する反射波114との合成波115を受信することとなる。
反射波114においても、幾何学的に直接波112よりも伝搬経路が長く、時間的に遅延し、さらに反射物体B(104)の素材や構造により位相回転や直交性の変化が発生するため、合成波115の信号振幅は周波数により不均等になる。しかし加入者端末A(103)と加入者端末B(109)の位置が異なるため、上記の伝搬の特性は、原理的に異なるものとなる。
前述のとおり、周波数選択性マルチパス・フェージングにより被る受信電波の周波数ひずみ、即ち周波数毎の電力差は、通信を維持できないレベルの部分も生じる。第4世代移動通信においては、この周波数ひずみを直接に被ることを防ぐために、帯域を細分化して周波数コンポーネントまたはサブキャリアと呼ぶ周波数成分で構成している。第4世代移動通信で設けられるサブキャリアは、15[kHz]もしくは7.5[kHz]という非常に狭い帯域幅を持つため、例えば主たる運用バンドである2GHz帯での周波数選択性マルチパス・フェージング間隔の100[kHz]を十分にクリアできるもので、サブキャリア自身が周波数ひずみを被ることは少ない。しかし、周波数選択性マルチパス・フェージングにより被る受信電力の大小の差を防ぐことは不可能であり、通信に耐えないサブキャリアが発生する。
このため、第4世代移動通信においては、サブキャリアを12本程度を束ねて1つのブロックとし、個々の周波数ブロックと無線基地局=加入者間の伝搬路特性とを勘案して配分するアクセス方式を設けた。これがOFDMA (Orthogonal Frequency Division Multiple Access)である。
ここで、第4世代移動通信における伝搬路特性測定と周波数資源の配分の作業手順を説明する。図28は、第4世代移動通信の無線アクセス系のブロック図である。図28において、無線基地局eNB201は、eNB送信系202とeNB受信系203とを備える。加入者端末UE204は、UE受信系205とUE送信系206とを備える。
無線基地局eNB201は、基地局アンテナ207を有し、送信・受信アンテナ制御部208を制御してeNB送信系202からの送信信号209の送信とeNB受信系203への受信信号210の受信とを切り替える。eNB送信系202は、送信すべき送信情報信号DataA(211)を入力信号の一つとする。eNB受信系203は、受信した情報信号DataB’(212)を出力信号の一つとする。
チャネル符号化器221は、送信情報信号211を符号化する。直交変調マッピング222は、符号化された送信情報信号211を直交空間に配置し、複数のシンボルを生成する。空間・時間符号化器223は、生成された複数のシンボルを通信フレームに配置する。リソース配分器224は、通信フレームをリソースブロックに割り当てる。
逆フーリエ変換器IFFT(inverse fast Fourier transform)225は、リソースブロックに割り当てられたデータを周波数次元から時間次元へ変換する。CP(Cyclic Prefix)挿入部226は、フレームにCPを挿入する。その後、DAC(digital-to-analog converter )227は、CPが挿入されたデータをアナログ信号化し、周波数変換を施して高周波の送信信号209を生成する。
送信・受信アンテナ制御部208は、基地局アンテナ207を介して生成された送信信号209を加入者端末204に送信する。加入者端末204においては、基本的に上記無線基地局eNB201において実行された各処理と逆の処理が行われデータが取り出される。加入者端末204は、アンテナ214を介して、無線伝搬路213を経た送信信号209を受信する。加入者端末204の送信・受信アンテナ制御部215は、受信データをUE受信系205に入力させる。
UE受信系205では、高周波部・ADC部231は、受信信号の増幅ならびに周波数変換とアナログ−デジタル変換が行われデジタル信号化が施される。そのデジタル信号からCP除去部232にてCPの無いフレーム信号が得られる。そのフレーム信号は、高速フーリエ変換器(FFT)233にて時間系列データから周波数系列データへの変換が行われる。リソースブロック情報抽出部234は、変換された周波数系列データから、所望のリソースブロックのデータを抽出する。
MMSE等化器236は、抽出されたリソースブロックのデータに周波数等化を行う。軟判定器237は、周波数等化が行われたデータは、データの判定および補正が行われる。補正されたデータは、HARQ合成器238にて再送制御による誤り訂正が施された上で、チャネル符号復号化が行われ、受信情報218を生成する。
ここで、無線基地局201は周波数同期用信号群を、加入者端末204からはパイロット信号SRS(Sounding Reference Signal)なる帯域内のすべてのサブキャリアの位相を固定し振幅一定の電波を、発射する。これらの電波は、無線伝搬路213を経由してそれぞれ加入者端末204と無線基地局201に届くが、その間に作用する周波数選択性マルチパス・フェージングの影響を受けて到達する。
この周波数選択性マルチパス・フェージングによるサブキャリア個々の振幅変化と位相変化は、加入者端末204においては、高速フーリエ変換器233で検出され、伝搬路特性推定器235にて精査される。その測定情報240は、加入者端末204の送信系206によりUEアンテナ214を経て無線基地局eNB201のeNB受信系203に送られ、リソースブロック選定のための情報243すなわちRank and Precoding Indexとして空間・時間符号化器223およびリソース配分器224に送られてリソースブロックへの再割り当てに用いられる。同様に、加入者端末204が発したSRS信号も、無線基地局201により無線伝搬路213の周波数選択性マルチパス・フェージングの状況が把握される。
なお、上記は周波数分割複信(FDD: frequency division duplex)の場合、すなわち下り回線と上り回線の周波数が異なる場合について述べているが、時分割複信(TDD: time division duplex)の場合は、下り回線と上り回線の周波数が同一であるので、周波数選択性マルチパス・フェージングの状況の測定は、基本的に無線基地局側のみで行えばよい。そのため時分割複信では加入者端末が伝搬路の特性を測定し無線基地局に回答することは必要ない。
図29は、OFDMAのリソースブロックを示すものである。いま、無線基地局が発する一つのOFDMA周波数帯域をシステム帯域幅301と呼ぶ。この電波が加入者端末に届くと、マルチパス・フェージングを被り、システム帯域幅301を構成するサブキャリア302は個々に電力に差が生じる。無線基地局はこの状態の測定結果を得て、図29を例に取ると、周波数下端では伝搬状況が良好であると判定して、これに対応するリソースブロックを対象の加入者に割り当てる。リソースブロックの大きさはサブキャリア12本分のリソースブロック周波数帯域幅303と0.5ミリ秒を単位とするスロット304とから成るもので、これを時間軸方向に2区間集合したものをサブフレーム305と呼んで通信の単位としている。
すなわち、図29のシステム帯域幅301に対する加入者端末には、長方形で表されたリソースブロック群306が通信に供される。他のリソースブロックは、他の加入者端末に配分されるか、あるいは該加入者端末が他にも無線伝搬路品質が良好な部分があれば複数個のリソースブロックを配分される。こうした配分は、サブフレーム毎に、常に各加入者端末の通信品質を確保しながら再配分される。リソースブロック全体307は、常に利用効率を高めて用いられる結果となり、アクセス効率としての周波数利用効率の向上につながっている。
しかし、リソースブロックは、加入者端末毎に独立に配分され、第3世代移動通信における周波数多重化は行われない。すなわち、或る加入者端末は、配分されたリソースブロックを、限定された時間領域・周波数領域の中では、占有することとなっている。このため、さらなる伝送速度の高速化は、伝搬路特性を異にする複数伝搬路利用のMIMO(Multiple Input Multiple Output)手法が、専ら用いられ高度化が進んでいる。
しかし、伝搬路の多重化は、伝搬路に発生する不安定性や伝搬路プロファイル間の非直交性により、多重数が高くなるほど、通信容量も通信品質も低下する。さらには、アンテナの複数化に起因する構造設計的課題が大きい。
他方、第5世代移動通信においては、非直交多重化技術NOMA(Non-Orthogonal Multiple Access)と呼ぶ多様な周波数利用効率向上の方法が検討されている。主要なものとしては図30に示すものがある。図30において、無線基地局401には、近傍に存在する加入者端末402が無線伝搬路403で接続され、遠方に存在する加入者端末404が無線伝搬路405で接続されている。この場合に、2つの加入者端末402,404が同じ送信電力で同時に電波を無線基地局401へ送る場合を考える。
無線基地局401では、近傍にある距離406の加入者端末402からの電波の方が距離減衰量が少ないので、遠方の距離408にある加入者端末404からの電波よりも格段に強い電力で受信することとなる。これはすなわち、受信信号はほぼ、近傍にある加入者端末402の情報で占有されたに等しい。この状態を利用して、無線基地局401では、近傍にある加入者端末402からの受信信号を容易に抽出することができる。
無線基地局401は、抽出した近傍の加入者端末402の受信信号を用いて、受信信号から近傍の加入者端末402の受信信号を除去する。これにより得られる出力は、遠方にある加入者端末404の信号となる。以上から同一のリソースブロックで遠近2局の加入者端末を同時に通信接続することを可能にすることが可能となる。
図31は時間・周波数空間上で図30に示したNOMA方式を説明する図であり、時間・周波数空間のLayerを2つ設けて、一方をLayer1とし他方をLayer2としている。Layer1上の或るリソースブロックが遠近2局の加入者端末の遅延プロファイル上で選択が好ましいとなった時間・周波数状況において、近傍の加入者端末の電波411は、無線基地局に受信電力の高い状況で届く(図15参照)。他方、遠方からの加入者端末の電波412は、より大きい距離減衰作用を受けて、受信電力の低い状況で無線基地局に届く。
この2つの信号が混合した状態において、電力の大きい加入者端末の電波411を抽出することが容易であることは明らかである。しかし、2局の加入者端末が十分な距離差を持つ場合は、十分に電力差が得られるが、僅差の距離で存在する場合は、信号の分離が困難となる。また中間の距離の加入者端末にも通信を行おうとすると、十分な識別ができなくなり、周波数利用効率は最高でも2倍であり、平均すると1.3倍程度しか得られないという課題を有している。
図32は、既存技術のMIMO方式における2×1 MISO (Multiple Input Single Output)の形態の多重通信の可能性の検討図を示す。同一空間において同一周波数を用いて複数の情報を送ることを考える。空間伝搬路特性が異なることで、2本のアンテナから1本のアンテナに送信した2種類の異なる情報を、識別可能かどうかを考える。無線基地局501は、いま、加入者端末502に対して第1のアンテナ503(送信アンテナ)と第2のアンテナ504(送信アンテナ)を用いて、第1の送信設備505と第2の送信設備506からの独立した情報を送ることを考える。加入者端末502の受信側アンテナ507との間には、第1のアンテナ503とを結ぶ無線伝搬路508と、第2のアンテナ504とを結ぶ無線伝搬路509がある。
第1のアンテナ503と第2のアンテナ504から、同一の周波数を用いて独立の情報を送信した場合、当然のことながら加入者端末502のUEアンテナ507には、混信状態が発生する。しかし第1の無線伝搬路508と第2の無線伝搬路509が伝搬特性に独立性がある場合には、伝搬路特性データにより混信して受信された第1の送信設備505と第2の送信設備506からの独立した情報を分離抽出することが可能である。
その原理について説明する。加入者端末502がUEアンテナ507で受けた無線基地局501の第1のアンテナ503と第2のアンテナ504からの各々の無線伝搬路508と無線伝搬路509から受けた周波数ひずみを含む受信波は、自然界の雑音源からいわゆる白色雑音を受ける。雑音はベクトル加算を受信機510内で受けるため、加算器511に加えて表現している。雑音の加わった受信信号は、伝搬路推定器513の助けを得て信号分離器512に入る。さらに誤り訂正を最尤判定器514および515にて行い、送信された2種類の情報を分離抽出する。
ここで情報の抽出には、同一周波数を用いる無線伝搬路508と無線伝搬路509との識別が不可欠である。無線伝搬路508の伝搬路特性をhとし、無線伝搬路509の伝搬路特性をhとして、これらが物理的に独立性すなわち直交性が高い場合には、無線基地局501の第1のアンテナ503と第2のアンテナ504からの情報dとdは受信側アンテナ507による受信信号rと伝搬路特性との内積に基づく相関演算で算出でき、式(1)および式(2)のように表すことができる。
Figure 0006497472
Figure 0006497472
ただし一般的には受信アンテナが1基の場合には、物理的に独立の伝搬路特性hと伝搬路特性hを常に得ることは困難なため、情報dとdを分離抽出することは難しく、受信側のアンテナ数を複数個にすることが行われている。ここで伝搬路特性hと伝搬路特性hを把握するMIMO(Multiple Input Multiple Output)のアルゴリズムを説明する。
図33は、時間・空間通信多重化を可能にする2×2MIMOの通信フレームを示す。601は、無線基地局の第1のアンテナから送信される通信フレームである。602は無線基地局の第2のアンテナから送信される通信フレームである。両通信フレームともに、同期が取られており、所定の長さの通信フレーム603で管理される。通信フレームの先頭にはパイロット信号区間604が設けられ、2区間のスロット605およびスロット606で構成されている。
