JP6493365B2 - 車両制御装置、車両制御方法 - Google Patents

車両制御装置、車両制御方法 Download PDF

Info

Publication number
JP6493365B2
JP6493365B2 JP2016225193A JP2016225193A JP6493365B2 JP 6493365 B2 JP6493365 B2 JP 6493365B2 JP 2016225193 A JP2016225193 A JP 2016225193A JP 2016225193 A JP2016225193 A JP 2016225193A JP 6493365 B2 JP6493365 B2 JP 6493365B2
Authority
JP
Japan
Prior art keywords
information
vehicle
detected
region
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016225193A
Other languages
English (en)
Other versions
JP2017211973A (ja
Inventor
高木 亮
亮 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to US16/302,496 priority Critical patent/US11091153B2/en
Priority to PCT/JP2017/018409 priority patent/WO2017199971A1/ja
Publication of JP2017211973A publication Critical patent/JP2017211973A/ja
Application granted granted Critical
Publication of JP6493365B2 publication Critical patent/JP6493365B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/803Relative lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/805Azimuth angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/35Data fusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Automotive Seat Belt Assembly (AREA)

Description

本発明は、車両前方に位置する物体を検出する車両制御装置、及び車両制御方法に関する。
送信波に対応する反射波に基づく物体の検出結果と画像センサで取得された物体の検出結果とを合成し、この物体に対する新たな情報(フュージョン物標)を生成する技術が知られている。生成されたフュージョン物標により、車両前方の物体の認識精度を向上することができる。また、この情報を用いて特定される物体の位置情報や物体幅を用いることで、物体との衝突を回避する際の車両の衝突回避制御を適切に実施することができる。
画像センサで取得された物体の検出結果は、反射波に基づく物体の検出結果と比べて不安定であることが知られている。例えば、車両周囲が暗いことで、車両前方に存在する物体を画像センサが検出できない場合がある。以下、画像センサにより物体が検出できない状態を画像ロストと記載する。そのため、特許文献1には、フュージョン物標が生成された後に画像ロストが生じた場合、レーダセンサによる物体の検出結果に基づいて衝突回避制御を継続する車両制御装置が開示されている。この車両制御装置では、画像ロスト後は物体の検出精度が低下するため、衝突回避制御を作動し難くする。
特開2007−226680号公報
ところで、画像ロストには車両周囲の明るさに起因するもの以外にも物体と車両とが近接することで生じるものがある。具体的には、物体と車両とが近接することで物体が画像センサの画角から外れ、画像センサが物体を適正に検出することが不可能となり画像ロストが生じる。物体と車両とが近接することで画像ロストが生じた場合に衝突回避制御を作動し難くすると、衝突回避制御の作動遅れや不作動を生じさせる可能性が高くなる。
本発明は、上記課題に鑑みたものであり、衝突回避制御の作動遅れや不作動を抑制することができる車両制御装置、及び車両制御方法を提供することを目的とする。
上記課題を解決するために本発明では、送信波に対応する反射波に基づく物体の検出結果である第1情報と、車両前方を撮像手段で撮像した撮像画像に基づく前記物体の検出結果である第2情報と、を用いて前記物体を検出する車両制御装置であって、前記第1情報と前記第2情報との少なくともいずれかに基づいて、前記物体との衝突を回避するための衝突回避制御を実施する制御部と、前記物体が前記第1情報及び前記第2情報により検出されている状態から前記第1情報のみで検出されている状態に推移した場合、前記物体が、前記車両前方において前記第2情報を取得できない領域として予め定められている近傍領域に位置しているか否かを判定する位置判定部と、前記位置判定部により前記物体が前記近傍領域に位置していると判定された場合に、前記衝突回避制御の作動条件を前記物体が前記第1情報及び前記第2情報により検出されている状態から維持する維持部と、を有する車両制御装置。
上記のように構成された発明では、物体が第1情報及び第2情報により検出されている状態から第1情報のみで検出されている状態に推移した場合、この物体の位置が車両前方における近傍領域に位置していれば、衝突回避制御の作動条件を維持することとした。上記構成により、物体が近傍領域に進入することで画像ロストが生じた場合でも、物体に対する衝突回避制御の作動遅れや不作動を抑制することができる。
PCSSの構成図。 画像センサ及びレーダセンサにより検出される物体の位置を示す図。 画像センサ及びレーダセンサにより検出される物体の位置を示す図。 PCSを説明する図。 画像ロストが生じる要因を説明する図。 画像ロストが生じる要因を説明する図。 運転支援ECUが実施するPCSを説明するフローチャート。 近傍領域NAを説明する図。 図5のステップS19で実施される詳細な処理を説明する図。 図5を用いた制御によるPCSの作動性の変化を説明する図。 図5を用いた制御によるPCSの作動性の変化を説明する図。 図5を用いた制御によるPCSの作動性の変化を説明する図。 第2実施形態においてステップS19で実施される処理を示すフローチャート。 近傍領域NAでの物体の移動を説明する図。 近傍領域NAでの物体の移動を説明する図。 第3実施形態での近傍領域の位置を説明する図。 第3実施形態において、図5のステップS14で実施される処理を示すフローチャートである。 中心位置と物体幅とを説明する図。 第3実施形態において、図5のステップS18で実施される処理を示すフローチャート。 中心位置の予測値を説明する図。 左右端角度を説明する図。 見切れ信頼度を説明する図。
以下、各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
(第1実施形態)
本実施形態に係る車両制御装置及び車両制御方法は、車両(自車両CS)に搭載されており、自車両CSの前方に存在する物体を検出し、その物体との衝突を回避又は軽減すべく各種制御を行うPCSS(Pre-crash safety system)により実現される。また、図1において、PCSS100は、運転支援ECU20(以下、ECU20と記載する)、各種センサ30、被制御対象40を備えて構成されている。図1では、ECU20が車両制御装置として機能する。
