JP6487556B2 - 電子線干渉装置および電子線干渉方法 - Google Patents

電子線干渉装置および電子線干渉方法 Download PDF

Info

Publication number
JP6487556B2
JP6487556B2 JP2017532312A JP2017532312A JP6487556B2 JP 6487556 B2 JP6487556 B2 JP 6487556B2 JP 2017532312 A JP2017532312 A JP 2017532312A JP 2017532312 A JP2017532312 A JP 2017532312A JP 6487556 B2 JP6487556 B2 JP 6487556B2
Authority
JP
Japan
Prior art keywords
electron beam
hologram
wave region
electron
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017532312A
Other languages
English (en)
Other versions
JPWO2017022093A1 (ja
Inventor
研 原田
研 原田
裕介 浅利
裕介 浅利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2017022093A1 publication Critical patent/JPWO2017022093A1/ja
Application granted granted Critical
Publication of JP6487556B2 publication Critical patent/JP6487556B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/266Measurement of magnetic- or electric fields in the object; Lorentzmicroscopy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2614Holography or phase contrast, phase related imaging in general, e.g. phase plates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Holo Graphy (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

電磁場等の計測を行う電子線干渉装置および電子線干渉方法に関する。
<電子線バイプリズム>
電子線バイプリズムは、電子線におけるビームスプリッターとして干渉光学系には不可欠の電子光学装置で、光学におけるフレネルの複プリズムと同じ作用をする。電子線を偏向させるために電界を用いるものを電界型電子線バイプリズム、磁界を用いるものを磁界型電子線バイプリズムと呼ぶ。
電界型電子線バイプリズムの構造は図1に示すように、中央部のフィラメント電極9とその電極を挟む形で保持される平行平板型接地電極99とから構成されている。例えば、フィラメント電極9に正電圧を印加すると、図1に示したごとく、フィラメント電極9の両側を通過する電子線27は、フィラメント電極の電位により互いに向き合う方向に同じ角度αだけ偏向され、電子線バイプリズムを通過し二波に分離された電子線は、電子線バイプリズムの後方で重畳され干渉縞8を生じさせる。逆にフィラメント電極9に負の電圧を印加すると、2つの電子線は互いに離れる方向に同じ角度だけ偏向される。
このような電子光学系を総称して、電子線干渉光学系と呼ぶ。フィラメント電極9から離れるほど電子線に作用する電位は小さくなるが、作用している空間範囲が長くなるため、結果的に電子線の偏向角度は入射位置に依らずフィラメント電極9への印加電圧に比例する。すなわち、電子線バイプリズムによる電子線の偏向角度αは、フィラメント電極への印加電圧Vfと偏向係数kを用いてα = kVfで表わされる簡単な関係を持つ。電子線の偏向角度αが入射位置に依らないことは電子光学装置としては重要な特徴で、平面波は平面波のまま伝播方向のみが偏向されて、電子線バイプリズムを射出することになる。これは光学ではちょうど2つのプリズムを合わせた複プリズムの効果に対応することから、電子線バイプリズムと呼ばれている。図1では波面25が位置によらず同じ角度2αで重畳され、干渉縞8が発生する様子を描いている。
<干渉顕微鏡像の作成>
最も一般的な電子線干渉法として電子線ホログラフィーで用いられる光学系は、図2に示すごとく1段の電子線バイプリズム(フィラメント電極9と平行平板型接地電極99)を対物レンズ5と対物レンズ5による試料3の像面71との間に配置する電子線干渉光学系(1段電子線バイプリズム干渉計)である。フィラメント電極9に正の電圧を印加することによって、試料3を透過した電子線(物体波21:図2ではフィラメント電極9の右側を通過する電子線)と試料の無い側を透過した電子線(参照波23:図2ではフィラメント電極9の左側を通過する電子線)を重畳させて干渉顕微鏡像(88:試料像31に干渉縞8の重畳された画像(ホログラム))を得ている。すなわち、試料3が物体波21の波面に与える位相変化が、干渉縞8の変調として記録される。
電子線の波面に変調を与えるものは、すべからく物体として干渉顕微鏡像中の干渉縞の変調として記録することができる。すなわち、干渉顕微鏡法では物質だけでなく電磁場、電位なども観察対象とすることができる。さらに、干渉縞の変調の様子を定量化することにより、電磁場や電位を定量的に計測することが可能となる。
<可干渉距離>
フェルミ粒子である電子の波動は、ボーズ粒子である光子の波動と異なり、1つの状態に縮退させることができない。そのため、厳密な意味でレーザーのような完全に可干渉(コヒーレント)な状態を作り出すことはできず、加速電圧の安定性を高めてエネルギー分布幅を小さくするとともに光源サイズをできるだけ小さくして電子の運動の角度分布(電子線の開き角)を小さくし、実効的に電子波の波面を広げる工夫をしている。この電子波が干渉可能な範囲を可干渉距離と呼ぶ。この距離は光源サイズと電子光学系にも依存するが、電磁場観察光学系の場合には、試料面上では2〜3μm程度が一般的な値である。
<磁場観察例>
一方、電磁場は遠距離場として、無限遠までその影響が伝達する場として知られている。例えば超伝導状態の鉛薄膜に発生した磁束量子の場合には、磁束量子の空間サイズは約0.2 μm径、磁束量は2.07×10-15 Wbと、いずれも大変小さいものであるが、干渉顕微鏡像で観察された磁力線は、真空中では5 μm四方にまで広がっている。さらに、位相差増幅(×16倍)によってこの磁力線分布を詳細に可視化すると、磁束量子の左右の磁力線が大きく曲がり、超伝導体中に回帰しているように見える。超伝導体は完全反磁性状態であるため、物理的にこのような磁力線分布は考え難く、参照波に漏洩した磁束量子自身の磁場によるアーティファクトと考えられた。そして、その観察結果は、シミュレーションにより、参照波に含まれた磁場が影響していることが明らかにされている。この様に参照波中に含まれる観察対象からの漏洩磁場は計測結果に影響を与え、高精度計測には対策を要するものであることがわかる。