無線基地局は、時刻t=tのスロット605で、無線基地局第1アンテナからSのシンボル信号を、無線基地局第2アンテナからSのシンボル信号を送信する。つぎに時刻t=tのスロット606で、無線基地局第1アンテナからシンボル信号Sの負の共役信号を、無線基地局第2アンテナからシンボル信号Sの共役信号を、送信する。
最初の時刻t=tのスロットに対する加入者端末の受信信号をr(t=t)とし、次の時刻t=tのスロットに対する加入者端末の受信信号をr(t=t)とすると、式(3)および式(4)が得られる。
Figure 0006497472
Figure 0006497472
ここでS ̄は、Sの共役複素数を表す。複素数情報を送受する方法は、直交変調と直交復調である。送信電力が十分に大きく、伝搬路の距離も小さく、受信電力が十分に大きい場合には、雑音w,wを無視できるので、式(3)と式(4)からhとhは式(5)および式(6)で得られる。
Figure 0006497472
Figure 0006497472
ここでr〜およびr〜は、時刻t=tにおけるスロットでの値と時刻t=tにおけるスロットでの値の平均である。いま、式(5)と式(6)を比較して、つぎの条件が満たされる場合に、hとhは無相関となり、独立性が保持される。すなわち、式(7)の内積または、式(8)の内積が成り立つ場合である。
Figure 0006497472
Figure 0006497472
式(8)は、
Figure 0006497472
あるいは、
Figure 0006497472
で成り立つので、式(9)が得られ、式(10)が得られる。
Figure 0006497472
Figure 0006497472
式(9)と式(10)が同時に成り立つことは、その積が成り立つことであり、すなわち、以下の式(11)が成り立つときである。
Figure 0006497472
これはすなわち、以下の式(12)が成り立つことである。
Figure 0006497472
式(12)は、内積で示すと式(13)になる。
Figure 0006497472
すなわち、信号Sと信号Sの絶対値またはノルムが等しく、内積が0の場合となる。また、式(11)、式(13)が周波数または時間的に広がりを持つ場合には、周波数または時間の部分空間で考えることが必要となり、データ608またはデータ609の占める周波数空間または時間空間の合計すなわち積分を行うことで条件を示すことができる。次式(14)、式(15)に、これを示す。
Figure 0006497472
このような条件が満たされる場合には、式(5)および式(6)が得られ、データ伝送区間607に送られる独立のデータ608とデータ609は、1本のアンテナで受信される受信信号rから次の式を用いて抽出分離することが可能となるが、式(11)は、式(5)および式(6)の分母をゼロにする状況を生む。これは多元連立方程式として十分な数の式が得られていないことを意味する。すなわち、2本のアンテナから1本のアンテナに異なる伝搬路特性hとhでデータを送る上では、伝搬路特性を解明するための十分な情報を得られないことを意味する。
実際に現用の2×2−MIMOシステムにおいては、受信側のアンテナ数と同数の送信側のアンテナ数である2本のアンテナを受信側と送信側とに装備させることで、伝搬路特性を解明するための十分な情報の確保を図っている。伝搬路特性hとhとが明らかになれば、データ608の情報dと、データ609の情報dとは、式(16)および式(17)として、受信側で抽出が可能となる。
Figure 0006497472
ここで、wは雑音を表す。
図34に従来の2×2MIMOによるLTE通信の概念を示す。LTE通信は、送信側501aと受信側502aとの間で通信を行う。2×2MIMO通信において、送信側501aには、送信アンテナ701,702が設けられており、受信側502aには、受信アンテナを703,704が設けられている。
送信アンテナ701と受信アンテナ703の間に無線伝搬路705が存在する。送信アンテナ701と受信アンテナ704の間に無線伝搬路706が存在する。送信アンテナ702と受信アンテナ704の間に無線伝搬路707が存在する。送信アンテナ702と受信アンテナ703の間に無線伝搬路708が存在する。送信側501aは、送信アンテナ701,702に、それぞれアンテナ送受制御部709,710から送信信号711,712が供給される。アンテナ送受制御部709,710はそれぞれ受信信号路713,714への受信信号の供給も行う。
送信データは2系統用意し、第1の送信データ715は符号化とマッピングと変調を変調部717で行い、そのデジタル出力719にガード区間すなわちCP部(Cyclic prefix)を挿入してデジタル・アナログ変換と搬送波へ載せる処置を高周波部721で行う。第2の送信データ716についても同様に、符号化とマッピングと変調を変調部718で行い、そのデジタル出力720にガード区間すなわちCP部(Cyclic prefix)を挿入してデジタル・アナログ変換と搬送波へ載せる処置を高周波部722で行う。
受信側502aにおいては、受信アンテナ703の受信信号はアンテナ送受制御部723を経て受信信号725となり高周波信号からベースバンド信号へ変換しガード区間を取り外しデジタル信号への変換までをアナログ処理部729で行い、FFT処理(Fast FourierTransform)をFFT部741で行い、時間領域−周波数領域変換により各サブキャリア上のデータ群に弁別される。この出力は、デマッピング処理部751にてマッピングを元に戻し、MMSE(minimum mean square error)部755で変調シンボルベクトルの誤差を最小平均となるまで精度を高め、その出力757をMLD(maximum likelihood detector)部759にてI−Qコンスタレーション上の変調点を求めて送信されたデータを検出する。
同じく、受信アンテナ704の第2の系統においても、同様に、受信アンテナ704においてアンテナ送受制御部724を経て受信信号726となり高周波信号からベースバンド信号へ変換しガード区間を取り外しデジタル信号への変換までをアナログ処理部730で行い、FFT処理(Fast FourierTransform)をFFT部742で行い、時間領域−周波数領域変換により各サブキャリア上のデータ群に弁別される。
この出力は、デマッピング処理部752にてマッピングを元に戻し、MMSE(minimum mean square error)部756で変調シンボルベクトルの誤差を最小平均となるまで精度を高め、その出力758をMLD(maximum likelihood detector)部760にてI−Qコンスタレーション上の変調点を求めて送信されたデータを検出する。このデータ検出の際に、パイロット信号の送信によるMIMO伝送の伝搬路特性の把握結果が使われる。
図35は、図34におけるMMSE部とMLD部の機能を示すものである。図35の771は図34のデマッピング等を行う751および752の出力で、751および752に相当するMMSE部を772で示している。MMSE部772には、受信信号群771を並行して受けたチャネル推定部773から伝搬路特性推定値が供給される。
MMSE部772がMMSE等化により抽出した出力774は、それぞれのシンボルベクトルのコンスタレーション上の変調点を求めるために、2乗ユークリッド距離計算を775で行い、その結果の誤差を対数尤度比LLRとして776にて演算し、軟判定チャネル復号器777で復号を完了し送信されたデータの復号を完了する。
以上の処理により、無線伝搬路705,706,707,708の間の伝搬路特性の差が十分に直交性を有していなくても、伝搬路特性を推定し、所望の伝搬路のみで伝搬された送信データを抽出し取り出すことができるのである。
3GPP Technical Specification; 3GPP TS 36.101V8.5.0 (2009-03), "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 8)", 2009年3月 3GPP Technical Specification; 3GPP TS 36.211V8.5.0 (2008-12), "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 8)", 2008年12月 樋口、田岡、「マルチアンテナ無線伝送技術」、NTT DoCoMoテクニカル・ジャーナル Vol.14 No.1 (2006年4月)
第4世代移動通信においては、その中核的技術であるOFDMA(Orthogonal Frequency Division Multiple Access)のリソースブロック(resource block)の周波数利用効率の向上が図られず、通信事業発展拡大に支障をきたしているという課題がある。
本発明は、リソースブロックにおける周波数利用効率の向上を図る送受信方法および送受信システムを提供するものである。
上記問題を解決するために、本発明の一態様は、送信装置と受信装置との間で通信する送受信システムにおける送受信方法であって、前記受信装置が、通信伝搬路の伝搬路特性を測定し、前記送信装置が、前記伝搬路特性の測定結果に基づいて、前記伝搬路特性に類似する伝搬路特性を有する複数の疑似伝搬路特性を相互に低い相互相関性を確保するように生成し、送信側のベースバンド内において前記複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成し、前記疑似伝搬路特性を前記データに1つずつ重畳して生成された複数の重畳データを合成して送信信号とし、複数の前記疑似伝搬路特性に関する複数の疑似伝搬路特性情報および前記送信信号を送信し、前記受信装置が、前記送信装置から先行して送信された複数の前記疑似伝搬路特性情報と後続して送信された通信信号を受信し、複数の前記疑似伝搬路特性情報に基づいて前記通信信号から前記複数のデータを個別に抽出する、送受信方法である。
上記問題を解決するために、本発明の一態様は、送信装置と受信装置との間で通信する送受信システムであって、前記受信装置が測定した通信伝搬路の伝搬路特性伝搬路特性の測定結果に基づいて、前記伝搬路特性に類似する伝搬路特性を有する複数の疑似伝搬路特性を相互に低い相互相関性を確保するように生成する生成部と、送信側のベースバンド内において前記複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成し、前記疑似伝搬路特性を前記データに1つずつ重畳して生成された複数の重畳データを合成して送信信号とし、複数の前記疑似伝搬路特性に関する複数の疑似伝搬路特性情報および前記送信信号を送信する送信部と、を備える送信装置と、前記通信伝搬路の伝搬路特性伝搬路特性を測定する測定部と、前記送信装置から先行して送信された複数の前記疑似伝搬路特性情報と後続して送信された通信信号を受信する受信部と、複数の前記疑似伝搬路特性情報に基づいて前記通信信号から前記複数のデータを個別に抽出するデータ復号部と、を備える受信装置と、を備える、送受信システムである。
上記問題を解決するために、本発明の一態様は、送信装置と受信装置との間で通信する送受信システムにおける送受信方法であって、前記送信装置が、通信伝搬路の伝搬路特性を測定し、前記伝搬路特性の測定結果に基づいて、前記伝搬路特性に類似する伝搬路特性を有する複数の疑似伝搬路特性を相互に低い相互相関性を確保するように生成し、送信側のベースバンド内において前記複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成し、前記疑似伝搬路特性を前記データに1つずつ重畳して生成された複数の重畳データを合成して送信信号とし、複数の前記疑似伝搬路特性に関する複数の疑似伝搬路特性情報および前記送信信号を送信し、前記受信装置が、前記送信装置から先行して送信された複数の前記疑似伝搬路特性情報と後続して送られる通信信号を受信し、複数の前記疑似伝搬路特性情報に基づいて前記通信信号から前記複数のデータを個別に抽出する、送受信方法である。
上記問題を解決するために、本発明の一態様は、送信装置と受信装置との間で通信する送受信システムであって、前記送信装置が、通信伝搬路の伝搬路特性を測定し、前記伝搬路特性の測定結果に基づいて、前記伝搬路特性に類似する伝搬路特性を有する複数の疑似伝搬路特性を相互に低い相互相関性を確保するように生成し、送信側のベースバンド内において前記複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成し、前記疑似伝搬路特性を前記データに1つずつ重畳して生成された複数の重畳データを合成して送信信号とし、複数の前記疑似伝搬路特性に関する複数の疑似伝搬路特性情報および前記送信信号を送信し、前記受信装置が、前記送信装置から先行して送信された複数の前記疑似伝搬路特性情報と後続して送られる通信信号を受信し、複数の前記疑似伝搬路特性情報に基づいて前記通信信号から前記複数のデータを個別に抽出する、送受信システムである。
無線又は有線の通信方法において、リソースブロックにおける周波数利用効率の向上を図ることができる。
