以下、本発明について、その好ましい実施形態について詳細に説明する。
本発明の液晶滴下工法用シール剤は、(1)上記一般式(I)で表されるイソシアネート化合物とブロック化剤を反応させて得られるブロックイソシアネートシラン、(2)光硬化性樹脂、(3)硬化触媒、(4)重合開始剤、及び(5)グリシジルエーテル基を分子内に2個以上有するモノマーを含有するものである。以下、各成分について順に説明する。
<(1)上記一般式(I)で表されるイソシアネート化合物とブロック化剤を反応させて得られるブロックイソシアネートシラン>
上記一般式(I)におけるR1で表される炭素原子数1〜8のアルキル基としては、メチル、エチル、プロピル、iso−プロピル、ブチル、sec−ブチル、tert−ブチル、iso−ブチル、アミル、iso−アミル、tert−アミル、ヘキシル、2−ヘキシル、3−ヘキシル、シクロヘキシル、1−メチルシクロヘキシル、ヘプチル、2−ヘプチル、3−ヘプチル、iso−ヘプチル、tert−ヘプチル、1−オクチル、iso−オクチル、tert−オクチル等が挙げられる。
本発明では、上記一般式(I)において、R1がメチル、エチル又はプロピルであるのが、原料入手の容易さの点から好ましい。
また、nが2〜4であるのが、沸点の点から好ましい。沸点は、プリベーク温度やポストベーク温度より高いことが好ましい。
また、aが3であり、bが0であるのが、密着性の点から好ましい。
本発明で用いられるブロックイソシアネートシランを得るために用いられるブロック化剤としては、従来用いられているものを用いることができる。例えば、マロン酸ジメチル、マロン酸ジエチル等のカルボン酸エステル類:マロン酸、アセチルアセトン、アセト酢酸エステル(アセト酢酸メチル、アセト酢酸エチル等)等の活性メチレン化合物;ホルムアミドオキシム、アセトアミドオキシム、アセトオキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサノンオキシム、メチルエチルケトオキシム(MEKオキシム)、メチルイソブチルケトオキシム(MIBKオキシム)、ジメチルケトオキシム、ジエチルケトオキシム等のオキシム化合物;メタノール、エタノール、プロパノール、ブタノール、2−エチルヘキサノール、ヘプタノール、ヘキサノール、オクタノール、イソノニルアルコール、ステアリルアルコール、ベンジルアルコール等の一価アルコール又はこれらの異性体;メチルグリコール、エチルグリコール、エチルジグリコール、エチルトリグリコール、ブチルグリコール、ブチルジグリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のグリコール誘導体;フェノール、クレゾール、キシレノール、エチルフェノール、プロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ニトロフェノール、クロロフェノール等のフェノール類又はこれらの異性体;乳酸メチル、乳酸アミル等の水酸基含有エステル;ジブチルアミン、ジイソプロピルアミン、ジ−tert−ブチルアミン、ジ−2−エチルヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ジフェニルアミン、アニリン、カルバゾール等のアミン化合物;エチレンイミン、ポリエチレンイミン等のイミン化合物;モノメチルエタノールアミン、ジエチルエタノールアミン、トリエチルエタノールアミン等のアルコールアミン;α−ピロリドン、β−ブチロラクタム、β−プロピオラクタム、γ−ブチロラクタム、δ−バレロラクタム、ε−カプロラクタム等のラクタム類;ブチルメルカプタン、ヘキシルメルカプタン、ドデシルメルカプタン等のメルカプタン類;イミダゾール、2−エチルイミダゾール等のイミダゾール類;アセトアニリド、アクリルアミド、酢酸アミド、ダイマー酸アミド等の酸アミド類;コハク酸イミド、マレイン酸イミド、フタル酸イミド等の酸イミド類;尿素、チオ尿素、エチレン尿素等の尿素化合物;ベンゾトリアゾール類;3,5−ジメチルピラゾール等のピラゾール類等が挙げられ、これらは1種を単独で、又は2種以上を併用することができる。
上記ブロック化剤のうち、解離温度が100〜200℃であるものが、プリベーク時には安定して存在し、ポストベーク時に反応する点から好ましく、中でも、オキシム化合物が好ましく、特に、ホルムアミドオキシム、アセトアミドオキシム、アセトオキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサノンオキシム、メチルエチルケトオキシム(MEKオキシム)、メチルイソブチルケトオキシム(MIBKオキシム)、ジメチルケトオキシム、ジエチルケトオキシムが好ましく、メチルエチルケトンオキシムが最も好ましい。
上記ブロックイソシアネートシランを得るためのブロック化反応は、公知の反応方法により行われる。ブロック化剤の添加量は、遊離のイソシアネート基1当量に対し、通常1〜2当量、好ましくは1.05〜1.5当量であり、ブロック化反応の反応温度は、通常50〜150℃であり、好ましくは60〜120℃である。反応時間は1〜7時間程度で行うのが好ましい。また、触媒や溶媒(芳香族炭化水素系、エステル系、エーテル系、ケトン系及びこれらの2種以上の混合溶媒等)を加えてもよい。
上記(2)光硬化性樹脂としては、ラジカル重合性官能基を有し、紫外線等の光を照射することにより重合して硬化するラジカル重合性物質と、カチオン重合性官能基を有し、紫外線等の光を照射することにより重合して硬化するカチオン重合性物質がある。上記ラジカル重合性官能基とは、紫外線等の活性エネルギー線によって重合し得る官能基を意味し、例えば、(メタ)アクリル基、アリル基等が挙げられる。上記ラジカル重合性官能基を有する光硬化性樹脂としては、例えば、(メタ)アクリレート、不飽和ポリエステル樹脂等が挙げられる。これらの樹脂は単独で用いてもよく、2種以上を併用してもよい。中でも、速やかに反応が進行することや接着性が良好であるという点から、(メタ)アクリレート、特に、(2’)分子内に2個以上の(メタ)アクリル基を有するモノマー及び/又はオリゴマーが好適である。
上記(メタ)アクリレートとしては特に限定されず、例えば、ウレタン結合を有するウレタン(メタ)アクリレート、グリシジル基を有する化合物と(メタ)アクリル酸とから誘導されるエポキシ(メタ)アクリレート等が挙げられる。
上記ウレタン(メタ)アクリレートとしては特に限定されず、例えば、イソホロンジイソシアネート等のジイソシアネートと、アクリル酸、ヒドロキシエチルアクリレート等のイソシアネートと付加反応する反応性化合物との誘導体等が挙げられる。これらの誘導体はカプロラクトンやポリオール等で鎖延長させてもよい。
上記ウレタン(メタ)アクリレートは市販品を用いてもよく、例えば、U−122P、U−3,40P、U−4HA、U−1084A(以上、新中村化学工業社製);KRM7595、KRM7610、KRM7619(以上、ダイセルユーシービー社製)等が挙げられる。
上記エポキシ(メタ)アクリレートとしては特に限定されず、例えば、ビスフェノールA型エポキシ樹脂やプロピレングリコールジグリシジルエーテル等のエポキシ樹脂と、(メタ)アクリル酸とから誘導されたエポキシ(メタ)アクリレート等が挙げられる。
上記エポキシ(メタ)アクリレートは市販品を用いてもよく、例えば、EA−1020、EA−6320、EA−5520(以上、新中村化学工業社製);エポキシエステル70PA、エポキシエステル3002A(以上、共栄社化学社製)等が挙げられる。
また、その他の(メタ)アクリレートとしては、例えば、メチルメタクリレート、テトラヒドロフルフリルメタクリレート、ベンジルメタクリレート、イソボルニルメタクリレート、2−ヒドロキシエチルメタクリレート、グリシジルメタクリレート、(ポリ)エチレングリコールジメタクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、トリメチロールプロパントリアクリレート、ペンタエリストールトリアクリレート、グリセリンジメタクリレート等が挙げられる。
上記カチオン重合性官能基とは、紫外線等の活性エネルギー線によって重合し得る官能基を意味し、例えば、グリシジル基等のエポキシ基、オキセタン基、ビニルエーテル基、環状エーテル基、環状チオエーテル基、ラクトン基等が挙げられる。上記カチオン重合性官能基を有する光硬化性樹脂としては、例えば、エポキシ化合物、オキセタン化合物、環状ラクトン化合物、環状アセタール化合物、環状チオエーテル化合物、スピロオルトエステル化合物、ビニルエーテル等が挙げられる。これらの樹脂は単独で用いてもよく、2種以上を併用してもよい。
また、上記(2)光硬化性樹脂としては、1分子内に(メタ)アクリル基とエポキシ基とをそれぞれ少なくとも1つ以上有するエポキシ/(メタ)アクリル樹脂も好適に用いることができる。このエポキシ/(メタ)アクリル樹脂は、光硬化性の官能基((メタ)アクリル基)と熱硬化性の官能基(エポキシ基)を含むため、光硬化性だけでなく、熱硬化性も有する。
上記エポキシ/(メタ)アクリル樹脂としては、例えば、上記エポキシ樹脂のエポキシ基の一部分を常法に従って、塩基性触媒の存在下(メタ)アクリル酸と反応させることにより得られる化合物、2官能以上のイソシアネート1モルに水酸基を有する(メタ)アクリルモノマーを1/2モル、続いてグリシドールを1/2モル反応させて得られる化合物、イソシアネート基を有する(メタ)アクリレートにグリシドールを反応させて得られる化合物等が挙げられる。上記エポキシ/(メタ)アクリル樹脂は市販品を用いてもよく、例えば、UVAC1561(ダイセルユーシービー社製)等が挙げられる。
上記(2)光硬化性樹脂が、2官能又は多官能グリシジルエーテルのアクリレート変性樹脂、好ましくはビスフェノールAグリシジルエーテルのアクリレート変性樹脂を含有する場合、シール剤から液晶への溶出が低く汚染性が低いため好ましい。(2)光硬化性樹脂中における2官能又は多官能グリシジルエーテルのアクリレート変性樹脂の比率は、(2)光硬化性樹脂を100質量部とした場合、60〜100質量部が好ましい。該比率が60質量部未満のものは、液晶への溶出が大きく配向乱れを生じる。
上記(2)光硬化性樹脂の比率は、本発明のシール剤における硬化性樹脂(光硬化性樹脂+熱硬化性樹脂)全体を100質量部としたとき、30〜80質量部、特に40〜70質量部であると、液晶への溶出を抑制し、且つ接着強度が向上するため好ましい。該使用量が30質量部未満であると、樹脂が液晶へ溶出する場合があり、また該使用量が80質量部を超えると、接着力が低下する。
尚、(2)光硬化性樹脂として、上記エポキシ/(メタ)アクリル樹脂を用いる場合、樹脂中の(メタ)アクリル基及びエポキシ基の重量比に応じて按分する。
上記(3)硬化触媒としては、低液晶汚染性、接着強度及び保存安定性の点から、(3’)少なくとも1個以上の活性水素と少なくとも2個以上の窒素原子を分子内に有するポリアミンと、酸性化合物とを反応させて得られる反応生成物(以下、(3’)硬化触媒ともいう)を好ましく用いることができる。該少なくとも1個以上の活性水素と少なくとも2個以上の窒素原子を分子内に有するポリアミンとしては、特に制限はないが、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ジプロピレントリアミン、ジブチレントリアミン、トリエチレンテトラミン、トリプロピレンテトラミン、トリブチレンテトラミン、テトラエチレンペンタミン、テトラプロピレンペンタミン、テトラブチレンペンタミン、N,N’−ジメチルエチレンジアミン、ペンタエチレンヘキサミン、イソホロンジアミン、メンタンジアミン、フェニレンジアミン、4−アミノジフェニルアミン、o−キシリレンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、3,5−ジアミノクロロベンゼン、メラミン、ピペラジン、1−アミノエチルピペラジン、モノメチルアミノプロピルアミン、メチルイミノビスプロピルアミン、1,3−ビス(アミノメチル)シクロヘキサン、アミノフェニルエーテル、ポリエチレンイミン、ポリプロピレンイミン、ポリ−3−メチルプロピルイミン、ポリ−2−エチルプロピルイミン、ポリビニルアミン、ポリアリルアミン等や、ビニルアミン、アリルアミン等の不飽和アミンと、ジメチルアクリルアミド、スチレン、アクリル酸メチル、メタクリル酸メチル、アクリル酸、メタクリル酸、スチレンスルホン酸等及びその塩類等の、共重合可能な不飽和結合を有する他のモノマーとの共重合体等が挙げられる。これらのポリアミンの中で好ましいものは、プロピレンジアミン、イソホロンジアミン、メンタンジアミン、1,3−ビス(アミノメチル)シクロヘキサンである。
更に、上記の少なくとも1個以上の活性水素と少なくとも2個以上の窒素原子を分子内に有するポリアミンとしては、上記のポリアミンにエポキシ化合物を付加させた化合物が好ましく用いられる。
上記のエポキシ化合物としては、脂環族エポキシ化合物、芳香族エポキシ化合物、脂肪族エポキシ化合物等が適している。これらエポキシ化合物は1種類又は2種類以上混合して使用される。
上記脂環族エポキシ化合物の具体例としては、少なくとも1個の脂環族環を有する多価アルコールのポリグリシジルエーテル又はシクロヘキセンやシクロペンテン環含有化合物を酸化剤でエポキシ化することによって得られるシクロヘキセンオキサイドやシクロペンテンオキサイド含有化合物が挙げられる。例えば、水素添加ビスフェノールAジグリシジルエーテル、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−1−メチルシクロヘキシル−3,4−エポキシ−1−メチルシクロヘキサンカルボキシレート、6−メチル−3,4−エポキシシクロヘキシルメチル−6−メチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−3−メチルシクロヘキシルメチル−3,4−エポキシ−3−メチルシクロヘキサンカルボキシレート、3,4−エポキシ−5−メチルシクロヘキシルメチル−3,4−エポキシ−5−メチルシクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−メタジオキサン、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、3,4−エポキシ−6−メチルシクロヘキシルカルボキシレート、メチレンビス(3,4−エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレンビス(3,4−エポキシシクロヘキサンカルボキシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ−2−エチルヘキシル等が挙げられる。
上記脂環族エポキシ化合物として好適に使用できる市販品としては、UVR−6100、UVR−6105、UVR−6110、UVR−6128、UVR−6200(以上、ユニオンカーバイド社製)、セロキサイド2021、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、セロキサイド2000、セロキサイド3000、サイクロマーA200、サイクロマーM100、サイクロマーM101、エポリードGT−301、エポリードGT−302、エポリード401、エポリード403、ETHB、エポリードHD300(以上、ダイセル化学工業社製)、KRM−2110、KRM−2199(以上、ADEKA社製)等を挙げることができる。
上記脂環族エポキシ化合物の中でも、シクロヘキセンオキシド構造を有するエポキシ樹脂が、硬化性(硬化速度)の点で好ましい。
また、上記芳香族エポキシ化合物の具体例としては、少なくとも1個の芳香族環を有する多価フェノール又は、そのアルキレンオキサイド付加物のポリグリシジルエーテル、例えばビスフェノールA、ビスフェノールF、又はこれらに更にアルキレンオキサイドを付加した化合物のグリシジルエーテルやエポキシノボラック樹脂等が挙げられる。
更に、上記脂肪族エポキシ化合物の具体例としては、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジルアクリレート又はグリシジルメタクリレートのビニル重合により合成したホモポリマー、グリシジルアクリレート又はグリシジルメタクリレートとその他のビニルモノマーとのビニル重合により合成したコポリマー等が挙げられる。代表的な化合物として、1,4−ブタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ソルビトールのテトラグリシジルエーテル、ジペンタエリスリトールのヘキサグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル等の多価アルコールのグリシジルエーテル、またプロピレングリコール、トリメチロールプロパン、グリセリン等の脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイドを付加することによって得られるポリエーテルポリオールのポリグリシジルエーテル、脂肪族長鎖二塩基酸のジグリシジルエステルが挙げられる。更に、脂肪族高級アルコールのモノグリシジルエーテルやフェノール、クレゾール、ブチルフェノール、また、これらにアルキレンオキサイドを付加することによって得られるポリエーテルアルコールのモノグリシジルエーテル、高級脂肪酸のグリシジルエステル、エポキシ化大豆油、エポキシステアリン酸オクチル、エポキシステアリン酸ブチル、エポキシ化ポリブタジエン等が挙げられる。
上記芳香族及び脂肪族エポキシ化合物として好適に使用できる市販品としては、エピコート801、エピコート828(以上、油化シェルエポキシ社製)、PY−306、0163、DY−022(以上、チバ・スペシャルティ・ケミカルズ社製)、KRM−2720、EP−3300、EP−4000、EP−4010、EP−4080、EP−4088、EP−4100、EP−4900、EP−4901、EPR−4030、ED−505、ED−506(以上、ADEKA社製)、エポライトM−1230、エポライトEHDG−L、エポライト40E、エポライト100E、エポライト200E、エポライト400E、エポライト70P、エポライト200P、エポライト400P、エポライト1500NP、エポライト1600、エポライト80MF、エポライト100MF、エポライトFR−1500、エポライト3002、エポライト4000(以上、共栄社化学社製)、サントートST0000、YD−716、YH−300、PG−202、PG−207、YD−172、YDPN638(以上、東都化成社製)、TEPIC−S(日産化学社製)、エピクロンN−665、エピクロンN−740、エピクロンHP−7200、エピクロンHP-4032(以上、DIC社製)等を挙げることができる。
上記酸性化合物としては、フェノール樹脂、多価フェノール化合物、ポリカルボン酸類等が挙げられる。該フェノール樹脂は、フェノール類とアルデヒド類より合成され、その例としては、フェノール/ホルマリン樹脂、クレゾール/ホルマリン樹脂、ビスフェノールA(BPA)/ホルマリン樹脂、ビスフェノールF(BPF)/ホルマリン樹脂、アルキルフェノール/ホルマリン樹脂、或いは上記の混合物等が挙げられ、特にフェノール又はクレゾールノボラック樹脂が好ましい。上記多価フェノール化合物としては、ビスフェノールA、ビスフェノールF、レゾルシノール等が挙げられる。上記ポリカルボン酸類としては、アジピン酸、セバチン酸、ドデカンジ酸、アゼライン酸等のジカルボン酸類が挙げられる。
その他、酸無水物とポリオールとの末端COOH付加物である末端COOHのエステル化合物も使用される。例えば無水フタール酸/エチレングリコール=2/1モル付加物、テトラヒドロフタリックアンハイドライド/プロピレングリコール=2/1モル付加物等が挙げられる。
上記酸性化合物として、フェノール樹脂又は多価フェノール化合物を用いる場合、該フェノール樹脂又は多価フェノール化合物の配合量は、上記エポキシ化合物とポリアミンの付加物1モルに対して、好ましくは0.20〜3.0モル当量、より好ましくは0.3〜1.2モル当量である。配合量が0.20モル当量未満であると貯蔵安定性が著しく劣り、また配合量が3.0モル当量を越えると相溶性、硬化性及び物性が低下する。
上記酸性化合物として、ポリカルボン酸類を用いる場合、該ポリカルボン酸類の配合量は、上記エポキシ化合物とポリアミンの付加物1モルに対して、好ましくは0.01〜2.0モル、より好ましくは0.05〜1.0モルである。ポリカルボン酸類の配合量が2.0モルを越えると硬化性が劣り、物性が著しく低下する。
上記酸性化合物として、フェノール樹脂又は多価フェノール化合物とポリカルボン酸類を併用する場合は、フェノール樹脂又は多価フェノール化合物は、上記エポキシ化合物とポリアミンの付加物1モルに対して、好ましくは0.3〜1.2モル、ポリカルボン酸類は、上記エポキシ化合物とアミンの付加物1モルに対して、好ましくは0.05〜1.0モルである。
本発明では、上記エポキシ化合物とポリアミンの付加物に対して、フェノール樹脂、多価フェノール及びポリカルボン酸類をそれぞれ併用し反応させるか、又は上記エポキシ化合物とポリアミンの付加物と、フェノール樹脂との反応物、上記エポキシ化合物とポリアミンの付加物と、多価フェノールとの反応物、上記エポキシ化合物とポリアミンの付加物と、ポリカルボン酸との反応物を併用混合し、使用することも本発明に包含される。
上記エポキシ化合物とポリアミンの付加物と、上記酸性化合物との反応は、温度80〜200℃で30分〜5時間行う。
上記(3)硬化触媒としては、上記(3’)硬化触媒に替えて、又は(3’)硬化触媒と共に、酸無水物、ジシアンジアミド、メラミン、ヒドラジド、イミダゾール類、アルキル尿素類、グアナミン類等の従来の硬化触媒を使用することも可能である。
上記(3)硬化触媒の中でも、融点が50〜110℃であるものは、工程がより簡略化できるため好ましく。融点が60℃〜80℃のものは更に好ましい。また、硬化剤の融点が40℃未満のものはシール剤配合時に硬化してしまうため安定性に問題があり、120℃より高いものは熱硬化工程が長くなり、短時間化させるために加熱温度を上げると液晶組成物へのダメージが大きくなる。
本発明において、上記(3)硬化触媒は、エポキシ樹脂((5)グリシジルエーテル基を分子内に2個以上有するモノマー、(2)光硬化性樹脂が、上記エポキシ/(メタ)アクリル樹脂である場合は、樹脂中のエポキシ基の重量比に応じて按分した量)100質量部((5)に対して0.3〜150質量部、特に20〜100質量部を配合するのが好ましい。
<(4)重合開始剤>
本発明の液晶滴下工法用シール剤に用いられる(4)重合開始剤には、ラジカル重合開始剤とカチオン重合開始剤がある。ラジカル重合開始剤としては、光照射によりラジカルを発生する光ラジカル重合開始剤、或いは加熱によりラジカルを発生する熱ラジカル重合開始剤を用いることができ、特に制限されず従来既知の化合物を用いることが可能である。光ラジカル重合開始剤としては、例えば、アセトフェノン系化合物、ベンジル系化合物、ベンゾフェノン系化合物、チオキサントン系化合物等のケトン系化合物、オキシムエステル系化合物等を好ましいものとして例示することができる。
上記のアセトフェノン系化合物としては例えば、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、4'−イソプロピル−2−ヒドロキシ−2−メチルプロピオフェノン、2−ヒドロキシメチル−2−メチルプロピオフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、p−ジメチルアミノアセトフェノン、p−ターシャリブチルジクロロアセトフェノン、p−ターシャリブチルトリクロロアセトフェノン、p−アジドベンザルアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパノン−1、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン等が挙げられる。
上記のベンジル系化合物としては、ベンジル等が挙げられる。
上記のベンゾフェノン系化合物としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、ミヒラーケトン、4,4'−ビスジエチルアミノベンゾフェノン、4,4'−ジクロロベンゾフェノン、4−ベンゾイル−4'−メチルジフェニルスルフィド等が挙げられる。
上記のチオキサントン系化合物としては、チオキサントン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、2,4−ジエチルチオキサントン等が挙げられる。
上記のオキシムエステル系化合物としては、特に、下記一般式(II)で表される化合物が、感度及び耐熱性の点から好ましい。
(式中、R
61及びR
62は、それぞれ独立に、水素原子、シアノ基、炭素原子数1〜20のアルキル基、炭素原子数6〜30のアリール基、炭素原子数7〜30のアリールアルキル基又は炭素原子数2〜20の複素環基を表し、
R
63及びR
64は、それぞれ独立に、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基、R
65、OR
66、SR
67、NR
68R
69、COR
70、SOR
71、SO
2R
72又はCONR
73R
74を表し、R
63及びR
64は、互いに結合して環を形成していてもよく、
R
65、R
66、R
67、R
68、R
69、R
70、R
71、R
72、R
73及びR
74は、それぞれ独立に、炭素原子数1〜20のアルキル基、炭素原子数6〜30のアリール基、炭素原子数7〜30のアリールアルキル基又は炭素原子数2〜20の複素環基を表し、
X
2は、酸素原子、硫黄原子、セレン原子、CR
75R
76、CO、NR
77又はPR
78を表し、
X
3は、単結合又はCOを表し、
R
75、R
76、R
77及びR
78は、炭素原子数1〜20のアルキル基、炭素原子数6〜30のアリール基又は炭素原子数7〜30のアリールアルキル基を表し、該アルキル基又はアリールアルキル基中のメチレン基は、ハロゲン原子、ニトロ基、シアノ基、水酸基、カルボキシル基又は複素環基で置換されていてもよく、−O−で中断されていてもよく、
R
63及びR
64は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって環を形成していてもよく、
aは、0〜4の整数を表し、
bは、0〜5の整数を表す。)
その他の光ラジカル重合開始剤としては、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド等のホスフィンオキサイド系化合物、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−(ピル−1−イル)]チタニウム等のチタノセン系化合物等が挙げられる。
これらの重合開始剤は1種或いは2種以上のものを所望の性能に応じて配合して使用することができる。
上記熱ラジカル重合開始剤としては、2,2′−アゾビスイソブチロニトリル、2,2′−アゾビス(メチルイソブチレ−ト)、2,2’−アゾビス−2,4−ジメチルバレロニトリル、1,1’−アゾビス(1−アセトキシ−1−フェニルエタン)等のアゾ系開始剤;ベンゾイルパーオキサイド、ジ−t−ブチルベンゾイルパーオキサイド、t−ブチルパーオキシピバレート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート等の過酸化物系開始剤、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩等が挙げられる。
上記カチオン重合開始剤としては、光照射又は加熱によりカチオン重合を開始させる物質を放出させることが可能な化合物であればどのようなものでも差し支えないが、好ましくは、オニウム塩が用いられる。
上記オニウム塩としては、例えば、[M]r+[G]r-で表される陽イオンと陰イオンの塩が挙げられる。
ここで陽イオン[M]r+はオニウムであることが好ましく、その構造は、例えば、下記一般式、[(R29)fQ]r+で表すことができる。
上記R29は、炭素原子数が1〜60であり、炭素原子以外の原子をいくつ含んでいてもよい有機の基である。fは1〜5なる整数である。f個のR29は各々独立で、同一でも異なっていてもよい。また、少なくとも1つは、芳香環を有する上記の如き有機の基であることが好ましい。QはS,N,Se,Te,P,As,Sb,Bi,O,I,Br,Cl,F,N=Nからなる群から選ばれる原子或いは原子団である。また、陽イオン[M]r+中のQの原子価をqとしたとき、r=f−qなる関係が成り立つことが必要である(但し、N=Nは原子価0として扱う)。
また、陰イオン[G]r-の具体例としては、一価のものとして、塩化物イオン、臭化物イオン、ヨウ化物イオン、フッ化物イオン等のハロゲン化物イオン;過塩素酸イオン、塩素酸イオン、チオシアン酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロアンチモン酸イオン、テトラフルオロホウ酸イオン等の無機系陰イオン;テトラキス(ペンタフルオロフェニル)ボレート、テトラ(3,5−ジフルオロ−4−メトキシフェニル)ボレート、テトラフルオロボレート、テトラアリールボレート、テトラキス(ペンタフルオロフェニル)ボレート等のボレート系陰イオン;メタンスルホン酸イオン、ドデシルスルホン酸イオン、ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、ナフタレンスルホン酸イオン、ジフェニルアミン−4−スルホン酸イオン、2−アミノ−4−メチル−5−クロロベンゼンスルホン酸イオン、2−アミノ−5−ニトロベンゼンスルホン酸イオン、フタロシアニンスルホン酸イオン、フルオロスルホン酸イオン、トリニトロベンゼンスルホン酸陰イオン、カンファースルホン酸イオン、ノナフロロブタンスルホン酸イオン、ヘキサデカフロロオクタンスルホン酸イオン、重合性置換基を有するスルホン酸イオン、特開平10−235999号公報、特開平10−337959号公報、特開平11−102088号公報、特開2000−108510号公報、特開2000−168223号公報、特開2001−209969号公報、特開2001−322354号公報、特開2006−248180号公報、特開2006−297907号公報、特開平8−253705号公報、特表2004−503379号公報、特開2005−336150号公報、国際公開2006/28006号公報等に記載されたスルホン酸イオン等の有機スルホン酸系陰イオン;オクチルリン酸イオン、ドデシルリン酸イオン、オクタデシルリン酸イオン、フェニルリン酸イオン、ノニルフェニルリン酸イオン、2,2’−メチレンビス(4,6−ジ−t−ブチルフェニル)ホスホン酸イオン等の有機リン酸系陰イオン、ビストリフルオロメチルスルホニルイミドイオン、ビスパーフルオロブタンスルホニルイミドイオン、パーフルオロ−4−エチルシクロヘキサンスルホン酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、トリス(フルオロアルキルスルホニル)カルボアニオン等が挙げられ、二価のものとしては、例えば、ベンゼンジスルホン酸イオン、ナフタレンジスルホン酸イオン等が挙げられる。
本発明では、このようなオニウム塩の中でも、アリールジアゾニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩等の芳香族オニウム塩を使用することが特に有効である。これらの中から、その1種を単独で、又は2種以上を混合して使用することができる。
また、その他好ましいものとしては、(η5−2,4−シクロペンタジエン−1−イル)〔(1,2,3,4,5,6−η)−(1−メチルエチル)ベンゼン〕−アイアン−ヘキサフルオロホスフェート等の鉄−アレーン錯体や、トリス(アセチルアセトナト)アルミニウム、トリス(エチルアセトナトアセタト)アルミニウム、トリス(サリチルアルデヒダト)アルミニウム等のアルミニウム錯体とトリフェニルシラノール等のシラノール類との混合物等も挙げることができる。
これらの中でも、実用面と光感度の観点から、芳香族スルホニウム塩を用いることが好ましい。
該芳香族スルホニウム塩としては、市販のものを用いることもでき、例えば、WPAG−336、WPAG−367、WPAG−370、WPAG−469、WPAG−638(和光純薬工業社製)、CPI−100P、CPI−101A、CPI−200K、CPI−210S(サンアプロ社製)、アデカオプトマーSP−056、アデカオプトマーSP−066、アデカオプトマーSP−130、アデカオプトマーSP−140、アデカオプトマーSP−082、アデカオプトマーSP−103、アデカオプトマーSP−601、アデカオプトマーSP−606、アデカオプトマーSP−701(ADEKA社製)等が挙げられる。
本発明の液晶滴下工法用シール剤には、上記の(1)ブロックイソシアネートシラン、(2)光硬化性樹脂、(3)硬化触媒、(4)重合開始剤、及び熱硬化性樹脂として、上記(5)グリシジルエーテル基を分子内に2個以上有するモノマーが配合される。
上記(5)グリシジルエーテル基を分子内に2個以上有するモノマーとしては、上記エポキシ化合物として例示したエポキシ樹脂が挙げられる。この熱硬化性樹脂としてのエポキシ樹脂は、上記(3)硬化触媒で使用するエポキシ樹脂と同一であっても、異なっていてもよい。中でも熱硬化性樹脂として特に好適に用いられるものとしては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールA−プロピレンオキシド変性エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、NBR変性エポキシ樹脂等が挙げられる。
上記(5)グリシジルエーテル基を分子内に2個以上有するモノマーが、ビスフェノールAプロピレンオキシド変性エポキシ化合物を含有する場合、相溶性が高くなるため、より好ましい。また、上記(5)グリシジルエーテル基を分子内に2個以上有するモノマー中におけるビスフェノールAプロピレンオキシド変性エポキシ化合物の比率は、上記(5)グリシジルエーテル基を分子内に2個以上有するモノマーを100質量部としたとき20〜70質量部が好ましい。該比率が20質量部未満のものは接着力が低下し、70質量部を超えるものは樹脂が液晶へ溶出する場合がある。
以上説明した本発明の液晶滴下工法用シール剤は、上記(1)ブロックイソシアネートシラン、上記(2)光硬化性樹脂、上記(3)硬化触媒、上記(4)重合開始剤、及び上記(5)グリシジルエーテル基を分子内に2個以上有するモノマーを含有するが、これら各成分の含有量は、上記(1)ブロックイソシアネートシランが好ましくは0.1〜4質量%、より好ましくは0.3〜2質量%、上記(2)光硬化性樹脂が好ましくは10〜60質量%、より好ましくは20〜40質量%、上記(3)硬化触媒が好ましくは2〜30質量%、より好ましくは5〜25質量%、上記(4)重合開始剤が好ましくは0.1〜4重量%、より好ましくは0.3〜2重量%、上記(5)グリシジルエーテル基を分子内に2個以上有するモノマーが好ましくは10〜50質量%、より好ましくは15〜35質量%である。
本発明の液晶滴下工法用シール剤には、必要に応じて(6)充填剤を配合することもできる。上記充填剤としては、溶融シリカ、溶融球状シリカ、結晶性シリカ、コロイダルシリカ、ヒュームドシリカ、シリカゲル、シリコンカーバイド、窒化珪素、窒化アルミニウム、窒化ホウ素、炭化ケイ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、活性炭、コアシェルゴム、ブロック共重合高分子、ガラスフィラー、アルミナ、チタニア、酸化鉄、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、珪石粉、瀝青物、繊維素、層状粘土鉱物、グラファイト、ウイスカ、カオリン、雲母、アルミニウム粉末、石英、亜鉛、エロージール、モンモリロナイト、ベントナイト等が挙げられ、好ましくは溶融シリカ、結晶性シリカ、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、 水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムであり、更に好ましくは溶融シリカ、結晶性シリカ、アルミナ、タルクである。これら充填材は2種以上を混合して用いても良い。
上記(6)充填剤の配合量は、本発明の液晶滴下工法用シール剤中、通常10〜50質量%程度、好ましくは20〜40質量%程度である。
更に、本発明の液晶滴下工法用シール剤には、接着強度を向上させ、耐湿信頼性が優れた液晶滴下工法用シール剤を得るために、上記(1)ブロックイソシアネートシラン以外のシランカップリング剤を配合することができる。上記シランカップリング剤としては、例えば3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、 2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3− アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、 3−メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N−(2−(ビニルベンジルアミノ)エチル)3−アミノプロピルトリメトキシシラン塩酸塩、3−メタクリロキシプロピルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン等のシランカップリング剤が挙げられる。これらシランカップリング剤は2種以上を混合して用いても良い。
上記シランカップリング剤の配合量は、本発明の液晶滴下工法用シール剤中、通常0.1〜4質量%程度、好ましくは0.5〜3質量%程度である。
本発明の液晶滴下工法用シール剤には、更に必要に応じて、その他の添加物を添加しても良い。このような添加物の例としては、例えば有機溶媒、着色剤、分散剤、レベリング剤、消泡剤、導通材料、熱重合抑制剤、接着促進剤、増粘剤、硬化促進剤、密着促進剤、架橋剤、酸化防止剤、紫外線吸収剤、分散助剤、増感剤、連鎖移動剤、界面活性剤及びこれらに類似する物が挙げられる。又、本発明のシール剤には必要に応じてその他稀釈剤、難燃剤等を添加してもよい。
上記その他の添加物の配合量は、本発明の液晶滴下工法用シール剤中、好ましくは合計で10質量%以下とする。
本発明の液晶滴下工法用シール剤は、例えば、光硬化性樹脂成分((2)光硬化性樹脂及び(4)重合開始剤)、熱硬化性樹脂成分((3)硬化触媒及び(5)グリシジルエーテル基を分子内に2個以上有するモノマー)、シランカップリング剤として(1)上記一般式(I)で表されるイソシアネート化合物とブロック化剤を反応させて得られるブロックイソシアネートシラン、更に必要に応じ、各種添加剤の所定量を添加し、溶解混合し、次いで、この混合物を公知の混合装置、例えば3本ロール、サンドミル、ボールミル等により均一に混合することにより製造することができる。
本発明の液晶滴下工法用シール剤は、液晶組成物に含有される化合物の種類に制限されず封止することができるが、重合性液晶組成物、特に炭素−炭素不飽和二重結合を有する化合物を含有する液晶組成物の封止に好ましく用いられる。かかる炭素−炭素不飽和二重結合を有する化合物としては、側鎖にアルケニル基を有する液晶化合物、(メタ)アクリル基を有する重合性化合物等が挙げられる。
次に、本発明の液晶表示素子について説明する。本発明の液晶表示素子は、上記液晶工法用シール剤を用いた液晶表示素子であり、所定の電極を形成した一対の基板を所定の間隔に対向配置し、その周囲を本発明の液晶滴下工法用シール剤でシールし、その間隙に液晶が封入されたものである。封入される液晶の種類は限定されないが重合性液晶組成物特に炭素−炭素不飽和二重結合を有する化合物を含有する液晶組成物に対してより効果が大きい。また基板としては、ガラス、石英、プラスチック、シリコン等からなり、少なくとも一方に光透過性がある組み合わせの基板から構成されるものであれば特に制限されない。
本発明の液晶表示素子の製法としては、例えば、本発明の液晶滴下工法用シール剤に、スペーサー(間隙制御材)を添加後、該一対の基板の一方にディスペンサ等により該シール剤を塗布する。塗布された未硬化の該シール剤の内側に液晶を滴下し、真空中にてもう一方のガラス基板を重ね合わせ、ギャップ出しを行う。ギャップ形成後、紫外線照射機により液晶シール部に紫外線を照射させて光硬化(仮硬化)させる。この場合の紫外線照射量は、好ましくは500mJ/cm2〜6000mJ/cm2、より好ましくは1000mJ/cm2〜4000mJ/cm2の照射量である。
仮硬化させたシール部を90〜130℃で0.5〜2時間硬化(本硬化)させることにより本発明の液晶表示素子を得ることができる。このようにして得られた本発明の液晶表示素子は、液晶汚染による表示不良が無く、接着性及び耐湿信頼性に優れたものである。
上記スペーサーとしては、例えばグラスファイバー、シリカビーズ、ポリマービーズ等が挙げられる。その直径は、目的に応じ異なるが、通常2〜8μm、好ましくは4〜7μmである。その使用量は、本発明の液晶滴下工法用シール剤100質量部に対して、通常0.1〜4質量部、好ましくは0.5〜2質量部、更に、好ましくは0.9〜1.5質量部程度である。
続いて、本発明の組成物について説明する。本発明の組成物は、(1)下記一般式(I)で表されるイソシアネート化合物とブロック化剤を反応させて得られるブロックイソシアネートシラン、(2’)分子内に2個以上の(メタ)アクリル基を有するモノマー及び/又はオリゴマー、(3’)少なくとも1個以上の活性水素と少なくとも2個以上の窒素原子を分子内に有するポリアミンと、酸性化合物とを反応させて得られる反応生成物、(4)重合開始剤及び(5)グリシジルエーテル基を分子内に2個以上有するモノマーを含有するものである。
(式中、R
1は、炭素原子数1〜8のアルキル基を表し、nは1〜10の数であり、aは1〜3の数であり、bは0〜2の数であり、a+b=3である。)
本発明の組成物において、上記各成分の含有量は、上記(1)成分が好ましくは0.1〜4質量%、より好ましくは0.3〜2質量%、上記(2’)成分が好ましくは1〜99.5質量%、より好ましくは5〜90質量%、上記(3’)成分が好ましくは0.5〜40質量%、より好ましくは1〜30質量%、上記(4)成分が好ましくは0.1〜4質量%、より好ましくは0.3〜2質量%、上記(5)成分が好ましくは1〜99質量%、より好ましくは5〜90質量%である。
尚、上記(1)、(2’)、(3’)、(4)及び(5)の各成分の具体的な内容については、本発明の液晶滴下工法用シール剤における説明が適宜適用される。
本発明の組成物は、インキ、保護膜、塗料、コーティング剤、絶縁材、構造材、光ディスク、シーリング剤、光造形剤として使用できる。
以下、実施例等を示して本発明を更に詳細に説明するが、本発明はこれらの実施例等に制限されるものではない。
製造例1及び2は、上記(1)ブロックイソシアネートシランの製造例を示し、製造例3は、上記(2)光硬化性樹脂の製造例を示し、製造例4は、上記(3)硬化触媒の製造例を示し、評価例1及び比較評価例1〜3は、光ラジカル開始剤の重合性液晶組成物に対する汚染性評価例を示し、実施例1及び2並びに比較例1〜4は、シール剤及び比較用シール剤の製造例及び評価例を示す。
[製造例1]ブロックイソシアネートシランNo.1の合成
四ツ口フラスコ中、窒素雰囲気下でメチルエチルケトンオキシム500質量部を仕込み、内温を40℃以下に保ち撹拌しながら、3−イソシアナートトリエトキシプロピルシラン200質量部を1時間かけて加え、その後、内温40℃で1時間撹拌した。IRでイソシアネート基のピークが消失したことを確認し、ブロックイソシアネートシランNo.1を得た。
[製造例2]ブロックイソシアネートシランNo.2の合成
窒素雰囲気下で3,5−ジメチルピラゾール500質量部を仕込み、内温を40℃以下に保ち撹拌しながら3−イソシアナートトリエトキシプロピルシラン200質量部を1時間かけて加え、その後、内温40℃で1時間撹拌した。IRでイソシアネート基のピークが消失したことを確認し、PGMEA溶液としてブロックイソシアネートシランNo.2を得た。
[製造例3]ビスフェノールAエポキシアクリレート変性樹脂No.1の製造
反応フラスコにビスフェノールA型エポキシ樹脂EP4100(ADEKA社製、エポキシ価185g/eq)90g、及びトルエン133gを加え撹拌した。そこにトリエチルアミン1g、メトキシフェノール0.55g、及びアクリル酸51.7gを加え95℃まで加熱し、その温度で22時間撹拌した。反応はエポキシ価測定による残量が1%以下になるまで行った。70℃まで冷却しトルエン400gを加え、水250gで1回洗浄し、NaOH水溶液(0.1N)250gで3回洗浄し、純水250gで、水層の電気伝導度が1μS/cmになるまで洗浄した。エバポレーターで脱溶媒(60℃)し、収量125.1g(収率94.1%)、粘度(25℃)911Pa・s、及び酸価0mgKOH/gのビスフェノールAエポキシアクリレート変性樹脂No.1を得た。
[製造例4]硬化触媒No.1の製造
反応フラスコ中の1,3−ビスアミノシクロヘキサン140gに、上記のビスフェノールA型エポキシ樹脂EP4100の250gを100℃で添加した。その後140℃に上げ、2時間付加反応を行い、ポリアミンNo.1を得た。このポリアミンNo.1の25gに融点100℃のフェノールノボラック樹脂3gを加え、150℃にて60分溶融マスキング反応を行い、硬化触媒No.1を得た。得られた硬化剤をジェットミルにて5μm以下の粒径に粉砕した。融点は78℃であった。
[実施例1〜2及び比較例1〜4]
以下の原料を[表1]に従い配合し、三本ロールミルにて分散、混練を行った後、更に遊星式撹拌脱泡装置にて脱泡し、シール剤を得た。得られたシール剤を用いたテストセルの硬化性(反応率)、電圧保持率(VHR)、接着強度及び耐湿熱性を評価した。結果を下記[表1]に示す。
<電圧保持率(VHR)の評価>
配向膜(JALS2096)を塗布した透明電極付き基板に、実施例1及び2並びに比較例1〜4で得られたシール剤に、更に4μmのビーズスペーサーを1質量%分散させたシール剤をディスペンサにて4cmの正方形に描画塗布した後、下記[化5]で表される重合性液晶組成物を、描画塗布した正方形内に微少量滴下し、真空下で貼り合わせた。大気圧に戻した後、400nm以下の波長をカットしたUV(3000mJ/cm
2)を照射し、更に120℃にて1時間硬化させた後、電圧保持率(VHR)をVHR−1A(東陽テクニカ社製)を用いて測定した。尚、測定条件はパルス電圧幅60μs、フレーム周期16.7ms、波高±5V、測定温度25℃とした。
<接着強度の評価>
25×50mmで厚さ4mmガラス板の中央にシール剤をディスペンス塗布し、もう1方のガラス板で十字型になるよう貼り付けし、超高圧水銀灯で400nmより短波長の光をカットした光を3000mJ/cm2照射した後、120℃にて1時間オーブンで加熱し、万能試験機(島津製作所)にて引っ張り強度を測定した。
<耐湿熱接着強度>
上記接着強度評価法で作成した試験基板を120℃、2気圧、相対湿度100%(RH)の条件で6時間静置した。万能試験機(島津製作所)にて引っ張り強度を測定した。
<保存安定性評価>
実施例及び比較例で得られたシール剤を、ディスペンス用シリンジ内のシール剤の重量が10gになるように採取した後、脱泡処理をした。そのうち2gについて、E型粘度計にて、室温(25℃)、2.5rpmで初期粘度を測定した。次いで、このサンプルを、23℃50%RHで1週間保存した後、再度、同様の条件で粘度を測定した。このときの、初期粘度に対する1週間保存後の粘度の上昇率を求めた。
初期粘度に対する保存後粘度の上昇率が20%以下であるものを○、20%以上であるものを?とした。
上記[表1]から明らかなように、実施例1〜5では、耐湿熱接着強度が高くかつ保存安定性に優れていた。一方、比較例No.1では保存安定性が充分ではなく、比較例No.2では保存安定性に加え、耐湿熱接着強度も充分ではなかった。
以上より、本発明に係るブロックイソシアネートシランを含む本発明の液晶滴下工法用シール剤は、重合性液晶組成物からなる高分子安定型ディスプレイに好適であることが明らかである。