<対策例>
上記のごとく、観察対象の電磁場が参照波へ混入あるいは漏洩する影響と、その結果による計測結果への歪の発生に対しては、以下の2つの手法が提案されている。
(1)照射光学系に備えられた電子線バイプリズムによって電子波を試料照射前に2つに分離し、参照波を物体からの漏洩電磁場の影響が無視できるくらいに遠方(40 μm程度)を透過させた後、結像系の電子線バイプリズムによって重畳・干渉させ、ホログラムとして記録する方法。(特許文献1や特許文献2)
(2)二波干渉の原理に基づき、参照波と物体波を交互に繰り返し干渉・記録させた複数枚のホログラムから、再生・積算処理を行うことにより、(1)と同様に、試料(物体)から十分に遠方(電磁場の影響が無視できる)を透過した電子線を参照波として利用する方法。(特許文献3)
特開2013−229190号公報 特開2013−246911号公報 WO2013/114464
観察対象の大きさが電子線の可干渉距離を超えて広範囲に分布する電磁場等の干渉計測においては、参照波中への対象電磁場の漏洩が観察結果に影響をもたらし、再生位相分布像には歪等のアーティファクトを与え、定量計測へも精度の低下を招く。そのため、高精度の電磁場等の測定には参照波への観察対象からの漏洩電磁場の影響の除去や影響を軽減する手法が求められている。
具体的には、電界型の位相板など広範囲に電界が分布している場合の電界検出法および評価手法が求められている。
上記の(1)(2)の方法も、試料(物体)から十分に離れた位置に参照波のための必須な空間が試料への制約を必要とする方法である。実現できた場合には漏洩電磁場の影響が軽減できることは間違いないが、(1)の方法では照射光学系に電子線バイプリズムの設置が必要な方法であり、電子顕微鏡としてはかなり特殊な光学系を持つ装置となり、装置の運用に熟練の技量を要求される。
また、(2)の方法では複数枚のホログラム全部が均一な状態で記録されねばならず、物体波領域(試料位置)から十分に遠方の参照波として利用する領域まで連続的に均一な状態の試料を準備する必要がある。すなわち、(1)の方法以上に試料作製条件が厳しい。以上の要件から、上記2つの例ともに、一般化するには至っていないのが現状である。
上記課題を解決するため、本出願の電子線干渉装置は、電子源から放出される電子線を試料に照射する照射光学系と、前記電子線が照射される試料を保持するための試料保持装置と、前記電子線が前記試料に照射されたことに起因する電子線を検出する検出光学系と、前記電子線の光軸と垂直な面上において前記試料を含む物体波領域を透過した電子線、および第1の参照波領域を透過した電子線を干渉させ第1のホログラムを生じさせる電子線バイプリズムと、前記第1のホログラムを記録する画像記録部と、前記画像記録部に記憶された画像を演算する画像演算部と、を有する電子線干渉装置であって、前記電子線バイプリズムは、前記物体波領域、および前記第1の参照波領域と前記光軸を挟んで相対する第2の参照波領域を透過した電子線を干渉させ第2のホログラムを生じさせ、前記画像記録部は、前記第2のホログラムを記録し、前記画像演算部は、前記第1のホログラムおよび前記第2のホログラムに基づき、前記物体波領域の位相値を求めることを特徴とする。
また、上記課題を解決するため、本出願の電子線干渉方法は、電子線バイプリズムを用いた電子線干渉法において、前記光軸と垂直な試料の存する面上で試料を含む物体波領域と第1の参照波領域を定める第1設定ステップと、前記第1の参照波領域と前記光軸を挟んで相対する第2の参照波領域を定める第2設定ステップと、前記電子線バイプリズムによって前記物体波領域を透過した電子線と前記第1の参照波領域を透過した電子線とを干渉させた第1のホログラムと、前記電子線バイプリズムによって前記物体波領域を透過した電子線と前記第2の参照波領域を透過した電子線を干渉させた第2のホログラムと、を記録する記録ステップと、前記第1のホログラムと前記第2のホログラムとに基づき、前記物体波の位相分布像または位相値を演算する演算ステップとを有することを特徴とする。
本願発明を適用することにより、電子線干渉計測法にて、精度の高い測定が可能となる。
電子線バイプリズムの構成と、電子線の偏向および偏向された波面を示す模式図(従来技術)である。 電子線干渉計の光学系の一例(1段電子線バイプリズム干渉計)を示す模式図(従来技術)である。 軸対称な形状をした波面と電子線バイプリズムの位置を示す模式図である。 軸対称な形状をした波面と電子線バイプリズムの位置を示す模式図である。 参照波の領域が十分に遠方の場合において再生された軸対称な波面の断面摸式図である。 参照波の領域が近接している場合において再生された軸対称な波面の断面摸式図である。 本発明の第1の実施例になる2つの再生物体波の波面のうち片方を示す模式図である。 本発明の第1の実施例になる2つの再生物体波の波面のうち片方を示す模式図である。 本発明の第1の実施例になる2つの再生物体波の波面の加算平均をとった波面を示す模式図である。 本発明の第1の実施例になる電子線バイプリズムと物体波領域と第1と第2の参照波領域の位置関係を示す模式図である。 本発明の第1の実施例になる電子線バイプリズムと物体波領域と第1と第2の参照波領域の位置関係を示す模式図である。 本発明の第1の実施例になる電子線バイプリズムと物体波領域と第1と第2の参照波領域の位置関係を示す模式図である。 本発明の第2の実施例になる試料を移動させて物体波領域と第1と第2の参照波領域の位置を入れ替えることを示す模式図である。 本発明の第2の実施例になる試料を移動させて物体波領域と第1と第2の参照波領域の位置を入れ替えることを示す模式図である。 本発明の第2、および第3の実施例における、試料位置を移動させる場合の電子線干渉計の光学系の模式図である。 本発明の第2、および第3の実施例における、電子線の照射角度を偏向させる場合の電子線干渉計の光学系の模式図である。 本発明の第5の実施例になる位相分布像の再生手順を示す模式図である。 本発明の第5の実施例になる位相分布像のシミュレーション像を示す模式図である。 本発明の第6の実施例になる電子線バイプリズムと物体波領域と第1と第2の参照波領域の位置関係を示す模式図である。 本発明の第6の実施例になる位相分布像のシミュレーション像を示す模式図である。 本発明の第7の実施例になる電子線バイプリズムと物体波領域と第1、第2、第3、第4の参照波領域の位置関係を示す模式図である。 本発明の第7の実施例になる位相分布像のシミュレーション像を示す模式図である。 本発明の第8の実施例になる位相分布像のシミュレーション像を示す模式図である。 本発明の第9の実施例になる電子線バイプリズムと物体波領域と第1、第2、第3の参照波領域の位置関係を示す模式図である。 本発明の第9の実施例になる位相分布像のシミュレーション像を示す模式図である。 本発明の電子線干渉顕微鏡のシステム全容の一例を示す模式図である。