本発明に係る送受信システムSの構成の一例を示す図である。 M個の複数の疑似伝搬路特性情報を用いてM個の独立する信号を単一の周波数上で搬送する図である。 M個の複数の疑似伝搬路特性情報を用いてM個の独立する信号を単一の周波数上で搬送する図である。 M個の複数の疑似伝搬路特性情報を用いてM個の独立する信号を単一の周波数上で搬送する図である。 本発明に係る送受信システムSの詳細な構成の一例を示す図である。 伝搬路パラメータ管理部29の細部の構成の一例を示す図である。 疑似伝搬路特性を算出する過程の一例を示す図である。 式(22)の処理を実現する回路の一例を示す図である。 式(37)から得られる周波数軸上のスペクトル強度の周波数特性を示す図である。 疑似伝搬路特性を演算する一例を示す図である。 片側Z変換として構成した図6を両側Z変換に置き換えたものである。 無線伝搬路の伝搬路特性について、周波数帯域内の全体像を示したものである。 式(37)が示す伝搬路特性HINV(ejωT)と、基盤とした伝搬路特性H(ejωT)との複素周波数空間での関係を示す図である。 第1の疑似伝搬路特性の概要の一例を示す図である。 第2の疑似伝搬路特性の概要の一例を示す図である。 第3の疑似伝搬路特性の概要の一例を示す図である。 第4の疑似伝搬路特性の概要の一例を示す図である。 送信側において疑似伝搬路特性を生成する構成の一例を示す図である。 受信側において疑似伝搬路特性を抽出する構成の一例を示す図である。 第5の疑似伝搬路特性の概念の一例を示す図である。 疑似伝搬路特性の遅延プロファイルの一例を示す図である。 複数の疑似伝搬路特性の生成を行う伝搬路パラメータ管理部29の内部の模式図である。 加入者端末の受信系7のFFT部41および相関演算部41fの構成の一例を示す図である。 リソースブロック生成のための加入者端末の受信系7のFFT部41における演算の概念の一例を示す図である。 OFDMAの周波数幅別の伝搬路特性測定のためのSRSを説明する図である。 SRSを発生するための構成の一例を示す図である。 OFDMAフレームの構成の一例を示す図である。 疑似伝搬路モデルを3種用いる無線通信システムの一例を示す図である。 疑似伝搬路モデルを3種用いるOFDMAフレームの一例を示す図である。 3種の疑似伝搬路特性を用いてデータ伝送を行う概念図である。 送受信システムSの処理の流れの一例を示すシーケンス図である。 従来の無線通信の概要を示す図である。 第4世代移動通信の無線アクセス系のブロック図である。 従来のOFDMAのリソースブロックを示すものである。 送信電力制御型のNOMAの例を示す図である。 送信電力制御型のNOMAのリソースブロックの多層化を示す図である。 既存技術のMIMO方式における2×1MISOの形態の多重通信の可能性の検討図である。 MIMO通信の通信フレームを示す図である。 従来の2×2MIMOによるLTE通信の概念を示す図である。 従来のMIMOによるLTE通信のMMSE部とMLD部の機能を示す図である。
以下、図面を参照し、本発明の送受信システムの実施形態について説明する。本発明は、OFDMAシステムにおける伝送速度向上を図ることを目的とする。具体的にはリソースブロックにおける周波数上の多重化を実現するものである。その手段は、電波伝搬路特性により定まるリソースブロックの周波数領域の特性に近似した複数の疑似伝搬路特性を設ける。
このとき、各疑似伝搬路特性は相互に低相互相関性を確保するように生成し、相互の干渉度を低下させる。図1は、本発明に係る送受信システムSの構成の一例を示す図である。図1は、従来例のMIMO方式を説明した図34に準じている。図1において、図34と同一の構成については同一の名称および符号(名称が適宜変更される場合もある)を用い、重複する説明については適宜省略する。送受信システムSは、送信側501(送信装置)と受信側502(受信装置)とを備える。
図32において送信側のアンテナは2基で構成され、2つの送信系がそれぞれのアンテナに接続されていた。その無線伝搬路508,509には、電波伝搬路特性のhおよびhが存在し、送信電波にこの特性が重畳されていた。図32においては、この伝搬路特性hおよび伝搬路特性hを、2種類のパイロット信号と、その共役の信号とを2スロットで送信することで、受信側で解読し、以降のデータ通信の際の混信から分離する手段としていた。
図1の送受信システムSは、送信側501において、この伝搬路特性hおよび伝搬路特性hを保持して、2系統の送信出力にそれぞれに乗算し加算することで、アンテナは1基にしても受信側502では図32とほぼ同様の電波が受信でき、あらかじめ認知された伝搬路特性hおよび伝搬路特性hを用いて2系統の送信信号を分離抽出できることを示すものである。
図32においても、伝搬路特性hおよび伝搬路特性hは、基本的に受信系で測定するが、短時間の間は、数値に大きな変化は発生しないとの前提であり、この状態を利用すれば、実際の伝搬路特性hおよび伝搬路特性hに準じた疑似伝搬路特性を生成し、これを用いて2系統の送信信号を同時に送信できる。今、1シンボル区間での送信データと直交変調を数式で表すと、式(18)となる。
Figure 0006497472
ここで、ωc:搬送波周波数、t:時間、θ:位相、y(ωc, t ):送信波信号、v(t=t1):時刻t1における送信シンボル信号、a:搬送波振幅である。
シンボル区間内でシンボル信号が一定の場合は、さらにつぎのように表現できる。
Figure 0006497472
電波伝搬路特性Γtc,t )も極座標表現で示すと、以下のように書ける。
Figure 0006497472
ここで、c:伝搬減衰、θt:伝搬路位相変化である。受信アンテナに届く受信波は、これらの相乗結果となるので、式(21)が得られる。
Figure 0006497472
この受信波に伝搬路特性の逆数を乗算すると、式(22)となり、送信側の送信波が再生できる。
Figure 0006497472
さらにFFTにて搬送波信号を乗算すると、式(23)が得られる。
Figure 0006497472
ここで、ea+jθはea=Aと置くと、ea+jθ=A(cosθ+jsinθ)であり、直交検波の直交平面上の振幅Aと位相θによる波動を示す。
図2A、図2B、図2C(以下、まとめて図2ともいう)に、上記の考えにより、M個の複数個の疑似伝搬路特性を用意することで、M個の複数データを搬送することが可能であることを、数式で示す。
図1、図2に示されるように、送信側501において、搬送処理部505Aは、第1の送信用信号551にH1(ω)で示される疑似伝搬路特性情報561を重畳する。並行して搬送処理部506Aは、第2の送信用信号552にH2(ω)で示される疑似伝搬路特性情報562を重畳する。合成器521は、搬送処理部505Aの出力と搬送処理部506Aの出力とを合成する。合成された送信用信号は、送信側アンテナ503から無線伝搬路(wireless propagation path)508に送り出される。
無線伝搬路508は送信側アンテナ503と受信側アンテナ507との間の信号が伝搬する経路である。この無線伝搬路508の伝搬路特性をHp(ω)で表す。第1の送信用信号551の変調後の特性をs1(ω,t)とし、第2の送信用信号552の変調後の特性をs2(ω,t)とする。それぞれの信号がが受信側502のアンテナ507に入力する際の信号を数式で示すと、第1の送信用信号551については、伝搬路特性H(ω)の影響を受けるので、式(24)となる。
Figure 0006497472
疑似伝搬路特性H1(ω)と無線伝搬路特性Hp(ω)は、周波数特性として合成できるので、式(25)として表すことが可能である。
Figure 0006497472
この合成された伝搬路特性Hp1(ω)を用いて式(24)を表すと、式(26)となる。
Figure 0006497472
式(26)によれば、送信信号s1(ω,t)があたかも無線伝搬路特性Hp1(ω)の中を通り抜けることと同等に扱うことが可能である。
ただし、疑似伝搬路特性H1(ω)と無線伝搬路特性Hp(ω)の周波数特性が近似していない場合には、式(26)の結果であるHp1(ω)は、劣悪なスペクトルを示し、リソースブロックに与えられた周波数帯での通信に支障をきたす。このため、疑似伝搬路特性の生成に際しては、実伝搬路特性に類似する疑似伝搬路特性を生成するのである。同様のことが、第2の送信信号s2(ω,t)についても可能であり、合成された伝搬路特性をHp2(ω)で表すと、式(27)を得る。
Figure 0006497472
加入者端末502において、受信回路は単一であるので、混入する雑音も1種類となり、この雑音をNnoise(ω,t)で示すと、受信回路における信号r(ω,t)は、次式(28)で表すことが可能である。
Figure 0006497472
式(28)は、本願が無線伝搬路が1系統のみにも関わらず、複数の伝搬路を通じて異なる情報データが独立に搬送できることを示している。図2Bは式(28)を物理的に表している。
さらに式(28)の各伝搬特性を合成すると式(28a)が得られる。
Figure 0006497472
図2Cは式(28a)を物理的に表している。図2Cは、本願の考え方によれば、あたかも相互に独立な伝搬路特性を有する複数の無線伝搬路を用いて独立の情報を送受することの可能性を示している。
以下の式(29)は、この考え方において、m個の複数の異なる疑似伝搬路特性Hk(ω):k=1,…,mを提供できる場合には、合成された伝搬路特性のHpk(ω):k=1,…,mを用いて、m個の複数の独立した送信情報を、1系統の無線伝搬路で送ることが可能であることを示したものである。
Figure 0006497472
以上により、複数個の疑似伝搬路特性を用意できれば、空間伝搬路を複数設ける必要なく複数の送信信号を同時に伝送することが可能であることは明らかである。実現に際しては、送信系と受信系の機能構築と、疑似伝搬路特性データの生成方法を具現化する必要がある。以下に具体的な方法と手段を複数の実施例として示す。
図3において、1は無線基地局の送信系を、2は該無線基地局の受信系を、3は無線基地局送信系1の出力信号を、4は無線基地局受信系への入力信号を、5は無線基地局送信系出力信号3と前期無線基地局受信系入力信号4のアンテナとの接続管理部を、6は該接続管理部5に接続する無線基地局のアンテナを、示す。
図3においてはまた、7は加入者端末の受信系を、8は該加入者端末の送信系を、9は加入者端末受信系7の入力信号を、10は加入者端末送信系8の出力信号を、11は加入者端末受信系入力信号9と加入者端末送信系の送信信号10のアンテナとの接続管理部を、12は該接続管理部11に接続する加入者端末のアンテナを示す。
13は、無線基地局アンテナ6と加入者端末アンテナ12の間の無線伝搬路である。無線基地局送信系1において、15は、第1の送信用情報を示す。16は第2の送信用情報を示す。17fは、第1の疑似伝搬路パラメータによる周波数領域における搬送処理部を示し、18fは、第2の疑似伝搬路パラメータによる周波数領域における搬送処理部を示す。21は、第1の変調回路を示し、22は、第2の変調回路を示す。23は、第1の変調回路21の出力を示す。24は該第2の変調回路22の出力を示す。
17bは、第1の疑似伝搬路パラメータによる時間領域における搬送処理部を示す。18bは第2の疑似伝搬路パラメータによる時間領域における搬送処理部を示す。25aは、第1疑似伝搬路パラメータによる時間領域における搬送処理部17bの出力を示す。25bは第2疑似伝搬路パラメータによる時間領域における搬送処理部18bの出力を示す。25は、出力25aと出力25bとの加算を示す。
26は、無線基地局受信系2の受信回路を示す。27は、基地局受信部26の第1の出力を示す。28は基地局受信部26の第2の出力の無線伝搬路情報を示す。29は伝搬路パラメータ管理部を示す。30は伝搬路パラメータ管理部29からの第1の疑似伝搬路パラメータhおよび制御信号を示す。31は伝搬路パラメータ管理部29からの第2の疑似伝搬路パラメータhおよび制御信号である。32は無線基地局のスケジューラを示す。33は基地局受信部26からのフレーム基準信号を示す。34は、基地局受信部26への信号処理用タイミング信号を示す。35は、第1の疑似伝搬路パラメータによる第1の変調回路21と第2の疑似伝搬路パラメータによる第2の変調回路22への信号処理用タイミング信号を示す。
加入者端末受信系7においては、9は、受信信号を示す。10は、送信信号を示す。11は、受信信号9と送信信号10を切り替える制御部を示す。12は、加入者端末のアンテナを示す。13は、無線基地局アンテナ6と加入者端末アンテナ12との間の電波伝搬路を示す。37は伝搬路パラメータ管理部29から出される第1のFFT部21へのリソース配分制御信号を示す。38は同様に伝搬路パラメータ管理部29から出される第2のFFT部22へのリソース配分制御信号を示す。
39は、加入者端末のスケジューラを示す。40は、加入者端末スケジューラ39への加入者端末受信系7からのタイミング信号を示す。41fは、加入者端末受信系入力信号9を受ける第1の時間領域における相関演算部を示す。42fは、加入者端末受信系入力信号9を受ける第2の時間領域における相関演算部を示す。43は、第1の時間領域における相関演算部41fの出力41aを受ける第1のFFT部を示す。
44は、第2の時間領域における相関演算部42fの出力42aを受ける第2のFFT部を示す。41bは、第1の周波数領域における相関演算部を示す。42bは、第2の周波数領域における相関演算部を示す。41cは、第1の時間領域における相関演算部41fの出力の一部を第2の時間領域における相関演算部42fへ提供する手段を示す。45は、疑似伝搬路特性の管理部を示す。46は、制御信号群を示す。47は、第1の相関演算部41fへ第1の疑似伝搬路特性を供給する信号路を示す。48は、第2の相関演算部42bへ第2の疑似伝搬路特性を供給する信号路を示す。49は、加入者端末スケジューラ39からのタイミング信号を示す。
50は加入者端末スケジューラ39からの加入者送信部抽出出力48を受ける第2のFFT(fast fourier transform)を示す。51は、第1のFFT49の第1の出力を受ける第1のリソースブロックからの信号取り出し部を示す。52は、第2のFFT50の第1の出力を受ける第2のリソースブロックからの信号取り出し部を示す。53は、第1のFFT49の第2の出力を受ける第1の伝搬路特性推定部を示す。54は、第2のFFT50の第2の出力を受ける第2の伝搬路特性推定部を示す。
55は、第1のMMSE(Minimum Mean Square Error)誤り訂正部を示す。56は、第2のMMSE(Minimum Mean Square Error)誤り訂正部を示す。57は、第1のMMSE誤り訂正部55の補正出力を示す。58は、第2のMMSE誤り訂正部55の補正出力を示す。59は、第1のMMSE誤り訂正部55の補正出力57を得て第1の送信用情報15を再生する第1の最尤推定部を示す。60は第2のMMSE誤り訂正部56の補正出力58を得て第2の送信用情報16を再生する第2の最尤推定部を示す。
61は、第1の最尤推定部59の出力を示す。62は、第2の最尤推定部60の出力を示す。63aおよび63bは、第1の実伝搬路特性推定情報を示す。64aおよび64bは、第2の実伝搬路特性推定情報を示す。65は、第1の最尤推定部59により得られる第1の等化伝搬路特性を示す。66は、第2の最尤推定部60により得られる第2の等化伝搬路特性を示す。
