JP6487123B2 - 有機el表示装置およびその製造方法 - Google Patents

有機el表示装置およびその製造方法 Download PDF

Info

Publication number
JP6487123B2
JP6487123B2 JP2018533964A JP2018533964A JP6487123B2 JP 6487123 B2 JP6487123 B2 JP 6487123B2 JP 2018533964 A JP2018533964 A JP 2018533964A JP 2018533964 A JP2018533964 A JP 2018533964A JP 6487123 B2 JP6487123 B2 JP 6487123B2
Authority
JP
Japan
Prior art keywords
barrier layer
organic
inorganic barrier
layer
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018533964A
Other languages
English (en)
Other versions
JPWO2018142490A1 (ja
Inventor
克彦 岸本
克彦 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Display Products Corp
Original Assignee
Sakai Display Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Display Products Corp filed Critical Sakai Display Products Corp
Publication of JPWO2018142490A1 publication Critical patent/JPWO2018142490A1/ja
Application granted granted Critical
Publication of JP6487123B2 publication Critical patent/JP6487123B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機EL表示装置、特に、フレキシブルな有機EL表示装置およびその製造方法に関する。
有機EL(Electro Luminescence)表示装置が実用化され始めた。有機EL表示装置の特徴の1つにフレキシブルな表示装置が得られる点が挙げられる。有機EL表示装置は、画素ごとに少なくとも1つの有機EL素子(Organic Light Emitting Diode:OLED)と、各OLEDに供給される電流を制御する少なくとも1つのTFT(Thin Film Transistor)とを有する。以下、有機EL表示装置をOLED表示装置と呼ぶことにする。このようにOLEDごとにTFTなどのスイッチング素子を有するOLED表示装置は、アクティブマトリクス型OLED表示装置と呼ばれる。また、TFTおよびOLEDが形成された基板を素子基板ということにする。
OLED(特に有機発光層および陰極電極材料)は、水分の影響を受けて劣化しやすく、表示むらを生じやすい。OLEDを水分から保護するとともに、柔軟性を損なわない封止構造を提供する技術として、薄膜封止(Thin Film Encapsulation:TFE)技術が開発されている。薄膜封止技術は、無機バリア層と有機バリア層とを交互に積層することによって、薄膜で十分な水蒸気バリア性を得ようとするものである。OLED表示装置の耐湿信頼性の観点から、薄膜封止構造のWVTR(Water Vapor Transmission Rate:WVTR)としては、典型的には1×10-4g/m2/day以下が求められている。
現在市販されているOLED表示装置に使われている薄膜封止構造は、厚さが約5μm〜約20μmの有機バリア層(高分子バリア層)を有している。このように比較的厚い有機バリア層は、素子基板の表面を平坦化する役割も担っている。しかしながら、有機バリア層が厚いと、OLED表示装置の屈曲性が制限されるという問題がある。
また、量産性が低いという問題もある。上述の比較的厚い有機バリア層は、インクジェット法やマイクロジェット法などの印刷技術を用いて形成されている。一方、無機バリア層は、薄膜成膜技術を用いて真空(例えば、1Pa以下)雰囲気で形成されている。印刷技術を用いた有機バリア層の形成は大気中または窒素雰囲気中で行われ、無機バリア層の形成は真空中で行われるので、薄膜封止構造を形成する過程で、素子基板を真空チャンバーから出し入れすることになり量産性が低い。
そこで、例えば、特許文献1に開示されているように、無機バリア層と有機バリア層とを連続して製造することが可能な成膜装置が開発されている。
また、特許文献2には、第1の無機材料層、第1の樹脂材、および第2の無機材料層を素子基板側からこの順で形成する際に、第1の樹脂材を第1の無機材料層の凸部(凸部を被覆した第1の無機材料層)の周囲に偏在させた薄膜封止構造が開示されている。特許文献2によると、第1の無機材料層によって十分に被覆されないおそれのある凸部の周囲に第1の樹脂材を偏在させることによって、その部分からの水分や酸素の侵入が抑制される。また、第1の樹脂材が第2の無機材料層の下地層として機能することで、第2の無機材料層が適正に成膜され、第1の無機材料層の側面を所期の膜厚で適切に被覆することが可能になる。第1の樹脂材は次の様にして形成される。加熱気化させたミスト状の有機材料を、室温以下の温度に維持された素子基板上に供給し、基板上で有機材料が凝縮し、滴状化する。滴状化した有機材料が、毛細管現象または表面張力によって、基板上を移動し、第1の無機材料層の凸部の側面と基板表面との境界部に偏在する。その後、有機材料を硬化させることによって、境界部に第1の樹脂材が形成される。特許文献3にも同様の薄膜封止構造を有するOLED表示装置が開示されている。
特開2013−186971号公報 国際公開公報第2014/196137号 特開2016−39120号公報
特許文献2または3に記載されている薄膜封止構造は、厚い有機バリア層を有しないので、OLED表示装置の屈曲性は改善されると考えられる。また、無機バリア層と有機バリア層とを連続して形成することが可能なので、量産性も改善される。
しかしながら、本発明者の検討によると、特許文献2または3に記載の方法で有機バリア層を形成すると、十分な耐湿信頼性が得られないという問題が発生することがあった。
インクジェット法などの印刷法を用いて有機バリア層を形成する場合、有機バリア層は、素子基板上のアクティブ領域(「素子形成領域」または「表示領域」ということもある。)にのみ形成され、アクティブ領域以外の領域には形成されないようにすることができる。したがって、アクティブ領域の周辺(外側)では、第1の無機材料層と第2の無機材料層とが直接接触する領域が存在し、有機バリア層は第1無機材料層と第2無機材料層とによって完全に包囲されており、周囲から隔絶されている。
これに対し、特許文献2または3に記載の有機バリア層の形成方法では、素子基板の全面に樹脂(有機材料)が供給され、液状の樹脂の表面張力を利用して、素子基板の表面の凸部の側面と基板表面との境界部に樹脂を偏在させる。したがって、アクティブ領域外の領域(「周辺領域」ということもある。)、すなわち、複数の端子が配置される端子領域、およびアクティブ領域から端子領域に至る引出し配線が形成される引出し配線領域にも有機バリア層が形成されることがある。具体的には、例えば、引出し配線および端子の側面と基板表面との境界部に樹脂が偏在する。そうすると、引出し配線に沿って形成された有機バリア層の部分の端部は第1無機バリア層と第2無機バリア層とによって包囲されておらず、大気(周辺雰囲気)に晒されている。
有機バリア層は、無機バリア層に比べて水蒸気バリア性が低いので、引出し配線に沿って形成された有機バリア層は、大気中の水蒸気をアクティブ領域内へ導く経路となってしまう。
本発明は、上記の問題を解決するためになされたものであり、量産性および耐湿信頼性が改善された、比較的薄い有機バリア層を有する薄膜封止構造を備える有機EL表示装置およびその製造方法を提供することを目的とする。
本発明のある実施形態による有機EL表示装置は、フレキシブル基板と、前記フレキシブル基板上に形成された複数のTFTと、それぞれが前記複数のTFTのいずれかに接続された複数のゲートバスラインおよび複数のソースバスラインと、それぞれが前記複数のTFTのいずれかに接続された複数の有機EL素子と、前記複数の有機EL素子が配置されているアクティブ領域の外側の周辺領域に配置された複数の端子と、前記複数の端子と前記複数のゲートバスラインまたは前記複数のソースバスラインのいずれかとを接続する複数の引出し配線と、前記複数の有機EL素子の上および前記複数の引出し配線の前記アクティブ領域側の部分の上に形成された薄膜封止構造とを有し、前記薄膜封止構造は、第1無機バリア層と、前記第1無機バリア層に接する有機バリア層と、前記有機バリア層に接する第2無機バリア層とを有し、前記複数の引出し配線のそれぞれは、少なくとも一部に、線幅方向に平行な断面の形状における側面のテーパー角が90°未満である順テーパー側面部分を前記第1無機バリア層に接する2つの側面の少なくとも最下部に有し、前記順テーパー側面部分を有する、前記複数の引出し配線のそれぞれの部分の上には、前記有機バリア層が存在せず、前記第1無機バリア層と前記第2無機バリア層とが直接接触している。
ある実施形態において、前記複数の端子のそれぞれは、側面のテーパー角が90°未満である順テーパー側面部分を露出された全ての側面の少なくとも最下部に有する。
ある実施形態において、前記順テーパー側面部分のテーパー角は85°以下である。
ある実施形態において、前記順テーパー側面部分の前記フレキシブル基板の法線方向の長さは50nm以上である。
ある実施形態において、前記有機バリア層が存在せず、前記第1無機バリア層と前記第2無機バリア層とが直接接触している、前記複数の引出し配線の前記それぞれの部分の長さは、少なくとも0.01mmである。
ある実施形態において、前記複数のゲートバスラインおよび前記複数のソースバスラインの線幅方向に平行な断面の形状における側面のテーパー角は85°超である。
ある実施形態において、前記有機バリア層は平坦部には実質的に存在しない。
ある実施形態において、前記有機バリア層は、平坦部上に開口部を有し、平坦部上に存在している有機バリア層の面積は、前記開口部の面積よりも大きい。
ある実施形態において、前記有機バリア層の下地表面は、前記アクティブ領域を実質的に包囲するバンクを有し、前記バンクは、幅に沿った断面の形状における側面のテーパー角が90°未満である順テーパー側面部分を前記第1無機バリア層に接する2つの側面の少なくとも最下部に有し、前記複数の引出し配線のそれぞれの前記バンク上に位置する部分は、前記順テーパー側面部分を有し、前記バンクの上には前記有機バリア層が存在せず、前記第1無機バリア層と前記第2無機バリア層とが直接接触している。
本発明のある実施形態による有機EL表示装置の製造方法は、上記のいずれかに記載の有機EL表示装置の製造方法であって、前記複数の有機EL素子が形成されたフレキシブル基板の前記アクティブ領域に選択的に前記第1無機バリア層を形成する工程Aと、前記工程Aの後で、前記フレキシブル基板をチャンバー内に配置し、前記チャンバー内に蒸気または霧状の光硬化性樹脂を供給する工程と、前記第1無機バリア層上で光硬化性樹脂を凝縮させる工程であって、前記順テーパー側面部分を有する、前記複数の引出し配線のそれぞれの部分の上には、前記光硬化性樹脂を存在させないように、前記光硬化性樹脂を凝縮させる工程Bと、前記工程Bの後に、前記凝縮された前記光硬化性樹脂に光を照射することによって、光硬化樹脂からなる前記有機バリア層を形成する工程とを包含する。
本発明の他の実施形態による有機EL表示装置の製造方法は、上記のいずれかに記載の有機EL表示装置の製造方法であって、前記複数の有機EL素子が形成されたフレキシブル基板の前記アクティブ領域に選択的に前記第1無機バリア層を形成する工程Aと、前記工程Aの後で、前記フレキシブル基板をチャンバー内に配置し、前記チャンバー内に蒸気または霧状の光硬化性樹脂を供給する工程と、前記第1無機バリア層上で光硬化性樹脂を凝縮させ、液状の膜を形成する工程と、前記光硬化性樹脂の前記液状の膜に光を照射することによって、光硬化樹脂層を形成する工程と、前記光硬化樹脂層を部分的にアッシングすることによって、前記有機バリア層を形成する工程とを包含する。
ある実施形態による有機EL表示装置の製造方法は、前記複数のゲートバスライン、前記複数のソースバスライン、前記複数の引出し配線および前記複数の端子をドライエッチングプロセスを用いて形成する工程を包含する。
ある実施形態において、前記複数の引出し配線を形成する工程は、多階調マスクを用いるフォトリソグラフィ工程によって、前記順テーパー側面部分を有する部分を形成する工程を包含する。