1段電子線バイプリズム干渉計では、干渉顕微鏡像中の左右にフィラメント電極の端で発生した回折波によるフレネル縞が含まれている。これは一般にコントラストが強く、縞間隔は広いものから狭いものまで幅広い空間周波数帯域に分布するため、干渉顕微鏡像にとっては最も問題となるアーティファクトの源である。
その対策として2つの電子線バイプリズムを用いる2段電子線バイプリズム干渉計が主流となりつつある。本願では簡単のため図2に示した1段電子線バイプリズム干渉光学系を用いて説明を行うが、1段電子線バイプリズム干渉計に限定するものではない。むしろ後述するが、加算平均による演算処理では、フレネル縞等のアーティファクトもその影響が加算されるので、光学系としては2段バイプリズム干渉計の採用が望ましい。
本発明は電磁場の軸対称性を利用し、物体波領域に置かれた軸対称電磁場の対称中心から相対する複数の領域を参照波領域とする。該物体波領域と各々の参照波領域を透過した電子線との干渉を各々ホログラムとして記録し、各々の再生位相分布像を再生した後、各々の該再生位相分布像を該電磁場の対称中心と方位が一致するように位置合わせを行う。その上で加算平均などの演算処理を実施し、該各々の参照波領域への該電磁場の影響が相殺された計測結果、すなわち、観察対象電磁場の参照波中への漏洩の影響が軽減された計測結果を実現できる。
本願発明の実施例を説明するのに先立ち、対象となる軸対称電磁場を干渉顕微鏡法(電子線ホログラフィー)にて観察する際の原理を説明する。
図3は軸対称な形状をした波面25(点状電荷を透過した場合など)と電子線バイプリズム(フィラメント電極9、と平行平板型接地電極99)の位置を示す図である。図3aはビーム光軸に沿った断面図、図3bは軸対称な波面を等位相線85表示したもので、波面の位相分布は、例えば点状電荷を透過した位置を中心に同心円状に広がっている。この様な位相分布を持つ波面は、無限遠方でようやく平面波に戻る形状であるので、この分布の図中右上の位置に電子線バイプリズム9を配置し(図3a)、電子線バイプリズム9の左右で物体波21と参照波23に分けたとすると、参照波は平面波ではなく軸対称な球面波の一部を切り取った波面形状となる。
ホログラフィーにおける再生とは、『参照波を基準にして物体波の位相分布を求めること』であるから、基準となる参照波が歪んでいる場合、記録・再生される物体波には参照波の歪が反映されたものとなる。例えば、参照波に横軸方向の傾斜が入っているとすると、物体波が正しく記録・再生されるのは、無限遠の傾斜が無い状態の波面を参照波として用いた場合(図4a)である。物体波と近接した領域の、傾斜した参照波を用いてホログラムを記録し、そのホログラムを再生した場合には、図4bに示すごとく傾斜した物体が再生される。従って、電位分布などの物理情報に対しては、誤差のある結果を得ることになる。
図4a、図4bのそれぞれの波面断面図の下部に、再生波面を等位相線表示した結果を示す。図4aでは同心円状に等位相線85を描いて、正しく物体波が再生されていることを示している。一方、図4bでは、等位相線85の左右の線密度の差と、等位相線85を真円ではなく横長の楕円で描くことで歪を示している。等位相線が横長の楕円となるか縦長の楕円となるかは、波面の軸対称分布の形状と波面のどの部分を参照波として用いるかに依存して変化する。したがって、図4bは一例に過ぎないことを注意しておく。
<実施例1>
軸対称電磁場の参照波中への漏洩の影響を軽減させた計測結果を得るための、本願における最も基本となる考え方を説明する。本願では軸対称な電磁場分布の対称性に着目した。図5aが図4bに示した位置関係で記録されたホログラムからの再生された波面25の断面模式図である。一方、図5bは、軸対象電磁場の対称中心を挟んだ図5aとは反対側の空間(図3では中央フィラメント9の左側)に、電子線バイプリズムを配置して記録・再生された波面25の断面摸式図である。図5aと図5bは、同じ物体波を記録・再生しているが、用いた参照波に含まれる漏洩電磁場による歪(図5a、図5bでは簡単のため傾斜のみを考えている)が対称な形状を成しているため、再生された波面(再生位相分布像)に反映された歪も対称形に表れている。
そこで、図5aと図5bの再生位相分布の加算平均を取れば、参照波に混入した漏洩電磁場による歪だけが相殺されて、図5cに示すごとく物体波の位相分布が求められる。すなわち、点状電荷から有限な距離しか離れていない領域を透過した電子波を参照波としても、十分に遠方の領域を透過した電子波を参照波とした場合とほぼ同様な計測結果を得ることができる。
図6を用いて、物体波の領域21Rと該物体波を挟んだ両側の参照波の領域23Rの位置関係を示し、本願vの実施例1における2枚のホログラム88の記録手順を説明する。
(1)観察領域の中央部に、例えば、点状電荷からなる軸対象電磁場が位置するように、光学系および試料位置を調整する。
(2)試料の観察領域(物体波の領域21R)を定め、その両側に参照波の領域23Rを見つける。物体波の領域を挟む対称な位置に参照波の領域23Rが得られるように、光学系および試料位置を調整する。(図6a)
(3)電子線バイプリズム9を物体波の領域21Rと第1の参照波の領域23R(図6aでは図中右側)の間に配置する。
(4)第1のホログラム88を記録する。(図6b)
(5)電子線バイプリズム9を物体波の領域21Rと第2の参照波の領域23R(図6aでは図中左側)の間に配置する。
(6)第2のホログラム88を記録する。(図6c)
上記から得られた、第1のホログラムと第2のホログラムからの再生位相分布像の取得に関する説明は後述する。なお上記説明では、電子線バイプリズムへ印加する電圧や、光学系での位置関係などは省略したが、ホログラムが記録できれば、電子線バイプリズムへの印加電圧や、光学系での位置関係などに依存するものではない。また、電子線バイプリズムと物体波の領域と参照波の領域の位置の調整(上記手順の(2))は、電子線バイプリズムを移動させてもよいし、試料を移動させてもよい。さらに、光学系の調整によって電子線バイプリズムと試料との相対位置を調整してもよい。
<実施例2>
干渉光学系とその設定条件から考察すると、電子線バイプリズムと物体波の領域と参照波の領域の位置の調整(基準となる参照波の交換)は、試料を移動させるのが最も合理的である。すなわち、光学系に全く変更を伴わずに、上記2枚のホログラムを記録できる方法が、最も高精度で本願手法を実施可能と考えられる。
図7aおよび図7bに電子線バイプリズム9と物体波の領域21Rと参照波の領域23Rの位置関係と2枚のホログラム88を記録する際の関係を模式的に示す。一連の観察実験中に、光学系に変更を与えないため、電子線バイプリズムのフィラメント電極9と光学系の光軸2とは1点(図7aおよび図7bの光軸2で図示した箇所)で直交させている。図7aのように第1のホログラムを記録したのち、試料を移動させて図7aのように第2のホログラムを記録する。他の手順は、実施例1の図6にて用いた説明と同じである。
上記のホログラム記録時の光学系を図8aに示す。試料3は光軸2の左側に配置されている。図8aの左図の状態で、第1のホログラム88を記録し、その後に、図8aの右図のように光軸2を挟んで相対する位置に試料3を移動させる。これにより、試料3は光軸2の右側に配置される。この状態で、試料の位置ドリフト等が安定に収まった後、第2のホログラム88を記録する。