67は、実伝搬路特性推定情報63bおよび64bと等化伝搬路特性65および66を入力とする情報結合部67Aを示す。68Aは情報結合部67Aの出力を示す。69は、加入者端末の送信部を示す。70は、加入者端末送信部69の送信用信号群を示す。71は、加入者端末送信部69への加入者端末スケジューラ39からのタイミング信号を示す。なお、図3においては、送信系と受信系ともに高周波部を省略している。
図3における本願第1の実施例の動作を説明する。なお、図3の大部分は現行のOFDMAシステムと同一であるため、本願の目的以外の動作については省略する。無線基地局送信系1において、2系統の送信部にそれぞれ第1の送信用情報15および第2の送信用情報16が第1の周波数領域における搬送処理部17fと第2の周波数領域における搬送処理部18fへ供給される。伝搬路パラメータ管理部29からの疑似伝搬路特性情報が周波数領域での処理を指示する場合は、ここで搬送処理が行われる。
搬送処理部17fの出力19および搬送処理部18fの出力20は、それぞれ第1の変調回路21と第2の変調回路22に入力される。併せて伝搬路パラメータ管理部29では無線伝搬路情報28を基地局受信部26から受けて適宜、無線伝搬路情報28に基づいて適切なリソースブロックを選定し、リソース配分制御信号37,38と疑似伝搬路特性h1,h2を生成し、第1の変調回路21と第2の変調回路22とに利用するべきリソースブロックを生成させる。
第1の変調回路21と第2の変調回路22とは、その出力をそれぞれ第1の疑似伝搬路パラメータによる時間領域における搬送処理部17bと第2の疑似伝搬路パラメータによる時間領域における搬送処理部18bとに供給する。その出力25aおよび25bは合成器25により合成されて送信出力3(送信信号)となる。送信出力3は無線基地局アンテナ6を経て無線伝搬路13に接続し、加入者端末アンテナ12に受信される。
受信信号9は、アンテナ接続管理部11を経て第1の時間領域における相関演算部41fと第2の時間領域における相関演算部42fに入力され、疑似伝搬路特性モデルが時間領域のモデルであれば、この段で所望の搬送波を取り出す。疑似伝搬路特性モデルが時間領域のモデルであるか否かは、疑似伝搬路特性管理部45からの指示で判断される。第1の時間領域における相関演算部41fと第2の時間領域における相関演算部42fの出力41aおよび出力42aは、第1のFFT部43および第2のFFT部44により周波数領域情報に変換される。
OFDMシステムにおけるサブキャリア群の上の変調波は、ここで抽出される。これら2基のFFT部の出力は、第1の周波数領域における相関演算部41bと第2の周波数領域における相関演算部42bに入力され、疑似伝搬路特性モデルが周波数領域のモデルであれば、この段で所望の搬送波を取り出す。疑似伝搬路特性モデルが周波数領域のモデルであるか否かは、疑似伝搬路特性管理部45からの指示で判断される。
これらの処理により、その後の信号処理は、図34に示したMIMO方式の受信系と同様である。信号は、第1のデマッピング部51と第2のデマッピング部52に送られてデマッピングされ、それぞれ誤りを含んだ状態ではあるが第1の送信情報と第2の送信情報となる。第1の送信情報と第2の送信情報とは、第1のMMSE(Minimum Mean Square Error)誤り訂正部55と第2のMMSE誤り訂正部56とにより誤り訂正されて補正出力57,58となる。
さらに補正出力57,58は、それぞれ第1の最尤推定部59および第2の最尤推定部60にて復号化され、より誤りの少ない受信情報出力61および受信情報出力62を得る。この受信情報出力61および受信情報出力62には、無線基地局1から送られた無線伝搬路特性を特定するパイロット信号(Scattering Pilot信号)を受けて得られた無線伝搬路特性情報も含まれており、それらは疑似伝搬路特性管理部45に提供される。
同時に受信情報出力61および受信情報出力62は情報結合部67Aに送られ、第1の伝搬路特性推定器53と第2の伝搬路特性推定器54とからの伝搬路推定情報63a,64aをまとめて情報68Aとし加入者端末送信部69に供給し、その送信信号10を加入者端末アンテナ12から無線基地局アンテナ6に無線伝送する。第1の伝搬路特性推定器53と第2の伝搬路特性推定器54は、前述のとおり、無線基地局送信系1の発するパイロット信号(Scattering Pilot信号)により得られる無線伝搬路特性を推定するものである。無線基地局送信系1が利用する第1の疑似伝搬路特性hと第2の疑似伝搬路特性hは、無線基地局送信系1の伝搬路パラメータ管理部29で生成される。
図4に、図3の伝搬路パラメータ管理部29の細部の構成の一例を示す図である。図4において、図3の遅延プロファイル情報を生成する伝搬路パラメータ管理部29への入力28は、伝搬路特性推定情報97、チャネル品質指標98およびリソースブロック選択情報99を含む。伝搬路特性推定情報97は、IFFT部64を経て周波数特性データ67となる。他方、伝搬路特性推定情報97から伝搬路モデルの選定部95による伝搬路モデル情報と、新たな伝搬路モデルの生成部96からの伝搬路モデル情報が比較/評価部68に伝えられる。
比較/評価部68は、受信系からの伝搬路特性推定情報97も参照して、送信系が必要とする疑似伝搬路特性30を選定する。比較/評価部68は、伝搬状況とサービス種別により比較方法バンク90から適切な疑似伝搬路特性30を選ぶ。こうして選ばれた疑似伝搬路特性30aおよび30bは、第1の変調回路21と第2の変調回路22に供給される。また伝搬路特性推定情報(遅延プロファイル推定情報)30cは、レイヤーマッピング部87に供給されてリソースブロックの選定に使われる。
図5において、同図(C)のパラメータから同図(A)および(B)を演算する過程を以下に示す。図3に示した本願第1の実施例において、第1の伝搬路特性推定器53および第2の伝搬路特性推定器54は、前置するFFT部43,44による時間−周波数変換作用から無線伝搬路13の遅延プロファイルに相当するシステム帯域1002内の周波数特性を図5(A)の1001のように得る。FFT部43,44は複素解析を行うので、物理的には図5(B)に相当する無線伝搬路特性(位相―周波数特性)1003が得られる。LTEシステムにおいてはこの無線伝搬路特性から図5(C)のような加入者端末が用いるべきリソースブロック1004もしくは1005を選定する。
周波数成分1006は、システム帯域内の外縁部に付される制御信号(PUCCH)である。これらの処理は、図3の本願第1の実施例においては、加入者端末送信系8を通じて加入者端末が把握した無線伝搬路特性情報を得た無線基地局送信系1側の伝搬路パラメータ管理部29からのリソース配分制御信号37,38をそれぞれに受けた無線基地局送信系1のFFT部21,22にて行われる。
この無線伝搬路特性1001,1003は、IFFT処理を施すと図5(D)の強度−時間特性および図5(E)の位相−時間特性が示す遅延プロファイル特性が得られる。とくに図5(E)が示す位相−時間特性は、疑似伝搬路モデルを生成する上で重要なデータとなる。すなわち、同図(A)および(B)が分かれば、直交もしくは相互相関性の低い伝搬路モデルの伝搬路パラメータが得られ、上記手順を遡ることにより新たな遅延プロファイルが分かる。
図5(D)において、1007は最も早く到来する第1波で通常は直接波となり、強度をaで表している。つぎに到来する1008は、第1遅延波であり通常は第1反射波となり、強度をbで表している。その次に到来する1009は、第2遅延波であり通常は第2反射波となり、強度をcで表している。続いて到来する1010は第3遅延波であり通常は第3反射波となり、強度をdで表している。
遅延波それぞれの第1波からの遅延時間は、第1遅延時間1028をnTで、第2遅延時間1029をnTで、第3遅延時間1030をnTで示す。ここでn、n、nは整数値を、Tは時間分解能を示す。時間分解能は、後述のとおり、システム帯域幅の逆数で与えられる。また図5(E)は遅延プロファイルの位相を示し、第1波の位相1017をθaで、第1遅延波の位相1018をθbで、第2遅延波の位相1019をθcで、第3遅延波の位相1020をθdで示している。今、図5(D)のパラメータを以下の式(30)のように仮定して、モデル1とする。
Figure 0006497472
このとき、図5(D)は、FIR(finite impulse response)フィルタ形式で図6の回路となる。これをZ変換を用いて、式(31)で表すことができる。
図6において、入力1101は、第1乗算器1102において第1係数入力1103で乗算される。同時に入力1101は第1遅延器1104で遅延を施されて第1遅延信号1105となり、第1遅延信号1105は第2乗算器1106において第2係数入力1107で乗算される。同時に第1遅延信号1105は、第2遅延器1108で遅延を施されて第2遅延信号1109となり、第2遅延信号1109は第3乗算器1110において第3係数入力1111で乗算される。すべての乗算器の出力は加算器1112で加算されて出力1113となる。
Z変換式(31)は、第1項が第1波を、第2項が第2波を、第3項が第3波を示している。
Figure 0006497472
ただし、H(z)は伝搬路特性関数で、zは式(32)で表され、Tは単位遅延時間、ωは角周波数である。
Figure 0006497472
図6は、送信側であらかじめ施す疑似伝搬路相当のフィルタである。式(31)を変形すると式(33)を得る。
Figure 0006497472
複素空間としてのH(ejωT)は、式(34)のように実数部R(ω)と虚数部X(ω)の和で表せる。
Figure 0006497472
実数部R(ω)と虚数部X(ω)は式(35)に等しい。
Figure 0006497472
式(35)は、周波数軸および時間軸における周波数構成要素ごとのスペクトル強度と位相を表す。式(35)による周波数軸上のスペクトル強度についてグラフにしたものを図7に示す。図7において、1200は伝搬路特性全体を示し、強度をサブキャリア1202で示している。伝搬路特性1200に基づき選択されるリソースブロックは、1203もしくは1204として描かれている。
式(35)には位相特性を表す式が現れる。これはZ変換を片側Z変換で行った結果である。片側Z変換は、本来は図8(D”)に示すように、両側Z変換を考慮した形で正負の時間軸で表現される。なお図8の(D’)と(E’)は、図5の(D)と(E)に条件式(30)を適用させたものである。図8の引用番号は図5の引用番号を転用しつつ、条件式(30)に照らすためにサフィックスaを付している。
本願における疑似伝搬路特性生成は、図6に示したように、非循環型フィルタの構成をコンセプトとする。これに対応するフィルタは、Z変換の手法により実現する。時間軸上でも周波数軸上でも有限の範囲で考える必要があり、フィルタの形態はFIR型で考えるが、FIR型フィルタは伝達関数の極(pole)が原点に生成されるため、範囲の境界において急峻な特性になりやすい。
このため図5(D)および図5(E)を考える場合に、正負両側を考慮する。他の理由は、後述のとおり、受信側にて疑似伝搬路特性により所望信号を抽出する際に周波数軸上での相関演算を等化演算と併せて行う。この際に片側Z変換が有する絶対時間は持ち込むことができない。そのため、両側Z変換により開始位置の時間位置情報を確保して時間差を確保する。また両側Z変換により、安定かつ完全な直線位相特性を持たせることが可能となり、特性の偶対称性と奇対称性も明確になる。図8において、図8(D’)は片側Z変換を、図8(D”)は両側Z変換を示す。図8(E’)は片側Z変換における位相特性を、図8(E”)は両側Z変換における位相特性を示す。
スペクトル強度は図8(D”)で示し、スペクトルの位相は図8(E”)で示している。式(33)が示すように、スペクトル強度は余弦波で示されており、軸上で正負で極性は同一であり、偶対称となる。他方、虚数部は正弦波で示されており、軸上で正負で極性は反転し、奇対称となる。位相角θは通常は逆正接(tan-1 (sinθ)/(cosθ))で考えられる。このため、位相角θは奇対称である。
図8(D”)が示す両側Z変換対応図は時間tの負極性領域に、偶対称に第1遅延波1008bを強度bで示し、第2遅延波1009bを強度cで示し、遅延時間として第1遅延波1008bと第1波との間の負極性の第1遅延時間1028を(-n1T)で、第2遅延波1009bと第1波との間の負極性の第2遅延時間1029を(-n2T)で、示している。図8(E”)が示す両側Z変換対応の位相は時間tの負極性領域に、奇対称に第1遅延波1008bを位相(−θb)で示し、第2遅延波1009bを位相(−θc)で示している。
実環境においては各位相の回転方向はそれぞれの方向を有する。その方向は、式(35)の虚数部で定まる。すなわち、周波数軸正領域が正の位相で負領域が負の位相の周波数成分は、複素空間内で反時計方向に回転し、周波数軸正領域が負の位相で負領域が正の位相の周波数成分は、複素空間内で時計方向に回転する。一つのモデルにおいて、位相極性を周波数軸上で正負逆転を図れば、位相回転はすべて逆回転となる。このとき周波数特性や遅延プロファイルは同一であるが、相関性は著しく低下する。この結果、受信部の最尤度判定器(MLD)による他の信号からの干渉を除去し所望信号の抽出が可能となる。
図8(D”)のスペクトル強度パラメータの値を前例に採ると、Z変換式は下式(36)となる。
Figure 0006497472
具体的に図9に両側Z変換を示し、特性を求めて比較する。図9は片側Z変換として構成した図6を両側Z変換に置き換えたものである。また遅延波の位相を両側で対称に与えている。