ある実施形態において、前記光硬化性樹脂はビニル基含有モノマーを含む。前記ビニル基含有モノマーはアクリルモノマーを含むことが好ましい。前記光硬化性樹脂はシリコーン樹脂であってもよい。
本発明のある実施形態による有機EL表示装置は、フレキシブル基板上に形成された有機EL素子と、前記有機EL素子上に形成された薄膜封止構造とを有し、前記薄膜封止構造は、第1無機バリア層と、前記第1無機バリア層に接する有機バリア層と、前記有機バリア層に接する第2無機バリア層とを有し、前記有機バリア層は、少なくとも平坦部上の一部に存在しており、かつ、前記有機バリア層の表面は酸化されている。ここで、「平坦部」とは、薄膜封止構造が形成される有機EL素子の表面の内の平坦な部分で、最も低いものを指す。ただし、有機EL素子の表面にパーティクル(微細なごみ)が付着している部分を除く。
ある実施形態において、前記有機バリア層は、平坦部上に開口部を有し、平坦部上に存在している有機バリア層の面積は、前記開口部の面積よりも大きい。すなわち、平坦部上において、前記有機バリア層が存在している部分(「中実部」ということがある。)は、前記開口部の面積よりも大きく、平坦部上の前記有機バリア層(中実部および開口部を含む)の内、中実部の面積は平坦部上の前記光硬化樹脂層の面積の50%以上である。中実部の面積は平坦部上の前記光硬化樹脂層の面積の80%以上であることが好ましく、80%以上90%以下であることがさらに好ましい。平坦部上の前記有機バリア層は、前記開口部を有しなくてもよい。
ある実施形態において、前記平坦部上に存在している有機バリア層の厚さは10nm以上である。
ある実施形態において、前記有機バリア層の平坦部上における最大厚さは200nm未満である。
ある実施形態において、前記第1および第2無機バリア層は、厚さが200nm以上1000nm以下のSiN層である。前記SiN層は膜応力の絶対値が100MPa以下であることが好ましく、50MPa以下であることがさらに好ましい。前記SiN層の成膜温度は90℃以下であることが好ましい。
本発明の実施形態による有機EL表示装置の製造方法は、上記のいずれかの有機EL表示装置の製造方法であって、前記第1無機バリア層が形成された有機EL素子をチャンバー内に用意する工程と、前記チャンバー内に蒸気または霧状の光硬化性樹脂を供給する工程と、前記第1無機バリア層上で光硬化性樹脂を凝縮させ、液状の膜を形成する工程と、前記光硬化性樹脂の前記液状の膜に光を照射することによって、光硬化樹脂層を形成する工程と、前記光硬化樹脂層を部分的にアッシングすることによって、前記有機バリア層を形成する工程とを包含する。
ある実施形態において、平坦部上に形成された前記光硬化樹脂層の50%超が残存するようにアッシングする工程を包含する。アッシングは、N2O、O2およびO3の内の少なくとも1種のガスを用いたプラズマアッシング法で行われる。
本発明の実施形態によると、量産性および耐湿信頼性が改善された、比較的薄い有機バリア層を有する薄膜封止構造を備える有機EL表示装置およびその製造方法が提供される。
(a)は本発明の実施形態によるOLED表示装置100のアクティブ領域の模式的な部分断面図であり、(b)は、OLED3上に形成されたTFE構造10の部分断面図である。 本発明の実施形態1によるOLED表示装置100Aの構造を模式的に示す平面図である。 (a)〜(e)はOLED表示装置100Aの模式的な断面図であり、(a)は図2中の3A−3A’線に沿った断面図であり、(b)は図2中の3B−3B’線に沿った断面図であり、(c)は図2中の3C−3C’線に沿った断面図であり、(d)は図2中の3D−3D’線に沿った断面図であり、(e)は図2中の3E−3E’線に沿った断面図である。 (a)は図3(a)のパーティクルPを含む部分の拡大図であり、(b)はパーティクルPを覆う第1無機バリア層(SiN層)の模式的な断面図である。 (a)および(b)はそれぞれ実施形態1による他のOLED表示装置が有するTFE構造10Bおよび10Cの模式的な部分断面図である。 (a)および(b)はそれぞれ実施形態1によるOLED表示装置が有し得るTFTの例を示す模式的な断面図である。 (a)〜(d)は、実施形態1による他のOLED表示装置の模式的な断面であり、それぞれ図3(b)〜(e)に対応する。 本発明の実施形態2によるOLED表示装置におけるTFE構造10Dの模式的な部分断面図であり、(a)はパーティクルPを含む部分の断面図であり、(b)は、有機バリア層14Dの下地表面(例えば、OLED3の表面)に形成されたアクティブ領域を実質的に包囲するバンク3DBを含む部分の断面図である。 パーティクル(直径1μmの球状シリカ)を覆う第1無機バリア層(SiN層)の断面SEM像であり、平面SEM像(左下)を併せて示している。 パーティクル(直径2.15μmの球状シリカ)を覆う、TFE構造の断面SEM像であり、平面SEM像(左下)を併せて示している。 (a)〜(c)は有機バリア層14Dを形成する工程を説明するための模式的な断面である。 (a)〜(c)は第2無機バリア層16Dを形成する工程を説明するための模式的な断面である。 過度にアッシングされた有機バリア層14Ddを示す模式的な断面図である。 過度にアッシングされた有機バリア層14Dd上に形成された第2無機バリア層16Dを示す模式的な断面図である。 有機バリア層14の形成に用いられる成膜装置200の構成を示す模式図である。
以下、図面を参照して、本発明の実施形態によるOLED表示装置およびその製造方法を説明する。なお、本発明の実施形態は、以下に例示する実施形態に限定されない。
まず、図1(a)および(b)を参照して、本発明の実施形態によるOLED表示装置100の基本的な構成を説明する。図1(a)は、本発明の実施形態によるOLED表示装置100のアクティブ領域の模式的な部分断面図であり、図1(b)は、OLED3上に形成されたTFE構造10の部分断面図である。後に説明する実施形態1および実施形態2によるOLED表示装置も基本的に同じ構成を有しており、特に、TFE構造に関する構造以外の構造はOLED表示装置100と同じであってよい。
OLED表示装置100は、複数の画素を有し、画素ごとに少なくとも1つの有機EL素子(OLED)を有している。ここでは、簡単のために、1つのOLEDに対応する構造について説明する。
図1(a)に示す様に、OLED表示装置100は、フレキシブル基板(以下、単に「基板」ということがある。)1と、基板1上に形成されたTFTを含む回路(バックプレーン)2と、回路2上に形成されたOLED3と、OLED3上に形成されたTFE構造10とを有している。OLED3は例えばトップエミッションタイプである。OLED3の最上部は、例えば、上部電極またはキャップ層(屈折率調整層)である。TFE構造10の上にはオプショナルな偏光板4が配置されている。
基板1は、例えば厚さが15μmのポリイミドフィルムである。TFTを含む回路2の厚さは例えば4μmであり、OLED3の厚さは例えば1μmであり、TFE構造10の厚さは例えば1.5μm以下である。
図1(b)は、OLED3上に形成されたTFE10の部分断面図である。OLED3の直上に第1無機バリア層(例えばSiN層)12が形成されており、第1無機バリア層12の上に有機バリア層(例えばアクリル樹脂層)14が形成されており、有機バリア層14の上に第2無機バリア層(例えばSiN層)16が形成されている。
例えば、第1無機バリア層12および第2無機バリア層16は、例えば厚さが400nmのSiN層であり、有機バリア層14は厚さが100nm未満のアクリル樹脂層である。第1無機バリア層12および第2無機バリア層16の厚さはそれぞれ独立に、200nm以上1000nm以下であり、有機バリア層14の厚さは50nm以上200nm未満である。TFE構造10の厚さは400nm以上2μm未満であることが好ましく、400nm以上1.5μm未満であることがさらに好ましい。
TFE構造10は、OLED表示装置100のアクティブ領域(図2中のアクティブ領域R1参照)を保護するように形成されており、少なくともアクティブ領域には、上述したように、OLED3に近い側から順に、第1無機バリア層12、有機バリア層14、および第2無機バリア層16を有している。なお、有機バリア層14は、アクティブ領域の全面を覆う膜として存在しているのではなく、開口部を有している。有機バリア層14の内、開口部を除く、実際に有機膜が存在する部分を「中実部」ということにする。また、「開口部」(「非中実部」ということもある。)は、中実部で包囲されている必要はなく、切欠きなどを含み、開口部においては、第1無機バリア層12と第2無機バリア層16とが直接接触している。有機バリア層14が有する開口部は、少なくとも、アクティブ領域を包囲するように形成された開口部を含み、アクティブ領域は、第1無機バリア層12と第2無機バリア層16とが直接接触している部分(以下、「無機バリア層接合部」という。)で完全に包囲されている。
(実施形態1)
図2から図5を参照して、本発明の実施形態1によるOLED表示装置の構造および製造方法を説明する。
図2に本発明の実施形態1によるOLED表示装置100Aの模式的な平面図を示す。
OLED表示装置100Aは、フレキシブル基板1と、フレキシブル基板1上に形成された回路(バックプレーン)2と、回路2上に形成された複数のOLED3と、OLED3上に形成されたTFE構造10Aとを有している。複数のOLED3が配列されている層をOLED層3ということがある。なお、回路2とOLED層3とが一部の構成要素を共有してもよい。TFE構造10Aの上にはオプショナルな偏光板(図1中の参照符号4を参照)がさらに配置されてもよい。また、例えば、TFE構造10Aと偏光板との間にタッチパネル機能を担う層が配置されてもよい。すなわち、OLED表示装置100Aは、オンセル型のタッチパネル付き表示装置に改変され得る。
回路2は、複数のTFT(不図示)と、それぞれが複数のTFT(不図示)のいずれかに接続された複数のゲートバスライン(不図示)および複数のソースバスライン(不図示)とを有している。回路2は、複数のOLED3を駆動するための公知の回路であってよい。複数のOLED3は、回路2が有する複数のTFTのいずれかに接続されている。OLED3も公知のOLEDであってよい。
OLED表示装置100Aは、さらに、複数のOLED3が配置されているアクティブ領域(図2中の破線で囲まれた領域)R1の外側の周辺領域R2に配置された複数の端子38Aと、複数の端子38Aと複数のゲートバスラインまたは複数のソースバスラインのいずれかとを接続する複数の引出し配線30Aを有しており、TFE構造10Aは、複数のOLED3の上および複数の引出し配線30Aのアクティブ領域R1側の部分の上に形成されている。すなわち、TFE構造10Aはアクティブ領域R1の全体を覆い、かつ、複数の引出し配線30Aのアクティブ領域R1側の部分の上に選択的に形成されており、引出し配線30Aの端子38A側および端子38Aは、TFE構造10Aでは覆われていない。
以下では、引出し配線30Aと端子38Aとが同じ導電層を用いて一体に形成された例を説明するが、互いに異なる導電層(積層構造を含む)を用いて形成されてもよい。
次に、図3(a)〜(e)を参照して、OLED表示装置100AのTFE構造10Aを説明する。図3(a)に図2中の3A−3A’線に沿った断面図を示し、図3(b)に図2中の3B−3B’線に沿った断面図を示し、図3(c)に図2中の3C−3C’線に沿った断面図を示し、図3(d)に図2中の3D−3D’線に沿った断面図を示し、図3(e)に図2中の3E−3E’線に沿った断面図を示す。なお、図3(d)および(e)は、TFE構造10Aが形成されていない領域の断面図であるが、有機バリア層14Aは端子38Aが形成されている領域(端子領域)まで延設され得るので併せて示している。
図3(a)〜(c)に示す様に、TFE構造10Aは、OLED3上に形成された第1無機バリア層12Aと、第1無機バリア層12Aに接する有機バリア層14Aと、有機バリア層14Aに接する第2無機バリア層16Aとを有している。第1無機バリア層12Aおよび第2無機バリア層16Aは、例えば、SiN層であり、マスクを用いたプラズマCVD法で、アクティブ領域R1を覆うように所定の領域だけに選択的に形成される。
有機バリア層14Aは、例えば、上記特許文献2または3に記載の方法に形成され得る。例えば、チャンバー内で、蒸気または霧状の有機材料(例えばアクリルモノマー)を、室温以下の温度に維持された素子基板上に供給し、素子基板上で凝縮させ、液状になった有機材料の毛細管現象または表面張力によって、第1無機バリア層12Aの凸部の側面と平坦部との境界部に偏在させる。その後、有機材料に例えば紫外線を照射することによって、凸部の周辺の境界部に有機バリア層(例えばアクリル樹脂層)14Aの中実部を形成する。この方法によって形成される有機バリア層14は、平坦部には中実部が実質的に存在しない。有機バリア層の形成方法に関して、特許文献2および3の開示内容を参考のために本明細書に援用する。