第1のホログラムと第2のホログラムとでは、物体波と参照波の重畳・干渉時の角度関係が対称に入れ替わっているため、図8a下側に示したホログラム像のように干渉縞のシフト方向が逆転している。図8aでは、この干渉縞のシフト方向の逆転を明確に描くため、四角錐型の物体を試料とした例を示している。広範囲に分布する電磁場とは異なるが、実験手順において本願と矛盾するものではない。
<実施例3>
電子線バイプリズムと物体波の領域と参照波の領域の位置の調整(基準となる参照波の交換)は、試料を照射する照射電子線を偏向することによっても実現可能である。図8bは、試料3上側の光源の像1(クロスオーバー)の位置において第1の偏向器15により照射電子線に偏向を加え、試料3下側の光源の像11(クロスオーバー)の位置において第2の偏向器16により照射電子線に偏向を加えて(=すなわち、振り戻して)、電子線が光軸2上を伝搬する様子を描いた1段バイプリズム干渉系の光学系である。図8aには偏向器を描いていないが、図8a(a)と図8bとは、対を成す光学系である。
光源の像1の位置で偏向を加えることによって、対物レンズ5による光源の像11の位置は、光軸2上を移動しない。しかし、試料3に照射される電子線は偏向角度とともに位置も移動し、図8bに示したごとく、物体波21と参照波23が入れ替わる。図8bでは、試料の直上、直下の光源の像面にて偏向を加えているが、偏向を与える位置は、この位置に限定するものではない。さらに、試料像の位置シフトに対する補正機能がある電子顕微鏡であるならば、偏向位置は光源の像である必要はなく、自由に光学系を設計、利用可能である。
図8aと図8bとでは、厳密には、試料と照射電子線の角度関係に違いがあるが、試料照射位置での電子線の照射領域の位置変更がマイクロメートル桁であるのに対して、試料上側の光源の像1と試料との伝搬距離は100mmの桁であり、概ね10-4 rad以下の高精度位相解析でなければ問題とはならない。また、この例では、試料は移動を全く伴わないので、実施例2で配慮した、試料ドリフトの影響は小さい。
偏向器を用いる場合の実験手順は、まず第1のホログラム88(図8a下側)を記録した後に、第1の偏向器15と第2の偏向器16を電子線が所定の角度だけ偏向されるように調整し(図8b)、第2のホログラム88(図8b下側)を記録する。
なお、第1の偏向器、第2の偏向器ともに、平行平板から構成された電界型偏向器として描画したが、偏向器としては磁界型でも良い。また、図8aおよび図8bでは紙面上左右の方向への偏向のみを描画しているが、紙面表裏の方向への偏向も実施可能であり、そのために図示した方向と垂直方向への偏向器を設置することも可能である。
<実施例4>
2枚のホログラム中の試料位置に関しては、できるだけホログラム記録時にその位置合わせが完了していることが望ましい。その主な理由は、再生位相分布像に残留するアーティファクトを減少させることができるためである。また、他の利点としては、再生時の試料の位置合わせの手順・操作が簡略化できること、が挙げられる。
そのため、ホログラムとして記録したい試料中に目印を決める、あるいは試料が図8に示したごとく粒形状の場合には試料形状自体を目印として、第1と第2のホログラム中の試料位置が観察記録系の同じ位置に来るようにする。具体的には、視野の中央部に試料を位置させるだけでよい。これには、CCDカメラなどを用いて実験中に簡単に記録済画像データが確認できれば、2枚のホログラムの位置合わせ操作は容易である。
さらに、2枚目のホログラムに関しては、ホログラム内の試料像の位置合わせを自動化することも可能である。以下、その手順を簡単に示し、(8)以後の再生手順は後述する。
(1)1枚目のホログラムを撮影する。
(2)このとき、試料の観察倍率Mと記録される視野サイズlとバイプリズムフィラメント電極径dを、演算システム51に入力する。
(3)記録された1枚目のホログラムから、主たる干渉縞の方位(フィラメント電極の試料面状への投影方位)を求める。例えば、図9に示すように、ホログラムのフーリエ変換により、干渉縞の作るサイドスポットから方位を求められる。
(4)主たる干渉縞の方位と垂直方向に、距離(l+d)だけ試料をバイプリズムの方向に移動させる。
(5)第2のホログラムを撮影する。この時点においては、暫定的な扱いであり、(8)にて後述する条件をクリアすることで第2のホログラムとして確定する。
(6)第1のホログラムと暫定的な第2のホログラムの自己相関を求める。
(7)上記、自己相関において、2枚のホログラムが最も合致するように、位置の調整⇔自己相関の計測、を繰り返し行う。自己相関においては、例えば、フーリエ変換後のセンタースポットを利用すれば、干渉縞(サイドスポットに付随)の影響を受けずに演算が可能となる。
(8)上記2枚のホログラム画像が合致すれば、暫定的な第2のホログラムを正式に第2のホログラムとして確定させる。
<実施例5>
実施例1に記載した手順により記録された第1と第2のホログラムを再生し、参照波に漏洩した電磁場の影響を軽減する方法とその手順について図9を用いて説明する。試料には、例えばラテックス球などの帯電した球体を想定する。ホログラムからの物体波の再生には、最も汎用されているフーリエ変換法を用いた説明を行うが、フーリエ変換法に限定するものではなく、他の手法(例えば位相シフト法)でも、同様に実施可能なものである。
図9の最上部は第1と第2のホログラムの模式図である。ホログラム中央の球体がラテックス球でラテックス自身の内部電位と帯電による電位が合算されてホログラム中の干渉縞のシフトとして記録されている。干渉縞がそれぞれ、図中左側の第1のホログラムでは左側にシフトし、図中右側の第2のホログラムでは右側にシフトしている様子を描いている。この干渉縞のシフト方向の逆転は、前述の試料とバイプリズムとの位置の相対変化による物体波と参照波の交換によるものである。
演算装置を用いた再生方法の手順を以下に述べる。
(1)第1と第2のホログラムを演算装置77に入力する。
(2)第1と第2のホログラムをそれぞれフーリエ変換する。フーリエ変換によりホログラムの自己相関としてのセンタースポットとホログラムの干渉縞からの回折に該当する2つのサイドスポットが得られる。
(3)左右どちらのサイドスポットを再生に用いるかを実験目的に応じて決定する。
(4)該当するサイドスポットをそれぞれ選択してフィルタリングし、フーリエ空間でセンタリングする。ここで注意しなければならない点は、サイドスポット選択の際に、第1と第2のホログラムで、左右反対のスポットを選択する点である。これはホログラムから物体波の再生時に同時に再生される共役な2つの再生波のうち、揃った位相分布を持つ再生波を選択することを意味している。
(5)逆フーリエ変換により各々の再生波の位相分布を求める。
(6)各々の再生波の位相分布の加算平均を取り、目的の位相分布とする。