入力1101は、第1乗算器1110bにおいて第1係数入力1111bで乗算される。同時に入力1101は、第1遅延器1114で遅延を施されて第1遅延信号1115となり、第1遅延信号1115は第2乗算器1106bにおいて第2係数入力1107bで乗算される。同時に第1遅延信号1115は、第2遅延器1116で遅延を施されて第2遅延信号1117となり、第2遅延信号1117は、第3乗算器1102aにおいて第3係数入力1103aで乗算される。第2遅延信号1117は、第3遅延器1104aで遅延を施されて第3遅延信号1105aとなり、第3遅延信号1105aは、第4乗算器1106aにおいて第4係数入力1107aで乗算される。
同時に第3遅延信号1105aは、第4遅延器1108aで遅延を施されて第4遅延信号1109aとなり、第4遅延信号1109aは、第5乗算器1110aにおいて第5係数入力1111aで乗算される。すべての乗算器の出力は加算器1112cで加算されて出力1113cとなる。図9から導かれる両側Z変換式は次式(30a)となる。
Figure 0006497472
図10は無線伝搬路の伝搬路特性について、周波数帯域内の全体像を示したものである。図10(F)は周波数軸および時間軸における周波数構成要素ごとのスペクトル強度を示し、図10(G)は周波数軸および時間軸における周波数構成要素ごとの位相を示す。図10(F)は、OFDMA波全体についての両側Z変換の様子を示しており、図5、図8では一つのサブキャリア周波数について示したところを、システム帯域内の全サブキャリアについての変化を示したものである。
すなわち到来する第1波を1121aで表しており、その後の第1遅延波を1122aで、第2遅延波を1123aで、第3遅延波を1124aで、第4遅延波を1125aで、第5遅延波を1126aで、第6遅延波を1127aで示している。ただし、両側Z変換であるので、中心にある1124aが本来の第1波である。この第1波1124aを基準に、第1の遅延波群1123aと1125aまでの時間をそれぞれ負側を1128ng、正側を1128psで示している。同様に第2の遅延波群1122aと1126aまでの時間を、それぞれ負側を1129ng、正側を1129psで示している。
同様に第3の遅延波群1121aと1127aまでの時間をそれぞれ負側を1130ng、正側を1130psで示している。また、図10(G)に示した位相情報も、到来する第1波の位相群を1121pで表しており、その後の第1遅延波の位相群を1122pで、第2遅延波の位相群を1123pで、第3遅延波の位相群を1124pで、第4遅延波の位相群を1125pで、第5遅延波の位相群を1126pで、第6遅延波の位相群を1127pで示している。本願が目的とする疑似遅延プロファイルは、図10に示すように幅広く認識する必要があることを示した。
つぎに実伝搬路特性から生成した疑似伝搬路特性モデルから、これに低相関度の異なった疑似伝搬路特性モデルを生成する手法を示す。実伝搬路では時間変化を伴うものであり、刻刻のスペクトル強度および位相の情報が測定される。疑似伝搬路特性においても、シンボル周期に近い変化で位相回転を施すことが効果的である。位相回転の方向や回転反転などを対称にすることで、少なくとも2種の伝搬路を構成することが可能である。次に基本的に、式(34)が表す伝搬路特性と直交する伝搬路特性をHINV(ejωT)とし、生成方法を示す。式(34)に周波数位相的に直交する疑似伝搬路特性HINV(ejωT)は式(37)で表せる。
Figure 0006497472
この2つの伝搬路特性すなわち、H(ejωT)とHINV(ejωT)は、電力として見た場合はいずれも次式(38)となり、同一の周波数特性を示すので、所期の目的に叶う。
Figure 0006497472
ここで、式(37)が示す伝搬路特性HINV(ejωT)と、基盤とした伝搬路特性H(ejωT)との複素周波数空間での関係を図11に示す。なお、ここでは一つの周波数についてのみ示している。
図11(a)は、図5(d)が示す直接波と図5(e)が示す位相情報から導き出された疑似伝搬路周波数特性H(ejωT)の式(35)の周波数特性すなわちスペクトル強度と位相特性を模式的に描いたものである。図11(a)は、1007f、1008f、1009f、1010fでそれぞれ示した角周波数ω1、ω2、ω3、ω4における、1007r、1008r、1009r、1010rでそれぞれ示したスペクトル強度s1、s2、s3、s4を示し、1007p、1008p、1009p、1010pでそれぞれ示したスペクトル位相、θ1、θ2、θ3、θ4を示している。位相は回転をするものとし、この例では回転方向はすべて反時計回りとしている。
他方、図11(b)は、疑似伝搬路周波数特性H(ejωT)と周波数毎に位相が逆極性となる疑似伝搬路の周波数特性HINV(ejωT)の式(37)の周波数特性すなわちスペクトル強度と位相特性を模式的に描いたものである。図11(b)は、1007f、1008f、1009f、1010fでそれぞれ示した角周波数ω1、ω2、ω3、ω4における、1007ri、1008ri、1009ri、1010riでそれぞれ示したスペクトル強度s1、s2、s3、s4を示し、1007pi、1008pi、1009pi、1010piでそれぞれ示したスペクトル位相、-θ1、-θ2、-θ3、-θ4を示している。位相は回転をするものとし、この例では回転方向はすべて時計回りとしている。この例では図11(a)に直交することから回転方向はすべて時計回りを示している。
この状況を複素周波数の観点から時間軸上で表すと、図12と図13で示せる。図12は図5(D)と図5(E)について、両側Z変換として示したものである。図12と図13は、両側Z変換を考慮した形で正負の時間軸で表現されている。図12中の引用番号は図5を基準にしているが、両側Z変換を行うことにより、第1波から正の時間軸側ではサフィックスにaを、負の時間軸側ではサフィックスにbを付している。図12(G’)は両側Z変換における位相情報を示しており、第1波の位相をゼロとした場合としての正の時間側と負の時間側での奇対称性を示している。
図14(H)は第1の疑似伝搬路特性H(ejωT)に直交する第2の疑似伝搬路特性HINV(ejωT)について、Hilbert変換的に変換したもので、位相が時計回りに回転しており、すべての位相の極性が図12(G’)と逆になることを示している。スペクトル強度を示す図は、図11(F’)と同一であるが、周波数領域全体で見た場合の各位相の回転方向は、位相の符号で決まり、それぞれの方向を有する。その方向は、式(36)の虚数部で定まる。
式(33)の特性を用いて位相回転方向を逆極性にすれば式(39)を得て、すなわち式(33)と共役となることが分かる。この周波数特性は式(33)と等価であるが、位相回転においては完全に逆であり、伝搬路特性は直交する。
Figure 0006497472
以上から、伝搬路特性H(ejωT)と伝搬路特性HINV(ejωT)を、疑似伝搬路特性情報としてあらかじめ伝送先の受信部に送付しておくことで、伝搬路特性H(ejωT)を乗算したデータd1と伝搬路特性HINV(ejωT)を乗算したデータd2を同一の搬送波周波数で変調を行い無線伝送して受信した受信波から、伝搬路特性H(ejωT)との相関演算を行うことでデータd1を抽出し、伝搬路特性HINV(ejωT)との相関演算を行うことでデータd2を抽出することが可能となる。すなわち、単一の無線伝搬路により、少なくとも2つの独立したデータ系列を搬送することが可能になる。
つぎに第3の疑似伝搬路特性HREV(ejωT)について、式(40)で示す。
Figure 0006497472
第3の疑似伝搬路特性HREV(ejωT)は、式(40)において明らかなように、変数Tを逆極性−Tで置き換えたものである。この状況を図14を用いて説明する。第3の疑似伝搬路特性HREV(ejωT)は、式(40)および図14より明らかなように、第1の疑似伝搬路特性H(ejωT)と時間軸上の配列を倒置したものである。1031uaおよび1031ubで示した時間noTは、対応する位相1020upaと1020upbが同時にゼロである以外は、時間分解能以上の時間を与える。
符号は図5と図12を基準にしているが、時間方向が変わるため、サフィックスにuを付した。さらに時間軸では第1波1007uaまたは1007ubを基準とする1032uaと1032ub、1033uaと1033ub、1034uaと1034ubの時間規定を行った。図14(I)の位相においては時間軸正域を示すサフィックスをupaとし、負域を示すサフィックスをupbとしている。
第3の疑似伝搬路特性HREV(ejωT)は、時間軸上での相関演算を行えば、第1の疑似伝搬路特性H(ejωT)とも、第2の疑似伝搬路特性HREV(ejωT)とも相関がゼロになることは明らかである。つぎに第4の疑似伝搬路特性HDL(ejω(T-nτ))について、式(41)で示す。
Figure 0006497472
第4の疑似伝搬路特性HDL(ejω(T-nτ))は、式(41)において明らかなように、変数Tに遅延を設けたものである。この状況を図15を用いて説明する。図15のすべての到来波は、図12に比べて遅延時間1040および1040bに示すnoTだけ遅れる。もしも図12の到来波のすべての到来時刻が、図15の到来波時刻と一致することがないか、図12の到来波の最長時間を越えて時間noTが設定されるのであれば、それぞれの疑似伝搬路特性による2つの独立した送信データの搬送は、独立に受信できる。
第4の疑似伝搬路特性HDL(ejω(T-nτ))は、式(40)および図15より明らかなように、第1の疑似伝搬路特性H(ejωT)を時間軸上で遅延したものである。時間軸上での相関演算を行えば、第1の疑似伝搬路特性H(ejωT)とも、第2の疑似伝搬路特性HL(ejωT)、第3の疑似伝搬路特性HINV(ejωT)とも相関がゼロになることは明らかである。
簡単な例を図16に示す。
図16Aにおいて、(1)は送信系の関連部分を、図16Bにおいて、(3)は受信系の関連部分を示す。基本的には図3と同一である。図16Aにおいて(2)は、図16A(2)における時間領域における搬送処理部17b,18bの具体的構成を示し、図16Bにおいて(4)は、図16B(3)の時間領域における相関演算部41f,42fの具体的構成を示すものである。
図16Bにおいて(2)は、2種類の疑似伝搬路特性h1およびh2が伝搬路パラメータ管理部29からの出力30,31として提供され、2基の類似のFIR型フィルタを構成する。第1の時間領域における搬送処理部17bにおいては遅延プロファイルに基づくZ変換に沿ったFIR型等化器を形成し、第2の時間領域における搬送処理部18bにおいては、図12と図15の間の遅延時間分を超える遅延器1153tを挿入する以外は第1の時間領域における遅延プロファイルに基づくZ変換に沿ったFIR型フィルタと同等の構成を形成し、それぞれを合成器25で合成し送信処理を行う。
この無線情報を受ける図16B(4)の受信部では、疑似伝搬路特性管理部45が生成する疑似伝搬路特性情報h1,h2に基づき、第1の時間領域における相関演算部41f,42fにて、図16B(4)が示すような2基の類似のFIR型等化器を構成する。この等化器は、送信側のFIR型フィルタと同等の構成であるが、同一であれば伝搬路特性の総合値は周波数特性の山谷が増大するが、リソースブロックが与えられた周波数帯での劣化は激しくない。他方、この等化器を逆特性の等化型にすれば、基本的に周波数特性は平坦となり、受信特性に大きな改善が得られる。
2基の時間領域における相関演算部41f,42fには図12と図15の間の遅延時間分を超える遅延器1153rを挿入する以外は第1の時間領域における遅延プロファイルに基づくZ変換に沿ったFIR型フィルタと同等の構成を形成し、それぞれに出力を得て次段のFFT部へ提供する。以上により、遅延プロファイルに遅延を施した場合の副次的疑似伝搬路特性モデルの生成と利用が可能であることは、明らかである。
つぎに第5の疑似伝搬路特性HDL-ODD(ejω(T-nτ))について、式(42)で示す。
Figure 0006497472
第4の疑似伝搬路特性HDL-ODD(ejω(T-nτ))は、式(42)において明らかなように、配列の倒置を変数Tの遅延を設けたものである。この状況を図17Aを用いて説明する。第5の疑似伝搬路特性HDL-ODD(ejω(T-nτ))は、式(42)および図17Aより明らかなように、第1の疑似伝搬路特性H(ejωT)を時間軸上の配置を反転し、さらに時間軸上で遅延を施したものである。1051vaおよび1051vbで示した時間noTは、相関性を軽減するに必要な時間を与える。符号は図14を基準にしているが、遅延時間が変わるため、サフィックスをuからvに置き換えた。
図17Aのすべての到来波は、図14にくらべて遅延時間1051vaおよび1051vbに示すnoTだけ遅れる。もしも図14の到来波のすべての到来時刻が、図17Aの到来波時刻と一致することがないか、図14の到来波の最長時間を越えて時間noTが設定されるのであれば、それぞれの疑似伝搬路特性による2つの独立した送信データの搬送は、独立に受信できる。図16に示した分離器を利用可能である。
また時間軸上での相関演算を行えば、第1の疑似伝搬路特性H(ejωT)とも、第2の疑似伝搬路特性HL(ejωT)、第3の疑似伝搬路特性HINV(ejωT)とも、第4の疑似伝搬路特性HDL(ejω(T-nτ))相関がゼロになることは明らかである。また、上記に示した疑似伝搬路モデルは、すべて遅延プロファイルの第1波から遅延波までの遅延時間を、実伝搬路特性を元にした基本伝搬路モデルから派生させているものである。
しかし伝搬路の周波数特性が同一であれば、第1波と遅延波の強度と遅延時間および位相は拘束される必要はない。図17Bは、基本遅延波モデル図17B(F’)とは異なる遅延プロファイルを有する疑似伝搬路特性のモデルの考え方を示すものである。図17Bにおいて、各波は、明らかに図17B(F’)と強度も時間軸上の位置も異なる。また強度の順位も異なる。当然に位相関係も異なるが、図中では省略する。この異なる構成の遅延プロファイルモデルは、後述の通り、周波数領域に変換して、基準となる周波数領域モデルと比較し大きな差異がないことを確認する。大きな差異があればモデル形成部にそれを伝え、モデルの改変を行う。
図18は、前述した複数の疑似伝搬路特性の生成を行う伝搬路パラメータ管理部29の内部の模式図である。図18に送信系における疑似伝搬路特性モデルの生成と運用のシステムについて示す。図18において、受信系のFFT部902により得られた周波数特性情報は、伝搬路特性推定部904とデータ抽出系903に提供されて、データ抽出系903ではデータ905を取り出す。
伝搬路特性推定部904の出力は、基本的なモデル作りのために、周波数領域基本モデル生成部907へ提供される。周波数領域基本モデル生成部907は、周波数領域基本モデル908を生成する。その周波数領域基本モデル908は、位相極性反転部909へ提供されて位相極性反転部909において周波数領域基本モデルと位相が共役複素数となるモデルを生成する。
他方、伝搬路特性推定部904の伝搬路推定結果の周波数領域情報906は、逆IFFT部915において時間領域情報すなわち遅延プロファイルモデル916となる。この遅延プロファイルモデル916は、時間領域基本モデル生成部917に入力され、時間領域基本モデル生成部917は、遅延プロファイルの単純化を図り時間領域の基本モデル918を生成する。
時間領域の基本モデルと付随情報を出力919として遅延波構成変更部920に送り、時間領域の基本モデル918とは遅延プロファイルの異なる強度・位相・時間軸位置・強度順序を持つ副次的モデル921を生成する。ただし、副次的モデル921が周波数領域基本モデルと類似の周波数特性を確保しているかどうかを確認するために第2のFFT部922へ提供し、周波数領域モデル923を生成し、比較判定器924にて周波数領域基本モデル908と比較を行う。その結果925により、差異が少ない場合は、遅延波構成変更部920は時間領域の副次的モデル921を出力として利用に供し、差異が大きい場合は、再度副次モデルの生成を行う。
かくして得られた時間領域のモデル群は、時間領域パラメータ変換部926に提供され、時間軸方向の反転部927、遅延時間挿入部929、時間反転および正遅延挿入部931、時間反転および負遅延挿入部933を通じて複数の時間領域疑似伝搬路モデル群935を得る。複数の時間領域疑似伝搬路モデル群935は選択部937を経て第3のFFT部940に送られて周波数領域モデル群941となる。
周波数領域モデル群941と時間領域モデル群942はモデルデータ格納部兼送出部936にて格納ならびに利用のための送出が行われるが、各モデルデータ間の相関性を確認するための相関度検証部943へ送られて、モデル相互間の相関度を演算する。演算の結果、相関性が高いと判断されたモデルについては、時間領域基本モデル生成部917、遅延波構成変更部920、時間領域パラメータ変換部926に指令944、945、946を送り、再度モデル生成をやり直させる。以上により、疑似伝搬路特性モデルは複数個を確保できることが明らかである。
図19には、加入者端末の受信系7(図3参照)のFFT部43(44)および相関演算部41b(42b)の機能を示した。FFT部43の機能は、次式(43)で表せる。
Figure 0006497472
また相関演算部41bの機能は、次式(44)で表せる。
Figure 0006497472
(T)は相関演算出力を示す。
図20は、リソースブロック生成のための加入者端末の受信系7のFFT部41における演算の概念を示すものである。疑似伝搬路特性管理部45から供給される疑似伝搬路特性モデルは、図20(a)の強度情報を示す1191と図20(b)の位相情報を示す1192から成る。疑似伝搬路特性モデルが時間軸領域における遅延プロファイルの形で提供される場合は、周波数領域への変換をFFTで行い、周波数領域での強度情報1193である図20(c)および位相情報1194である図20(d)を得る。この強度特性の有為なスペクトル部分にリソースブロック1003aもしくはリソースブロック1004aが配置される。
このスペクトル特性が図19の相関演算部41bに示したHh1(ω,θ)である。受信信号をR(ω,θ)で示し、実伝搬路特性をHh1(ω,θ)とすると、相関演算は後述の式(45)で与えられる。疑似伝搬路モデルの生成数限界について以下に示す。
第4世代移動通信LTE規約 3GPP TS 36.211によれば、OFDMAのリソースブロックにおけるガードインターバルすなわちCyclic Prefixは次表1に示す種類がある。なお、表1は下り回線(down link)のリソースブロックの規定を示すものである。
Figure 0006497472
ここで、Δfはサブキャリアの間隔(Subcarrier spacing)を、NRB SCは1リソースブロックを構成するためのサブキャリアの本数を、NRB symbは1リソースブロックを構成するためのシンボル(symbol)数を示す。ここでは表1の中の標準状態すなわちNormal cyclic prefixの場合で検討する。1リソースブロック当たりのサブキャリアは12本でシンボル数は7である。次にOFDMAの周波数幅別の伝搬路特性測定のためのSRS (sounding resource signal)を図21で説明する。図21に示すように、与えられたリソースブロックが仮に1ブロックのみであったとしても、SRSは全帯域の周波数特性を測定するために全帯域に参照信号が発せられる。SRSにより、回線の品質が測定される。
図21(a)は周波数軸と時間軸の上にリソースブロックとSRSと制御信号PUCCH(Physical Uplink Control Channel)を示したものである。図21(a)において1201は、SRSを示す。1202は、SRSの時間間隔を示す。1203は、SRSの周波数域を、1204は1サブフレームを、1205は1つのリソースブロックの周波数幅を示す。1206は、制御信号PUCCHを示している。図21(b)において、1207は、シンボル期間を示している。また、図21(b)は、時間軸上でのSRSの位置を示す。SRSは通常、サブフレームの最後のスロットに配置されている。
前述のとおり、無線基地局は、加入者端末から図21で示されたリソースブロックの周波数幅での通信を受けるが、サブフレームの最終スロットに配置されたSRS信号と制御信号PUCCHからなる帯域幅全域の周波数情報を得る。これにより、無線基地局は帯域幅全域の周波数特性すなわち伝搬路特性を測定することが可能となる。
図22にSRSを発生するための機能構成を示す。1301はSRS信号であり、1302は他の送信情報入力であり、1303はこれらの入力を制御信号1304により選択するマルチプレクサであり、1305は時系列SRS信号1301を周波数列に変換するためのFFT(DFT:discrete fourier transform)であり、1306は周波数軸上の信号要素となったSRS信号であり、1307はこれを受けてシングルキャリア化するためのIFFT(inverse fast fourier transform)であり、1308は該IFFTのタイミング制御と周波数制御を行う制御信号であり、1309はフレームにCP(cyclic prefix)を挿入するブロックであり、1310は加入者端末の送信信号である。
図22において、SRS信号1301はFFT(DFT)1305により周波数軸上への配置が行われ、配置された信号1306となる。その後、図21に示すサブフレームの最終スロット1304に合わせて制御信号1205に制御を受けながら周波数軸に配置された信号1306はIFFT1307により時間軸信号に変換されCP挿入を施された後、送信信号1310となる。
これにより、無線基地局側が測定する加入者端末からの無線伝搬路の遅延プロファイルの時間分解能は、通常で5[MHz]の逆数である0.2μ[秒]となる。これは距離にして60[m]となる。ここで、遅延波の遅延時間の規定を考慮する必要がある。図23にフレーム構造における遅延波を収容するためのCPを示す。
図23において、1410はOFDMAフレームであり、1411は先行するOFDMAフレームを、1412は後続のOFDMAフレームを、1413と1414は、それぞれ先行するOFDMAフレームと後続のOFDMAフレームとの間の遅延波を収容するためのCP(cyclic prefix)を、1415はCPとOFDMAフレーム1410とから成るOFDMAフレーム繰り返し周期を表す。
前述のとおり、CP区間1413あるいは1414は、主波に対して遅れて到来する遅延波群をまとめてFFT積分できるように配慮しており、LTE規格では表2に示す値としている。
Figure 0006497472
他方、ガードインターバル(CP区間)は、4.69μ[秒]であり、距離にして1,407[m]となる。拡張仕様では更に2倍に伸びる。すなわち、距離分解能によりCP区間内に設けることが可能な遅延波の配置点数は約23点となる。この23個の遅延波位置の組み合わせにより、実無線伝搬路特性に合うモデルを生成することが可能であることが明らかである。これに加えて、位相反転、時間移動、位置反転などを組み合わせることで、疑似伝搬モデルは少なくとも10種以上となることが容易に推察できる。例えば、23個の中から任意の3個を抽出する組み合わせは、式(45)に示される。
Figure 0006497472
5[MHz]帯域の中のリソースブロックの数は、表3から25であるから、上記の組み合わせの中から25箇所の周波数特性に合う伝搬モデルを設けると、1リソースブロック当たり約70のモデルが得られる。この中からお互いに直交性や独立性が高いものを選ぶことで1リソースブロック当たり10のモデルを確立することは困難ではない。
Figure 0006497472
図24は、疑似伝搬路モデルを3種用いる場合の本願により実現する無線通信システムを示す図である。それぞれの符号は第1の実施例に基づいており、3列の通信系をそれぞれサフィックスa,b,cにて区別している。
図25は、疑似伝搬路モデルを3種用いるOFDMAフレームの一例を示す図である。図25には、疑似伝搬路モデルを3種用いる場合のパイロット信号を示しており、フレームの前部に3種の疑似伝搬路モデルの特性を配置した3種のパイロット信号を設ける。受信側では疑似伝搬路モデルの伝搬特性に、実無線伝搬路の特性が加わって積の形となった特性を受信することになる。この方法では、この伝搬路特性を伝搬路推定部で検出することにより、受信信号から所望の信号を抽出することを実現する。
他方、あらかじめ3種の疑似伝搬路特性をデータの形で送り、通常の伝搬路推定を行い、双方の組み合わせによる伝搬路パラメータを用いてMMSEおよびMLDでの信号抽出を行うことも可能である。
OFDMAシステムにおいては少なくともリソースブロック単位で伝搬路特性を測定し、相手先に送る規定となっており、既成のシステムにおいて変更は確実に実施される。図26Aに3種の疑似伝搬路特性を用いて無線基地局から加入者端末へもしくは加入者端末から無線基地局へ、3層のデータ伝送を行う概念図を示した。3種の疑似伝搬路特性が互いに相関性が低ければ、無線基地局も加入者端末も、それぞれのアンテナは1基で本願の目的とするデータ伝送の高速化が実現できる。
また本願においては、伝搬路特性がリソースブロック毎に異なる事実に基づき適用することから、リソースブロック毎に異なる疑似伝搬路特性を生成し利用し、周波数帯が重畳することもないので、リソースブロック間の干渉は非常に低いと考えられる。図26Aにおいて、無線基地局を1501で示す。加入者端末を1502で表す。
この無線基地局1501と加入者端末1502の間で選択設定されたリソースブロックを1503で表す。そのリソースブロックの選定の元となっている伝搬路特性を1503a,1504で表す。無線基地局1501と加入者端末1502の間の伝搬路を1509、1510、1511で表す。伝搬路1510は反射体1512により、伝搬路1511は反射体1513により反射作用を受けるとする。
伝搬路特性はこの3種の伝搬路1509、1510、1511からの電波の重畳で定まり、1503aで示す部分のスペクトル強度が高い場合を想定する。本願の手段によれば、スペクトル特性1503aに近似した3種の疑似伝搬路特性による3層の伝送層1506、1507、1508により個別のデータを搬送することが可能となり、図26Aの例では、3多重化による伝送高速化が実現できる。
次に、送受信システムSの処理の流れについて説明する。図26Bは、送受信システムSの処理の流れの一例を示すシーケンス図である。以下、送受信システムSにおいて無線基地局(送信装置)と加入者端末(受信装置)がFDDで通信する場合について説明する。加入者端末(受信装置)は、リソースブロックにおいて域内のすべてのサブキャリアの位相を固定し振幅一定のパイロット信号を生成する(ステップS100)。加入者端末は、生成したパイロット信号を送信する(ステップS102)。
無線基地局は、加入者端末から送信された送信信号が通信伝搬路を伝搬することにより到達したパイロット信号を受信する(ステップS104)。無線基地局は、受信したパイロット信号に基づいて、無線基地局と加入者端末との間の実伝搬路特性を測定する(ステップS106)。無線基地局は、実伝搬路特性の測定結果に基づいて、実伝搬路特性に類似した複数の疑似伝搬路特性を生成する(ステップS108)。
このとき無線基地局は、例えば、以下の4つの手法の組合せにより低い相互相関性を確保するように複数の疑似伝搬路特性を生成する。(1)疑似伝搬路特性の正負周波数軸上の位相極性をすべて反転する。(2)疑似伝搬路特性の正負時間軸上の遅延プロファイルの順序をすべて反転して複数の疑似伝搬路特性を生成する。(3)疑似伝搬路特性の正負時間軸上の遅延プロファイルに遅延を施す。(4)送信装置が疑似伝搬路特性の正負時間軸上の遅延プロファイルを構成する遅延波の時間上の位置と強度と位相を変更させて複数の疑似伝搬路特性を生成する。
無線基地局は、送信側のベースバンド内において複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成する(ステップS110)。無線基地局は、各疑似伝搬路特性を、生成したデータに1つずつ重畳して生成された複数の重畳データを合成して送信信号とする(ステップS112)。無線基地局は、複数の疑似伝搬路特性に関する複数の疑似伝搬路特性情報を生成し、複数の疑似伝搬路特性情報および送信信号を送信する(ステップS114)。
このとき、無線基地局は、例えば、リソースブロック毎に各データのフレームの前部に疑似伝搬路特性情報のパイロット信号を付加して複数のデータ(データ群)を送信する。次に、加入者端末は、無線基地局から送信された送信信号が通信伝搬路を伝搬することにより到達した通信信号を受信する(ステップS116)。
加入者端末は、先行して送信された複数の疑似伝搬路特性情報と後続して送信された通信信号を受信し、複数の疑似伝搬路特性情報に基づいて、複数の疑似伝搬路特性がそれぞれ重畳された複数のデータを個別に抽出し、複数のデータを得る(ステップS118)。このとき、加入者端末は、受信した通信信号から疑似伝搬路特性が重畳されたデータの他に実無線伝搬路の特性が加わって積の形となった信号も抽出する。加入者端末は、抽出した信号に基づいて、リソースブロック単位で実伝搬路特性を測定する。上述したように、OFDMAシステムにおいては少なくともリソースブロック単位で伝搬路特性を測定し、相手先に送るので、上記ステップS100〜ステップS106は、無線基地局は、一連のデータの送受信において加入者端末から送信された実伝搬路特性の情報を取得するステップとしてもよい。
上記送受信システムSは、FDDで通信する場合を例示したが、無線基地局(送信装置)と加入者端末(受信装置)がTDDで通信する場合は、周波数選択性マルチパス・フェージングの状況の測定は、基本的に無線基地局側のみで行えばよい。したがって、TDD通信を行う送受信システムSにおいては、上記ステップS100〜ステップS106は、無線基地局が実伝搬路特性を測定するステップに置き換えればよい。
以上により、第4世代移動通信システムにおいては、その中核的技術であるOFDMA(Orthogonal Frequency Division Multiple Access)のリソースブロック(resource block)における周波数利用効率の向上を図る方法ならびに手段を提供することが可能となり、加入者の利用に供する伝送速度を、少なくとも従来の2倍以上にすることが可能となることが明らかである。前述の構成においては、無線基地局から加入者端末に向けた下り回線(down link)において示したが、疑似伝搬路特性情報S1とS2を用いて並列に変調を行い、一つの加入者端末アンテナから1本の無線基地局アンテナに無線送付する場合においても伝送速度が倍増できることは明らかである。
さらに相関の無い3つ以上の疑似伝搬路特性情報S(n>2)を準備することにより、伝送速度をほぼn倍とすることが可能であることは明らかである。実伝搬路特性の違いを利用するMIMO方式は、常に相関度の低い伝搬路を確保できるとは限らない。これに対して、本願によれば、理論的に相関度を定め得る伝搬路特性を提供でき、さらに疑似伝搬路特性は予め送受端で共有できるため、安定した多重化通信を実現できる。
同時にMIMO方式が必要とする複数アンテナを軽減でき、小型化、軽量化など商品設計上の利点は大きい。なお、上記の実施例においては、SRSを加入者端末から発したが、これは下り回線(Down link)と上り回線(Up link)の周波数が異なる周波数分割全二重通信(FDD:frequency division duplex)の場合であり、時分割全二重通信(TDD:time division duplex)の場合は下り回線と上り回線の周波数が共通であり、加入者端末がSRSを発する必要はなく、そのため上記疑似伝搬路特性を生成あるいは検証する場合に、無線基地局もしくは加入者端末は各受信部が捉える伝搬路特性を利用することができ、システム構成はこの部分で差異があるが、本願が目的とする疑似伝搬路特性を用いて伝送多重化を図ることが適用できることは明らかである。
すなわち、本願の適用範囲は無線通信や有線通信に限られない。さらに、本願は第4世代移動通信や無線LAN(Local area network)システムが主に用いるOFDMについて述べているが、第4世代移動通信の上り回線ではマルチキャリアではなくシングルキャリアのSC−FDMAとして用いているなど、シングルキャリア方式にも十分適用可能である。したがって、第3世代移動通信のスペクトラム拡散方式の通信においても本願を用いることが可能であることは明らかである。またOFDMを用いる各種の無線システムにおいても利用可能である。そして、本願は、双方向の無線通信だけでなく、テレビジョンやラジオなどの放送に適用してもよい。
また、上記の実施例においては、電波を用いる無線通信の場合について示したが、周波数資源や周波数利用領域に自由度が少なく周波数利用効率の向上が必要となっている光ファイバ通信路やメタル回線などにおいても本願が有益な効果を与えることは明らかである。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、上記例示的実施形態により限定されないが、様々な改変が既に述べられた本発明の範囲から逸脱することなく行うことができることが明らかである。例えば、上記例示的実施形態は、本発明がハードウェア構成であるとして説明したが、本発明はこれに限定されない。本発明は、コンピュータプログラム上の任意のプロセスをCPU(Central Processing Unit)に実行させることにより、実現されてもよい。この場合、本プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable media)を用いて格納され、コンピュータに供給することができる。
非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD(登録商標)−ROM(Read Only Memory)、CD−R(compact disc recordable(登録商標))、CD−R/W(compact disc rewritable(登録商標))、DVD (Digital Versatile Disc), BD (Blu-ray (登録商標) Disc)、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable media)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、(電線及び光ファイバ等の)有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給するために使用され得る。
1…無線基地局、2…無線基地局受信系、3…送信出力、4…前期無線基地局受信系入力信号、5…接続管理部、5…伝送帯域幅、6…無線基地局アンテナ、7…加入者端末受信系、8…加入者端末送信系、11…接続管理部、11…アンテナ接続管理部、12…加入者端末アンテナ、13…無線伝搬路、15…第1の送信用情報、16…第2の送信用情報、17b…搬送処理部、17B…基本遅延波モデル図、17f…搬送処理部、18b…搬送処理部、18f…搬送処理部、21…第1の変調回路、22…第2の変調回路、25…合成器、26…基地局受信部、28…無線伝搬路情報、29…伝搬路パラメータ管理部、30…疑似伝搬路特性、30a…疑似伝搬路特性、30b…疑似伝搬路特性、30c…伝搬路推定情報(遅延プロファイル推定情報)、37…リソース配分制御信号、38…リソース配分制御信号、39…加入者端末スケジューラ、41b…相関演算部、41f…第1の相関演算部、41f…相関演算部、42b…第2の相関演算部、42b…相関演算部、42f…相関演算部、43…FFT部、44…FFT部、45…疑似伝搬路特性管理部、48…加入者送信部抽出出力、51…第1のデマッピング部、52…第2のデマッピング部、53…第1の伝搬路特性推定器、54…第2の伝搬路特性推定器、55…誤り訂正部、56…誤り訂正部、57…補正出力、58…補正出力、59…第1の最尤推定部、60…第2の最尤推定部、61…受信情報出力、62…受信情報出力、63a…伝搬路推定情報、63b…実伝搬路特性推定情報、64…IFFT部、64a…伝搬路推定情報、64b…実伝搬路特性推定情報、65…等化伝搬路特性、66…等化伝搬路特性、67…周波数特性データ、67A…情報結合部、68…評価部、68A…情報、69…加入者端末送信部、87…レイヤーマッピング部、90…比較方法バンク、95…選定部、96…生成部、97…伝搬路特性推定情報、98…チャネル品質指標、99…リソースブロック選択情報、101…無線基地局、102…電波周波数帯、103…加入者端末、109…加入者端末、110…幾何学的距離、112…直接波、201…無線基地局、202…送信系、203…受信系、204…加入者端末、205…受信系、206…送信系、207…基地局アンテナ、208…送信・受信アンテナ制御部、209…送信信号、210…受信信号、211…送信情報信号、212…情報信号、213…無線伝搬路、214…アンテナ、215…送信・受信アンテナ制御部、218…受信情報、221…チャネル符号化器、222…直交変調マッピング、223…空間・時間符号化器、224…リソース配分器、226…CP挿入部、231…高周波部・ADC部、232…CP除去部、233…高速フーリエ変換器、234…リソースブロック情報抽出部、235…伝搬路特性推定器、236…等化器、237…軟判定器、238…合成器、240…測定情報、302…サブキャリア、303…リソースブロック周波数帯域幅、304…スロット、305…サブフレーム、306…リソースブロック群、307…リソースブロック全体、401…無線基地局、402…加入者端末、403…無線伝搬路、404…加入者端末、405…無線伝搬路、411…電波、501…無線基地局、502…加入者端末、503…送信側アンテナ、503…第1のアンテナ、504…第2のアンテナ、505A…搬送処理部、506A…搬送処理部、507…受信側アンテナ、507…アンテナ、508…第1の無線伝搬路、508…無線伝搬路、509…第2の無線伝搬路、509…無線伝搬路、510…受信機、511…加算器、512…信号分離器、513…伝搬路推定器、514…最尤判定器、515…最尤判定器、521…合成器、551…第1の送信用信号、552…第2の送信用信号、561…疑似伝搬路特性情報、562…疑似伝搬路特性情報、603…通信フレーム、604…パイロット信号区間、701…送信アンテナ、702…送信アンテナ、703…受信アンテナ、704…受信アンテナ、705…無線伝搬路、706…無線伝搬路、707…無線伝搬路、708…無線伝搬路、709…アンテナ送受制御部、710…アンテナ送受制御部、711…送信信号、712…送信信号、713…受信信号路、714…受信信号路、715…第1の送信データ、716…第2の送信データ、717…変調部、718…変調部、719…デジタル出力、720…デジタル出力、721…高周波部、722…高周波部、723…アンテナ送受制御部、724…アンテナ送受制御部、725…受信信号、726…受信信号、729…アナログ処理部、730…アナログ処理部、741…FFT部、742…FFT部、751…デマッピング処理部、752…デマッピング処理部、755…MMSE部、756…MMSE部、759…MLD部、760…MLD部、771…受信信号群、772…MMSE部、773…チャネル推定部、777…軟判定チャネル復号器、902…FFT部、903…データ抽出系、904…伝搬路特性推定部、906…周波数領域情報、907…周波数領域基本モデル生成部、908…周波数領域基本モデル、909…位相極性反転部、915…逆IFFT部、916…遅延プロファイルモデル、917…時間領域基本モデル生成部、918…基本モデル、920…遅延波構成変更部、921…副次的モデル、922…FFT部、923…周波数領域モデル、924…比較判定器、926…時間領域パラメータ変換部、927…反転部、929…遅延時間挿入部、931…正遅延挿入部、933…負遅延挿入部、935…時間領域疑似伝搬路モデル群、936…モデルデータ格納部兼送出部、937…選択部、940…FFT部、941…周波数領域モデル群、942…時間領域モデル群、943…相関度検証部、1102…第1乗算器、1102a…第3乗算器、1104…第1遅延器、1104a…第3遅延器、1105…第1遅延信号、1105a…第3遅延信号、1106…第2乗算器、1106a…第4乗算器、1106b…第2乗算器、1108…第2遅延器、1108a…第4遅延器、1110…第3乗算器、1110a…第5乗算器、1110b…第1乗算器、1112…加算器、1112c…加算器、1114…第1遅延器、1116…第2遅延器、1153r…遅延器、1153t…遅延器、1193…強度情報、1501…無線基地局、1502…加入者端末、S…送受信システム

Claims (8)

  1. 送信装置と受信装置との間で通信する送受信システムにおける送受信方法であって、
    前記受信装置が、通信伝搬路の伝搬路特性を測定し、
    前記送信装置が、前記伝搬路特性の測定結果に基づいて、前記伝搬路特性に対して周波数特性が近似できる程度に類似する伝搬路特性を有する複数の疑似伝搬路特性を生成し、
    前記複数の疑似伝搬路特性のうち相互相関性が高いと判断された疑似伝搬路特性については相互に相互相関性が低くなるように前記疑似伝搬路特性の生成をやり直し、相互に相互相関性が低い前記複数の疑似伝搬路特性を生成し直し、
    送信側のベースバンド内において前記複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成し、前記疑似伝搬路特性を前記データに1つずつ重畳して生成された複数の重畳データを合成して送信信号とし、複数の前記疑似伝搬路特性に関する複数の疑似伝搬路特性情報および前記送信信号を送信し、
    前記受信装置が、
    前記送信装置から先行して送信された複数の前記疑似伝搬路特性情報と後続して送信された通信信号を受信し、複数の前記疑似伝搬路特性情報に基づいて前記通信信号から前記複数のデータを個別に抽出する、
    送受信方法。
  2. 前記送信装置が前記疑似伝搬路特性の正負周波数軸上の位相極性をすべて反転して前記複数の前記疑似伝搬路特性を生成する、
    請求項1に記載の送受信方法。
  3. 前記送信装置が前記疑似伝搬路特性の正負時間軸上の遅延プロファイルの順序をすべて反転して前記複数の疑似伝搬路特性を生成する、
    請求項1または2に記載の送受信方法。
  4. 前記送信装置が前記疑似伝搬路特性の正負時間軸上の遅延プロファイルに遅延を施して前記複数の疑似伝搬路特性を生成する、
    請求項1から3のうちいずれか1項に記載の送受信方法。
  5. 前記送信装置が前記疑似伝搬路特性の正負時間軸上の遅延プロファイルを構成する遅延波の時間上の位置と強度と位相を変更させて前記複数の疑似伝搬路特性を生成する、
    請求項1から4のうちいずれか1項記載の送受信方法。
  6. 送信装置と受信装置との間で通信する送受信システムであって、
    前記受信装置が測定した通信伝搬路の伝搬路特性の測定結果に基づいて、前記伝搬路特性に対して周波数特性が近似できる程度に類似する伝搬路特性を有する複数の疑似伝搬路特性を生成し、前記複数の疑似伝搬路特性のうち相互相関性が高いと判断された疑似伝搬路特性については相互に相互相関性が低くなるように前記疑似伝搬路特性の生成をやり直し、相互に相互相関性が低い前記複数の疑似伝搬路特性を生成し直す生成部と、送信側のベースバンド内において前記複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成し、前記疑似伝搬路特性を前記データに1つずつ重畳して生成された複数の重畳データを合成して送信信号とし、複数の前記疑似伝搬路特性に関する複数の疑似伝搬路特性情報および前記送信信号を送信する送信部と、を備える送信装置と、
    前記通信伝搬路の伝搬路特性を測定する測定部と、前記送信装置から先行して送信された複数の前記疑似伝搬路特性情報と後続して送信された通信信号を受信する受信部と、複数の前記疑似伝搬路特性情報に基づいて前記通信信号から前記複数のデータを個別に抽出するデータ復号部と、を備える受信装置と、を備える、
    送受信システム。
  7. 送信装置と受信装置との間で通信する送受信システムにおける送受信方法であって、前記送信装置が、通信伝搬路の伝搬路特性を測定し、前記伝搬路特性の測定結果に基づいて、前記伝搬路特性に対して周波数特性が近似できる程度に類似する伝搬路特性を有する複数の疑似伝搬路特性を生成し、
    前記複数の疑似伝搬路特性のうち相互相関性が高いと判断された疑似伝搬路特性については相互に相互相関性が低くなるように前記疑似伝搬路特性の生成をやり直し、相互に相互相関性が低い前記複数の疑似伝搬路特性を生成し直し、
    送信側のベースバンド内において前記複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成し、前記疑似伝搬路特性を前記データに1つずつ重畳して生成された複数の重畳データを合成して送信信号とし、複数の前記疑似伝搬路特性に関する複数の疑似伝搬路特性情報および前記送信信号を送信し、
    前記受信装置が、前記送信装置から先行して送信された複数の前記疑似伝搬路特性情報と後続して送られる通信信号を受信し、複数の前記疑似伝搬路特性情報に基づいて前記通信信号から前記複数のデータを個別に抽出する、
    送受信方法。
  8. 送信装置と受信装置との間で通信する送受信システムであって、
    前記送信装置が、通信伝搬路の伝搬路特性を測定し、前記伝搬路特性の測定結果に基づいて、前記伝搬路特性に対して周波数特性が近似できる程度に類似する伝搬路特性を有する複数の疑似伝搬路特性を生成し、前記複数の疑似伝搬路特性のうち相互相関性が高いと判断された疑似伝搬路特性については相互に相互相関性が低くなるように前記疑似伝搬路特性の生成をやり直し、相互に相互相関性が低い前記複数の疑似伝搬路特性を生成し直し、送信側のベースバンド内において前記複数の疑似伝搬路特性と同数の並列かつ独立の複数のデータを含むデータ群を生成し、前記疑似伝搬路特性を前記データに1つずつ重畳して生成された複数の重畳データを合成して送信信号とし、複数の前記疑似伝搬路特性に関する複数の疑似伝搬路特性情報および前記送信信号を送信し、
    前記受信装置が、前記送信装置から先行して送信された複数の前記疑似伝搬路特性情報と後続して送られる通信信号を受信し、複数の前記疑似伝搬路特性情報に基づいて前記通信信号から前記複数のデータを個別に抽出する、
    送受信システム。
JP2018118353A 2018-06-21 2018-06-21 送受信方法、および送受信システム Active JP6497472B1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018118353A JP6497472B1 (ja) 2018-06-21 2018-06-21 送受信方法、および送受信システム
EP19821513.9A EP3813277A4 (en) 2018-06-21 2019-06-18 TRANSMISSION AND RECEPTION METHOD AND TRANSMISSION AND RECEPTION SYSTEM
PCT/JP2019/024090 WO2019244885A1 (ja) 2018-06-21 2019-06-18 送受信方法、および送受信システム
CN201980041469.0A CN112753177B (zh) 2018-06-21 2019-06-18 收发方法及收发系统
US17/253,931 US11271789B2 (en) 2018-06-21 2019-06-18 Transmission/reception method and transmission/reception system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018118353A JP6497472B1 (ja) 2018-06-21 2018-06-21 送受信方法、および送受信システム

Publications (2)

Publication Number Publication Date
JP6497472B1 true JP6497472B1 (ja) 2019-04-10
JP2019220900A JP2019220900A (ja) 2019-12-26

Family

ID=66092523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018118353A Active JP6497472B1 (ja) 2018-06-21 2018-06-21 送受信方法、および送受信システム

Country Status (5)

Country Link
US (1) US11271789B2 (ja)
EP (1) EP3813277A4 (ja)
JP (1) JP6497472B1 (ja)
CN (1) CN112753177B (ja)
WO (1) WO2019244885A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256061A1 (ja) 2019-06-21 2020-12-24 現一郎 太田 送受信方法および送受信システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005402A (ja) * 2005-08-25 2008-01-10 Yokogawa Electric Corp 試験装置
CN101197798B (zh) * 2006-12-07 2011-11-02 华为技术有限公司 信号处理系统、芯片、外接卡、滤波、收发装置及方法
CN101471907A (zh) * 2007-12-28 2009-07-01 三星电子株式会社 多入多出系统中的预编码方法及使用该方法的装置
JP2010206547A (ja) * 2009-03-03 2010-09-16 Sharp Corp 無線通信システム、受信装置、送信装置、無線通信システムの通信方法、制御プログラムおよび自律分散型ネットワーク
JP5650706B2 (ja) * 2012-11-07 2015-01-07 アンリツ株式会社 Mimo方式システムの試験装置および試験方法
KR20160007644A (ko) * 2013-05-16 2016-01-20 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 송신 방법, 디바이스 및 시스템
JP6200313B2 (ja) * 2013-12-25 2017-09-20 日本電信電話株式会社 スループット測定装置及びスループット測定方法
JP6074449B2 (ja) * 2015-03-20 2017-02-01 アンリツ株式会社 Mimoシステム試験装置およびそのチャネル相関情報設定方法
JP6400750B2 (ja) 2017-01-26 2018-10-03 ファナック株式会社 学習制御機能を備えた制御システム及び制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256061A1 (ja) 2019-06-21 2020-12-24 現一郎 太田 送受信方法および送受信システム
KR20220018057A (ko) 2019-06-21 2022-02-14 겐이치로 오타 송수신 방법 및 송수신 시스템
US11683074B2 (en) 2019-06-21 2023-06-20 Genichiro Ohta Transmission/reception method and transmission/reception system
EP3989456A4 (en) * 2019-06-21 2023-09-13 Genichiro Ohta TRANSMITTING AND RECEIVING METHOD AS WELL AS TRANSMITTING AND RECEIVING SYSTEM

Also Published As

Publication number Publication date
US20210273839A1 (en) 2021-09-02
EP3813277A4 (en) 2022-04-13
CN112753177B (zh) 2021-12-28
EP3813277A1 (en) 2021-04-28
CN112753177A (zh) 2021-05-04
US11271789B2 (en) 2022-03-08
WO2019244885A1 (ja) 2019-12-26
JP2019220900A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
CN108370360B (zh) 基于零尾及唯一字的dft-s ofdm和ofdm波形
JP4406398B2 (ja) Ofdm信号の送信方法と送信装置及びofdm信号の受信装置
JP5330427B2 (ja) 通信装置
US9363126B2 (en) Method and apparatus for IFDMA receiver architecture
US9014149B2 (en) Communication apparatus and base station apparatus
JP4198428B2 (ja) 無線伝送装置
JP2004153676A (ja) 通信装置、送信機および受信機
JP2009124755A (ja) 受信機
CN107113265B (zh) 用于多址接入通信系统的有效的fbmc传输和接收
WO2020217941A1 (ja) 変調装置及び復調装置
US8848581B2 (en) Unsynchronized signaling in radio systems using frequency domain processing
JP6497472B1 (ja) 送受信方法、および送受信システム
JP4093246B2 (ja) 直交周波数分割多重伝送装置及び方法
JP2000358014A (ja) マルチユーザ伝送のための方法及び装置
KR100919110B1 (ko) 무선통신시스템의 상향링크에서 i/q불균형 성분을추정하기 위한 부채널 할당 방법 및 채널 추정 방법
JP6586057B2 (ja) Ofdm信号受信方法及びofdm信号受信機
KR101710912B1 (ko) 잡음 전력 측정 방법 및 장치
Youssef et al. Implementation of a wireless OFDM system using USRP2 and USRP N210 Kits
Alam Performance Evaluation and Enhancement of IEEE 802.11 WLAN over Multipath Fading Channels in GNU Radio and USRP Platform
Kh Shati The Application of Spatial Complementary Code Keying in Point-to-Point MIMO Wireless Communications Systems
WO2016000766A1 (en) Fbmc transmission and reception with increased system spectral efficiency
KR20080058825A (ko) 다중 캐리어 전송 방식을 채용한 데이터 송, 수신 장치 및방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180629

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180629

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180629

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R150 Certificate of patent or registration of utility model

Ref document number: 6497472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350