TFE構造10Aにおける有機バリア層14Aは、また、後述する実施形態2のOLED表示装置が有するTFE構造10Dの形成方法において、成膜装置200を用いて形成する樹脂層の最初の厚さを調整する(例えば、100nm未満とする)、および/または、アッシング条件(時間を含む)を調整することによっても、形成することもできる。
図3(a)は、図2中の3A−3A’線に沿った断面図であり、パーティクルPを含む部分を示している。パーティクルPは、OLED表示装置の製造プロセス中に発生する微細なゴミで、例えば、ガラスの微細な破片、金属の粒子、有機物の粒子である。マスク蒸着法を用いると、特にパーティクルが発生しやすい。
図3(a)に示す様に、有機バリア層(中実部)14Aは、パーティクルPの周辺にのみ形成され得る。これは、第1無機バリア層12Aを形成した後に付与されたアクリルモノマーが、パーティクルP上の第1無機バリア層12Aaの表面(テーパー角が90°超)の周辺に凝縮され、偏在するからである。第1無機バリア層12Aの平坦部上は、有機バリア層14Aの開口部(非中実部)となっている。
ここで、図4(a)および(b)を参照して、パーティクルPを含む部分の構造を説明する。図4(a)は図3(a)のパーティクルPを含む部分の拡大図であり、図4(b)はパーティクルPを覆う第1無機バリア層(例えばSiN層)の模式的な断面図である。
図4(b)に示す様に、パーティクル(例えば直径が約1μm以上)Pが存在すると、第1無機バリア層にクラック(欠陥)12Acが形成されることがある。これは、後に説明するように、パーティクルPの表面から成長するSiN層12Aaと、OLED3の表面の平坦部分から成長するSiN層12Abとが衝突(インピンジ)するために生じたと考えられる。このようなクラック12Acが存在すると、TFE構造10Aのバリア性が低下する。
OLED表示装置100AのTFE構造10Aでは、図4(a)に示す様に、有機バリア層14Aが、第1無機バリア層12Aのクラック12Acを充填するように形成し、かつ、有機バリア層14Aの表面は、パーティクルP上の第1無機バリア層12Aaの表面と、OLED3の平坦部上の第1無機バリア層12Abとの表面を連続的に滑らかに連結する。したがって、パーティクルP上の第1無機バリア層12Aおよび有機バリア層14A上に形成される第2無機バリア層16Aに欠陥が形成されることなく、緻密な膜が形成される。このように、有機バリア層14Aによって、パーティクルが存在しても、TFE構造10Aのバリア性を保持することができる。
次に、図3(b)および(c)を参照して、引出し配線30A上のTFE構造10Aの構造を説明する。図3(b)は、図2中の3B−3B’線に沿った断面図であり、引出し配線30Aのアクティブ領域R1側の部分32Aの断面図であり、図3(c)は図2中の3C−3C’線に沿った断面図であり、側面のテーパー角が90°未満である順テーパー側面部分(傾斜側面部分)TSFを有する部分34Aの断面図である。
引出し配線30Aは、例えば、ゲートバスラインまたはソースバスラインと同じプロセスでパターニングされるので、ここでは、アクティブ領域R1内に形成されるゲートバスラインおよびソースバスラインも、図3(b)に示した引出し配線30Aのアクティブ領域R1側の部分32Aと同じ断面構造を有する例を説明する。
本発明の実施形態によるOLED表示装置100Aは、例えば、高精細の中小型のスマートフォンおよびタブレット端末に好適に用いられる。高精細(例えば500ppi)の中小型(例えば5.7型)のOLED表示装置では、限られた線幅で、十分に低抵抗な配線(ゲートバスラインおよびソースバスラインを含む)を形成するために、アクティブ領域R1内における配線の線幅方向に平行な断面の形状は矩形(側面のテーパー角が約90°)に近いがことが好ましい。一方、OLED表示装置100Aのアクティブ領域R1は、第1無機バリア層12Aと第2無機バリア層16Aとが直接接触する無機バリア層接合部によって実質的に包囲されているので、有機バリア層14Aが水分の侵入経路となって、OLED表示装置のアクティブ領域R1に水分が到達することがない。上記無機バリア層接合部は、引出し配線30Aに形成された順テーパー側面部分を有する部分上に形成される。順テーパー側面部分を形成すると、引出し配線30Aの底部の配線幅を一定とするならば、引出し配線30Aの断面積が小さくなり、抵抗が増大する。したがって、順テーパー側面部分は、引出し配線30Aの一部にだけ選択的に形成し、他の部分は低い抵抗を得るために矩形の断面形状を有することが好ましい。アクティブ領域R1内に形成される配線の断面も矩形の断面形状を有することが好ましい。順テーパー側面部分を形成する部分の長さは、耐湿信頼性と抵抗との関係で適宜設定され得る。ただし、十分に低い抵抗を得られるのであれば、引出し配線30Aの全長にわたって順テーパー側面部分を形成してもよい。
OLED表示装置100Aは、例えば高精細な中小型の表示装置であり、ゲートバスラインおよびソースバスラインの線幅方向に平行な断面の形状における側面のテーパー角は約90°である。引出し配線30Aのアクティブ領域R1側の部分32Aも、ゲートバスラインまたはソースバスラインと同様に、線幅方向に平行な断面の形状における側面のテーパー角は約90°である。引出し配線30Aの部分32Aを覆う第1無機バリア層12Aの最下部(引出し配線30Aの側面を覆う部分と、基板1の平坦部上に形成された部分との境界部)に、有機バリア層(中実部)14Aが形成されている。これは、第1無機バリア層12Aの表面が90°以下の角度を成す箇所には、有機材料が偏在しやすいからである。
これに対して、図3(c)に示す、引出し配線30Aの部分34Aは、側面のテーパー角が90°未満である順テーパー側面部分(傾斜側面部分)TSFを有している。順テーパー側面部分TSFのテーパー角は85°以下が好ましく、70°以下が好ましい。このように、順テーパー側面部分TSFを有する部分では、第1無機バリア層12Aの表面が90°以下の角度を形成しないので、有機材料が偏在し難いからである。第1無機バリア層12Aの表面が90°超の角度を成す箇所に有機材料が偏在したとしても、その量は、第1無機バリア層12Aの表面が90°以下の角度を成す箇所に比べて少ない。したがって、一旦形成された有機バリア層14Aを、例えば後述するアッシング処理を行うことによって、第1無機バリア層12Aの表面が90°超の角度を成す箇所の有機材料を除去することができる。
図3(c)に示した順テーパー側面部分TSFを有する引出し配線30Aの部分34Aの上には、有機バリア層(中実部)14が存在せず、第1無機バリア層12Aと第2無機バリア層16Aとが直接接触している(すなわち、無機バリア層接合部が形成されている。)。また、平坦部には、有機バリア層14(中実部)Aが形成されていないので、引出し配線30Aは、図2中の3C−3C’線に沿った断面において、第1無機バリア層12Aと第2無機バリア層16Aとが直接接触している無機バリア層接合部で覆われている。したがって、上述したように、引出し配線に沿って形成された有機バリア層が大気中の水蒸気をアクティブ領域内へ導く経路となることがない。耐湿信頼性の観点からは、引出し配線30Aの部分34Aの長さ、すなわち、無機バリア層接合部の長さは、少なくとも0.01mmであることが好ましい。無機バリア層接合部の長さに特に上限は無いが、0.1mm超としても耐湿信頼性を向上させる効果はほぼ飽和しており、それ以上長くしても、むしろ、額縁幅を増大させるだけなので、0.1mm以下が好ましく、例えば0.05mm以下とすればよい。インクジェット法で有機バリア層を形成する従来のTFE構造では、有機バリア層の端部が形成される位置のばらつきを考慮して0.5mm〜1.0mm程度の長さの無機バリア層接合部が設けられている。これに対し、本発明の実施形態によると、無機バリア層接合部の長さは0.1mm以下でよいので、有機EL表示装置を狭額縁化できる。
次に、図3(d)および(e)を参照する。図3(d)および(e)は、TFE構造10Aが形成されていない領域の断面図である。図3(d)に示す引出し配線30Aの部分36Aは、図3(b)に示した引出し配線30Aの部分32Aと同様の断面形状を有しており、その側面の最下部に有機バリア層14Aが形成されている。一方、図3(e)に示す端子38Aは、図3(c)に示した引出し配線30Aの部分34Aと同様の断面形状を有しており、側面のテーパー角が90°未満である順テーパー側面部分TSFを有している。したがって、端子38Aの側面には有機バリア層(中実部)14Aが存在しない。また、平坦部上にも有機バリア層(中実部)14Aが存在しない。
有機バリア層14Aは、上述したように、蒸気または霧状の有機材料(例えばアクリルモノマー)を供給する工程を包含するので、第1無機バリア層12Aおよび第2無機バリア層16Aの様に所定の領域にのみ選択的に形成することができない。したがって、端子38A上にも有機バリア層(中実部)14Aが形成され得ることになる。そうすると、端子38A上の有機バリア層(中実部)14Aを除去する必要が生じ、量産性が低下する。端子38Aの側面に順テーパー側面部分TSFを形成することによって、端子38Aの側面上に有機バリア層(中実部)14Aが形成されるのを抑制することができる。端子38Aが有する側面の全てに順テーパー側面部分TSFを形成することが好ましい。なお、端子38Aの側面や上面に有機バリア層(中実部)14が形成されたとしても、アッシング処理によって除去することができる。
また、図3(d)に示した引出し配線30Aの部分36Aの断面形状は、図3(c)に示した部分34Aおよび図3(d)に示した端子38Aと同様にしてもよい。なお、引出し配線30Aを形成する工程において、多階調マスク(ハーフトーンマスクまたはグレートーンマスク)を用いるフォトリソグラフィ工程によって、1回の露光工程で、順テーパー側面部分TSFを有する部分を含む引出し配線30Aを形成することができる。なお、本明細書において、「フォトリソグラフィ工程」は、レジスト付与、露光、現像、レジストをマスクとしたエッチング、レジスト剥離を含む。
次に、図5(a)および(b)を参照する。図5(a)および(b)はそれぞれ実施形態1による他のOLED表示装置が有するTFE構造10Bおよび10Cの模式的な部分断面図である。
図5(a)は、TFE構造10Bの図2中の3B−3B’線に沿った模式的な断面図であり、引出し配線のアクティブ領域R1側の部分32Bの断面図である。
例えば、図3(b)に示した断面形状を有する引出し配線30Aを形成しようとしても、プロセス条件の変動によって、図5(a)に示したような、逆テーパー側面を有する部分32Bが形成されることがある。逆テーパー側面が形成されると、第1無機バリア層12Bは不連続となる。このような場合でも、引出し配線の部分32Bの側面の最下部に有機バリア層14Bが形成され、その上に欠陥の無い第2無機バリア層16Bを形成することができる。このように、有機バリア層14Bは、パーティクルPが存在する場合や、逆テーパー状の断面形状を有するパターンが形成された場合に、耐湿信頼性が低下することを抑制することができる。
図5(b)は、TFE構造10Cの図2中の3C−3C’線に沿った模式的な断面図である。TFE構造10Aにおいては部分34の側面の全体を順テーパー側面部分TSFとしたが、図5(b)に示す部分34Cの様に、側面の少なくとも最下部にだけ順テーパー側面部分TSFを形成してもよい。有機材料(例えばアクリルモノマー)が偏在するのは、側面の最下部(平坦部との境界)なので、この部分に有機材料が偏在することを抑制すればよい。順テーパー側面部分TSFの高さ(基板法線方向の長さ)は、有機材料の厚さよりも大きいことが好ましく、例えば、50nm以上、好ましくは100nm以上ある。順テーパー側面部分を含む配線の部分は、逆テーパー部を有しないことが好ましい。このような断面形状を有する部分34上には有機バリア層が存在しなくても、欠陥の無い第1無機バリア層12Cおよび第2無機バリア層16Cを形成することができる。
プロセスマージンを考慮すると、順テーパー側面部分のテーパー角は85°未満、好ましくは70°以下とし、それ以外の配線部分のテーパー角は85°超90°以下に設定することが好ましく、テーパー角の差は15°以上あることが好ましい。なお、順テーパー側面部分のテーパー角の下限に特に制限はないが、30°以上であることが好ましい。テーパー角を30°未満としても有機材料の偏在を抑制する効果に特段の差がなく、配線間の距離を一定とするならば、配線の抵抗が大きくなる、または、配線抵抗を一定とするならば、配線間距離が小さくなるだけだからである。このような断面形状を有するゲートバスライン、ソースバスラインおよび引出し配線ならびに端子は、ドライエッチングプロセスを用いて形成することが好ましい。なお、順テーパー側面部分のテーパー角は、多階調マスク(ハーフトーンマスクまたはグレートーンマスク)のパターンで調整することができ、それ以外の部分のテーパー角はドライエッチング条件で調整することができる。
次に、図6および図7を参照して、OLED表示装置100Aに用いられるTFTの例と、TFTを作製する際のゲートメタル層およびソースメタル層を用いて形成した引出し配線および端子の例を説明する。