そして、上記手順(4)に関連して少し説明を加える。ホログラフィーでは、物体波の再生時に位相変化の方向が逆転した共役な再生波が得られることが知られている。ここで言う共役な再生波とは、例えば位相分布が上に凸の分布を持つ再生波と、下に凸の分布を持つ再生波のことである。本願では参照波に含まれる漏洩電磁場による位相変化を相殺する必要があるため、第1と第2のホログラムからの再生波の位相変化の方向は揃っている必要がある。共役な再生波の発生はホログラフィーの原理に基づくもので、再生手法には依存しない。したがって、フーリエ変換法以外の再生手法を用いた場合においても、共役な再生波のうちのどちらの再生波を用いるかを操作者は決定し、また、2つの再生波において位相変化の方向を揃えなければならない。
図10に再生位相分布像のシミュレーション結果を示す。図10の上段図は、帯電した球体の投影電場分布を等電位線で描いたものに該当する。中央部の球体を含む領域が物体波の領域21R、物体波の左右の領域が、それぞれ第1と第2の参照波の領域23Rである。電子波はこの電位分布を持つ空間を透過すると、この電位分布を反映した位相分布を得る。そのため、この再生位相分布像は、電子波の位相分布の等位相線表示とみなすことができる。
図10の中段図は、それぞれ第1と第2の参照波を用いて記録・再生された再生波の位相分布像(871、872)(等位相線表示)である。それぞれの再生位相分布像(871、872)で左右の等位相線の密度が異なっている。すなわち、図5aから図5cで説明したごとく、歪んだ(傾いた)波面が再生されていることがわかる。図10の中段図のそれぞれの再生波の波面は、図10の上段図の中央部の、元となった物体波の波面とは異なっている。
図10の下段図は、本願手法により求めた、再生位相分布像86(加算平均後)である。図10の中段図に見られた、左右の等位相線の密度差は解消している。すなわち、参照波領域への漏洩電磁場の影響が軽減された再生位相分布像が得られていることがわかる。
しかしながら、図10の下段図を図10の上段図の中央部の元物体波の位相分布像と比較すると、やや縦長の分布像となっており、漏洩電磁場の影響の完全除去はできていないことがわかる。この差異は原理的なものであり、完全な除去は不可能であるが、軽減することは可能である。この差異を軽減する方法については後述する。
<実施例6>
図11は、物体波の領域21Rと第1と第2の参照波の領域23Rと電子線バイプリズム9の位置関係が、90°だけ方位角回転した状態を示す模式図である。実施例1の図6aと同様の表示である。本願では、軸対称な電磁場を観察対象としているため、電磁場の漏洩の影響は方位角には依存しない。したがって、図6aにおける左右の関係が、図11では上下に変更されるだけで、手順、方法、および得られる結果に変化はない。但し、電子線バイプリズムは、方位角が回転されなければならない。第1と第2のホログラムの記録に際して、試料、または電子線バイプリズム、あるいは、光学系の調整により、物体波の領域と第1と第2の参照波の領域の位置が調整されなければならないのは、実施例1、実施例2もしくは実施例3と同じである。
図12に図10と同様のシミュレーション結果を示す。帯電した球体の電場分布を透過した電子波の再生位相分布像(等位相線表示)である。第1と第2の参照波の領域を、物体波領域の上下の位置としているため、再生された再生波の位相分布像(871、872)は、図12の左図のように上下に歪んで再生されている。そして、本願手法により歪が軽減された再生波の位相分布像86は、図12の右図である。本実施例の場合、図12の右図は、図10の下段図とは異なりやや横長の分布像となっている。すなわち、参照波の領域を、どの方位角から選ぶかによって、再生位相分布像に残存する歪の形状が変化することがわかる。
<実施例7>
前述の実施例1から実施例6までに記載した本願手法を用いても、なお位相分布像に残存する歪を軽減する方法について説明する。すなわち、参照波の領域を、どの方位角から選ぶかによって、再生位相分布像に残存する歪を軽減する方法について説明する。
図13は電子線バイプリズム9と物体波の領域21Rと、加えて参照波の領域23Rが物体波の領域の上、下、左、右の領域の位置関係を示す模式図である。実施例1の図6a、および実施例6の図11を合わせた位置関係である。すなわち、図中横方向の対称性を利用した参照波への漏洩電磁場の軽減手法によってやや縦長に歪んだ再生位相分布像と、縦方向の対称性を利用した参照波への漏洩電磁場の軽減手法によってやや横長に歪んだ再生位相分布像の加算平均を取ることによって、特定方位に残存した歪を解消する方法である。言い換えるならば、実施例1で説明した第1と第2のホログラムと、実施例6で説明した第1と第2のホログラムを撮る方法・手順を、同じ物体波について実施すればよい。
電子線バイプリズムと物体波の領域と各々の参照波の領域の位置の調整は、バイプリズムを移動させてもよいし、試料を移動させてもよい。さらに、偏向器等を用いた光学系の調整によってバイプリズムと試料との相対位置を調整してもよい。しかし、方位角の方向が縦横に直交する状態で一連の観察を実施しなければならないため、電子線バイプリズムの方位角回転は必須である。横方向の対称性に基づくホログラム記録手順(実施例5)と縦方向の対称性に基づくホログラム記録手順(実施例6)は、直交関係により互いに独立であり、実施の順はどちらが先でもかまわない。
図14に、図10および図12と同様の、本実施例のシミュレーション結果を示す。直交2方向の2組の第1と第2のホログラムペアからそれぞれ再生された位相分布像86には、若干の歪が残存しているが、それぞれの歪の方向が直交していることから、再度加算平均を取ることによって、残存歪をさらに軽減することが可能である。矩形に表示されていることもあるが、最終的に得られた位相分布像869の歪は、目視の範囲ではほとんど解消されている。すなわち、縦横の2方向の対称性を用いることによって、再生位相分布に残存する歪が目視の範囲ではほとんど見出せない程度に減少させることができる。
以上、軸対称電磁場に対して直交2方向での2組のホログラムペアから、参照波に漏洩する電磁場の影響を2段階で相殺する方法を説明した。
<実施例8>
実施例7と似た効果を奏するが、少し異なる概念に基づく説明をする。すなわち、実施例7の方法は、実施例1、もしくは実施例6で説明した第1と第2のホログラムのいずれかを第3と第4のホログラムとして、都合4枚のホログラムを記録・再生し、各々の再生位相分布の加算平均を取る方法、と言うこともできる。
図15に、上記考え方に基づくシミュレーション結果を示す。参照波を選択した方位に応じて、図15上部で示したようにそれぞれのホログラムからの再生位相分布像86には歪みが生じている。この4枚の位相分布像86の加算平均が、図15下部の位相分布像869である。最終的に得られた位相分布像869の残存歪は、目視の範囲ではほとんど見出せない程度に減少したことがわかる。直交2方向の計4枚のホログラムにより、軸対称電磁場がさらに高い精度で検出可能となった。
<実施例9>
実施例8の考え方は、4回回転対称にホログラムを記録・再生し、総4枚の再生位相分布の相加平均を取ることによって、再生位相分布像に含まれる漏洩電磁場によるアーティファクトを除去する手法、と言い換えることができる。