各種センサ30は、ECU20に接続されており、物体や自車両CSに対する検出結果をECU20に出力する。図1では、PCSS10は、各種センサ30として、画像センサ31、レーダセンサ32、車速センサ33、旋回運動検出センサ34を備えている。
画像センサ31は、CCDカメラ、単眼カメラ、ステレオカメラ等であり、自車両CSのフロントガラスの上端付近等に設置される。画像センサ31は、所定時間毎に自車両CSの前方に向かって所定範囲で広がる領域を撮像して撮像画像を取得する。そして、撮像画像を画像処理することで、自車両CS前方の物体の位置や方位を画像情報として取得し、ECU20に出力する。以下、画像センサ31により画像情報が検出される物体を画像物標ITとも記載する。この実施形態では画像センサ31が撮像手段として機能する。
図2Aに示すように、画像情報には、自車両CSを基準位置とする車両進行方向(Y軸)と横方向(X軸)とで特定される座標上の画像物標ITの位置とが含まれている。図2Aでは、画像情報として、画像物標ITの横方向(X軸)での左右の横位置Xr,Xlと、自車両CSから物体Obまでの方位を示す方位角θcとが含まれる。ECU20は、画像物標ITの横位置Xr,Xlにより物体幅WOを算出することができる。
レーダセンサ32は、送信波に対応する反射波に基づく物体の検出結果であるレーダ情報を取得する。レーダセンサ32は、自車両CSの前部においてその光軸が車両前方(Y軸方向)を向くように取り付けられており、車両前方に向かって送信波を送信することで、車両前方を走査するとともに、この送信波に対する物体の表面で反射された反射波を受信する。そして、この反射波に応じて物体との距離及び物体との相対速度等を示すレーダ情報を生成する。送信波は、ミリ波等の指向性のある電磁波を用いることができる。
図2Bに示すように、レーダ情報には、自車両CSを基準とするレーダ物標RTの車両進行方向(Y軸)での位置や、自車両CSからレーダ物標RTまでの方位角θrが含まれる。ECU20は、レーダ物標RTの車両進行方向(Y軸)での位置に基づいて、自車両CSからレーダ物標RTまでのY軸上での距離である相対距離Drと、この相対距離Drに基づいて自車両CSを基準とするレーダ物標RTの相対速度Vrを取得することができる。この実施形態では、レーダ情報が第1情報として機能し、画像情報が第2情報として機能する。
車速センサ33は、自車両CSの車輪に動力を伝達する回転軸に設けられており、その回転軸の回転速度に基づいて、自車両CSの速度である車速を算出する。
旋回運動検出センサ34は、車両進行方向から変化する自車両CSの旋回角速度を検出する。例えば、旋回運動検出センサ34は、自車両CSの旋回角速度を検出するヨーレートセンサや、不図示の操舵装置による操舵角を検出する操舵角センサにより構成される。ECU20は旋回運動検出センサ34からの出力に基づいて、自車両CSが旋回運動をしているか否かを判定することができる。
ECU20は、周知のマイクロコンピュータにより構成され、CPU、ROM、RAM等を備えている。ECU20は、ROMに記憶されたプログラムを実行することで、位置取得部21、制御部22、位置判定部23、維持部24として機能する。まずは、ECU20により実施されるPCS(衝突回避制御)について説明する。
位置取得部21は、画像センサ31による物体の検出結果である画像情報又はレーダセンサ32による物体の検出結果であるレーダ情報により自車前方の物体の位置情報を取得する。
制御部22は、同一の物体に対して画像情報とレーダ情報とを取得している場合、この画像情報及びレーダ情報を融合(フュージョン)することで、この物体に対する新たな位置情報であるフュージョン情報を生成する。例えば、レーダ情報による相対距離Drを、物体の自車両CSの進行方向(Y軸上)の位置とし、画像情報による横位置を物体の横方向(X軸上)の位置や物体幅WOとするフュージョン情報を生成する。このように、物体に対するフュージョン情報を生成する場合、レーダセンサ32と画像センサ31とが取得した情報のうち、精度が高い方の情報を用いて物体に対する情報が生成されることとなり、物体の認識精度を向上できる。以下、フュージョン情報が生成されている物体をフュージョン物標FTと記載する。
そして、制御部22は、位置情報を検出した物体と自車両CSとの衝突可能性を判定し、判定した衝突可能性に基づいてPCSの作動を制御する。例えば、制御部22は、物体幅WOと判定領域WcdとがX軸方向において重なる比率であるラップ率RRに基づいて、自車両CSと物体とが衝突する可能性を判定し、この判定結果に基づいてPCSの作動を制御する。ここで、判定領域Wcdは、自車両CSの前方に仮想的に設定される領域である。
ラップ率RRが所定値以上の場合、図3に示すように、相対距離Drを物体との相対速度Vrで除算する等の方法で、当該物体に対する衝突余裕時間TTC(Time to Collision)を算出する。TTCとは、このままの自車速度で走行した場合に、何秒後に物体に衝突するかを示す評価値であり、TTCが小さいほど、衝突の危険性は高くなり、TTCが大きいほど衝突の危険性は低くなる。図3では、TTC1、TTC2、TTC3の順でその値が小さくなる。制御部22は、算出した現時点でのTTCと各被制御対象40に設定されたTTCとを比較し、該当する被制御対象40が存在する場合、該当する被制御対象40を作動させる。
図1に示すPCSS100では、被制御対象40として、警報装置41、シートベルト装置42、ブレーキ装置43を備えており、被制御対象40ごとに所定の作動タイミング(TTC)が設定されている。そのため、ECU20は、TTCと各被制御対象40の作動タイミングとを比較して、TTCが各被制御対象40の作動タイミングに該当する場合、当該被制御対象40を作動させる。
例えば、TTCが警報装置41の作動タイミングとなれば、警報装置41の作動で運転者に警報を発信する。TTCがシートベルト装置42の作動タイミングとなれば、シートベルト装置42を巻き上げる制御を行う。TTCがブレーキ装置43の作動タイミングとなれば、自動ブレーキを作動させて衝突速度を低減する制御を行う。以上により、自車両CSと物体との衝突を回避又は緩和する。
また、制御部22は、フュージョン情報を生成した後、画像情報が検出されず画像ロストが生じた場合、一定の条件下でPCSの作動条件を変更する。一旦、フュージョン物標FTとして認識された物体は、前方に存在する信頼度が高くなる。そのため、物体がフュージョン物標FTとして認識されなくなった後も、PCSの対象から除外するのではく、当該物体に対するPCSが継続できることが好ましい。そこで、PCSS100は、フュージョン情報が生成された後に画像ロストが生じた場合、レーダ情報や過去の物体幅WOに基づいてPCSを継続する。一方で、画像ロストが生じると、画像センサ31から画像物標ITを取得できなくなり、新たに物体幅WOを取得できなくなる。そこで、画像ロスト後は、フュージョン物標FTが検出されていた過去の物体幅WOを用いるとともに、この物体幅WOを縮小することで、一定条件下でPCSが作動し難くなるよう作動条件を変更し、検出精度の低下に対応している。
図4Aに示すように、画像センサ31による物体の検出領域(撮像領域CAと記載する)は、レーダセンサ32による物体の検出領域(レーダ領域RAと記載する)と比べて車両進行方向(Y軸方向)で狭くなる。そのため、物体が自車両CS前方において撮像領域CAとレーダ領域RAとに重なる位置に存在する場合、フュージョン物標FTとして検出することができる。一方で、物体が撮像領域CAからY軸方向において遠方又は近方に位置する場合、画像ロストが生じる。以下では、車両進行方向において撮像領域CAよりも手前の領域を近傍領域NAとも記載する。
図4Bに示すように、物体が近傍領域NAに位置する場合、物体の後端部の下端側が画像センサ31の画角θ1から外れることで画像センサ31が画像物標ITの種類を特定できなくなり画像ロストが生じる。ここで、近傍領域NAは、自車両CSの前方において近い位置であり、この近傍領域NAで画像情報がロストした場合に、PCSが作動し難くなるよう作動条件を変更してしまうと、PCSの動作の遅れや不作動の要因となる。そこで、制御部22は、物体がこの近傍領域NAに進入することで、画像ロストが生じた場合、この物体に対するPCSの作動条件を維持する。
位置判定部23は、物体に対してフュージョン情報が生成されている状態から、レーダ情報のみで物体が検出されている状態に推移した場合、この物体が近傍領域NAに位置しているか否かを判定する。近傍領域NAは、図4Bに示すように、画像センサ31の上下方向に広がる画角θ1に基づいてY軸方向及びX軸方向での領域が予め設定されている。例えば、近傍領域NAは、画像センサ31の上下方向での画角θ1と、画像センサ31が取り付けられる自車両CSの高さ方向での位置との関係に基づいてその範囲が設定される。
維持部24は、位置判定部23により物体が近傍領域NAに位置していると判定された場合に、PCSの作動条件をフュージョン物標FTが検出されている状態から維持する。この実施形態では、維持部24は、制御部22に物体幅WOを横方向(X軸方向)に縮小させないことでPCSの作動条件を維持する。
次に、ECU20が実施するPCSを図5のフローチャートを用いて説明する。なお図5に示す処理は、ECU20により所定周期で実施される処理である。
ステップS11では、画像センサ31からの出力に基づいて画像情報を取得する。ステップS12では、レーダセンサ32からの出力に基づいて、レーダ情報を取得する。
ステップS13では、フュージョン物標FTの検出の有無を判定する。ECU20は、画像情報及びレーダ情報によりそれぞれ物体が検出され、かつ、画像物標ITとレーダ物標RTとが同じ物体であると判定した場合、ステップS14に進む。例えば、ECU20は、ステップS11で取得した画像情報に基づく画像物標ITの位置と、ステップS12で取得したレーダ情報に基づくレーダ物標RTの位置との差が、予め定められた距離以下であれば、画像物標ITとレーダ物標RTとが同一の物体(フュージョン物標FT)であると判定する。一方、画像情報又はレーダ情報を取得していない場合、又は、画像物標ITの位置とレーダ物標RTの位置との差が予め定められた距離を超える場合、画像物標ITとレーダ物標RTとが異なる物体であると判定する。
ステップS14では、ステップS11で取得した画像情報とステップS12で取得したレーダ情報とを合成してフュージョン物標FTに対する位置情報であるフュージョン情報を生成する。フュージョン情報には、物体の位置に加えて物体幅WOが含まれる。
ステップS15では、フュージョン物標FTが検出された回数である検出回数DNを記録する。検出回数DNは、同一種別のフュージョン物標FTが継続して検出される回数を示す情報である。この実施形態では、ECU20は、ステップS13において、同一種別のフュージョン物標FTが検出される毎に、検出回数DNを増加させる。
ステップS21では、物体との衝突判定を行う。まずは、ステップS13においてフュージョン物標FTを検出しているものとして説明を行う。ECU20は、ステップS14で算出したフュージョン情報に含まれる物体幅WOと判定領域Wcdとのラップ率RRを用いて物体と自車両CSとの衝突判定を行う。
ステップS22では、PCSを実施するか否かを判定する。ECU20は、ステップS21で物体と衝突する可能性があると判定した場合、物体における相対距離Drを相対速度Vrで割ることでTTCを算出し、算出したTTCを各被制御対象40に設定されているTTCと比較することで各動作を実施するか否かを判定する。PCSを実施する場合(ステップS22:YES)、ステップS23では、PCSの該当動作を実施する。一方、PCSの該当動作を実施しない場合(ステップS22:NO)、図5に示す処理を、一旦、終了する。ステップS21〜S23が制御工程として機能する。
一方、ステップS13においてフュージョン物標FTを検出していない場合、ステップS16では、同一物体に対して過去にフュージョン物標の検出が成立していたか否かを判定する。例えば、ECU20は検出回数DNを参照することで、過去の処理においてフュージョン物標FTが検出されているか否かを判定する。過去の処理においてフュージョン物標FTを検出していない場合(ステップS16:NO)、図5に示す処理を一旦終了する。
同一物体に対してフュージョン物標FTが検出されている場合(ステップS16:YES)、ステップS17では、レーダ物標RTを継続して検出しているか否か判定する。画像ロストが生じた場合でも、レーダセンサ32により物体の位置を検出することができれば、物体がレーダ領域RAに存在しているためである。レーダ物標RTを検出していなければ(ステップS17:NO)、自車前方に物体が存在しないとして、図5の処理を、一旦、終了する。そのため、物体がPCSの対象から除外されたこととなる。一方、レーダ物標RTを検出している場合(ステップS17:YES)、画像ロストが生じていると判定し、ステップS18に進む。
ステップS18では、レーダ物標RTが近傍領域NAに位置しているか否かを判定する。この実施形態では、ECU20は、近傍領域NAを車両進行方向(Y軸方向)と横方向(X軸方向)とで区画される領域として設定している。ECU20は、ステップS12で取得されたレーダ情報により、レーダ物標RTの位置が近傍領域NAとして定められた領域に位置しているか否かを判定する。ステップS18が位置判定工程として機能する。
図6に示すように、ECU20は、横方向での自車両CSの中心から所定距離を近傍領域NAの横方向での境界線BDとして設定している。なお、近傍領域NAの車両進行方向での範囲は、画像センサ31の画角に基づいて定められている。そして、レーダ物標RTの位置Prの横方向での位置が境界線BDにより区画される近傍領域NAの横方向の範囲よりも内側である場合に、物体が近傍領域NAに位置していると判定する。一方、位置Prが横方向において、定められた近傍領域NAの外側である場合、物体が近傍領域NAに位置していないと判定する。この実施形態では、境界線BDは画像センサ31の撮像領域CAに基づいて予め定められた固定値として用いている。これ以外にも、物体の種別に応じてこの境界線BDを横方向に変更するものであってもよい。
レーダ物標RTが近傍領域NAに位置していない場合(ステップS18:NO)、ステップS20では、物体幅WOを縮小することでPCSの作動条件を変更する。この場合、物体Obは車両進行方向において撮像領域CAの遠方に位置している可能性が高いため、物体Obと自車両CSとが衝突する可能性が低くなる。そのため、ECU20は、過去に取得された物体幅WOの信頼度が低いことを優先し、この物体幅WOを横方向に縮小する。すなわち、この実施形態では、物体幅WOに伴うラップ率RRをPCSの作動条件としている。そして、ステップS21において、縮小後の物体幅WOを用いて衝突判定が行われる。その結果、ラップ率RRが低下しPCSが作動し難くなる。
一方、レーダ物標RTが近傍領域NAに位置している場合(ステップS18:YES)、ステップS19では、PCSの作動条件を変更する。ステップS19では、ECU20は、物体Obと自車両CSとが衝突する可能性を種々の条件に応じて判定することでPCSの作動条件を変更するか維持するかを切り替える。
次に、図5のステップS19で実施される詳細な処理を、図7を用いて説明する。図7で示す処理では、ステップS31,S32までの各条件を全て満たした場合に、物体Obと自車両CSとが衝突する可能性が高いと判定し、物体幅WOを維持することとしている。そのため、ステップS19が維持工程として機能する。
まず、ステップS31では、自車両CSを基準とするレーダ物標RTの相対速度Vrを判定する。TTCは相対距離Drを相対速度Vrで割ることで算出されるため、同じ相対距離Drであれば相対速度Vrが小さい程、レーダ物標RTと自車両CSとが衝突するまでのTTCが大きな値となる。そのため、相対速度Vrが小さい場合は、大きい場合と比べてレーダ物標RTが近傍領域NAに進入した後もPCSの各動作が実施されていない可能性が高くなる。
そのため、相対速度Vrが閾値Th1より大きい場合(ステップS31:NO)、ステップS33に進み、物体幅WOを縮小する。ステップS33で実施される物体幅WOの縮小は、ステップS20で実施される物体幅WOの縮小と同じ手法を用いることができる。一方、相対速度Vrが閾値Th1以下であれば(ステップS31:YES)、ステップS32に進む。ステップS31が相対速度取得部として機能する。
ステップS32では、画像ロストが生じる以前のフュージョン物標FTの検出回数DNを判定する。検出回数DNは過去にレーダ物標RTをフュージョン物標FTとして検出していた回数を示すため、検出回数DNが少ないと、フュージョン物標FTの信頼性が低くなる。例えば、ノイズ等によりフュージョン物標FTの検出が偶発的である場合、検出回数DNが低い値となる。そのため、検出回数DNが閾値Th2より小さければ、ステップS33に進み、物体幅WOを縮小する。
一方、検出回数DNが閾値Th2以上であれば(ステップS32:YES)、図6に示す処理を、一旦、終了する。即ち、物体幅WOが維持されたこととなる。そのため、図5のステップS21において、維持された物体幅WOにより衝突判定が行われるため、PCSが作動し易くなる。
次に、図8A,Bを用いて、ECU20が図5の処理を実施する場合のPCSの作動性の変化を説明する。図8A,Bは、ECU20が図5の処理を実施する場合の物体幅WOの変化を示しており、図8Cは、比較として、ECU20が図5の処理を実施しない場合の物体幅WOの変化を示している。
図8Aに示すように、時刻t11において、自車両CSの前方にフュージョン物標FTが検出されている状態で、自車両CSを基準とするフュージョン物標FTの相対距離Drが小さくなったとする。そして、図8Bに示すように、時刻t12において、物体が近傍領域NAに進入することで、画像ロストが生じたとする。
画像ロストが生じることで、物体(レーダ物標RT)の位置がレーダ情報のみで検出され、物体幅WOが取得できなくなる。ここで、図8Bでは、時刻t12においてレーダ物標RTが近傍領域NAに位置しているため時刻t12での物体幅WO(t12)は、時刻t11での物体幅WOと同じ大きさに維持される。一方、比較として示す図8Cでは、物体が近傍領域NAに位置する場合、時刻t12での物体幅WO(t12)は、図8Aで示した時刻t11の物体幅WO(t11)よりも縮小されている。
そのため、図8Bでは、物体幅WO(t12)が維持されることで、判定領域Wcdに対する比率を示すラップ率RRが、図8(c)の場合のラップ率RR(c)と比べて大きくなる。その結果、PCSが作動し易くなり、レーダ物標RTに対するPCSの作動遅れや不作動を抑制する。
以上説明したようにこの第1実施形態では、ECU20は、フュージョン物標FTを検出している状態から画像ロストが生じ、レーダ情報のみで物体を検出する状態に推移した場合に、レーダ物標RTの位置が車両前方における近傍領域NAに位置していれば、PCSの作動条件を維持する。上記構成により、物体が近傍領域NAに進入することで画像ロストが生じた場合でも、この物体に対するPCSの作動の遅れや不作動を抑制することができる。
ECU20は、物体の横方向での大きさを示す物体幅WOを取得し、取得された物体幅WOと車両前方に設定された判定領域Wcdとの横方向での重なり量(RR)に基づいてPCSの作動条件を変更する。そして、ECU20は、物体が近傍領域NAに位置する場合、物体が画像情報及びレーダ情報により検出されている状態での物体幅に維持する。上記構成により、PCSの作動条件をより簡易な手法により変更することが可能となる。
物体が車両進行方向において自車両CSの近くに位置していても物体が横方向において自車両CSの遠方に位置している場合、物体と自車両CSとの衝突の可能性は低くなる。そこで、ECU20は、レーダ情報により取得される物体の位置Prが予め設定された近傍領域NAの外側であれば、物体が近傍領域NAに位置していないと判定する。上記構成により、物体と自車両CSとの衝突可能性が低い場合は検出精度が低下していることを優先するため、適正なPCSを実施することができる。
物体の相対速度Vrが小さいと物体と自車両CSとが衝突するまでの余裕時間であるTTCが多くなり、相対速度Vrが大きい物体と比べて、この物体が近傍領域NAに位置していてもPCSが実施されていない可能性が高くなる。そこで、ECU20は物体の相対速度Vrが所定値以下であることを条件として当該物体が近傍領域NAに位置する場合に、PCSの作動条件を維持することした。上記構成により、物体Obが近傍領域NAに位置する場合に、PCSを積極的に作動させて、不作動を抑制することができる。
(第2実施形態)
この第2実施形態では、物体が近傍領域NAに位置する場合に、この物体が自車両CSから遠ざかる方向に移動すれば、ECU20は、PCSを作動し難くする。
図9は、第2実施形態において、図5のステップS19で実施される処理を示すフローチャートである。
ステップS41では、自車両CSが直進走行しているか否かを判定する。ECU20は、例えば、旋回運動検出センサ34からの出力に基づいて、自車両CSが直進走行しているか右左折しているかを判定する。自車両CSが直進走行していなければ(ステップS41:NO)、ステップS43では、物体幅WOを縮小する。
自車両CSが直進走行している場合(ステップS41:YES)、ステップS42では、近傍領域NAに位置するレーダ物標RTが直進しているか否かを判定する。図10は、近傍領域NAでの物体の移動を説明する図である。図10Aに示すように、自車両CSの前方で検出された物体が車両進行方向(Y軸方向)に直進していれば、この物体と自車両CSとが衝突する可能性が高くなる。このような場合、物体幅WOを維持しておくことが好ましい。
一方、図10Bに示すように、物体が近傍領域NAで右左折することで、車両進行方向(Y軸方向)に対して横方向(X軸方向)に移動する場合、物体が自車両CSの進路から遠ざかるため、物体と自車両CSとが衝突する可能性は低くなる。このような場合、物体幅WOを維持すると、実際には衝突する可能性の低い物体に対しても衝突可能性があると誤判定するおそれがあり、PCSの不要作動の要因となる。
そのため、ECU20は、ステップS42において、レーダ情報を用いてレーダ物標RTの位置の変化を検出し、この位置の変化に基づいてレーダ物標RTが直進しているか右左折しているかを判定する。これ以外にも、レーダ物標RTの車速が減速した後に横位置が変動したことを、レーダ情報を用いて検出した場合に、レーダ物標RTが右左折したと判定してもよい。そのため、ステップS42が移動判定部として機能する。
レーダ物標RTが直進している場合(ステップS42:YES)、物体幅WOを縮小することなく図9の処理を一旦終了する。そのため、PCSの作動条件が維持されることとなる。一方、レーダ物標RTが直進しておらず、物体が右左折していれば(ステップS42:NO)、ステップS43では、物体幅WOを縮小することで作動条件を変更する。そのため、図5のステップS20において、維持又は縮小された物体幅WOを用いて物体との衝突判定が実施される。
以上説明したように、近傍領域NAに位置する物体が右左折することで、当該物体が自車両CSから遠ざかる方向に移動している場合、物体と自車両CSとが共に直進している場合と比べて、衝突の可能性が低くなる。このような場合、ECU20は、PCSを作動し難くすることとした。上記構成により、物体と自車両CSとが衝突する可能性が低い場合は検出精度が低下していることを優先するため、適正なPCSを実施することができる。
(第3実施形態)
この第3実施形態では、近傍領域NAとして設定される領域が、第1及び第2の実施形態と比べて異なる。
図11は、第3実施形態での近傍領域NAの位置を説明する図である。この第3実施形態では、レーダセンサ32のレーダ領域RAは、画像センサ31の撮像領域CAよりも広い領域に設定されている。そして、近傍領域NAは、画像センサ31の画角VAから水平方向に境界角度BAだけ広がる領域(VA〜BA)とされている。また、近傍領域NAは、物体から第1位置を検出できるが、第2位置を検出できない領域であるため、本実施形態では、近傍領域NAは、画像センサ31の撮像領域CAよりも外側であって、かつレーダセンサ32のレーダ領域RAよりも内側の領域として設定されている。
図12は、第3実施形態において、図5のステップS14で実施される処理を示すフローチャートである。図12に示す処理では、物体からレーダ情報と画像情報とを検出する場合に、物体の横方向での中心位置と、物体幅WOと、横方向での相対速度とを記録する処理である。以下では、ECU20により前回実施された図12の処理を前回の処理と記載し、今回実施される図12の処理を今回の処理と記載する。
ステップS51では、レーダ情報として検出した物体の距離と、画像情報として検出した物体の方位とを融合する。
ステップS52では、図5のステップS11で取得した画像情報に基づいて、物体の横方向での中心位置を算出する。本実施形態では、図13に示すように、ECU20は、画像情報に含まれる左右の横位置Xr,Xlの中心位置を物体の横方向での中心位置として算出する。ステップS52が中心位置算出部として機能する。
ステップS53では、物体幅WOを算出する。本実施形態では、ECU20は、画像情報に含まれる物体の左右の横位置Xr,Xlを使用して物体幅WOを算出する。本実施形態では、物体幅WOは、下記式(1)を用いて算出される。
WO=|Xr−Xl| … (1)。
なお、画像センサ31が物体の左右の横位置の方位角度の差を示す画像幅角度を出力する場合、物体幅WOを次のように算出するものであってもよい。この場合、ECU20は、ステップS53は、画像幅角度と自車両から物体までの距離とを用いて物体幅を算出すればよい。
ステップS54では、物体幅WOの最大値を更新する。例えば,ECU20は、前回処理において保持されている物体幅WOと、前回の処理において記録されている物体幅WOとを比較し、大きい方の物体幅WOを物体幅WOとして更新する。そのため、ステップS53,S54が物体幅算出部として機能する。
ステップS55では、物体の横方向での自車両を基準とする相対速度を算出する。例えば、ECU20は、前回処理において、ステップS51で生成したフュージョン情報の位置と、今回処理において、ステップS51で生成したフュージョン情報の位置との横方向での位置の差により、横方向での相対速度を算出する。そのため、ステップS54が横方向速度算出部として機能する。ステップS55の処理が終了すると、図5に示すフローチャートに戻る。
次に、物体の一部が近傍領域に位置しているか否かを判定する処理を、図14、15を用いて説明する。図14に示す処理は、図5のステップS18で実施される処理である。
ステップS61では、現時点から過去において算出されている中心位置と、物体の横方向速度とに基づいて現時点での物体の横方向での予測中心位置を算出する。本実施形態では、ECU20は、ステップS52で算出された画像情報と、ステップS55で算出された物体の横方向速度とに基づいて現時点での物体における物体幅の予測中心位置を算出する。図15に示すように、ECU20は、ステップS52で保持されている画像情報により算出される物体幅の中心位置Mに、ステップS54で記録されている物体の横方向での相対速度に応じた距離を加えることで、物体の現在の中心位置の予測中心位置Mpを算出する。ステップS61が位置予測部として機能する。
ステップS61において、過去に記録された中心位置と、この画像情報に応じた物体の横方向速度とに基づいて予測中心位置Mpを算出する以外にも、過去に記録された中心位置と、レーダ情報に応じた物体の横方向速度とに基づいて予測中心位置Mpを算出するものであってもよい。
ステップS62では、ステップS61で算出した予測中心位置と、ステップS53で保持された物体幅WOとに基づいて、現時点での物体の左右の横位置の左右端角度を算出する。ここで、左右端角度は、自車両を基準とする、現在の物体の左右の横位置の方位角度を示している。
本実施形態では、図16に示すように、まず、ECU20は、ステップS61で算出された予測中心位置Mpを基準としてステップS54で更新されている物体幅WO分だけ横方向に延びた位置を、物体の左右の横位置の予測横位置Xpr,Xplとして算出する。次に、ECU20は、算出された予測横位置Xpr,Xplを用いて、現在の物体の左右の横位置の方位角を示す左右端角度を算出する。本実施形態では、左右端角度は、撮像軸を基準として右側に角度が増加する場合をプラス側とし、撮像軸を基準として左側に角度が増加する場合をマイナス側としている。
横方向において自車両に近い側の左右端角度をθn、及び自車両に遠い側の左右端角度をθfとした場合、左右端角度と予測横位置との関係は、下記式(2),(3)を用いて算出することができる。
tanθn=X1/Yd … (2)
tanθf=X2/Yd … (3)
ここで、X1は、予測横位置Xpr及びXplの内、自車両から近い側の予測横位置を示し、X2は、予測横位置Xpr及びXplの内、自車両から遠い側の予測横位置を示す。図16では、Xplが自車両から近い側の予測横位置X1であり、Xprが自車両から遠い側の予測横位置X2である。また、Ydは、自車両から物体までの距離を示し、本実施形態ではフュージョン情報に含まれる自車両から物体までの距離が使用される。
上記した式(2),(3)により、ECU20は、左右端角度を、それぞれ下記式(4),(5)を用いて算出することができる。
θn=arctan(X1/Yd) … (4)
θf=arctan(X2/Yd) … (5)
そのため、ステップS62が方位角度算出部として機能する。
ステップS63〜S66では、ステップS62で算出された左右端角度に基づいて、物体が近傍領域に位置していることを判定する。本実施形態では、ステップS62で算出した左右端角度の内、自車両から遠い方の左右端角度θfに基づいて、物体の一部が近傍領域に位置していることの確からしさを示す見切れ信頼度を算出する。そのため、本実施形態では、ステップS63〜S66が位置判定部として機能する。
図17は、見切れ信頼度を説明する図であり、横軸を左右端角度θfの絶対値とし、縦軸を見切れ信頼度RVとしたグラフである。見切れ信頼度RVは、横方向において、自車両から遠い側の左右端角度に基づいて、近傍領域に位置しているか否かを判定するための評価値である。本実施形態では、見切れ信頼度は、0〜100までの値により規定されており、見切れ信頼度が増加するに従い、物体の一部が近傍領域に位置していることの確からしさが増加する。また、見切れ信頼度は、自車両から遠い側の左右端角度θfの値が増加するに従い、その値が非線形に増加するよう値が規定されている。
横軸の左右端角度θfの内、基準角度Bは、撮像軸から画角までの角度の絶対値を示している。言い換えると、左右端角度θfが基準角度Bとなる場合、物体の左右の横位置の内、自車両から遠い側の端部が画像センサ51の画角上に位置していることになる。
見切れ信頼度RVは、基準角度Bを基準として、所定角度R1〜R2の範囲である中心範囲MRにおける増加率が、下限角度R1以下及び上限角度R2以上での増加率よりも大きくなるよう値が設定されている。中心範囲MRにおける増加率を他の領域よりも大きくすることで、左右端角度が下限角度R1より小さい場合、又は上限角度R2よりも大きい場合において、見切れ信頼度RVが大きく変化することが抑制される。その結果、左右端角度θfが画角に近い程、見切れ信頼度の変化が大きくなり、画像センサ31の自車両に対する横方向での取付け誤差や、ステップS62で算出された左右端角度の誤差の影響を低減することができる。
ステップS63では、左右端角度に基づいて見切れ信頼度を算出する。ECU20は、左右端角度の内、自車両から遠い側の左右端角度に対して見切れ信頼度を算出する。例えば、ECU20は、図17に示す左右端角度と見切れ信頼度との関係を規定するマップを記録しており、このマップを参照することで、ステップS62で算出した左右端角度に対応する見切れ信頼度を算出する。
ステップS64では、ステップS63で算出した見切れ信頼度を判定する。本実施形態では、ECU20は、見切れ信頼度を閾値Th11と比較することで、物体の一部が近傍領域に位置しているか否かを判定する。本実施形態では、閾値Th11は、撮像軸から画角までの角度の絶対値を示す基準角度Bに基づいて設定されている。
見切れ信頼度が閾値Th11以上の場合(ステップS64:YES)、ステップS65では、物体の一部が近傍領域に位置していることを示す成立フラグを真にする。一方、見切れ信頼度が閾値Th11未満の場合(ステップS64:NO)、ステップS66では、物体が近傍領域に位置していることを示す成立フラグを偽にする。成立フラグが偽となることで、物体が近傍領域に位置していないと判定したこととなる。
図5に戻り、成立フラグが真であれば、物体が近傍領域に位置していると判定し(ステップS18:YES)、ステップS19において、PCSの作動条件を維持する。例えば,ECU20は、物体幅WOをフュージョン成立時での物体幅WOに維持する。一方、成立フラグが偽であれば、物体が近傍領域に位置していないと判定し(ステップS18:NO)、ステップS20において、PCSの作動条件を変更する。例えば、ECU20は、物体幅WOをフュージョン成立時での物体幅WOよりも縮小する。
以上説明したように、この第3実施形態では、ECU20は、物体がレーダ情報及び画像情報により検出されている状態からレーダ情報のみで検出されている状態に推移した場合に、過去において検出されている物体の横方向での中心位置と、物体の横方向速度とに基づいて現時点での物体における予測中心位置を算出する。また、算出した予測中心位置と、物体幅とに基づいて、自車両を基準とする現在の物体の左右の横位置の方位角度を示す左右端角度を算出する。そして、ECU20は、算出した左右端角度に基づいて、物体が近傍領域に位置しているか否かを判定する、こととした。この場合、近傍領域が画像センサ31の画角から水平方向に所定角度だけ外側に広がる領域であっても、物体がこの近傍領域に位置しているか否かを適正に判定することができる。
ECU20は、算出された左右端角度に基づいて、物体が近傍領域に位置していることの確からしさを示す見切れ信頼度を算出し、算出した見切れ信頼度が閾値以上である場合に、物体が近傍領域に位置していることを判定する。そして、見切れ信頼度は、自車両から遠い側での物体の左右端角度が増加する程、非線形に増加するよう値が設定されており、画角を基準として所定角度内の範囲における中心範囲の見切れ信頼度の増加率が、他の領域と比べて高くなっている。この場合、中心範囲における増加率を、他の領域よりも大きくすることで、左右端角度が中心範囲の下限値よりも高い場合に、見切れ信頼度が大きくなりやすくなる。その結果、近傍領域に位置しているか否かの判定において、画像センサ31の自車両に対する横方向での取付け誤差や、左右端角度の算出誤差の影響を低減することができる。
(その他の実施形態)
上述した第3実施形態において、物体が右左折しているか否かを判定する手法として、フュージョン物標FTが成立している時点での、物体の特徴を用いてその後の物体の動作を予測するものであってもよい。例えば、図5のステップS14において、ECU20は、フュージョン情報として、画像情報からウィンカー等の方向指示灯の点滅を、右左折を示す特徴として検出し、次回の処理でフュージョン物標FTが検出されない場合(ステップS13:NO)、過去の物体幅WOを縮小させてもよい。また、図5のステップS14において、フュージョン情報として、物体が交差点の区画白線を跨いだこと撮像画像に基づいて検出し、次回の処理でフュージョン物標FTが検出されない場合(ステップS13:NO)、過去の物体幅WOを縮小させてもよい。
フュージョン物標FTが成立している時点での、物体の横方向での位置を記録しておき、画像ロストが生じた場合に、記録した過去の物体の横位置に基づいてPCSの作動条件を変更するものであってもよい。この場合、例えば、図5のステップS14において、ECU20は、フュージョン情報として、画像情報から物体の横位置を取得し、次回の処理でフュージョン物標FTが検出されない場合(ステップS13:NO)、ステップS14で取得した横位置に基づいて、物体が近傍領域NAに位置しているか否かを判定する。具体的には、記録された物体の横位置が近傍領域NAの横方向での範囲よりも内側であれば、現在の物体が近傍領域NAに位置していると判定する。
物体が近傍領域NAに位置する場合に一律にPCSの作動条件を維持することに代えて、物体の近傍領域NA内での位置に基づいてPCSの作動条件を変更するものであってもよい。この場合、図5のステップS19において、ECU20は、物体が近傍領域NAに位置している場合に、自車両CSと物体との相対距離Drが閾値以上であればPCSの作動条件を維持する。同じ相対速度Vrであれば、相対距離Drが大きい程、TTCが大きくなる。そのため、レーダ物標RTが近傍領域NAに進入した後の相対距離Drが大きい場合、小さい場合と比べてPCSが実施されていない可能性が高くなる。そのため、ECU20は、ステップS19において相対距離Drが所定値以上である場合、物体幅WOを維持することで、PCSを作動し易くする。
PCSS100は、ECU20と画像センサ31とを個別に備える構成に代えて、ECU20と画像センサ31とを一体の装置として備えるものであってもよい。この場合、画像センサ31の内部に上述したECU20を備えることとなる。また、PCSS100はレーダセンサ32に代えて、レーザー光を送信波として用いるレーザーセンサを備えるものであってもよい。
物体が近傍領域NAに位置している場合に、自車両CSの車速が所定値以上である場合に、PCSの作動条件を維持するものであってもよい。
20…運転支援ECU、22…制御部、23…位置判定部、24…維持部、NA…近傍領域。

Claims (9)

  1. 送信波に対応する反射波に基づく物体の検出結果である第1情報と、車両前方を撮像手段で撮像した撮像画像に基づく前記物体の検出結果である第2情報と、を用いて前記物体を検出する車両制御装置であって、
    前記第1情報と前記第2情報との少なくともいずれかに基づいて、前記物体との衝突を回避するための衝突回避制御を実施する制御部(22)と、
    前記物体が前記第1情報及び前記第2情報により検出されている状態から前記第1情報のみで検出されている状態に推移した場合、前記物体が、前記車両前方において前記第2情報を取得できない領域として予め定められている近傍領域に位置しているか否かを判定する位置判定部(23)と、
    前記物体が前記近傍領域に位置していると判定された場合に、前記衝突回避制御の作動条件を前記物体が前記第1情報及び前記第2情報により検出されている状態から維持する維持部(24)と、を有する車両制御装置。
  2. 前記制御部は、前記物体の横方向での大きさを示す物体幅を取得し、取得された前記物体幅と車両前方に設定された判定領域との前記横方向での重なり量に基づいて前記衝突回避制御の作動条件を変更し、
    前記維持部は、前記物体が前記近傍領域に位置する場合、前記物体幅を前記物体が前記第1情報及び前記第2情報により検出されていた状態での大きさに維持する、請求項1に記載の車両制御装置。
  3. 前記位置判定部は、前記車両の横方向において前記車両の中心から所定の距離を前記近傍領域の前記横方向での範囲として定めており、前記第1情報に基づいて取得される前記物体の前記横方向での位置が定められた前記近傍領域の範囲よりも内側である場合に、前記物体が前記近傍領域に位置していると判定する、請求項1又は請求項2に記載の車両制御装置。
  4. 前記物体が前記車両の横方向において前記車両から遠ざかる方向に移動しているか否かを判定する移動判定部を有し、
    前記維持部は、前記位置判定部により前記物体が前記近傍領域に位置していると判定された場合であって、かつ、前記物体が前記横方向において前記車両から遠ざかる方向に移動している場合に、前記衝突回避制御を作動し難くするよう前記作動条件を変更する、請求項1から請求項3のいずれか一項に記載の車両制御装置。
  5. 前記車両を基準とする前記物体の相対速度を取得する相対速度取得部を有し、
    前記維持部は、前記相対速度が所定値以下であることを条件として、前記物体が前記近傍領域に位置していると判定された場合に、前記作動条件を維持する、請求項1から請求項4のいずれか一項に記載の車両制御装置。
  6. 前記維持部は、前記物体が前記第1情報及び前記第2情報により検出されている状態から前記第1情報のみで検出されている状態に推移し、且つ前記位置判定部により前記物体が前記近傍領域に位置してないと判定された場合に、前記衝突回避制御を作動し難くするよう前記作動条件を変更する、請求項1から請求項5のいずれか一項に記載の車両制御装置。
  7. 前記近傍領域は、前記撮像手段の画角から水平方向に所定角度だけ広がる領域であって、
    前記物体が前記第1情報及び前記第2情報により検出されている状態において、前記第2情報に基づいて、前記物体の横方向での中心位置を算出する中心位置算出部と、
    前記物体が前記第1情報及び前記第2情報により検出されている状態において、前記第2情報に基づいて、前記物体の横方向での大きさを示す物体幅を算出する物体幅算出部と、
    前記第1情報及び前記第2情報の少なくともいずれかに基づいて、前記物体の横方向速度を算出する横方向速度算出部と、
    前記物体が前記第1情報及び前記第2情報により検出されている状態から前記第1情報のみで検出されている状態に推移した場合に、現時点から過去において算出されている前記中心位置と、前記物体の横方向速度とに基づいて現時点での前記物体の横方向での予測中心位置を算出する位置予測部と、
    算出された前記予測中心位置と、前記物体幅とに基づいて、自車両を基準とする現在の前記物体の左右の横位置の方位角度を算出する方位角度算出部と、を備え、
    前記位置判定部は、算出された前記左右の横位置の方位角度に基づいて、前記物体が前記近傍領域に位置しているか否かを判定する、請求項1又は請求項2に記載の車両制御装置。
  8. 前記位置判定部は、前記左右の横位置の方位角度に基づいて、前記物体が前記近傍領域に位置していることの確からしさを示す見切れ信頼度を算出し、算出した前記見切れ信頼度が閾値以上となる場合に、前記物体が前記近傍領域に位置していることを判定するものであり、
    前記見切れ信頼度は、
    自車両から遠い側での物体の前記方位角度が増加する程、値が非線形に増加するよう設定されており、
    前記画角を基準として所定角度の範囲での増加率が、他の範囲での増加率と比べて高くなるよう値が設定されている、請求項7に記載の車両制御装置。
  9. 送信波に対応する反射波に基づく物体の検出結果である第1情報と、車両前方を撮像手段で撮像した撮像画像に基づく前記物体の検出結果である第2情報と、を用いて前記物体を検出する車両制御方法であって、
    前記第1情報と前記第2情報との少なくともいずれかに基づいて、前記物体との衝突を回避するための衝突回避制御を実施する制御工程と、
    前記物体が前記第1情報及び前記第2情報により検出されている状態から前記第1情報のみで検出されている状態に推移した場合、前記物体が、前記車両前方において前記第2情報を取得できない領域として予め定められている近傍領域に位置しているか否かを判定する位置判定工程と、
    前記物体が前記近傍領域に位置していると判定された場合に、前記衝突回避制御の作動条件を前記物体が前記第1情報及び前記第2情報により検出されている状態から維持する維持工程と、を有する車両制御方法。
JP2016225193A 2016-05-19 2016-11-18 車両制御装置、車両制御方法 Active JP6493365B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/302,496 US11091153B2 (en) 2016-05-19 2017-05-16 Vehicle control apparatus and vehicle control method
PCT/JP2017/018409 WO2017199971A1 (ja) 2016-05-19 2017-05-16 車両制御装置、車両制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016100809 2016-05-19
JP2016100809 2016-05-19

Publications (2)

Publication Number Publication Date
JP2017211973A JP2017211973A (ja) 2017-11-30
JP6493365B2 true JP6493365B2 (ja) 2019-04-03

Family

ID=60474801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225193A Active JP6493365B2 (ja) 2016-05-19 2016-11-18 車両制御装置、車両制御方法

Country Status (2)

Country Link
US (1) US11091153B2 (ja)
JP (1) JP6493365B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958381B2 (ja) * 2018-01-23 2021-11-02 トヨタ自動車株式会社 車両制御システム
US11010612B2 (en) * 2018-02-13 2021-05-18 Sumitomo Electric Industries, Ltd. Information generation device, information generation method, computer program, and in-vehicle device
JP7188894B2 (ja) * 2018-03-16 2022-12-13 株式会社デンソーテン レーダ装置及び信号処理方法
JP7176415B2 (ja) 2019-01-15 2022-11-22 トヨタ自動車株式会社 衝突前制御装置
JP7135908B2 (ja) * 2019-02-04 2022-09-13 トヨタ自動車株式会社 衝突前制御装置
JP7512657B2 (ja) * 2020-04-17 2024-07-09 マツダ株式会社 車両制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013732B2 (ja) 2002-10-30 2007-11-28 日産自動車株式会社 車両用外界認識装置
JP4518978B2 (ja) 2005-03-02 2010-08-04 ダイハツ工業株式会社 車両の物体認識装置及び物体認識方法
JP4517972B2 (ja) * 2005-08-02 2010-08-04 日産自動車株式会社 障害物判断装置及び方法
JP4595833B2 (ja) 2006-02-24 2010-12-08 トヨタ自動車株式会社 物体検出装置
JP2008008679A (ja) 2006-06-27 2008-01-17 Toyota Motor Corp 物体検出装置、衝突予測装置、及び車両制御装置
JP2011164989A (ja) 2010-02-10 2011-08-25 Toyota Motor Corp ふらつき判定装置
JP5673568B2 (ja) * 2012-01-16 2015-02-18 トヨタ自動車株式会社 物体検出装置
JP5724955B2 (ja) 2012-06-22 2015-05-27 トヨタ自動車株式会社 物体検出装置、情報処理装置、物体検出方法
CN104620297B (zh) * 2012-09-03 2017-03-22 丰田自动车株式会社 速度算出装置、速度算出方法以及碰撞判定装置
JP5842862B2 (ja) * 2013-05-14 2016-01-13 株式会社デンソー 衝突緩和装置
JP5991332B2 (ja) * 2014-02-05 2016-09-14 トヨタ自動車株式会社 衝突回避制御装置
WO2015125022A2 (en) * 2014-02-20 2015-08-27 Mobileye Vision Technologies Ltd. Navigation based on radar-cued visual imaging

Also Published As

Publication number Publication date
US20190232956A1 (en) 2019-08-01
JP2017211973A (ja) 2017-11-30
US11091153B2 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
JP6493365B2 (ja) 車両制御装置、車両制御方法
US10922561B2 (en) Object recognition device and vehicle travel control system
JP6539228B2 (ja) 車両制御装置、及び車両制御方法
JP5862785B2 (ja) 衝突判定装置及び衝突判定方法
US9753130B2 (en) Target detection apparatus
US10471961B2 (en) Cruise control device and cruise control method for vehicles
JP7018277B2 (ja) 物体検出装置、物体検出方法及び車両制御システム
JP6855776B2 (ja) 物体検出装置、及び物体検出方法
US10366603B2 (en) Recognition support device for vehicle
JP6988200B2 (ja) 車両制御装置
JP6614108B2 (ja) 車両制御装置、車両制御方法
JP2017111684A (ja) 制御装置、制御方法
JP6669090B2 (ja) 車両制御装置
JP2016191682A (ja) 車両制御装置、及び車両制御方法
US10578714B2 (en) Vehicle control apparatus and vehicle control method
US11603096B2 (en) Traveling control apparatus
WO2017170799A1 (ja) 物体認識装置及び物体認識方法
JP2017117342A (ja) 走行支援装置
JP2016191686A (ja) 車両制御装置、及び車両制御方法
WO2016204213A1 (ja) 車両制御装置、及び車両制御方法
JP2010162975A (ja) 車両制御システム
JP6209797B2 (ja) 走行制御装置
US11407390B2 (en) Vehicle control apparatus and vehicle control method
JP2017194926A (ja) 車両制御装置、車両制御方法
WO2017163736A1 (ja) 移動軌跡検出装置、移動物体検出装置、移動軌跡検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6493365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250