高精細の中小型用OLED表示装置には、移動度が高い、低温ポリシリコン(「LTPS」と略称する。)TFTまたは酸化物TFT(例えば、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)、O(酸素)を含む4元系(In−Ga−Zn−O系)酸化物TFT)が好適に用いられる。LTPS−TFTおよびIn−Ga−Zn−O系TFTの構造および製造方法はよく知られているので、以下では簡単な説明に留める。
図6(a)は、LTPS−TFT2PTの模式的な断面図であり、TFT2PTはOLED表示装置100Aの回路2に含まれ得る。LTPS−TFT2PTは、トップゲート型のTFTである。
TFT2PTは、基板(例えばポリイミドフィルム)1上のベースコート2Pp上に形成されている。上記の説明では省略したが、基板1上には無機絶縁体で形成されたベースコートを形成することが好ましい。
TFT2PTは、ベースコート2Pp上に形成されたポリシリコン層2Pseと、ポリシリコン層2Pse上に形成されたゲート絶縁層2Pgiと、ゲート絶縁層2Pgi上に形成されたゲート電極2Pgと、ゲート電極2Pg上に形成された層間絶縁層2Piと、層間絶縁層2Pi上に形成されたソース電極2Pssおよびドレイン電極2Psdとを有している。ソース電極2Pssおよびドレイン電極2Psdは、層間絶縁層2Piおよびゲート絶縁層2Pgiに形成されたコンタクトホール内で、ポリシリコン層2Pseのソース領域およびドレイン領域にそれぞれ接続されている。
ゲート電極2Pgはゲートバスラインと同じゲートメタル層に含まれ、ソース電極2Pssおよびドレイン電極2Psdはソースバスラインと同じソースメタル層に含まれる。ゲートメタル層およびソースメタル層を用いて、引出し配線および端子が形成される(図7を参照して後述する)。
TFT2PTは、例えば、以下の様にして作製される。
基板1として、例えば、厚さが15μmのポリイミドフィルムを用意する。
ベースコート2Pp(SiO2膜:250nm/SiNx膜:50nm/SiO2膜:500nm(上層/中間層/下層))およびa−Si膜(40nm)をプラズマCVD法で成膜する。
a−Si膜の脱水素処理(例えば450℃、180分間アニール)を行う。
a−Si膜をエキシマレーザーアニール(ELA)法でポリシリコン化する。
フォトリソグラフィ工程でa−Si膜をパターニングすることによって活性層(半導体島)を形成する。
ゲート絶縁膜(SiO2膜:50nm)をプラズマCVD法で成膜する。
活性層のチャネル領域にドーピング(B+)を行う。
ゲートメタル(Mo:250nm)をスパッタ法で成膜し、フォトリソグラフィ工程(ドライエッチング工程を含む)でパターニングする(ゲート電極2Pgおよびゲートバスライン等を形成する)。
活性層のソース領域およびドレイン領域にドーピング(P+)を行う。
活性化アニール(例えば、450℃、45分間アニール)を行う。このようにしてポリシリコン層2Pseが得られる。
層間絶縁膜(例えば、SiO2膜:300nm/SiNx膜:300nm(上層/下層))をプラズマCVD法で成膜する。
ゲート絶縁膜および層間絶縁膜にコンタクトホールをドライエッチングで形成する。このように、層間絶縁層2Piおよびゲート絶縁層2Pgiが得られる。
ソースメタル(Ti膜:100nm/Al膜:300nm/Ti膜:30nm)をスパッタ法で成膜し、フォトリソグラフィ工程(ドライエッチング工程を含む)でパターニングする(ソース電極2Pss、ドレイン電極2Psdおよびソースバスライン等を形成する)。
図6(b)は、In−Ga−Zn−O系TFT2OTの模式的な断面図であり、TFT2OTはOLED表示装置100Aの回路2に含まれ得る。TFT2OTは、ボトムゲート型のTFTである。
TFT2OTは、基板(例えばポリイミドフィルム)1上のベースコート2Op上に形成されている。 TFT2OTは、ベースコート2Op上に形成されたゲート電極2Ogと、ゲート電極2Og上に形成されたゲート絶縁層2Ogiと、ゲート絶縁層2Ogi上に形成された酸化物半導体層2Oseと、酸化物半導体層2Oseのソース領域上およびドレイン領域上にそれぞれ接続されたソース電極2Ossおよびドレイン電極2Osdとを有している。ソース電極2Ossおよびドレイン電極2Osdは、層間絶縁層2Oiに覆われている。
ゲート電極2Ogはゲートバスラインと同じゲートメタル層に含まれ、ソース電極2Ossおよびドレイン電極2Osdはソースバスラインと同じソースメタル層に含まれる。ゲートメタル層およびソースメタル層を用いて、引出し配線および端子が形成され、図7を参照して後述する構造を有し得る。
TFT2OTは、例えば、以下の様にして作製される。
基板1として、例えば、厚さが15μmのポリイミドフィルムを用意する。
ベースコート2Op(SiO2膜:250nm/SiNx膜:50nm/SiO2膜:500nm(上層/中間層/下層))をプラズマCVD法で成膜する。
ゲートメタル(Cu膜:300nm/Ti膜:30nm(上層/下層))をスパッタ法で成膜し、フォトリソグラフィ工程(ドライエッチング工程を含む)でパターニングする(ゲート電極2Ogおよびゲートバスライン等を形成する)。
ゲート絶縁膜(SiO2膜:30nm/SiNx膜:350nm(上層/下層))をプラズマCVD法で成膜する。
酸化物半導体膜(In−Ga−Zn−O系半導体膜:100nm)をスパッタ法で成膜し、フォトリソグラフィ工程(ウエットエッチング工程を含む)でパターニングすることによって、活性層(半導体島)を形成する。
ソースメタル(Ti膜:100nm/Al膜:300nm/Ti膜:30nm(上層/中間層/下層))をスパッタ法で成膜し、フォトリソグラフィ工程(ドライエッチング工程を含む)でパターニングする(ソース電極2Oss、ドレイン電極2Osdおよびソースバスライン等を形成する)。
活性化アニール(例えば、300℃、120分間アニール)を行う。このようにして酸化物半導体層2Oseが得られる。
この後、保護膜として、層間絶縁層2Oi(例えば、SiNx膜:300nm/SiO2膜:300nm/(上層/下層))をプラズマCVD法で成膜する。
次に、図7(a)〜(d)を参照して、実施形態1による他のOLED表示装置の構造を説明する。このOLED表示装置の回路(バックプレーン)は、図6(a)に示したTFT2PTまたは図6(b)に示したTFT2OTを有し、TFT2PTまたはTFT2OTを作製する際のゲートメタル層およびソースメタル層を用いて引出し配線30A’および端子38A’が形成されている。図7(a)〜(d)はそれぞれ図3(b)〜(e)に対応し、対応する構成要素の参照符号に「’」を付すことにする。また、図7中のベースコート2pは、図6(a)中のベースコート2Ppおよび図6(b)中のベースコート2Opに対応し、図7中のゲート絶縁層2giは、図6(a)中のゲート絶縁層2Pgiおよび図6(b)中のゲート絶縁層2Ogiに対応し、図7中の層間絶縁層2iは、図6(a)中の層間絶縁層2Piおよび図6(b)中の層間絶縁層2Oiにそれぞれ対応する。
図7(a)〜(d)に示す様に、ゲートメタル層2gおよびソースメタル層2sは、基板1上に形成されたベースコート2p上に形成されている。図3では省略したが、基板1上には無機絶縁体で形成されたベースコート2pを形成することが好ましい。
図7(a)および(b)を参照して、TFE構造10A’の構造を説明する。図7(a)は、図2中の3B−3B’線に沿った断面図に対応し、引出し配線30A’のアクティブ領域側の部分32A’の断面図であり、図7(b)は図2中の3C−3C’線に沿った断面図に対応し、側面のテーパー角が90°未満である順テーパー側面部分(傾斜側面部分)TSFを有する部分34A’の断面図である。
図7(a)〜(c)に示すように、引出し配線30A’は、ゲートメタル層2gとソースメタル層2sとの積層体として形成されている。引出し配線30A’のゲートメタル層2gで形成された部分は、例えばゲートバスラインと同じ断面形状を有し、引出し配線30A’のソースメタル層2sで形成された部分は、例えばソースバスラインとお同じ断面形状を有している。例えば、500ppiの5.7型の表示装置の場合、ゲートメタル層2gで形成された部分の線幅は例えば10μmであり、隣接間距離は16μm(L/S=10/16)あり、ソースメタル層2sで形成された部分の線幅は例えば16μmであり、隣接間距離は10μm(L/S=16/10)である。
図7(a)に示す引出し配線30A’のアクティブ領域側の部分32A’の線幅方向に平行な断面の形状における側面のテーパー角は、ゲートバスラインまたはソースバスラインと同様に、約90°である。引出し配線30A’の部分32A’を覆う第1無機バリア層12A’の最下部(引出し配線30A’の側面を覆う部分と、基板1の平坦部上に形成された部分との境界部)に、有機バリア層(中実部)14A’が形成されている。
これに対して、図7(b)に示す、引出し配線30A’の部分34A’は、側面のテーパー角が90°未満である順テーパー側面部分(傾斜側面部分)TSFを有している。順テーパー側面部分TSFを有する引出し配線30A’の部分34A’の上には、有機バリア層(中実部)14が存在せず、第1無機バリア層12A’と第2無機バリア層16A’とが直接接触している(すなわち、無機バリア層接合部が形成されている。)。また、平坦部には、有機バリア層14(中実部)A’が形成されていないので、引出し配線30A’は、図2中の3C−3C’線に沿った断面において、第1無機バリア層12A’と第2無機バリア層16A’とが直接接触している無機バリア層接合部で覆われている。
図7(c)および(d)を参照する。図7(c)および(d)は、TFE構造10A’が形成されていない領域の断面図である。図7(c)に示す引出し配線30A’の部分36A’は、図7(a)に示した引出し配線30A’の部分32A’と同様の断面形状を有しており、その側面の最下部に有機バリア層14A’が形成されている。一方、図7(d)に示す端子38A’は、図7(b)に示した引出し配線30A’の部分34A’と同様の断面形状を有しており、側面のテーパー角が90°未満である順テーパー側面部分TSFを有している。したがって、端子38A’の側面には有機バリア層(中実部)14A’が存在しない。また、平坦部上にも有機バリア層(中実部)14A’が存在しない。
図7(b)では、引出し配線30A’の第1無機バリア層12A’に接する2つの側面の全体が順テーパー側面部分TSFの例を示したが、図5(b)を参照して説明した様に、第1無機バリア層12A’に接する2つの側面の少なくとも最下部に順テーパー側面部分TSFを有すれば、上述の効果を得ることができる。同様に、図7(d)では、端子38A’ 露出された全ての側面の全体が順テーパー側面部分TSFの例を示したが、露出された全ての側面の少なくとも最下部に順テーパー側面部分を有すれば、上述の効果を得ることができる。
(実施形態2)
実施形態1によるOLED表示装置の製造方法は、例えば、以下の工程を包含する。複数の引出し配線30Aのそれぞれの少なくとも一部に、線幅方向に平行な断面の形状における側面のテーパー角が90°未満である順テーパー側面部分を露出された2つの側面の少なくとも最下部に形成する。次に、アクティブ領域R1に選択的に第1無機バリア層12Aを形成した後、チャンバー内に蒸気または霧状のアクリルモノマーを供給し、第1無機バリア層12A上でアクリルモノマーを凝縮させる工程において、複数の引出し配線30Aのそれぞれの順テーパー側面部分を有する部分の上には、アクリルモノマーを存在させないように、アクリルモノマーを凝縮させる。凝縮されたアクリルモノマーに光(例えば紫外線)を照射することによってアクリル樹脂からなる有機バリア層14を形成する。
上述の方法は、アクリルモノマーを偏在させるので、プロセスマージンが狭いという問題がある。以下に説明する実施形態2のOLED表示装置の製造方法は、少なくとも平坦部上の一部にも樹脂層(例えばアクリル樹脂層)を形成し、樹脂層を部分的にアッシングすることによって有機バリア層を形成する工程を包含している。最初に形成する樹脂層の厚さを調整する(例えば、100nm未満とする)、および/または、アッシング条件(時間を含む)を調整することによって、種々の形態の有機バリア層を形成することができる。すなわち、実施形態1で説明したOLED表示装置100Aが有する有機バリア層14Aを形成することもできるし、平坦部の一部または全部を覆う有機バリア層(中実部)を形成することもできる。なお、有機バリア層の面積が大きいと、耐屈曲性を向上させる効果が得られる。以下では、主に、平坦部の一部または全部を覆う有機バリア層(中実部)を有するTFE構造を有するOLED表示装置およびその製造方法を説明する。なお、TFE構造を形成する前の素子基板の構造、特に、引出し配線および端子の構造ならびにTFTの構造は、実施形態1で説明したいずれであってもよい。
図8(a)は、本発明の実施形態2によるOLED表示装置におけるTFE構造10Dの模式的な部分断面図であり、パーティクルPを含む部分を示している。図4(b)を参照して説明した様に、パーティクルPが存在すると、第1無機バリア層12Dにクラック(欠陥)12Dcが形成されることがある。これは、図9に示す断面SEM像から、パーティクルPの表面から成長するSiN層12Daと、OLED3の表面の平坦部分から成長するSiN層12Dbとが衝突(インピンジ)するために生じたと考えられる。このようなクラック12Dcが存在すると、TFE構造10Dのバリア性が低下する。なお、図9のSEM像は、ガラス基板上に、パーティクルPとして、直径が1μmの球状シリカを配置した状態で、SiN膜をプラズマCVD法で成膜した試料の断面SEM像である。断面はパーティクルPの中心を通っていない。また、最表面は断面加工時の保護のためのカーボン層(C−depo)である。このように、直径が1μmの比較的小さな球状のシリカが存在するだけで、SiN層12Dにクラック(欠陥)12Dcが形成される。
実施形態2のOLED表示装置におけるTFE構造10Dでは、図8(a)に示す様に、有機バリア層14Dcが、第1無機バリア層12Dのクラック12DcおよびパーティクルPのオーバーハング部分を充填するように形成されているので、第2無機バリア層16Dによってバリア性を保持することができる。これは、図10に示す断面SEM像で確認することができる。図10においては、第1無機バリア層12D上に第2無機バリア層16Dが直接形成された箇所には界面は観察されていないが、模式図では分かり易さのために、第1無機バリア層12Dと第2無機バリア層16Dとを異なるハッチングで示している。
図10に示す断面SEM像は、図9の断面SEM像と同様に、ガラス基板上に、直径が2.15μmの球状シリカを配置した状態で、TFE構造10Dを成膜した試料の断面SEM像である。図10と図9と比較すれば分かるように、図10に示す直径が約2倍のパーティクルPであっても、アクリル樹脂層の上に形成されたSiN膜は欠陥の無い緻密な膜であることがわかる。また、図9の場合と同様に、パーティクルP(直径が2.15μmおよび4.6μmの球状シリカ)を覆うようにSiN膜をプラズマCVD法で成膜した後、有機バリア層14Dとしてアクリル樹脂層を形成し、その後、再び、SiN膜をプラズマCVD法で成膜した試料においても、アクリル樹脂層の上に欠陥の無い緻密なSiN膜が形成されていることをSEM観察で確認した。
図8(a)に示した有機バリア層14Dは、後述するように、例えばアクリル樹脂から形成される。特に、室温(例えば25℃)における粘度が、1〜100mPa・s程度のアクリルモノマー(アクリレート)を光硬化(例えば紫外線硬化)することによって形成されたものが好ましい。このように低粘度のアクリルモノマーは、クラック12DcおよびパーティクルPのオーバーハング部分に容易に浸透することができる。また、アクリル樹脂は可視光の透過率が高く、トップエミッションタイプのOLED表示装置に好適に用いられる。アクリルモノマーには必要に応じて、光重合開始剤が混合され得る。光重合開始剤の種類によって感光波長を調節することができる。アクリルモノマーに代えて、他の光硬化性樹脂を用いることもできる。光硬化性樹脂としては、反応性等の観点から紫外線硬化性樹脂が好ましい。照射する紫外線は、近紫外線(200nm以上400nm以下)の中でも特に波長315nm以上400nm以下のUV−A領域のものが好ましいが、300nm以上315nm未満の紫外線を用いてもよい。また、400nm以上450nm以下の青紫色から青色にかけての可視光線を照射することによって硬化する光硬化性樹脂を用いることもできる。
クラック12DcおよびパーティクルPのオーバーハング部分に充填された有機バリア層14Dcの表面は、パーティクルP上の第1無機バリア層12Daの表面と、OLED3の表面の平坦部上に形成された有機バリア層14Dbとの表面を連続的に滑らかに連結する。したがって、パーティクルP上の第1無機バリア層12Dおよび有機バリア層14D上に形成される第2無機バリア層(SiN層)16Dに欠陥が形成されることなく、緻密な膜が形成される。
また、有機バリア層14Dの表面14Dsは、アッシング処理によって酸化されており、親水性を有しており、第2無機バリア層16Dとの密着性が高い。
耐屈曲性を向上させるためには、有機バリア層14Dは、パーティクルP上に形成された第1無機バリア層12Daの凸状部分を除いて、ほぼ全面に有機バリア層14Dが残存するように、アッシングすることが好ましい。平坦部上に存在している有機バリア層14Dbの厚さは10nm以上であることが好ましい。
特許文献2、3には、有機バリア層を偏在させた構成が記載されているが、本発明者が種々実験したところ、有機バリア層14Dは平坦部上のほぼ全面、すなわち第1無機バリア層12Daの凸状部分を除いたほぼ全面に形成されていてもよく、耐屈曲性の観点からはその厚さは10nm以上であることが好ましい。
有機バリア層14Dが第1無機バリア層12Dと第2無機バリア層16Dとの間に介在すると、TFE構造10D内部での各層間の密着性が高まる。特に、有機バリア層14Dの表面が酸化されているので、第2無機バリア層16Dとの密着性が高い。
また、平坦部上の有機バリア層14Dbが全面に形成されていると(有機バリア層14Dが開口部14Daを有しないと)、OLED表示装置に外力が掛かったときに、TFE構造10D内に生じる応力(またはひずみ)が均一に分散される結果、破壊(特に、第1無機バリア層12Dおよび/または第2無機バリア層16Dの破壊)が抑制される。第1無機バリア層12Dと第2無機バリア層16Dと密着してほぼ均一に存在する有機バリア層14Dは、応力を分散および緩和するように作用すると考えられる。このように有機バリア層14Dは、OLED表示装置の耐屈曲性を向上させる効果も奏する。
ただし、有機バリア層14Dの厚さが200nm以上になると、かえって耐屈曲性が低下することがあるので、有機バリア層14Dの厚さは200nm未満であることが好ましい。
有機バリア層14Dは、アッシング処理を経て形成される。アッシング処理は面内でばらつくことがあるので、平坦部に形成された有機バリア層14Dbの一部が完全に除去され、第1無機バリア層12Dの表面が露出される場合がある。このとき、有機バリア層14Dの内、OLED3の平坦部上に形成されている有機バリア層(中実部)14Dbは、開口部14Daよりも面積が大きくなるように制御する。すなわち、中実部14Dbの面積は平坦部上の有機バリア層(開口部を含む)14Dの面積の50%超となるように制御する。中実部14Dbの面積は平坦部上の有機バリア層14Dの面積の80%以上であることが好ましい。ただし中実部14Dbの面積は平坦部上の有機バリア層の面積の約90%を超えないことが好ましい。言い換えると、平坦部上の有機バリア層14Dは合計で約10%程度の面積の開口部14Daを有することが好ましい。開口部14Daは、第1無機バリア層12Dと有機バリア層14Dとの界面および有機バリア層14Dと第2無機バリア層16Dとの界面での剥離を抑制する効果を奏する。平坦部上の有機バリア層14Dの面積の80%以上90%以下の面積の開口部14Daを有すると、特に優れた耐屈曲性が得られる。
また、平坦部の全面に有機バリア層14Dを形成すると、平坦部の有機バリア層14Dが水分の侵入経路となって、OLED表示装置の耐湿信頼性を低下させることになる。これを防止するために、実施形態2によるOLED表示装置は、図8(b)に示すように、有機バリア層14Dの下地表面(例えば、OLED3の表面)は、アクティブ領域を実質的に包囲するバンク3DBを有し、バンク3DBは、幅方向に平行な断面の形状における側面のテーパー角が90°未満である順テーパー側面部分TSFを露出された2つの側面の少なくとも最下部に有する。順テーパー側面部分TSFの高さ(基板法線方向の長さ)は、有機材料の厚さ(有機バリア層14D厚さとほぼ等しい)よりも大きいことが好ましく、例えば、50nm以上、好ましくは100nm以上ある。
バンク3DB上に形成された第1無機バリア層12Dもバンク12DBを形成するので、バンク3DBの上には有機バリア層14Dの開口部14Daが形成され、中実部14Dbは存在しない。すなわち、バンク3DBの上では、第1無機バリア層12Dと第2無機バリア層16Dとが直接接触し、無機バリア層接合部を形成している。引出し配線(実施形態1の引出し配線30Aと同じ構造を有する)のバンク3DB上に位置する部分は、順テーパー側面部分TSFを有するように配置されており、バンク3DB上には、有機バリア層14Dの中実部は存在しない。したがって、実施形態2のOLED表示装置は、平坦部に有機バリア層14Dを有してはいるが、アクティブ領域は、無機バリア層接合部で完全に包囲されているので、高い耐湿信頼性を有する。
バンク3DBは、種々の方法で形成することができる。例えば、回路2を形成する工程で、OLED3で構成される各画素を規定するためのバンクを感光性樹脂(例えばポリイミドまたはアクリル樹脂)を用いて形成する際に、同時に、アクティブ領域R1を包囲するバンク3DBを形成すればよい。あるいは、ゲートメタル層および/またはソースメタル層をパターニングして、ゲートバスラインおよび/またはソースバスラインを形成する際に、アクティブ領域を包囲するパターン(バンク3DB用のパターン)を併せて形成すればよい。このとき、バンクDB用のパターンを形成するために開口部を多階調マスクとすることによって、順テーパー側面部分を有するパターンを形成することができる。
図11および図12を参照して、有機バリア層14Dおよび第2無機バリア層16Dの形成工程、特に、アッシング工程を説明する。図11に有機バリア層14Dの形成工程を示し、図12に第2無機バリア層16Dの形成工程を示す。
図11(a)に模式的に示す様にOLED3の表面のパーティクルPを覆う第1無機バリア層12Dを形成した後、第1無機バリア層12D上に有機バリア層14Dを形成する。有機バリア層14Dは、例えば、蒸気または霧状のアクリルモノマーを、冷却された素子基板上で凝縮させ、その後、光(例えば紫外線)を照射することによって、アクリルモノマーを硬化させることによって得られる。低粘度のアクリルモノマーを用いることよって、第1無機バリア層12Dに形成されたクラック12Dc内にアクリルモノマーを浸透させることができる。
なお、図11(a)では、パーティクルP上の第1無機バリア層12Da上に有機バリア層14Ddが形成されている例を示しているが、パーティクルPの大きさや形状、およびアクリルモノマーの種類に依存するが、アクリルモノマーがパーティクルP上の第1無機バリア層12Da上に堆積(または付着)しない、あるいは、極微量しか堆積(または付着)しないことがある。有機バリア層14Dは、例えば、後述する図15に示す成膜装置200を用いて形成され得る。当初の有機バリア層14Dの厚さは平坦部上で100nm以上500nm以下となるように調整される。形成された当初の有機バリア層14Dの表面14Dsaは滑らかに連続しており、疎水性を帯びている。なお、簡単のために、アッシング前の有機バリア層にも同じ参照符号を付す。
次に、図11(b)に示すように、有機バリア層14Dをアッシングする。アッシングは、公知のプラズマアッシング装置、光励起アッシング装置、UVオゾンアッシング装置を用いて行い得る。例えば、N2O、O2およびO3の内の少なくとも1種のガスを用いたプラズマアッシング、または、これらにさらに紫外線照射とを組合せて行われ得る。第1無機バリア層12Dおよび第2無機バリア層16DとしてSiN膜をCVD法で成膜する場合、原料ガスとして、N2Oを用いるので、N2Oをアッシングに用いると装置を簡略化できるという利点が得られる。
アッシングを行うと、有機バリア層14Dの表面14Dsが酸化され、親水性に改質される。また、表面14Dsがほぼ一様に削られるとともに、極めて微細な凹凸が形成され、表面積が増大する。アッシングを行ったときの表面積増大効果は、無機材料である第1無機バリア層12Dに対してよりも有機バリア層14Dの表面に対しての方が大きい。したがって、有機バリア層14Dの表面14Dsが親水性に改質されることと、表面14Dsの表面積が増大することから、第2無機バリア層16Dとの密着性が向上させられる。
さらに、アッシングを進めると、図11(c)に示す様に、有機バリア層14Dの一部に開口部14Daが形成される。
さらに、アッシングを進めると、図4(a)に示した有機バリア層14Aの様に、第1無機バリア層12Dのクラック12DcおよびパーティクルPのオーバーハング部分の近傍にだけ有機バリア層14Dcを残すことができる。このとき、有機バリア層14Dcの表面は、パーティクルP上の第1無機バリア層12Daの表面と、OLED3の表面の平坦部の表面とを連続的に滑らかに連結する。
なお、第1無機バリア層12Dと有機バリア層14Dとの密着性を改善するために、有機バリア層14Dを形成する前に、第1無機バリア層12Dの表面にアッシング処理を施しておいてもよい。
次に、図12を参照して、有機バリア層14D上に第2無機バリア層16Dを形成した後の構造を説明する。
図12(a)は、図11(a)に示した有機バリア層14Dの表面14Dsaをアッシングすることによって酸化し、親水性を有する表面14Dsに改質した後に、第2無機バリア層16Dを形成した構造を模試的に示している。ここでは、有機バリア層14Dの表面14Dsaをわずかにアッシングした場合を示しており、パーティクルP上の第1無機バリア層12Da上に形成された有機バリア層14Ddも残存している例を示しているが、パーティクルP上の第1無機バリア層12Da上には有機バリア層14Dが形成されない(または残存しない)こともある。
図12(a)に示す様に、有機バリア層14D上に形成された第2無機バリア層16Dには欠陥が無く、また、有機バリア層14Dとの密着性にも優れる。
図12(b)〜(c)に示す様に、それぞれ図11(b)〜(c)に示した有機バリア層14D上に第2無機バリア層16Dを形成すると、欠陥が無く、有機バリア層14Dとの密着性に優れた第2無機バリア層16Dが得られる。OLED3の平坦部上の有機バリア層14Dが完全に除去されても、有機バリア層14Dcの表面が、パーティクルP上の第1無機バリア層12Daの表面と、OLED3の表面の平坦部の表面とを連続的に滑らかに連結していれば、欠陥が無く、有機バリア層14Dとの密着性に優れた第2無機バリア層16Dが得られる。
有機バリア層14Dは、図12(b)に示す様に、パーティクルP上に形成された第1無機バリア層12Daの凸状部分を除いて全面に有機バリア層14Dが薄く残存するように、アッシングされてもよい。耐屈曲性の観点から、上述したように、平坦部上の有機バリア層14Dbの厚さは10nm以上200nm未満であることが好ましい。
アッシング処理は面内でばらつくので、平坦部に形成された有機バリア層14Dの一部が完全に除去され、第1無機バリア層12Dの表面が露出されることがある。また、パーティクルPの材質、大きさもばらつくので、図12(c)に示す構造または先の図4(a)に示した構造を有する箇所が存在し得る。平坦部に形成された有機バリア層14Dの一部が完全に除去される場合でも、有機バリア層14Dの内、OLED3の平坦部上に形成されている有機バリア層(中実部)14Dbは、開口部14Daよりも面積が大きくなるように制御することが好ましい。上述したように、中実部14Dbの面積は平坦部上の有機バリア層14Dの面積の80%以上であることが好ましく、約90%を超えないことが好ましい。
有機バリア層14Dをアッシングしすぎると図13に示す様に、OLED3の平坦部上に形成された有機バリア層14Dbが完全に除去されるだけでなく、パーティクルPによって形成されたクラック12Dcに充填された有機バリア層14Ddが小さくなり、第2無機バリア層16Dが形成される下地の表面を滑らかな連続的な形状にする作用を有しなくなる。その結果、図14に示す様に、第2無機バリア層16Dに欠陥16Dcが形成され、TFE構造のバリア特性を低下させることになる。たとえ欠陥16Dcが形成されなくとも、第2無機バリア層16Dの表面に鋭角な凹部16Ddが形成されると、その部分に応力が集中しやすく、外力によってクラックが発生しやすい。
また、例えば、パーティクルPとして凸レンズ状シリカ(直径4.6μm)を用いた実験では、凸レンズ状シリカの端部において、有機バリア層がエッチングされ過ぎた結果、第2無機バリア層の膜厚が部分的に極端に薄くなることがあった。このような場合、たとえ第2無機バリア層に欠陥が生じなくても、OLED表示装置の製造プロセスにおいて、または製造後に、TFE構造に外力が掛かった際に、第2無機バリア層にクラックが生じるおそれがある。
TFE構造10に外力が掛けられる場合として、次のような場合を挙げることができる。例えば、OLED表示装置のフレキシブルな基板1を支持基板であるガラス基板から剥離する際、TFE構造10を含むOLED表示装置には曲げ応力が作用する。また、曲面ディスプレイを製造する過程で、所定の曲面形状に沿ってOLED表示装置を曲げる際にも、TFE構造10に曲げ応力が作用する。もちろん、OLED表示装置の最終的な利用形態が、OLED表示装置のフレキシビリティを利用する形態(例えば折り畳む、曲げる、あるいは、丸める)のときは、ユーザーが使用している間に種々の応力がTFE構造10に掛かることになる。
これを防止するためには、OLED3の平坦部上に形成されている有機バリア層の50%超が残存するように(有機バリア層(中実部)14Dbが開口部14Daよりも面積が大きくなるように)、アッシング条件を調節することが好ましい。OLED3の平坦部上に残存する有機バリア層(中実部)14Dbは80%以上であることがさらに好ましく、90%程度であることがさらに好ましい。ただし、10%程度は開口部14Daが存在する方が、第1無機バリア層12Dと有機バリア層14Dとの界面および有機バリア層14Dと第2無機バリア層16Dとの界面での剥離を抑制する効果が得られるのでより好ましい。図12(a)〜(c)に示した様に、適度に残存する有機バリア層14D上に形成された第2無機バリア層16Dの表面には90°以下を角度なす部分(図14の凹部16Dd参照)が存在しないので、外力が掛かっても応力が集中することが抑制される。
本発明の実施形態2によるOLED表示装置の製造方法は、第1無機バリア層12Dが形成されたOLED3をチャンバー内に用意する工程と、チャンバー内に蒸気または霧状の光硬化性樹脂(例えばアクリルモノマー)を供給する工程と、第1無機バリア層12D上で光硬化性樹脂を凝縮させ、液状の膜を形成する工程と、光硬化性樹脂の液状の膜に光を照射することによって、光硬化樹脂層(硬化された樹脂層)を形成する工程と、光硬化樹脂層を部分的にアッシングすることによって、有機バリア層14Dを形成する工程とを包含する。
光硬化性樹脂として紫外線硬化性樹脂が好適に用いられるので、以下では、紫外線硬化性樹脂を用いる例を説明するが、光硬化性樹脂を硬化させることができる所定の波長の光を出射する光源を用いれば、可視光硬化性樹脂にも適用できる。
図15に、有機バリア層14Dの形成に用いられる成膜装置200の構成を模式的に示す。
成膜装置200は、チャンバー210と、ステージ212と、モノマー供給口(ノズル)222と、紫外線照射装置230とを有している。チャンバー210は、その内部の空間を所定の圧力(真空度)および温度に制御される。ステージ212は、第1無機バリア層が形成されたOLED3を複数有する素子基板20を受容する上面を有し、上面を例えば−20℃まで冷却することができる。ノズル222は、所定の流量で供給されるアクリルモノマー(液状)を蒸気または霧状で、チャンバー210内の空間に供給する。必要に応じてアクリルモノマーは加熱される。蒸気または霧状のアクリルモノマー26pは、素子基板20の第1無機バリア層に付着または接触する。紫外線照射装置230は所定の波長、強度を有する紫外線232をステージ212の上面に向けて出射する。
アクリルモノマー26は、容器202からチャンバー210内に所定の流量で供給される。容器202には、配管206を介してアクリルモノマー26が供給されるとともに、配管204から窒素ガスが供給される。容器202へのアクリルモノマーの流量は、マスフローコントローラ208によって制御される。
成膜装置200を用いて、例えば以下の様にして、有機バリア層14を形成することができる。以下の例は、TFE構造10の試作やSEM写真に示した試料の作製に用いた条件の典型例の1つである。
チャンバー210内に、アクリルモノマー26pを供給する。素子基板20は、ステージ212上で、例えば−15℃に冷却されている。アクリルモノマー26pは素子基板の第1無機バリア層12上で凝縮され液状の膜になる。アクリルモノマー26pの供給量およびチャンバー210内の温度、圧力(真空度)を制御することによって、アクリルモノマー(液状)の堆積速度を調整し得る。例えば、アクリルモノマーは、500nm/minで堆積することができる。したがって、約24秒で厚さが約200nmのアクリルモノマーの層を形成することができる。
このときの条件を制御することによって、実施形態1における有機バリア層の形成方法のように、アクリルモノマーを凸部の周囲にだけ偏在させることもできる。
アクリルモノマーとして、公知の種々のアクリモノマーを用いることができる。複数のアクリルモノマーを混合してもよい。例えば、2官能モノマーと3官能以上の多官能モノマーを混合してもよい。また、オリゴマーを混合してもよい。ただし、室温(例えば25℃)における粘度を、1〜100mPa・s程度に調整することが好ましい。アクリルモノマーには必要に応じて、光重合開始剤が混合され得る。
その後、チャンバー210内を排気し、蒸気または霧状のアクリルモノマー26pを除去した後、紫外線232を照射することによって、第1無機バリア層12D上のアクリルモノマーを硬化させる。紫外線光源としては365nmにメインピークを持つ高圧水銀ランプを用い、紫外線強度として例えば、12mW/cm2で、約10秒照射する。
このように、有機バリア層14Dの形成工程のタクトタイムは約34秒であり、非常に量産性が高い。
なお、第1無機バリア層12Dは、例えば、以下の様にして形成される。SiH4およびN2Oガスを用いたプラズマCVD法で、例えば、成膜対象の基板(OLED3)の温度を80℃以下に制御した状態で、400nm/minの成膜速度で、厚さ400nmの第1無機バリア層12Dを形成することができる。この様にして得られる第1無機バリア層12Dの屈折率は1.84で、400nmの可視光の透過率は90%(厚さ400nm)である。また、膜応力の絶対値は50MPaである。
有機バリア層14Dのアッシングは、例えば、N2Oガスを用いたプラズマアッシング法で行う。アッシングは、アッシング用のチャンバーで行う。アッシングレートは例えば500nm/minである。上述のように、厚さが200nmの有機バリア層14Dを形成したとき、平坦部上の有機バリア層(中実部)14Dbの厚さ(最大値)が20nm程度となるように、約22秒間、アッシングを行う。
このときの条件を調整することによって、図3(a)、(b)に示した有機バリア層14Aを形成することができる。また、引出し配線上の有機バリア層14Dの厚さは、他の部分よりも小さいので、引出し配線上の有機バリア層14Dを除去し、平坦部上の有機バリア層14Dの面積の50%超を残すこともできる。
アッシング後は、N2Oガスを排気し、第2無機バリア層16Dを形成するためのCVDチャンバーに搬送し、例えば、第1無機バリア層12Dと同じ条件で、第2無機バリア層16Dを形成する。
このようにして、TFE構造10DおよびTFE構造10Dを備えるOLED表示装置を作製することができる。本発明の実施形態2によるOLED表示装置の製造方法は、一旦十分な厚さを有する有機バリア層を形成し、それをアッシングすることによって、所望の厚さの有機バリア層を得るものである。したがって、特許文献2、3に記載されている製造方法のように、樹脂材料を偏在させる必要がないので、プロセスマージンが広く、量産性に優れる。
また、上述したように、有機バリア層14Dの表面が酸化されているので、第1無機バリア層12Dおよび第2無機バリア層16Dとの密着性が高く、耐湿信頼性に優れている。例えば、上記で具体的に例示したTFE構造10D(ただし図8のOLED3の代わりに厚さ15μmのポリイミドフィルム)のWVTRを評価したところ、室温換算で測定下限である1×10-4g/m2・day未満であった。
更に、平坦部上において、有機バリア層14Dが第1無機バリア層12Dと第2無機バリア層16Dとの間のほぼ全面に存在する構造とすることによって、耐屈曲性に優れる。
なお、無機バリア層として、SiN層の他、SiO層、SiON層、SiNO層、Al23層などを用いることもできる。有機バリア層を形成する樹脂としては、アクリル樹脂の他、ビニル基含有モノマーなどの光硬化性樹脂を用いることができる。光硬化性樹脂として、紫外線硬化型のシリコーン樹脂を用いることもできる。シリコーン樹脂(シリコーンゴムを含む)は可視光透過性および耐候性に優れ、長期間の使用でも黄変しにくいという特徴がある。可視光の照射で硬化する光硬化性樹脂を用いることもできる。本発明の実施形態に用いられる光硬化性樹脂の硬化前の室温(例えば25℃)の粘度は、10Pa・sを超えないことが好ましく、上述したように1〜100mPa・sであることが特に好ましい。
本発明の実施形態は、有機EL表示装置、特にフレキシブルな有機EL表示装置およびその製造方法に適用され得る。
1 :フレキシブル基板
2 :バックプレーン(回路)
3 :有機EL素子
4 :偏光板
10、10A、10B、10C、10D :薄膜封止構造(TFE構造)
12、12A、12B、12C、12D :第1無機バリア層(SiN層)
14、14A、14B、14D :有機バリア層(アクリル樹脂層)
14Da :有機バリア層の開口部
14Db :有機バリア層の中実部
14Ds :有機バリア層の表面(アッシング後)
14Dsa :有機バリア層の表面(アッシング前)
16A、16B、16C、16D :第2無機バリア層(SiN層)
16Dc :欠陥
16Dd :凹部
20 :素子基板
26 :アクリルモノマー
26p :アクリルモノマーの蒸気または霧状のアクリルモノマー
100、100A :有機EL表示装置

Claims (14)

  1. フレキシブル基板と、前記フレキシブル基板上に形成された複数のTFTと、それぞれが前記複数のTFTのいずれかに接続された複数のゲートバスラインおよび複数のソースバスラインと、それぞれが前記複数のTFTのいずれかに接続された複数の有機EL素子と、前記複数の有機EL素子が配置されているアクティブ領域の外側の周辺領域に配置された複数の端子と、前記複数の端子と前記複数のゲートバスラインまたは前記複数のソースバスラインのいずれかとを接続する複数の引出し配線と、前記複数の有機EL素子の上および前記複数の引出し配線の前記アクティブ領域側の部分の上に形成された薄膜封止構造とを有し、
    前記薄膜封止構造は、第1無機バリア層と、前記第1無機バリア層に接する有機バリア層と、前記有機バリア層に接する第2無機バリア層とを有し、
    前記複数の引出し配線のそれぞれは、少なくとも一部に、線幅方向に平行な断面の形状における側面のテーパー角が90°未満である順テーパー側面部分を前記第1無機バリア層に接する2つの側面の少なくとも最下部に有し、
    前記薄膜封止構造は、前記有機バリア層が存在せず、前記第1無機バリア層と前記第2無機バリア層とが直接接触している無機バリア層接合部を有し、
    前記順テーパー側面部分を有する、前記複数の引出し配線のそれぞれの部分の上には、前記無機バリア層接合部が形成されており、前記無機バリア層接合部は、前記アクティブ領域を完全に包囲している、有機EL表示装置。
  2. 前記複数の端子のそれぞれは、側面のテーパー角が90°未満である順テーパー側面部分を露出された全ての側面の少なくとも最下部に有する、請求項1に記載の有機EL表示装置。
  3. 前記順テーパー側面部分のテーパー角は85°以下である、請求項1または2に記載の有機EL表示装置。
  4. 前記順テーパー側面部分の前記フレキシブル基板の法線方向の長さは50nm以上である、請求項1から3のいずれかに記載の有機EL表示装置。
  5. 前記有機バリア層が存在せず、前記第1無機バリア層と前記第2無機バリア層とが直接接触している、前記複数の引出し配線の前記それぞれの部分の長さは、0.01mm以上0.1mm以下である、請求項1から4のいずれかに記載の有機EL表示装置。
  6. 前記複数のゲートバスラインおよび前記複数のソースバスラインの線幅方向に平行な断面の形状における側面のテーパー角は85°超である、請求項1から5のいずれかに記載の有機EL表示装置。
  7. 前記有機バリア層は平坦部には実質的に存在しない、請求項1から6のいずれかに記載の有機EL表示装置。
  8. 前記有機バリア層は、平坦部上に開口部を有し、平坦部上に存在している有機バリア層の面積は、前記開口部の面積よりも大きい、請求項1から6のいずれかに記載の有機EL表示装置。
  9. 前記有機バリア層の下地表面は、前記アクティブ領域を実質的に包囲するバンクを有し、
    前記バンクは、幅に沿った断面の形状における側面のテーパー角が90°未満である順テーパー側面部分を前記第1無機バリア層に接する2つの側面の少なくとも最下部に有し、
    前記複数の引出し配線のそれぞれの前記バンク上に位置する部分は、前記順テーパー側面部分を有し、
    前記バンクの上には前記有機バリア層が存在せず、前記第1無機バリア層と前記第2無機バリア層とが直接接触している、請求項8に記載の有機EL表示装置。
  10. 請求項1から7のいずれかに記載の有機EL表示装置の製造方法であって、
    前記複数の有機EL素子が形成されたフレキシブル基板の前記アクティブ領域に選択的に前記第1無機バリア層を形成する工程Aと、
    前記工程Aの後で、前記フレキシブル基板をチャンバー内に配置し、前記チャンバー内に蒸気または霧状の光硬化性樹脂を供給する工程と、
    前記第1無機バリア層上で前記光硬化性樹脂を凝縮させる工程であって、前記順テーパー側面部分を有する、前記複数の引出し配線のそれぞれの部分の上には、前記光硬化性樹脂を存在させないように、前記光硬化性樹脂を凝縮させる工程Bと、
    前記工程Bの後に、凝縮された前記光硬化性樹脂に光を照射することによって、光硬化樹脂からなる前記有機バリア層を形成する工程と
    を包含する、製造方法。
  11. 請求項1から9のいずれかに記載の有機EL表示装置の製造方法であって、
    前記複数の有機EL素子が形成されたフレキシブル基板の前記アクティブ領域に選択的に前記第1無機バリア層を形成する工程Aと、
    前記工程Aの後で、前記フレキシブル基板をチャンバー内に配置し、前記チャンバー内に蒸気または霧状の光硬化性樹脂を供給する工程と、
    前記第1無機バリア層上で前記光硬化性樹脂を凝縮させ、液状の膜を形成する工程と、
    前記光硬化性樹脂の前記液状の膜に光を照射することによって、光硬化樹脂層を形成する工程と、
    前記光硬化樹脂層を部分的にアッシングすることによって、前記有機バリア層を形成する工程と
    を包含する、製造方法。
  12. 前記複数のゲートバスライン、前記複数のソースバスライン、前記複数の引出し配線および前記複数の端子をドライエッチングプロセスを用いて形成する工程を包含する、請求項10または11に記載の製造方法。
  13. 前記複数の引出し配線を形成する工程は、多階調マスクを用いるフォトリソグラフィ工程によって、前記順テーパー側面部分を有する部分を形成する工程を包含する、請求項10から12のいずれかに記載の製造方法。
  14. 前記光硬化性樹脂はアクリルモノマーを含む、請求項10から13のいずれかに記載の製造方法。
JP2018533964A 2017-01-31 2017-01-31 有機el表示装置およびその製造方法 Active JP6487123B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003481 WO2018142490A1 (ja) 2017-01-31 2017-01-31 有機el表示装置およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2018142490A1 JPWO2018142490A1 (ja) 2019-02-14
JP6487123B2 true JP6487123B2 (ja) 2019-03-20

Family

ID=63040323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018533964A Active JP6487123B2 (ja) 2017-01-31 2017-01-31 有機el表示装置およびその製造方法

Country Status (4)

Country Link
US (2) US10720603B2 (ja)
JP (1) JP6487123B2 (ja)
CN (1) CN110235521B (ja)
WO (1) WO2018142490A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648349B1 (ja) * 2018-04-20 2020-02-14 堺ディスプレイプロダクト株式会社 有機elデバイスおよびその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487123B2 (ja) * 2017-01-31 2019-03-20 堺ディスプレイプロダクト株式会社 有機el表示装置およびその製造方法
WO2018229876A1 (ja) * 2017-06-13 2018-12-20 堺ディスプレイプロダクト株式会社 有機elデバイスおよびその製造方法
JP6843710B2 (ja) * 2017-07-12 2021-03-17 株式会社ジャパンディスプレイ 表示装置、および表示装置の製造方法
JP6533018B1 (ja) * 2017-11-29 2019-06-19 堺ディスプレイプロダクト株式会社 有機elデバイスの製造方法
CN109546006B (zh) * 2018-12-17 2020-09-08 武汉华星光电半导体显示技术有限公司 柔性oled显示面板及其制作方法
CN110993658A (zh) * 2019-11-28 2020-04-10 深圳市华星光电半导体显示技术有限公司 双面oled显示面板及制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW519853B (en) * 2001-10-17 2003-02-01 Chi Mei Electronic Corp Organic electro-luminescent display and its packaging method
JP2005100685A (ja) * 2003-09-22 2005-04-14 Toshiba Matsushita Display Technology Co Ltd 表示装置及び表示装置の製造方法
JP2006195077A (ja) * 2005-01-12 2006-07-27 Idemitsu Kosan Co Ltd Al配線を備えた透明導電膜積層基板及びその製造方法。
JP2007250370A (ja) * 2006-03-16 2007-09-27 Canon Inc 有機発光素子及びその製造方法
KR20080088750A (ko) * 2007-03-30 2008-10-06 삼성전자주식회사 유기발광장치 및 그 제조방법
KR100873080B1 (ko) * 2007-05-10 2008-12-09 삼성모바일디스플레이주식회사 유기 전계 발광표시장치
US7990060B2 (en) * 2007-05-31 2011-08-02 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
JP5377940B2 (ja) 2007-12-03 2013-12-25 株式会社半導体エネルギー研究所 半導体装置
KR101209128B1 (ko) * 2008-07-10 2012-12-06 샤프 가부시키가이샤 유기 el 디스플레이 및 그 제조방법
JP2012099290A (ja) 2010-10-29 2012-05-24 Hitachi Displays Ltd 有機el表示装置
JP6080437B2 (ja) * 2011-09-30 2017-02-15 キヤノン株式会社 有機発光装置の製造方法
TWI473317B (zh) * 2011-11-17 2015-02-11 Au Optronics Corp 可撓性主動元件陣列基板以及有機電激發光元件
TWI452553B (zh) * 2011-12-30 2014-09-11 Au Optronics Corp 製作可撓式顯示裝置之方法
JP5988619B2 (ja) 2012-03-06 2016-09-07 株式会社アルバック 成膜装置、成膜方法
JP2013247021A (ja) * 2012-05-28 2013-12-09 Canon Inc 表示装置及びその製造方法
KR101980768B1 (ko) * 2012-12-28 2019-05-21 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치
KR102000052B1 (ko) * 2012-12-31 2019-07-15 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치
JP6282647B2 (ja) * 2013-06-07 2018-02-21 株式会社アルバック 素子構造体及びその製造方法
JP2015050022A (ja) 2013-08-30 2015-03-16 株式会社ジャパンディスプレイ 有機el表示装置
JP6374188B2 (ja) * 2014-03-14 2018-08-15 東京エレクトロン株式会社 封止構造の形成方法、封止構造の製造装置、並びに有機el素子構造の製造方法、及びその製造装置
JP6453579B2 (ja) 2014-08-08 2019-01-16 株式会社ジャパンディスプレイ 有機el表示装置
JP6307384B2 (ja) 2014-08-11 2018-04-04 株式会社ジャパンディスプレイ 有機el表示装置
US9991326B2 (en) * 2015-01-14 2018-06-05 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device comprising flexible substrate and light-emitting element
JP6487123B2 (ja) * 2017-01-31 2019-03-20 堺ディスプレイプロダクト株式会社 有機el表示装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648349B1 (ja) * 2018-04-20 2020-02-14 堺ディスプレイプロダクト株式会社 有機elデバイスおよびその製造方法
US11825683B2 (en) 2018-04-20 2023-11-21 Sakai Display Products Corporation Organic electroluminescent device including thin film encapsulation structure and method for producing same

Also Published As

Publication number Publication date
US20200365828A1 (en) 2020-11-19
US20200194718A1 (en) 2020-06-18
WO2018142490A1 (ja) 2018-08-09
JPWO2018142490A1 (ja) 2019-02-14
CN110235521B (zh) 2021-11-16
US11165043B2 (en) 2021-11-02
CN110235521A (zh) 2019-09-13
US10720603B2 (en) 2020-07-21

Similar Documents

Publication Publication Date Title
JP6487123B2 (ja) 有機el表示装置およびその製造方法
JP6301042B1 (ja) 有機elデバイスおよびその製造方法
JP6301034B1 (ja) 有機elデバイスの製造方法
JP6321310B1 (ja) 有機elデバイスおよびその製造方法
JP6469936B1 (ja) 有機elデバイスの製造方法、成膜方法および成膜装置
JP6538985B2 (ja) 有機elデバイスおよびその製造方法
JPWO2018163338A1 (ja) 有機elデバイスの製造方法および成膜装置
WO2019202739A1 (ja) 有機elデバイスおよびその製造方法
JP2021114470A (ja) 有機elデバイスの製造方法
JP6515224B2 (ja) 有機elデバイスの製造方法および成膜装置
US11711955B2 (en) Organic electroluminescent device with organic flattening layer having surface Ra of 50 nm or less and method for producing same
JP6563055B2 (ja) 有機elデバイス
JP6567121B2 (ja) 薄膜封止構造形成装置
JP6542931B2 (ja) 有機elデバイスの製造方法
JP2020074312A (ja) 有機elデバイスおよびその製造方法
JP2020102456A (ja) 有機elデバイスおよびその製造方法
JP2019207883A (ja) 有機elデバイスの製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180627

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180627

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190220

R150 Certificate of patent or registration of utility model

Ref document number: 6487123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250