この観点を一般化することにより、光軸を挟んで相対する2枚のホログラムだけで漏洩電磁場によるアーティファクトを除去する必要が無いことが分かった。すなわち、回転N回対称性を利用して方位角(360/N)度ごとに記録された、N枚のホログラムからの再生位相分布像の総N枚の加算平均によって漏洩電磁場によるアーティファクトが除去されればよい。よって、Nは奇数でもよく、光軸を挟んで相対する必要もなくなる。この場合、実施例で述べた試料を移動させて光軸を挟んで相対する2枚のホログラムを記録する手法ではなくなる。すなわち、電子線バイプリズムを方位角(360/N)°ずつ回転させて、各々のホログラムを記録・再生することが必要となるが、この操作に特段の困難性はない。また、試料の移動によっても当然可能である。
回転対称性をN通りに分割するこの方式は、分割の角度精度が十分な場合、分割数Nが多いほど再生位相分布像の精度が向上する。最も少ない場合が、実施例1で説明したN=2の場合で、N=4の場合も実施例6で既に説明した。Nが奇数で、最も分割数の少ない場合が、N=3である。これについてシミュレーション結果を含めて説明する。
図16に電子線バイプリズム9と物体波の領域21Rと、加えて参照波の領域23Rが物体波の領域の上、左下、右下の領域の位置関係を示す模式図である。3つの参照波領域23Rは、物体波領域21Rの中央部を回転対称中心として(360/3)度=120度ずつ、方位角回転した状態となっている。すなわち、上述のN=3に該当する。実施に当たっては、電子線バイプリズムを120度ずつ方位角回転させ、同じ物体波領域に対して、3枚のホログラムの記録・再生が必要となる。その各々について、試料の位置合わせが必要である。その方法は、試料を動かしてもよいし、光学系の偏向など調整によってもよい。そして、3枚の再生位相分布の加算平均を取ることによって、特定方位に残存した歪を解消することができる。
この任意の回転対称にて実現できる本発明の方法は、電子顕微鏡の位相板など光学素子の評価に有効である。特に幹構造の保持部を持つ素子においては、その影響を避けて素子部の評価ができる点において適している。例えば、電界変調型位相板や磁性リング型位相板、さらに静電型ミニレンズなどは、機構上3軸の幹構造にて保持される場合が多いが、その素子部を電子線干渉法などにて評価する際には、幹構造の電磁場だけでなく、幹構造の存在自体が評価に影響を与えていた。本手法では、幹構造を避けた評価が可能であり、上記光学素子の評価手法として利点を有している。
図17にシミュレーション結果を示す。参照波を選択した方位に応じて、それぞれのホログラムからの再生位相分布像86には、図17上図のように歪みが生じている。この3枚の位相分布像86の加算平均が、最下部の位相分布像869である。加算平均を取った位相分布像869に、わずかな3回回転対称性が見られるが、図10、図12のN=2の場合と比較すると歪は減少している。しかし、図15のN=4の場合の方が、図17のN=3の場合よりも最終的に得られた位相分布像869の歪がさらに小さく見えることから、N回回転対称性の総枚数Nが多いほど、再生位相分布像の歪の残存について改善が見られることがわかる。すなわち、実施において方位角の分割精度が十分な場合、分割数Nが多いほど再生位相分布像の精度は向上する。すなわち、分割数Nを計測するための手順数と精度とは、トレードオフの関係がある。計測時間を短くしたい場合分割数Nを小さくし、精度を高めたい場合は分割数Nを大きくすることが有効である。
<実施例10>
本願を実施可能な電子線干渉装置の例を図18に示す。すなわち、対物レンズ5の下部に第1の電子線バイプリズム91が配置され、対物レンズ5の像面に得られた干渉像を、対物レンズ後段の4段からなる拡大レンズ系(61、62、63、64)で、拡大して観察する電子線干渉装置である。第1の拡大レンズ61と第2の拡大レンズ62の間に第2の電子線バイプリズム92を配置した2段電子線バイプリズム干渉計の構成をとっている。観察記録面89に結像された干渉像88を画像観察・記録媒体79(例えばTVカメラやCCDカメラ)で記録し、位相分布像の再生処理や位相分布像の積算処理などは、例えば画像処理装置77などで行い、演算結果(再生された位相分布像87や加算平均された位相分布像86など)は表示装置76などを用いて表示されることを示している。
図18は、従来型の100kVから300kVタイプの電子顕微鏡を想定して、電子線バイプリズム(91、92)や、拡大結像系のレンズ(61、62、63、64)を描いているが、これらの電子顕微鏡光学系の構成要素は、この図に限られるものではない。また、干渉光学系としては2段バイプリズム干渉計を採用した構成(電子線バイプリズム91、92を含む)を描いているが、先述のとおり、2段バイプリズム干渉計は必須ではないが、本願においてはフレネル縞等のアーティファクトの軽減のためには採用することが望ましいものである。さらに、実際の装置ではこの図18に示した構成要素以外にも、電子線の進行方向を変化させる偏向系、電子線の透過領域を制限する絞り機構などが存在する。しかし、描画した以外の装置は、本発明には直接的な関係が無いので、この図では省略している。
電子光学系は真空容器18中に組み立てられ、真空ポンプにて継続的に排気されているが、真空排気系についても、本発明とは直接の関係が無いため省略する。他の図においても、このような省略は同様である。
なお本願では、電界型電子線バイプリズムを用いて説明を行った。しかし、本発明は電子線バイプリズムとして電子線が干渉させられる装置であれば電界型/磁界型に依らず構成可能であり、説明で用いる電界型電子線バイプリズムに限定するものではない。
1…電子源もしくは電子銃、11…対物レンズ下側の電子源の実像、15…第1の偏向器、16…第2の偏向器、18…真空容器、19…電子源の制御ユニット、2…光軸、21…物体波、21R…物体波の領域、23…参照波、23R…参照波の領域、25…波面、27…電子線の軌道、3…試料、31…対物レンズにより結像された試料の像、39…試料の制御ユニット、40…加速管、41…第1照射レンズ、42…第2照射レンズ、47…第2照射レンズの制御ユニット、48…第1照射レンズの制御ユニット、49…加速管の制御ユニット、5…対物レンズ、51…制御系コンピュータ、52…制御系コンピュータのモニタ、53…制御系コンピュータのインターフェース、59…対物レンズの制御ユニット、61…第1結像レンズ、62…第2結像レンズ、63…第3結像レンズ、64…第4結像レンズ、66…第4結像レンズの制御ユニット、67…第3結像レンズの制御ユニット、68…第2結像レンズの制御ユニット、69…第1結像レンズの制御ユニット、71…対物レンズによる試料の像面、76…画像表示装置、77…画像記録・演算処理装置、78…画像観察・記録媒体の制御ユニット、79…画像観察・記録媒体、8…干渉縞、85…等位相線、86…加算平均された再生位相分布像、861…第1の加算平均された再生位相分布像、862…第2の加算平均された再生位相分布像、869…演算処理終了後の再生位相分布像、87…再生位相分布像、88…干渉顕微鏡像(ホログラム)、89…観察・記録面、9…電子線バイプリズムのフィラメント電極、91…第1の電子線バイプリズム、92…第2の電子線バイプリズム、96…第2の電子線バイプリズムの制御ユニット、97…第1の電子線バイプリズムの制御ユニット、99…平行平板接地電極

Claims (10)

  1. 電子源から放出される電子線を試料に照射する照射光学系と、
    前記電子線が照射される試料を保持するための試料保持装置と、
    前記電子線が前記試料に照射されたことに起因する電子線を検出する検出光学系と、
    前記電子線の光軸と垂直な面上において前記試料を含む物体波領域を透過した電子線、および第1の参照波領域を透過した電子線を干渉させ第1のホログラムを生じさせる電子線バイプリズムと、
    前記第1のホログラムを記録する画像記録部と、
    前記画像記録部に記憶された画像を演算する画像演算部と、を有する電子線干渉装置であって、
    前記電子線バイプリズムは、前記物体波領域、および前記第1の参照波領域と前記光軸を挟んで相対する第2の参照波領域を透過した電子線を干渉させ第2のホログラムを生じさせ、
    前記画像記録部は、前記第2のホログラムを記録し、
    前記画像演算部は、前記第1のホログラムおよび前記第2のホログラムに基づき、
    前記物体波領域の位相値を求めることを特徴とする電子線干渉装置。
  2. 請求項1に記載の電子線干渉装置であって、
    前記試料保持装置が前記面上を移動させることによって、前記電子線バイプリズムに前記第1および第2のホログラムを生じさせることを特徴とする電子線干渉装置。
  3. 請求項1に記載の電子線干渉装置であって、
    前記照射光学系が前記電子線の伝搬する方向に関して前記試料の上流側と下流側において前記電子線を偏向させることによって、前記電子線バイプリズムに前記第1および第2のホログラムを生じさせることを特徴とする電子線干渉装置。
  4. 請求項1に記載の電子線干渉装置であって、
    前記画像演算部は、前記第1のホログラムから求めた第1の位相分布像と前記第2のホログラムから求めた第2の位相分布像との対応する位置での位相値の相加平均を求めることで、前記位相値を演算することを特徴とする電子線干渉装置。
  5. 請求項1に記載の電子線干渉装置であって、
    前記第1のホログラムと前記第2のホログラムに記録される前記物体波領域は同じ領域であることを特徴とする電子線干渉装置。
  6. 請求項1に記載の電子線干渉装置であって、
    前記照射光学系は、前記電子線バイプリズムを方位回転させることによって前記物体波領域、および第3の参照波領域を透過した電子線を干渉させ第3のホログラムを生じさせることを特徴とする電子線干渉装置。
  7. 請求項1に記載の電子線干渉装置であって、
    前記試料を前記光軸に垂直な平面内、かつ前記光軸を回転の中心とし前記第1の参照波領域および前記第2の参照波領域回転対称となる位置へ移動させることによって、前記物体波領域、および第3の参照波領域を透過した電子線を干渉させ第3のホログラムを生じさせることを特徴とする電子線干渉装置。
  8. 請求項1に記載の電子線干渉装置であって、
    前記画像演算部は、前記第1のホログラムと、前記第2のホログラムと、第3の参照波領域にて得られる第3のホログラムと、に基づき、前記物体波領域の位相値を求めることを特徴とする電子線干渉装置。
  9. 電子線バイプリズムを用いた電子線干渉法において、
    電子線の光軸と垂直な試料の存する面上で試料を含む物体波領域と第1の参照波領域を定める第1設定ステップと、
    前記第1の参照波領域と前記光軸を挟んで相対する第2の参照波領域を定める第2設定ステップと、
    前記電子線バイプリズムによって前記物体波領域を透過した電子線と前記第1の参照波領域を透過した電子線とを干渉させた第1のホログラムと、前記電子線バイプリズムによって前記物体波領域を透過した電子線と前記第2の参照波領域を透過した電子線を干渉させた第2のホログラムと、を記録する記録ステップと、
    前記第1のホログラムと前記第2のホログラムとに基づき、物体波の位相分布像または位相値を演算する演算ステップとを有することを特徴とする電子線干渉方法。
  10. 請求項9に記載の電子線干渉方法であって、
    前記演算ステップは、前記第1のホログラムと、前記第2のホログラムと、第3の参照波領域にて得られる第3のホログラムと、に基づき、前記物体波の位相分布像または位相値を求めることを特徴とする電子線干渉方法。
JP2017532312A 2015-08-05 2015-08-05 電子線干渉装置および電子線干渉方法 Expired - Fee Related JP6487556B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072161 WO2017022093A1 (ja) 2015-08-05 2015-08-05 電子線干渉装置および電子線干渉方法

Publications (2)

Publication Number Publication Date
JPWO2017022093A1 JPWO2017022093A1 (ja) 2018-05-10
JP6487556B2 true JP6487556B2 (ja) 2019-03-20

Family

ID=57942664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017532312A Expired - Fee Related JP6487556B2 (ja) 2015-08-05 2015-08-05 電子線干渉装置および電子線干渉方法

Country Status (3)

Country Link
JP (1) JP6487556B2 (ja)
DE (1) DE112015006775B4 (ja)
WO (1) WO2017022093A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405937B2 (ja) * 2009-08-07 2014-02-05 株式会社日立製作所 透過型電子顕微鏡およびそれを用いた試料像の観察方法
JP5380366B2 (ja) 2010-05-28 2014-01-08 株式会社日立ハイテクノロジーズ 透過型干渉顕微鏡
JP5736461B2 (ja) * 2011-09-30 2015-06-17 株式会社日立製作所 電子顕微鏡および試料観察方法
JP5648136B2 (ja) 2012-02-03 2015-01-07 株式会社日立製作所 電子線干渉装置および電子線干渉法
JP5934965B2 (ja) 2012-04-26 2016-06-15 国立研究開発法人理化学研究所 電子線装置
JP5970648B2 (ja) * 2012-04-26 2016-08-17 国立研究開発法人物質・材料研究機構 透過型電子顕微鏡及び電子線干渉法
JP6051596B2 (ja) 2012-05-24 2016-12-27 国立研究開発法人理化学研究所 干渉電子顕微鏡

Also Published As

Publication number Publication date
DE112015006775B4 (de) 2022-03-31
WO2017022093A1 (ja) 2017-02-09
JPWO2017022093A1 (ja) 2018-05-10
DE112015006775T5 (de) 2018-05-24

Similar Documents

Publication Publication Date Title
Rodenburg et al. Experimental tests on double-resolution coherent imaging via STEM
JP4512180B2 (ja) 干渉装置
JP2776862B2 (ja) 反射電子線ホログラフイー装置
JP5420678B2 (ja) 電子線バイプリズム装置および電子線装置
US11024482B2 (en) Holography reconstruction method and program
JP5934965B2 (ja) 電子線装置
JP5736461B2 (ja) 電子顕微鏡および試料観察方法
JP5382695B2 (ja) 電子線干渉装置、および電子線干渉顕微方法
JP4852249B2 (ja) 荷電粒子線装置および干渉装置
JP5648136B2 (ja) 電子線干渉装置および電子線干渉法
JP6051596B2 (ja) 干渉電子顕微鏡
JP6154676B2 (ja) 空間周波数再現装置
JP6487556B2 (ja) 電子線干渉装置および電子線干渉方法
JP7244829B2 (ja) 干渉電子顕微鏡
JP5970648B2 (ja) 透過型電子顕微鏡及び電子線干渉法
WO2017183472A1 (ja) 粒子線装置、観察法、および回折格子
CN109844652A (zh) 具有多个偏移的干涉仪
JP4797072B2 (ja) 電子線バイプリズムを用いた電子線装置および電子線バイプリズムを用いた電子線装置における浮遊磁場測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190221

R150 Certificate of patent or registration of utility model

Ref document number: 6487556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees