JP6479354B2 - ミラー駆動装置及びその製造方法 - Google Patents

ミラー駆動装置及びその製造方法 Download PDF

Info

Publication number
JP6479354B2
JP6479354B2 JP2014133698A JP2014133698A JP6479354B2 JP 6479354 B2 JP6479354 B2 JP 6479354B2 JP 2014133698 A JP2014133698 A JP 2014133698A JP 2014133698 A JP2014133698 A JP 2014133698A JP 6479354 B2 JP6479354 B2 JP 6479354B2
Authority
JP
Japan
Prior art keywords
magnetic
main surface
mirror
wiring board
drive coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014133698A
Other languages
English (en)
Other versions
JP2016012042A (ja
Inventor
貞治 滝本
貞治 滝本
進也 岩科
進也 岩科
正国 木元
正国 木元
勇樹 森永
勇樹 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2014133698A priority Critical patent/JP6479354B2/ja
Priority to PCT/JP2015/066752 priority patent/WO2016002453A1/ja
Priority to EP15814142.4A priority patent/EP3163352B1/en
Priority to US15/316,549 priority patent/US10549981B2/en
Publication of JP2016012042A publication Critical patent/JP2016012042A/ja
Priority to JP2019019899A priority patent/JP6923575B2/ja
Application granted granted Critical
Publication of JP6479354B2 publication Critical patent/JP6479354B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/001Structures having a reduced contact area, e.g. with bumps or with a textured surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors

Description

本開示は、ミラー駆動装置及びその製造方法に関する。
近年、微小な大きさの機械的要素及び電子回路要素を融合したMEMS(Micro Electro Mechanical System)技術(マイクロマシン技術ともいう。)を用いたミラー駆動装置の研究が盛んに行われている。特許文献1,2は、電磁式のミラー駆動装置の一例を開示している。
例えば、特許文献2が開示するミラー駆動装置は、支持部と、可動部と、ミラーと、駆動コイルと、一対の永久磁石とを備える。支持部は、連結部材を介して可動部を揺動可能に支持している。ミラーは、可動部の表面に配置されている。駆動コイルは、可動部において、ミラーと同じ側の表面かミラーとは反対側の面である裏面に配置されている。一対の永久磁石は、可動部の表面の法線方向に交差する方向において、可動部が間に位置するように配置されている。
駆動コイル電流が流れると、一対の永久磁石によって可動部の周囲に生じている磁場との相互作用により駆動コイルにローレンツ力が発生し、可動部が揺動する。可動部が揺動すると、可動部の表面に配置されているミラーの向きが変わるので、ミラーからの反射光の光路が変更される。このようなミラー駆動装置は、例えば、光通信用光スイッチや光スキャナなどに応用されている。
特開2002−040355号公報 特開平11−231252号公報
駆動コイルが、可動部の裏面に配置されている場合、以下の利点が得られる。すなわち、可動部において駆動コイルがミラーと同じ側の表面に存在しなくなるので、(1)ミラーを大きく形成できると共に、(2)駆動コイルの凹凸の影響をミラーが受けず、平坦なミラーを形成できる。
ところで、特許文献2に記載のミラー駆動装置のように、可動部の表面の法線方向に交差する方向において、一対の永久磁石の間に可動部が配置されていると、永久磁石と、可動部に形成されている駆動コイルとの距離が大きくなる傾向にあり、駆動コイルに十分大きな磁界が作用し難い場合がある。そこで、永久磁石をより駆動コイルに近づけてより大きな磁界を駆動コイルに作用させたいという要望がある。そのため、可動部の表面の法線方向から見て支持部及び可動部に重なり合うように配置された一つの永久磁石を採用することが考えられる。この場合、当該法線方向において永久磁石と可動部とが隣り合うので、永久磁石が全体として駆動コイルに近づく。そのため、より大きな磁界が駆動コイルに作用しうる。
一方で、ミラー駆動装置の小型化を図りたいという要望もある。しかしながら、上記のように、可動部の裏面に駆動コイルが配置され且つ当該法線方向から見て支持部及び可動部に重なり合うように一つの永久磁石が配置される場合には、次の理由により装置が大型化してしまう傾向にある。すなわち、駆動コイルに電力を供給してミラーを駆動するためには、ミラー駆動装置と、その外部に位置し且つ電源に接続された配線基板の電極とが、電気的に接続される必要がある。具体的には、駆動コイルの端部から支持部まで引き出し導体を敷設して、支持部のうち可動部の裏面と同じ側の面に配置された電極に当該引き出し導体を接続し、当該電極と配線基板の電極とを電気的に接続する必要がある。このような電気的な接続には、従来、ワイヤボンディングの手法が一般的に採用されているので、支持部に電極を設けるための領域を確保したり、支持部の近傍においてワイヤを配置するための空間を確保しなければならない。そうすると、支持部が必要以上に大きくなってしまうと共に、支持部の周囲に確保される空間により、ミラー駆動装置も全体として大型化してしまう。
そこで、本開示は、可動部においてミラーとは反対側の面に駆動コイルが配置されている場合に、駆動コイルに作用する磁界を確保しつつ小型化を図ることが可能なミラー駆動装置及びその製造方法を説明する。
本開示の一つの観点に係るミラー駆動装置は、枠状を呈する支持部と、支持部の内側に位置し且つ対向する第1及び第2の主面を有し、連結部材を介して支持部に揺動可能に支持された可動部と、第1及び第2の主面が対向する対向方向で支持部及び第2の主面と対向するように位置し、可動部の周囲に磁場を形成する磁性体と、枠状を呈しており、対向方向から見て可動部が内側に位置するように、対向方向で支持部と磁性体との間に配置されている配線基板とを備え、可動部は、第1及び第2の主面を含む基材と、第1の主面側に配置されたミラーと、磁性体と向かい合うように第2の主面側に配置された駆動コイルとを有し、支持部は、枠状を呈しており、連結部材と接続された基部と、枠状を呈しており、対向方向で磁性体及び配線基板から離れる方向に基部から延びている補強部と、基部のうち磁性体と対向する表面側で且つ対向方向から見て補強部と重なり合う位置に配置された電極とを有し、駆動コイルは、可動部から連結部材を経由して支持部へと延びている引き出し導体によって、電極と接続され、電極は、配線基板と電気的に接続されている。
本開示の一つの観点に係るミラー駆動装置では、駆動コイルが、可動部から連結部材を経由して支持部へと延びている引き出し導体によって、基部のうち磁性体と対向する表面側に配置された電極と接続されていると共に、電極が、第1及び第2の主面の対向方向で支持部と磁性体との間に配置されている配線基板と電気的に接続されている。このように、支持部と磁性体との間に配線基板が存在することで、基部のうち磁性体と対向する表面側に配置された電極と配線基板との電気的な接続が図られる。従って、可動部においてミラーとは反対側の表面に駆動コイルが配置されている場合であっても、駆動コイルを外部と電気的に接続することが可能となる。
本開示の一つの観点に係るミラー駆動装置では、磁性体が対向方向で第2の主面と対向している。そのため、対向方向において磁性体と可動部とが隣り合うので、可動部のうち第2の主面側に配置された駆動コイルに磁性体が全体として近づく。従って、駆動コイルに作用する磁界を確保することができる。
本開示の一つの観点に係るミラー駆動装置では、第1及び第2の主面の対向方向から見て、配線基板が支持部と磁性体との間に配置され且つ可動部が配線基板の内側に位置している。そのため、支持部と磁性体との間に位置する配線基板が、可動部と磁性体とを離間させるスペーサとしても機能する。従って、可動部が揺動するための空間を配線基板によって確保することができる。加えて、配線基板が、駆動コイルに電気を供給する本来の機能と、スペーサとの機能を併せ持っているため、ミラー駆動装置の小型化を図ることができる。
本開示の一つの観点に係るミラー駆動装置では、基部のうち磁性体と対向する表面側で且つ対向方向から見て補強部と重なり合う位置に、電極が配置されている。そのため、配線基板と駆動コイルとを電気的に接続する際に応力等が発生すると、主として、電極及び基部を介して補強部が当該応力等を受ける。従って、可動部がその応力等による影響を受け難くなる。
なお、本明細書において、「第1及び第2の主面の対向方向」とは、ミラー駆動装置の非駆動状態(駆動コイルに電流が流れていない非通電状態)での対向方向をいうものとする。ミラー駆動装置の非駆動状態においては、可動部の第2の主面と磁性体のうち当該第2の主面と向かい合う表面とは、ほぼ正対している。
配線基板は、磁性体のうち第2の主面と向かい合う表面上に配置されていてもよい。
対向方向において、基部及び前記補強部の厚さの合計は可動部の厚さよりも厚くてもよい。この場合、支持部の強度がより高まるので、配線基板と駆動コイルとを電気的に接続する際に応力等が発生しても、可動部がその応力等による影響をよりいっそう受け難くなる。
本開示の一つの観点に係るミラー駆動装置は、配線基板と支持部との間に配置されると共に、配線基板と電極とを接続するバンプ電極をさらに備えてもよい。この場合、磁性体と支持部との間にバンプ電極が存在するので、第2の主面と磁性体との離間距離がさらに大きくなる。従って、可動部が揺動する空間をさらに確保することができる。
基材は、第2の主面側に位置し且つ第2の主面に直交する方向から見てスパイラル状に延びている溝部を含み、駆動コイルは、溝部内に配置された第1の金属材料によって構成されると共に、主面に直交する方向から見てスパイラル状に巻回されていてもよい。
可動部は、溝部の開口を覆うと共に、第1の金属材料の拡散を抑制する第2の金属材料で構成された被覆層と、第2の主面上及び被覆層上に配置された絶縁層とをさらに有してもよい。この場合、駆動コイルを構成する第1の金属材料が絶縁層に拡散し難くなっており、ショートの発生が防止される。従って、ショートによる導通不良を解消できる。これに伴い、高密度に巻回された駆動コイルが実現されるので、より大きなローレンツ力を駆動コイルに作用させ得る。その結果、ミラーの可動範囲が大きなミラー駆動装置を得ることができる。
第1の金属材料はCu又はAuであり、第2の金属材料はAl又はAlを含む合金であってもよい。第1の金属材料であるCu又はAuは、電気抵抗率が低い一方で比較的拡散しやすい材料であるが、被覆層の存在により、これらの材料の拡散を抑制できる。特に、被覆層を構成する第2の金属材料がAl又はAlを含む合金であるため、第1の金属材料の拡散が極めて良好に抑制される。そのため、駆動コイルの電機抵抗率を下げつつショートの発生を防止できる。
可動部は、溝部の開口を覆う絶縁層をさらに有してもよい。
絶縁層を構成する材料はSiNであり、絶縁層の厚さは50nm以上であってもよい。この場合、駆動コイルを構成する金属材料の拡散が抑制される。
可動部は、基材のうちミラーが配置された部分を含むミラー配置部と、基材のうちミラー配置部の外周を囲む枠状の部分を含む外側部と、2つの駆動コイルとを有し、外側部は、連結部材を介して支持部に揺動可能に支持され、ミラー配置部は、連結部材と交差する方向に延びる他の連結部材を介して外側部に揺動可能に支持され、2つの駆動コイルはそれぞれ、第2の主面に直交する方向から見てスパイラル状に巻回され、2つの駆動コイルのうち一方の駆動コイルは、ミラー配置部のうち第2の主面側に配置され、2つの駆動コイルのうち他方の駆動コイルは、外側部のうち第2の主面側に配置され、磁性体のうち第2の主面に向かい合う側の表面には、当該表面に沿う方向において隣り合って並ぶS極及びN極からなる磁極の組が現れており、他方の駆動コイルは、磁極の組によって可動部の周囲に形成される磁界のうち磁束密度が略最大値を示す第1の領域に位置する部分を有してもよい。この場合、ミラー配置部は、連結部材と交差する方向に延びる他の連結部材を介して外側部に揺動可能に支持されているので、外側部とミラー配置部とは、異なる揺動軸に関して揺動する。そのため、ミラーの反射光を2次元的に走査することが可能となる。ところで、ミラーの反射光を2次元的に走査する際、反射光を第1の走査方向に沿って高速に走査するためにミラー配置部を素早く揺動させると共に、第1の走査方向と交差する第2の走査方向に沿って間欠的に反射光を走査するために外側部をミラー配置部よりも大きな振れ角で揺動させることが考えられる。このとき、上記のように、他方の駆動コイルが、第1及び第2の磁極の組によって可動部の周囲に形成される磁界のうち磁束密度が略最大値を示す第1の領域に位置する部分を有していると、外側部に配置される他方の駆動コイルに流す電流の大きさを小さくしつつ、当該他方の駆動コイルに作用するローレンツ力を大きくすることができる。従って、外側部の振れ角を大きくしつつ、低消費電力を図ることが可能となる。
なお、本明細書において「略最大値」とは、最大値を上限とし、当該最大値の80%を下限とする範囲をいうものとする。また、「最大値」とは、可動部の位置において永久磁石が形成する磁界の磁束密度が最も大きな値をいうものとする。
磁性体は、所定の方向に沿ってハルバッハ配列を構成するように順に並ぶ第1〜第3の磁性部を有し、他方の駆動コイルは、第1の領域に位置している部分を有してもよい。この場合、ハルバッハ配列を構成する第1〜第3の磁性部により、他の駆動コイルの近傍における磁束密度がより大きくなる。
磁性体は、対向方向と直交する第1の方向に沿って隣り合う第1及び第2の磁性部と、第1の方向に沿って隣り合う第3及び第4の磁性部と、対向方向及び第1の方向の双方に直交する第2の方向に沿って並ぶ第5及び第6の磁性部とを有し、第5及び第6の磁性部は、第2の磁性部と第3の磁性部との間に位置すると共に、第1の方向において第2及び第3の磁性部と隣り合い、第1、第3及び第5の磁性部の磁化の向きはいずれも、第1の主面側から第2の主面側に向かい、第2、第4及び第6の磁性部の磁化の向きはいずれも、第2の主面側から第1の主面側に向かい、他方の駆動コイルは、第1の領域に位置している部分を有してもよい。この場合、上記のような特定の状態に配列された第1〜第6の磁性部により、他の駆動コイルの近傍により大きな磁束密度を形成することができる。
一方の駆動コイルは、第1の領域ではない第2の領域に位置している部分を有してもよい。ところで、ミラー配置部の共振周波数に対応する周波数の電流を一方の駆動コイルに流し、反射光を第1の走査方向に沿って高速に走査することがある。すなわち、ミラー配置部は共振によって揺動するので、ミラー配置部を揺動させるために一方の駆動コイルに大きなローレンツ力が作用しなくてもよい。この場合、一方の駆動コイルが第2の領域に位置している部分を有していると、他方の駆動コイルが第1の領域に位置しやすくなる。従って、当該他方の駆動コイルに作用するローレンツ力をさらに大きくすることができる。
本開示の他の観点に係るミラー駆動装置の製造方法は、枠状を呈する支持部と、支持部の内側に位置し且つ対向する第1及び第2の主面を有し、連結部材を介して支持部に揺動可能に支持された可動部とを備え、可動部は、第1及び第2の主面を含む基材と、第1の主面側に配置されたミラーと、第2の主面側に配置された駆動コイルとを有し、支持部は、枠状を呈しており、連結部材と接続された基部と、枠状を呈しており、第1及び第2の主面が対向する対向方向で第2の主面から第1の主面へと向かう方向に向けて基部から延びている補強部と、基部のうち補強部とは反対側に位置する表面側で且つ対向方向から見て補強部と重なり合う位置に配置された電極とを有し、駆動コイルは、可動部から連結部材を経由して支持部へと延びている引き出し導体によって、電極と接続された、ミラー構造体を用意することと、可動部の周囲に磁場を形成する磁性体が対向方向で支持部及び第2の主面と対向すると共に、枠状を呈する配線基板が対向方向から見て可動部の外側に位置し且つ対向方向で配線基板が支持部と磁性体との間に位置するように、ミラー構造体、磁性体及び配線基板を組み立て、電極を介して配線基板と駆動コイルとを電気的に接続することとを含む。
本開示の他の観点に係るミラー駆動装置の製造方法では、可動部から連結部材を経由して支持部へと延びている引き出し導体によって、基部のうち補強部とは反対側に位置する表面側に配置された電極とが接続されており、この電極と、第1及び第2の主面が対向する対向方向で支持部と磁性体との間に位置する配線基板とを電気的に接続している。このように、支持部と磁性体との間に配線基板が存在することで、基部のうち補強部とは反対側に位置する表面側に配置された電極と配線基板との電気的な接続が図られる。従って、可動部においてミラーとは反対側の表面に駆動コイルが配置されている場合であっても、駆動コイルを外部と電気的に接続することが可能となる。
本開示の他の観点に係るミラー駆動装置の製造方法では、磁性体が対向方向で第2の主面と対向している。そのため、対向方向において磁性体と可動部とが隣り合うので、可動部のうち第2の主面側に配置された駆動コイルに磁性体が全体として近づく。従って、駆動コイルに作用する磁界を確保することができる。
本開示の他の観点に係るミラー駆動装置の製造方法では、第1及び第2の主面が対向する対向方向から見て、配線基板が対向方向から見て可動部の外側に位置し且つ対向方向で配線基板が支持部と磁性体との間に位置している。そのため、支持部と磁性体との間に位置する配線基板が、可動部と磁性体とを離間させるスペーサとしても機能する。従って、可動部が揺動するための空間を配線基板によって確保することができる。加えて、配線基板が、駆動コイルに電気を供給する本来の機能と、スペーサとの機能を併せ持っているため、ミラー駆動装置の小型化を図ることができる。
本開示の他の観点に係るミラー駆動装置の製造方法では、基部のうち磁性体と対向する表面側で且つ対向方向から見て補強部と重なり合う位置に、電極が配置されている。そのため、配線基板と駆動コイルとを電気的に接続する際に応力等が発生すると、主として、電極及び基部を介して補強部が当該応力等を受ける。従って、可動部がその応力等による影響を受け難くなる。
本開示の他の観点に係るミラー駆動装置の製造方法は、ミラー構造体を用意した後で且つ配線基板と駆動コイルとを電気的に接続する前に、磁性体の表面上の一部に配線基板を配置することをさらに含んでもよい。この場合、磁性体と支持部との間に配線基板が存在するので、第2の主面と磁性体との直線距離がより大きくなる。従って、可動部が揺動する空間を十分に確保することができる。また、この場合、ミラー駆動装置の製造にあたり、支持部が配線基板に重なるようにミラー構造体を配線基板上に載置すればよい。そのため、ミラー駆動装置の製造時に、強度の小さいミラーに負荷がほとんど作用しない。従って、ミラー駆動装置の製造過程においてミラーが破損し難くなるので、歩留まりを高くすることができる。
本開示の他の観点に係るミラー駆動装置の製造方法は、ミラー構造体を用意した後で且つ配線基板と駆動コイルとを電気的に接続する前に、電極にバンプ電極を配置することをさらに含み、配線基板と駆動コイルとを電気的に接続する際には、バンプ電極を配線基板に接続することにより、ミラー構造体及びバンプ電極と、磁性体及び配線基板とを組み立ててもよい。この場合、磁性体と支持部との間にバンプ電極が存在するので、第2の主面と磁性体との離間距離がさらに大きくなる。従って、可動部が揺動する空間をさらに確保することができる。
本開示に係るミラー駆動装置及びその製造方法によれば、可動部においてミラーとは反対側の表面に駆動コイルが配置されている場合に、駆動コイルに作用する磁界を確保しつつ小型化を図ることが可能となる。
図1は、本実施形態に係るミラー駆動装置を示す斜視図である。 図2は、本実施形態に係るミラー駆動装置を示す平面図である。 図3は、図2のII−II線断面図である。 図4は、永久磁石を示す斜視図である。 図5は、配線基板の上面側を示す平面図である。 図6は、ミラー構造体の下面側を示す平面図である。 図7は、図6のVII−VII線断面図である。 図8は、図6のVIII−VIII線断面図である。 図9は、本実施形態に係るミラー駆動装置の製造工程の一部を説明するための図である。 図10は、図9に続く工程を説明するための図である。 図11は、他の例に係る配線基板の上面側を示す平面図である。 図12は、他の例に係るミラー構造体の下面側を示す平面図である。 図13は、他の例に係る配線基板の上面側を示す平面図である。 図14は、駆動コイルの近傍における他の構成例を示す断面図である。 図15は、他の例に係るミラー構造体の上面側を示す平面図である。 図16は、他の例に係るミラー構造体の上面側を示す平面図である。 図17は、他の例に係るミラー構造体を備えるミラー駆動装置を示す斜視図である。 図18は、他の例に係る永久磁石を示す斜視図である。 図19の(a)は、図18のXIXA−XIXA線断面を示し、図19の(b)は、図18のXIXA−XIXA線断面において、永久磁石によって可動部の周囲に形成される磁界の磁束密度の様子を示すグラフである。 図20の(a)は、図18のXXA−XXA線断面を示し、図20の(b)は、図18のXXA−XXA線断面において、永久磁石によって可動部の周囲に形成される磁界の磁束密度の様子を示すグラフである。 図21の(a)は、図18のXXIA−XXIA線断面を示し、図21の(b)は、図18のXXIB−XXIB線断面を示す。 図22は、他の例に係る永久磁石を示す斜視図である。
本発明の実施形態について図面を参照して説明するが、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
ミラー駆動装置1は、図1〜図3に示されるように、永久磁石10と、配線基板12と、ミラー構造体14とを備える。永久磁石10、配線基板12及びミラー構造体14は、図1等に示されるZ軸方向(図1等における上下方向であり、以下では単に「Z軸方向」という。)において、この順で並んでいる。
永久磁石10は、図3及び図4に示されるように、矩形状を呈する平板である。永久磁石10は、後述する可動部22(後述する駆動コイル40,46)の周囲に磁場(磁界)を形成する。永久磁石10の厚さは、例えば2mm〜3mm程度に設定されてもよい。
永久磁石10は、矩形状を呈する一対の主面10a,10bを有する。すなわち、主面10a,10bは、Z軸方向から見て、Z軸方向に直交するX軸方向に沿って延びている一対の辺と、Z軸方向及びX軸方向の双方に直交するY軸方向に沿って延びている一対の辺を有する。主面10a,10bは、平面状を呈している。永久磁石10の主面10a,10bの法線方向は、本実施形態においてZ軸方向と一致する。
永久磁石10は、磁性部10A〜10Cを有する。図4に示されるように、磁性部10A,10Cはそれぞれ、永久磁石10においてその底面の対角線方向における一端側と他端側とに位置している。磁性部10Bは、磁性部10Aと磁性部10Cとの間に位置している。すなわち、磁性部10A〜10Cは、所定の方向においてこの順に並んでいる。
磁性部10Aと磁性部10Bとが接する面により境界面10Dが形成されている。磁性部10Bと磁性部10Cとが接するにより境界面10Eが形成されている。境界面10D,10Eは、Z軸方向に略平行で且つ互いに略平行に延びている。境界面10D,10Eは、X軸方向及びY軸方向の双方に交差している。境界面10D,10Eは、例えば、X軸及びY軸がなす角を二等分する二等分線に直交してもよい。
図3に戻って、磁性部10Aは、互いに異なる極性の磁極10A1,10A2を有する。磁極10A1は、主面10a側に位置している。磁極10A2は、主面10b側に位置している。磁性部10Bは、互いに異なる極性の磁極10B1,10B2を有する。磁極10B1は、境界面10D側に位置している。磁極10B2は、境界面10E側に位置している。磁性部10Cは、互いに異なる極性の磁極10C1,10C2を有する。磁極10C1は、主面10b側に位置している。磁極10C2は、主面10a側に位置している。
本実施形態において、磁極10A1,10B1,10C1はS極である。一方、磁極10A2,10B2,10C2はN極である。そのため、磁性部10Aの内部には、主面10bから主面10aへと向かう反磁場が生じている。磁性部10Bの内部には、境界面10Eから境界面10Dへと向かう反磁場が生じている。磁性部10Cの内部には、主面10aから主面10bへと向かう反磁場が生じている。以上より、主面10aには、主面10aに沿う方向において隣り合って並ぶ磁極10B1(S極)と磁極10B2(N極)との組が現れている。
隣り合う磁性部10A,10Bの間では、反磁場の向きが互いに直交している。隣り合う磁性部10B,10Cの間では、反磁場の向きが互いに直交している。磁性部10Bを間に置いて位置する磁性部10A,10Cでは、反磁場の向きが互いに反対である。このように、磁性部10A〜10Cは、ハルバッハ配列を構成している。従って、永久磁石10の主面10a側であって後述する可動部22の近傍には、磁界が集中的に形成されている。具体的には、永久磁石10の主面10a側であって磁極10B1と磁極10B2との組の境界近傍には、磁界が集中的に形成されている。磁極10B1と磁極10B2との組によって可動部22の周囲に形成される磁界の磁束密度は、磁極10B1と磁極10B2との組の境界近傍において略最大値を示し、当該境界から離れるにつれて小さくなる傾向にある。
配線基板12は、例えば、フレキシブルプリント基板である。配線基板12は、図1、図3及び図5に示されるように、Z軸方向から見て矩形状の外形を有する枠状部材であり、中央部が開口された環状を呈している。配線基板12は、例えば接着剤によって永久磁石10の主面10a上に取り付けられている。配線基板12は、永久磁石10の主面10aにおいて永久磁石10の各辺に沿って延びている。すなわち、配線基板12は、永久磁石10の各辺に対応して、X軸方向に沿って延びている一対の第1の部分12aと、Y軸方向に沿って延びている一対の第2の部分12bとを有する(図5参照)。
一対の第2の部分12bのうち一方における表面12c上には、電極16a〜16dが配置されている。一対の第2の部分12bのうち他方における表面12c上には、電極18a〜18dが配置されている。電極16a〜16d,18a〜18dが配置されている第2の部分12bの表面12cは、第2の部分12bのうち永久磁石10の主面10aと対向する表面12d(図3参照)とは反対側の面、すなわち、ミラー構造体14と対向する面である。
図5に戻って、電極16a〜16dは、後述する駆動コイル40,46と電気的に接続される。一方、電極18a〜18dは、高さ調整用のダミー電極であり、後述する駆動コイル40,46とは電気的に接続されない。
ミラー構造体14は、図3に示されるように、支持部20と、可動部22とを有する。支持部20は、矩形状を呈する枠状部材であり、中央部が開口されている。支持部20の厚さは、例えば250μm〜300μm程度に設定されてもよい。
支持部20は、Z軸方向(永久磁石10の主面10aの法線方向)から見て、永久磁石10の主面10a及び配線基板12と重なり合っている。支持部20は、永久磁石10及び配線基板12と対向する側の表面20aと、表面20aよりも永久磁石10及び配線基板12から離れる側の表面20bとを有する。支持部20は、基部24と、補強部26とを含む。
基部24及び補強部26は共に、矩形状を呈する枠状部材であり、中央部が開口されている。基部24は、支持部20の表面20a側に位置している。基部24の厚さは、可動部22の厚さと略同一である。補強部26は、支持部20の表面20b側に位置している。すなわち、補強部26は、永久磁石10及び配線基板12から離れる側に向けて基部24から延びている。従って、Z軸方向において、支持部20の厚さ(基部24及び補強部26の厚さの合計)は、可動部22の厚さよりも厚い。基部24及び補強部26は共に、例えばSi(シリコン)で構成されてもよい。
基部24の表面20a側には、絶縁層28が配置されている。すなわち、絶縁層28の表面が支持部20の表面20aをなしている。絶縁層28上には、図6に示されるように、配線基板12の電極16a〜16dと対応する位置に電極56a〜56dが配置されており、配線基板12の電極18a〜18dと対応する位置に電極58a〜58dが配置されている。電極58a〜58dは、高さ調整用のダミー電極であり、後述する駆動コイル40,46とは電気的に接続されない。電極56a〜56d,58a〜58dは、基部24(支持部20)のうち永久磁石10寄りの端部に位置している。
図3に示されるように、電極56a〜56dは、対応する電極16a〜16dに対してバンプ電極60によって電気的且つ物理的に接続されている。電極58a〜58dは、対応する電極18a〜18dに対してバンプ電極60によって電気的且つ物理的に接続されている。そのため、バンプ電極60は、配線基板12と支持部20との間に配置されている。
基部24と補強部26との間には、絶縁層30が配置されている。補強部26の表面20b側には、絶縁層32が配置されている。すなわち、絶縁層32の表面が支持部20の表面20bをなしている。絶縁層28,30,32は、例えば二酸化ケイ素(SiO)で構成されていてもよい。
可動部22は、図1〜図3に示されるように、支持部20の内側(開口内)に位置している。可動部22は、永久磁石10側を向く一方の主面と、永久磁石10とは反対側を向く他方の主面とを有する。これらの一対の主面の対向方向は、ミラー駆動装置1の非駆動状態(後述する駆動コイル40,46に電流が流れていない非通電状態)において、Z軸方向と一致する。可動部22は、永久磁石10及び支持部20から離間している。可動部22は、Z軸方向から見て、配線基板12と重なり合っていない。従って、可動部22は、Z軸方向から見て、配線基板12の内側(開口内)に位置している。すなわち、配線基板12は、可動部22の外側に位置している。可動部22は、外側に位置する外側部34と、外側部34の内側に位置するミラー配置部36とを有する。
外側部34は、矩形状を呈する平板状の枠状部材である。外側部34は、ミラー配置部36の外周を囲んでいる。外側部34は、永久磁石10側を向く主面34aと、永久磁石10とは反対側を向く主面34bとを有する。主面34aは、可動部22の一方の主面に含まれており、主面34bは、可動部22の他方の主面に含まれている。
外側部34は、図1、図2及び図6に示されるように、同一直線上に並ぶ一対の連結部材38を介して、支持部20の基部24に対し揺動可能に取り付けられている。すなわち、外側部34は、一対の連結部材38を介して、基部24(支持部20)に対して往復回転運動可能に支持されている。外側部34の揺動角は、例えば±5°〜±10°程度である。連結部材38は、本実施形態において直線状を呈している。
図6に示されるように、外側部34の主面34a側には、駆動コイル40が配置されている。そのため、駆動コイル40は、永久磁石10の主面10aと向かい合っている。駆動コイル40は、主面34aの法線方向から見て、外側部34の主面34a側においてスパイラル状に複数周回巻回されている。駆動コイル40は、ハルバッハ配列をなす磁性部10A〜10B(磁極10B1と磁極10B2との組)によって可動部22の周囲に形成される磁界のうち磁束密度が略最大値を示す領域に位置している部分を有する。駆動コイル40の全体が、当該領域に位置していてもよい。
駆動コイル40の一端は、スパイラル状の駆動コイル40の外側に位置する。駆動コイル40の外側端部には、引き出し導体42aの一端が電気的に接続されている。引き出し導体42aの他端は、連結部材38及び支持部20の表面20a上を延び、電極56dに接続されている。
駆動コイル40の他端は、スパイラル状の駆動コイル40の内側に位置する。駆動コイル40の内側端部には、引き出し導体42bの一端が電気的に接続されている。引き出し導体42bの他端は、連結部材38及び支持部20の表面20a上を延び、電極56bに接続されている。
ミラー配置部36は、矩形状を呈する平板である。ミラー配置部36は、永久磁石10側を向く主面36aと、永久磁石10とは反対側を向く主面36bとを有する。主面36aは、可動部22の一方の主面に含まれており、主面36bは、可動部22の他方の主面に含まれている。
ミラー配置部36は、図1、図2及び図6に示されるように、同一直線上に並ぶ一対の連結部材44を介して、外側部34に対し揺動可能に取り付けられている。すなわち、ミラー配置部36は、一対の連結部材44を介して、外側部34に対して往復回転運動可能に支持されている。ミラー配置部36の揺動角は、例えば±5°〜±10°程度である。連結部材44は、本実施形態において直線状を呈している。一対の連結部材44が並ぶ方向は、Z軸方向から見て、一対の連結部材38が並ぶ方向と略直交している。
図6に示されるように、ミラー配置部36の主面36a側には、駆動コイル46が配置されている。そのため、駆動コイル46は、永久磁石10の主面10aと向かい合っている。駆動コイル46は、主面36aの法線方向から見て、ミラー配置部36の主面36a側においてスパイラル状に複数周回巻回されている。
駆動コイル46の一端は、スパイラル状の駆動コイル46の外側に位置する。駆動コイル46の外側端部には、引き出し導体42cの一端が電気的に接続されている。引き出し導体42cの他端は、連結部材44、外側部34の主面34a上、連結部材38及び支持部20の表面20a上を延び、電極56cに接続されている。
駆動コイル46の他端は、スパイラル状の駆動コイル46の内側に位置する。駆動コイル46の内側端部には、引き出し導体42dの一端が電気的に接続されている。引き出し導体42dの他端は、連結部材44、外側部34の主面34a上、連結部材38及び支持部20の表面20a上を延び、電極56aに接続されている。
図1〜図3に示されるように、ミラー配置部36の主面36b側には、ミラー48が配置されている。ミラー48は、金属薄膜により構成された光反射膜である。ミラー48を構成する金属材料としては、例えばアルミニウム(Al)、金(Au)、銀(Ag)が挙げられる。
図3に示されるように、外側部34、ミラー配置部36及び連結部材38,44のうち永久磁石10に対向する側の表面には、絶縁層50が配置されている。すなわち、絶縁層50の表面が、外側部34の主面34aと、ミラー配置部36の主面36aとをなしている。外側部34、ミラー配置部36及び連結部材38,44のうち永久磁石10とは反対側を向く側の表面には、絶縁層52が配置されている。すなわち、絶縁層52の表面が、外側部34の主面34bと、ミラー配置部36の主面36bとをなしている。ミラー48のうちミラー配置部36の主面36bとは反対側を向く側の表面には、絶縁層54が配置されている。絶縁層50,52,54は、例えば二酸化ケイ素(SiO)で構成されていてもよい。
続いて、駆動コイル46の近傍の構造について、以下に説明する。駆動コイル40の近傍の構造は、駆動コイル46の近傍と同様であるので、その説明を省略する。
図7に示されるように、ミラー配置部36は、基材100と、駆動コイル46と、被覆層102と、絶縁層104とを有する。基材100は、ミラー配置部36の主面36a側の表面に、駆動コイル46に対応する形状を呈する溝部100aを有する。すなわち、溝部100aは、ミラー配置部36の主面36aの法線方向から見てスパイラル状に延びている。基材100の厚さは、例えば20μm〜60μm程度に設定されてもよい。
基材100のうちミラー配置部36の主面36a側の表面と、溝部100aの内壁面とには、絶縁層100bが配置されている。絶縁層100bは、基材100を熱酸化して得られる熱酸化膜である。絶縁層100bは、例えばSiO(酸化シリコン)で構成されてもよい。溝部100aの内壁面であって絶縁層100b上には、シード層100cが配置されている。すなわち、シード層100cは、絶縁層100bと駆動コイル46との間に位置している。シード層100cを構成する金属材料は、例えばTiNであってもよい。
溝部100a内で且つシード層100c上には、駆動コイル46を構成する金属材料が配置されている。当該金属材料としては、例えばCu又はAuが挙げられる。駆動コイル46の厚さは、例えば5μm〜10μm程度に設定されてもよい。
被覆層102は、溝部100aの開口を覆うように、ミラー配置部36の主面36a側の表面上まで延びている。すなわち、被覆層102は、ミラー配置部36の主面36aの法線方向から見て、駆動コイル46のうちミラー配置部36の主面36a側の表面全体を覆うと共に、基材100のうち溝部100aの周囲を覆っている。
被覆層102を構成する金属材料は、駆動コイル46を構成する金属材料の拡散を抑制する機能を有する。被覆層102を構成する金属材料としては、例えばAl又はAlを含む合金が挙げられる。Alを含む合金としては、例えば、Al−Si合金、Al−Cu合金、Al−Si−Cu合金が挙げられる。Al−Si合金の組成比は、例えば、Alが99%、Siが1%であってもよい。Al−Cu合金の組成比は、例えば、Alが99%、Cuが1%であってもよい。Al−Si−Cu合金の組成比は、例えば、Alが98%、Siが1%、Cuが1%であってもよい。被覆層102の厚さは、例えば1μm程度に設定されてもよい。
絶縁層104は、基材100及び被覆層102の上面を覆うように配置されている。絶縁層104を構成する材料としては、例えば、SiO、SiN、TEOSが挙げられる。絶縁層104は、図3に示される絶縁層50と同一の要素である。
続いて、図8を参照して、駆動コイル40の内側端部と引き出し導体42bの一端との接続状態について説明する。駆動コイル40の外側端部と引き出し導体42aの一端との接続状態、駆動コイル46の外側端部と引き出し導体42cの一端との接続状態、及び駆動コイル46の内側端部と引き出し導体42dの一端との接続状態については、駆動コイル40の内側端部と引き出し導体42bの一端との接続状態と同様であるので、それらの説明を省略する。
図8に示されるように、引き出し導体42bの一端が接続される駆動コイル40の内側端部の上方は、絶縁層104によって覆われていない。すなわち、駆動コイル40の内側端部における被覆層102は、絶縁層104に形成された開口部104aを通じて外部に露出している。引き出し導体42bの一端は、この開口部104a内に埋め込まれており、被覆層102と物理的且つ電気的に接続される。引き出し導体42aの他の部分は、絶縁層104上に配置されている。
続いて、図9及び図10を参照して、以上に説明したミラー駆動装置1の製造方法について説明する。
まず、図9の(a)に示されるように、例えば300μm程度のシリコン貼り合わせ基板(いわゆる、SOI基板)を用意する。シリコン貼り合わせ基板は、基板200と、中間層202と、基板204とがこの順に接合されたものである。基板200の厚さは、例えば50μm程度である。中間層202は、シリコン酸化層からなる。中間層202の厚さは、例えば1μm程度である。基板204の厚さは、例えば250μm程度である。
基板204の表面には、熱酸化によりシリコン酸化膜206が形成されている。シリコン酸化膜206の厚さは、例えば0.5μm程度である。次に、基板200の表面に、溝部100aを形成する。溝部100aは、例えば、基板200の表面に所定パターンのマスクを形成し、続いて、当該マスクを介して基板200をエッチングすることにより形成される。
次に、基板200の表面を熱酸化して、絶縁層100bを形成する。次に、溝部100aの内壁面であって絶縁層100b上には、シード層100cを形成する。シード層100cは、駆動コイル46を構成する金属材料に対して付着性を有する緻密な金属材料を、基材100(絶縁層100b)上にスパッタリングすることにより得られる。
次に、溝部100a内に駆動コイル46を形成する。具体的には、駆動コイル46は、ダマシン法により、シード層100c上に金属材料を埋め込むことにより得られる。溝部100a内に金属材料を埋め込むための手法としては、例えば、めっき、スパッタリング、CVDが挙げられる。溝部100a内に金属材料を配置した後に、化学機械研磨によって、基板200の表面(ミラー配置部36の主面36a側の表面)を平坦化してもよい。
次に、溝部100aの開口を覆うように被覆層102を形成する。被覆層102は、例えばスパッタリング法又はCVD法により基板200の表面全体に金属材料を堆積し、続いて、パターニングすることにより得られる。
続いて、図9の(b)に示されるように、絶縁層104を形成する。絶縁層104は、例えば、基板200の表面全体に絶縁材料を堆積した後、駆動コイル40,46の両端部に対応する部分をエッチングにより除去することにより得られる。次に、フォトリソグラフィにより絶縁層104上に引き出し導体42a〜42d及び電極56a〜56d,58a〜58dを形成する。このとき、駆動コイル40,46の両端部と、対応する引き出し導体42a〜42dの端部とが物理的且つ電気的に接続される。
続いて、図9の(c)に示されるように、基板200の所定部分を中間層202に至るまで異方性エッチングにより除去する。次に、基板200が除去されることにより中間層202のうち露出した部分を、ドライエッチングにより除去する。これにより、ミラー48及び絶縁層54以外の可動部22と、基部24、連結部材38,44とが形成される。このとき、絶縁層104が絶縁層28,50となると共に、中間層202が絶縁層30,52となる。
続いて、図10の(a)に示されるように、シリコン酸化膜206及び基板204の所定部分をエッチングにより除去する。これにより、補強部26が形成される。このとき、シリコン酸化膜206が絶縁層32となる。
続いて、図10の(b)に示されるように、絶縁層52上に、ミラー48及び絶縁層54を形成する。これにより、ミラー構造体14が形成される。次に、電極56a〜56d,58a〜58d上に、バンプ電極60をそれぞれ一つずつ接続する。
続いて、図10の(c)に示されるように、永久磁石10と、電極16a〜16d,18a〜18dが表面12cに配置された配線基板12とを用意する。次に、永久磁石10の主面10aと配線基板12の表面12dとが向かい合うように、配線基板12を永久磁石10上に接着剤で取り付ける。
次に、ミラー構造体14を永久磁石10及び配線基板12上に位置決めする。このとき、ミラー配置部36の主面36aは、永久磁石10の主面10aと向かい合う。支持部20の電極56a〜56dは、対応する配線基板12の電極16a〜16dとそれぞれ向かい合う。支持部20の電極58a〜58dは、対応する配線基板12の電極18a〜18dとそれぞれ向かい合う。従って、Z軸方向から見て、配線基板12は、支持部20と永久磁石10との間に位置するが、可動部22とは重なり合っていない。
次に、各バンプ電極60を電極16a〜16d,18a〜18dのそれぞれの上に載置して、各バンプ電極60と、対応する電極16a〜16d,18a〜18dとを接続する。これにより、駆動コイル40,46が、引き出し導体42a〜42d、電極56a〜56d,58a〜58d、バンプ電極60、及び電極16a〜16d,18a〜18dを介して、配線基板12と電気的に接続される。以上により、永久磁石10、配線基板12及びミラー構造体14が組み立てられ、ミラー駆動装置1が完成する。
以上のような本実施形態では、永久磁石10がZ軸方向で主面34a,36aと対向している。そのため、Z軸方向において永久磁石10と可動部22とが隣り合うので、可動部22のうち主面34a,36a側に配置された駆動コイル40,46に永久磁石10が全体として近づく。従って、駆動コイル40,46に作用する磁界を十分に確保することができる。
本実施形態では、駆動コイル40,46が、可動部22から連結部材38,44を経由して支持部20へと延びている引き出し導体42a〜42dによって、支持部20のうち永久磁石10寄りの端部に位置する電極56a〜56d,58a〜58dと接続されている。また、電極56a〜56d,58a〜58dが、Z軸方向から見て支持部20と永久磁石10との間に位置する配線基板12と電気的に接続されている。このように、支持部20と永久磁石10との間に配線基板12が存在することで、支持部20のうち永久磁石10寄りの端部(表面20a)に位置する電極56a〜56d,58a〜58dと配線基板12との電気的な接続が図られる。従って、可動部22においてミラー48とは反対側の表面(主面36a)に駆動コイル40,46が配置されている場合であっても、駆動コイル40,46を外部と電気的に接続することが可能となる。
本実施形態では、Z軸方向から見て、配線基板12は、永久磁石10の主面10a上に配置されているが、可動部22とは重なり合っていない。そのため、支持部20と永久磁石10との間に位置する配線基板12が、可動部22と永久磁石10とを離間させるスペーサとしても機能する。従って、可動部22が揺動するための空間を配線基板12によって確保することができる。加えて、配線基板12が、駆動コイル40,46に電気を供給する本来の機能と、スペーサの機能とを併せ持っているため、ミラー駆動装置1の全体としての小型化を図ることができる。
永久磁石10のうちZ軸方向において支持部20と重なり合う部分を支持部20に向けて突出させることで、永久磁石10にスペーサとしての機能を付与することも考えられる。この場合、永久磁石10の形状が複雑となると共に、永久磁石10によって可動部22の周囲に形成される磁界が複雑となり、当該磁界のうち磁束密度が略最大値を示す領域に駆動コイル40を位置合わせすることが困難となる。しかしながら、本実施形態では、配線基板12がスペーサの機能を有しており、永久磁石10の主面10aが平面状を呈しているので、永久磁石10によって可動部22の周囲に形成される磁界のうち磁束密度が略最大値を示す領域を特定しやすくなる。従って、当該領域に駆動コイル40を位置合わせすることが容易となる。
本実施形態では、基部24のうち永久磁石10と対向する表面側で且つ対向方向から見て補強部26と重なり合う位置に、電極56a〜56d,58a〜58dが配置されている。そのため、配線基板12と駆動コイル40,46とを電気的に接続する際に応力等が発生すると、主として、電極56a〜56d,58a〜58d及び基部24を介して補強部26が当該応力等を受ける。従って、可動部22がその応力等による影響を受け難くなる。
本実施形態では、Z軸方向において、支持部20の厚さは可動部22の厚さよりも厚い。そのため、支持部20の強度がより高まるので、配線基板12と駆動コイル40,46とを電気的に接続する際に応力等が発生しても、可動部22がその応力等の影響をよりいっそう受け難くなる。従って、可動部22の破損を抑制することができる。
本実施形態では、バンプ電極60が、配線基板12と支持部20との間に配置されると共に、配線基板12の電極16a〜16d,18a〜18dと支持部20の電極56a〜56d,58a〜58dとを電気的に接続する。この場合、永久磁石10と支持部20との間にバンプ電極60が存在するので、ミラー配置部36の主面36aと永久磁石10との離間距離がさらに大きくなる。従って、可動部22が揺動する空間をさらに確保することができる。
本実施形態では、被覆層102が、溝部100aの開口を覆っている。また、被覆層102を構成する金属材料が、駆動コイル46を構成する金属材料の拡散を抑制する機能を有する。そのため、駆動コイル40,46を構成する金属材料が絶縁層104に拡散し難くなっており、ショートの発生が防止される。従って、ショートによる導通不良を解消できる。これに伴い、高密度に巻回された駆動コイル40,46が実現されるので、より大きなローレンツ力を駆動コイル40,46に作用させ得る。その結果、ミラー48の可動範囲が大きなミラー駆動装置1を得ることができる。
本実施形態では、駆動コイル46を構成する金属材料がCu又はAuであり、被覆層102を構成する金属材料はAl又はAlを含む合金である。Cu又はAuは、電気抵抗率が低い一方で比較的拡散しやすい材料であるが、被覆層102の存在により、これらの材料の拡散を抑制できる。特に、被覆層102を構成する金属材料がAl又はAlを含む合金であるため、Cu又はAuの拡散が極めて良好に抑制される。そのため、駆動コイル40,46の電機抵抗率を下げつつショートの発生を防止できる。
本実施形態では、永久磁石10、配線基板12及びミラー構造体14を組み立てる前に、配線基板12を永久磁石10上に接着剤で取り付けている。この場合、ミラー駆動装置1の製造にあたり、支持部20が配線基板12に重なるようにミラー構造体14を配線基板12上に載置すればよい。そのため、ミラー駆動装置1の製造時に、強度の小さいミラー48に負荷がほとんど作用しない。従って、ミラー駆動装置1の製造過程においてミラー48が破損し難くなるので、歩留まりを高くすることができる。
本実施形態では、外側部34は、同一直線上に並ぶ一対の連結部材38を介して、支持部20の基部24に対し揺動可能に取り付けられており、ミラー配置部36は、同一直線上に並ぶ一対の連結部材44を介して、外側部34に対し揺動可能に取り付けられている。一対の連結部材44が並ぶ方向は、Z軸方向から見て、一対の連結部材38が並ぶ方向と略直交しているので、外側部34とミラー配置部36とは、異なる揺動軸に関して揺動する。そのため、ミラー48の反射光を2次元的に走査することが可能となる。
ところで、ミラー48の反射光を2次元的に走査する際、当該反射光を第1の走査方向に沿って高速に走査するためにミラー配置部36を素早く揺動させると共に、第1の走査方向と交差(例えば略直交)する第2の走査方向に沿って間欠的に当該反射光を走査するために外側部34をミラー配置部36よりも大きな振れ角で揺動させることが考えられる。このとき、本実施形態では、永久磁石10の主面10a側であって磁極10A1,10B1と磁極10B2,10C2との組によって可動部22の周囲に形成される磁界のうち磁束密度が略最大値を示す領域に位置する部分を有している。そのため、外側部34に配置される駆動コイル40に流す電流の大きさを小さくしつつ、駆動コイル40に作用するローレンツ力を大きくすることができる。従って、外側部34の振れ角を大きくしつつ、低消費電力を図ることが可能となる。
本実施形態では、Z軸方向から見て、駆動コイル40は、ハルバッハ配列を構成する磁性部10A〜10Cによって可動部22の周囲に形成される磁界のうち磁束密度が略最大値を示す上記領域に位置している部分を有している。そのため、ハルバッハ配列を構成する磁性部10A〜10Cにより、駆動コイル40の近傍における磁束密度がより大きくなる。
以上、本発明の実施形態について詳細に説明したが、本発明の要旨の範囲内で種々の変形を上記の実施形態に加えてもよい。例えば、ミラー駆動装置1は、ダミー電極として機能する電極18a〜18d,58a〜58dを有していなくてもよい。この場合、例えば図11に示されるように、配線基板12の一方の第2の部分12bの表面12c上に2つの電極16a,16dが配置され、配線基板12の他方の第2の部分12bの表面12c上に2つの電極16b,16cが配置されていてもよい。このとき、支持部20の表面20aに配置される電極56a〜56dは、図12に示されるように、電極16a〜16dに対応する位置に配置される。このように、一方に偏ることなく電極18a〜18d,58a〜58dが配置されていると、ミラー構造体14を永久磁石10及び配線基板12上に配置するときに、ミラー構造体14が永久磁石10及び配線基板12に対して傾いてしまうことを抑制できる。
図示はしていないが、配線基板12の一方の第1の部分12aの表面12c上に2つの電極16a,16dが配置され、配線基板12の他方の第1の部分12aの表面12c上に2つの電極16b,16cが配置されていてもよい。同じく図示はしていないが、配線基板12の各部分12a,12bのそれぞれに、電極16a〜16dが一つずつ配置されていてもよい。これらの場合にも、支持部20の表面20aに配置される電極56a〜56dは、電極16a〜16dに対応する位置に配置される。
配線基板12の形状は、環状を呈していなくてもよい。例えば、図13に示されるように、配線基板12は、2つの部材12A,12Bで構成されていてもよい。図13の(a)に示される部材12A,12Bは共に、C字形状を呈する。図13の(b)に示される部材12A,12Bは共に、直線状を呈する。すなわち、本明細書において「枠状」とは、無端環状の枠部材そのもののみならず、当該無端環状の枠部材の少なくとも一部が切断された複数の部分からなる一組の部材も含む。枠状の配線基板12は、永久磁石10の周縁に沿って延びていてもよい。
図13に示されるように、部材12Aの表面12c上には、電極16a〜16dが配置されている。部材12Bの表面12c上には、電極18a〜18dが配置されている。配線基板12が3つ以上の部材で構成されていてもよい。配線基板12が複数の部材で構成されている場合であっても、配線基板12は、支持部20と永久磁石10との間に位置しており、可動部22と永久磁石10との間には位置していない。これにより、可動部22と永久磁石10との間に可動部22が揺動するための空間を設けることができ、可動部22の揺動が配線基板12によって阻害されない。
図13に示される2つの部材12A,12Bは、可動部22の主面の対向方向(Z軸方向)に直交する一の方向(X軸方向)において並んでおり、Z軸方向及び一の方向(X軸方向)の双方に直交する他の方向(Y軸方向)において延びていてもよい。部材12A上に配置されている複数の電極16a〜16dと、部材12B上に配置されている複数の電極18a〜18dとは、X軸方向においてそれぞれ対向している。電極16a〜16dは、Y軸方向において並んでいる。電極18a〜18dはY軸方向において並んでいる。この場合も、一対の部材12A,12Bの間に可動部22が揺動するための空間を設けることができ、可動部22の揺動が配線基板12によって阻害されない。加えて、第1の方向において対となっている複数の電極16a〜16d,18a〜18dによって、支持部20がバランスよく支持される。X軸方向において対向し且つY軸方向に延びる一対の部分又は部材を有していれば、無端環状の枠部材の場合でも、当該無端環状の枠部材の少なくとも一部が切断された複数の部分からなる一組の部材の場合でも、当該効果を奏する。また、電極がダミー電極の場合でも、当該効果を奏する。
配線基板12の他に、基部24や補強部26が枠状を呈していてもよいし、支持部20が全体として枠状を呈していてもよい。ここでいう「枠状」も、上記と同様に、無端環状の枠部材そのもののみならず、当該無端環状の枠部材の少なくとも一部が切断された複数の部分からなる一組の部材も含む。
駆動コイル40,46の近傍の構造に関して、例えば図14に示されるように、溝部100aの開口を被覆層102で覆う代わりに、基材100の表面全体を絶縁層106,108で覆うようにしてもよい。絶縁層106は、例えばSiNで構成されてもよい。絶縁層106の厚さは、例えば50nm程度以上に設定されてもよい。絶縁層106の厚さは、例えば500nm程度以下に設定されてもよい。この場合、絶縁層106によって、駆動コイル46を構成する金属材料の拡散が抑制される。絶縁層108は、例えばSiOで構成されていてもよい。絶縁層108の厚さは、例えば500nm以上に設定されてもよい。
上記実施形態では、直線状の連結部材38を一例に説明したが、連結部材38の構成はこれに限られず、他の形状であってもよい。連結部材38の他の例として、蛇行形状を呈する連結部材38を図15〜図17に示す。ここで、図16に示されるように、連結部材44は、外側部34に向けてX軸方向に沿って直線状に延び、二叉に分岐した後に、Y軸方向に沿って延びていてもよい。この場合、X軸方向における連結部材44の長さを短くすることができる。
図17に示されるように、外側部34の主面34b上に一対の梁部材62が配置されていてもよい。梁部材62は、図17において、Z軸方向から見て、一対の連結部材44が並ぶ方向(一対の連結部材38が並ぶ直線と直交する直線)に沿って延びる突条である。梁部材62の高さは、補強部26の高さと同等となるように設定してもよい。この場合、ミラー配置部36の揺動によって外側部34に生ずる荷重が梁部材62によって支持されるので、外側部34に生ずる撓みを抑制することができる。その結果、外側部34の強度の向上が図られる。なお、外側部34の強度向上を図ることができれば、梁部材62の形状は突条のように細長くなくてもよい。すなわち、梁部材62は、一対の連結部材44が並ぶ方向において外側部34の一端近傍から他端近傍まで延びていなくてもよい。例えば、一対の連結部材44が並ぶ方向において、複数の梁部材62が互いに離間した状態で並んでいてもよい。
永久磁石10の主面10a側であって可動部22の近傍に磁界を集中的に形成することができれば、永久磁石10がハルバッハ配列を構成する磁性部10A〜10Cによって構成されていなくてもよい。他の例に係る永久磁石10について、図18〜図21を参照して説明する。他の例に係る永久磁石10は、磁性部10F〜10Lを有する。
磁性部10Fと磁性部10Gとは、可動部22の主面の対向方向(Z軸方向)と直交する第1の方向(X軸方向)に沿って隣り合っている。磁性部10Kと磁性部10Lとは、当該第1の方向(X軸方向)に沿って隣り合っている。磁性部10H10J,10Iは、当該対向方向及び当該第1の方向の双方に直交する第2の方向(Y軸方向)に沿って隣り合うように、この順に並んでいる。
磁性部10H〜10Jは、当該第1の方向において、磁性部10Gと磁性部10Kとの間に位置すると共に、磁性部10Gと磁性部10Kとによって挟持されている。従って、磁性部10H〜10Jは、当該第1の方向において磁性部10G,10Kと隣り合っている。
磁性部10Fと磁性部10Gとが接する面により境界面10Mが形成されている。磁性部10Gと磁性部10H〜10Jとが接する面により境界面10Nが形成されている。磁性部10Hと磁性部10Jとが接する面により境界面10Oが形成されている。磁性部10Iと磁性部10Jとが接する面により境界面10Pが形成されている。磁性部10Kと磁性部10H〜10Jとが接する面により境界面10Qが形成されている。磁性部10Kと磁性部10Lとが接する面により境界面10Rが形成されている。境界面10M,10N,10Q,10Rは、X軸方向に略直交している。境界面10O,10Pは、Y軸方向に略直交している。
磁性部10Fは、図19の(a)及び図21に示されるように、互いに異なる極性の磁極10F1,10F2を有する。磁極10F1は、N極であり、主面10a側に位置している。磁極10F2は、S極であり、主面10b側に位置している。すなわち、磁性部10Fの磁化の向きは、主面10b側から主面10a側に向かっている。
磁性部10Gは、図19の(a)及び図21に示されるように、互いに異なる極性の磁極10G1,10G2を有する。磁極10G1は、S極であり、主面10a側に位置している。磁極10G2は、N極であり、主面10b側に位置している。すなわち、磁性部10Gの磁化の向きは、主面10a側から主面10b側に向かっている。
磁性部10Hは、図20の(a)及び図21の(b)に示されるように、互いに異なる極性の磁極10H1,10H2を有する。磁極10H1は、S極であり、主面10a側に位置している。磁極10H2は、N極であり、主面10b側に位置している。すなわち、磁性部10Hの磁化の向きは、主面10a側から主面10b側に向かっている。
磁性部10Iは、図20の(a)及び図21の(a)に示されるように、互いに異なる極性の磁極10I1,10I2を有する。磁極10I1は、N極であり、主面10a側に位置している。磁極10I2は、S極であり、主面10b側に位置している。すなわち、磁性部10Iの磁化の向きは、主面10b側から主面10a側に向かっている。
磁性部10Jは、図19の(a)及び図20の(a)に示されるように、着磁されていない。そのため、磁性部10J内において磁気モーメントが打ち消し合い、磁性部10Jにおける磁化が略0となっている。
磁性部10Kは、図19の(a)及び図21に示されるように、互いに異なる極性の磁極10K1,10K2を有する。磁極10K1は、N極であり、主面10a側に位置している。磁極10K2は、S極であり、主面10b側に位置している。すなわち、磁性部10Kの磁化の向きは、主面10b側から主面10a側に向かっている。
磁性部10Lは、図19の(a)及び図21に示されるように、互いに異なる極性の磁極10L1,10L2を有する。磁極10L1は、S極であり、主面10a側に位置している。磁極10L2は、N極であり、主面10b側に位置している。すなわち、磁性部10Lの磁化の向きは、主面10a側から主面10b側に向かっている。
以上より、主面10aには、第1の方向において隣り合って並ぶ磁極10F1(N極)と磁極10G1(S極)との組が現れている。主面10aには、第1の方向において隣り合って並ぶ磁極10K1(N極)と磁極10L1(S極)との組が現れている。そのため、永久磁石10の主面10a側であって可動部22の近傍には、磁界が集中的に形成されている。当該磁界における磁束密度は、図19の(b)に示されるように、第1の方向(X軸方向)において、永久磁石10の主面10a側であって磁極10F1と磁極10G1との組の境界(境界面10M)近傍と、永久磁石10の主面10a側であって磁極10K1と磁極10L1との組の境界(境界面10R)近傍とで特に大きく、これらの境界から離れるにつれて小さくなる傾向にある。また、当該磁界における磁束密度は、図20の(b)に示されるように、第2の方向(Y軸方向)において、永久磁石10の主面10a側であって磁極10H1と磁極10I1との間(磁性部10J)で特に大きく、磁性部10Jから離れるにつれて小さくなる傾向にある。
上記の他の例に係る永久磁石10を用いた場合も、駆動コイル40は、磁性部10F〜10Lによって可動部22の周囲に形成される磁界のうち磁束密度が略最大値を示す第1の領域に位置している部分を有する。そのため、特定の状態に配列された磁性部10F〜10Lにより、駆動コイル40の近傍により大きな磁束密度を形成することができる。
一方、上記の他の例に係る永久磁石10を用いた場合、駆動コイル46は、上記第1の領域ではない第2の領域に位置している部分を有する。換言すると、駆動コイル46は、対向方向から見て、境界面10Mと境界面10Rとの間に位置している。ミラー配置部36の共振周波数に対応する周波数の電流を駆動コイル46に流し、反射光を第1の走査方向に沿って高速に走査する場合には、ミラー配置部36は共振によって揺動するので、ミラー配置部36を揺動させるために駆動コイル46に大きなローレンツ力が作用しなくてもよい。そのため、駆動コイル46が上記第2の領域に位置している部分を有していると、駆動コイル40が上記第1の領域に位置しやすくなる。従って、駆動コイル40に作用するローレンツ力をさらに大きくすることができる。
上記の他の例に係る永久磁石10は、着磁されていない磁性部10Jを有していたが、図22に示されるように、当該磁性部10Jを有していなくてもよい。この場合、磁性部10Hと磁性部10Iとは、第2の方向(Y軸方向)に沿って隣り合っており、磁性部10Hと磁性部10Iとが接する面により境界面10Sが形成されている。
ミラー48の形状は、円形でもよいし、多角形(例えば、四角形や八角形)でもよい。
バンプ電極60の形状は、例えば、球状、半球状、柱状、錐体状、これらが部分的に切除された形状であってもよい。
強磁性体やフェリ磁性体を着磁して永久磁石10を得てもよい。
配線基板12は、支持部20と永久磁石10との間に配置されていれば、永久磁石10の主面10aに直接載置されていなくてもよい。この場合でも、支持部20と永久磁石10との間に位置する配線基板12が、可動部22と永久磁石10とを離間させるスペーサとして機能する。従って、可動部22が揺動するための空間を配線基板12によって確保することができる。
ミラー駆動装置1の製造過程において、駆動コイル40,46を形成した後にミラー48を形成してもよい。
ミラー駆動装置1の製造過程において、上記実施形態とは異なる順序で、永久磁石10、配線基板12及びミラー構造体14を組み立ててもよい。例えば、まず、得られたミラー構造体14の電極56a〜56d,58a〜58d上に、バンプ電極60をそれぞれ一つずつ接続する。次に、永久磁石10に取り付けられていない配線基板12を用意して、配線基板12の電極16a〜16d,18a〜18dと各バンプ電極60とをそれぞれ接続する。次に、配線基板12の表面12dを、永久磁石10の主面10aと接着剤等で接続する。
電極16a〜16d,18a〜18dと電極56a〜56d,58a〜58dとの電気的な接続は、バンプ電極60に限られず、例えば導電性接着フィルムを用いてもよい。
1…ミラー駆動装置、10…永久磁石、10A〜10C…磁性部、10a,10b…主面、12…配線基板、14…ミラー構造体、16a〜16d…電極、18a〜18d…電極、20…支持部、22…可動部、24…基部、26…補強部、36…ミラー配置部、36a,36b…主面、38,44…連結部材、40,46…駆動コイル、42a〜42d…引き出し導体、48…ミラー、56a〜56d…電極、58a〜58d…電極、60…バンプ電極、100…基材、100a…溝部、102…被覆層、104…絶縁層。

Claims (16)

  1. 枠状を呈する支持部と、
    前記支持部の内側に位置し且つ対向する第1及び第2の主面を有し、連結部材を介して前記支持部に揺動可能に支持された可動部と、
    前記第1及び第2の主面が対向する対向方向で前記支持部及び前記第2の主面と対向するように位置し、前記可動部の周囲に磁場を形成する磁性体と、
    枠状を呈しており、前記対向方向から見て前記可動部が内側に位置するように、前記対向方向で前記支持部と前記磁性体との間に配置されている配線基板とを備え、
    前記可動部は、
    前記第1及び第2の主面を含む基材と、
    前記第1の主面側に配置されたミラーと、
    前記磁性体と向かい合うように前記第2の主面側に配置された駆動コイルとを有し、
    前記支持部は、
    枠状を呈しており、前記連結部材と接続された基部と、
    枠状を呈しており、前記対向方向で前記磁性体及び前記配線基板から離れる方向に前記基部から延びている補強部と、
    前記基部のうち前記磁性体と対向する表面側で且つ前記対向方向から見て前記可動部を間において向かい合うように配置された第1及び第2の電極とを有し、
    前記補強部と、前記基部と、前記第1の電極と、前記配線基板と、前記磁性体とは前記対向方向においてこの順に重なり合うように配置されていると共に、前記補強部と、前記基部と、前記第2の電極と、前記配線基板と、前記磁性体とは前記対向方向においてこの順に重なり合うように配置されており、
    前記駆動コイルは、前記可動部から前記連結部材を経由して前記支持部へと延びている引き出し導体によって、前記第1及び第2の電極のうち少なくとも一方電気的に接続され、
    前記第1及び第2の電極は、前記配線基板と電気的且つ物理的に接続されている、ミラー駆動装置。
  2. 前記配線基板は、前記磁性体のうち前記第2の主面と向かい合う表面上に配置されている、請求項1に記載のミラー駆動装置。
  3. 前記対向方向において、前記基部及び前記補強部の厚さの合計は前記可動部の厚さよりも厚い、請求項1又は2に記載のミラー駆動装置。
  4. 前記配線基板と前記支持部との間に配置されると共に、前記配線基板と前記第1及び第2の電極とを接続するバンプ電極をさらに備える、請求項1〜3のいずれか一項に記載のミラー駆動装置。
  5. 前記基材は、前記第2の主面側に位置し且つ前記第2の主面に直交する方向から見てスパイラル状に延びている溝部を含み、
    前記駆動コイルは、前記溝部内に配置された第1の金属材料によって構成されると共に、前記第2の主面に直交する方向から見てスパイラル状に巻回されている、請求項1〜4のいずれか一項に記載のミラー駆動装置。
  6. 前記可動部は、
    前記溝部の開口を覆うと共に、前記第1の金属材料の拡散を抑制する第2の金属材料で構成された被覆層と、
    前記第2の主面上及び前記被覆層上に配置された絶縁層とをさらに有する、請求項5に記載のミラー駆動装置。
  7. 前記第1の金属材料はCu又はAuであり、
    前記第2の金属材料はAl又はAlを含む合金である、請求項6に記載のミラー駆動装置。
  8. 前記可動部は、前記溝部の開口を覆う絶縁層をさらに有する、請求項5又は6に記載のミラー駆動装置。
  9. 前記絶縁層を構成する材料はSiNであり、
    前記絶縁層の厚さは50nm以上である、請求項8に記載のミラー駆動装置。
  10. 前記可動部は、
    前記基材のうち前記ミラーが配置された部分を含むミラー配置部と、
    前記基材のうち前記ミラー配置部の外周を囲む枠状の部分を含む外側部と、
    2つの前記駆動コイルとを有し、
    前記外側部は、前記連結部材を介して前記支持部に揺動可能に支持され、
    前記ミラー配置部は、前記連結部材と交差する方向に延びる他の連結部材を介して前記外側部に揺動可能に支持され、
    2つの前記駆動コイルはそれぞれ、前記第2の主面に直交する方向から見てスパイラル状に巻回され、
    2つの前記駆動コイルのうち一方の駆動コイルは、前記ミラー配置部のうち前記第2の主面側に配置され、
    2つの前記駆動コイルのうち他方の駆動コイルは、前記外側部のうち前記第2の主面側に配置され、
    前記磁性体のうち前記第2の主面に向かい合う側の表面には、当該表面に沿う方向において隣り合って並ぶS極及びN極からなる磁極の組が現れており、
    前記他方の駆動コイルは、前記磁極の組によって前記可動部の周囲に形成される磁界のうち磁束密度が略最大値を示す第1の領域に位置する部分を有する、請求項1〜9のいずれか一項に記載のミラー駆動装置。
  11. 前記磁性体は、所定の方向に沿ってハルバッハ配列を構成するように順に並ぶ第1〜第3の磁性部を有し、
    前記他方の駆動コイルは、前記第1の領域に位置している部分を有する、請求項10に記載のミラー駆動装置。
  12. 前記磁性体は、前記対向方向と直交する第1の方向に沿って隣り合う第1及び第2の磁性部と、前記第1の方向に沿って隣り合う第3及び第4の磁性部と、前記対向方向及び前記第1の方向の双方に直交する第2の方向に沿って並ぶ第5及び第6の磁性部とを有し、
    前記第5及び第6の磁性部は、前記第2の磁性部と前記第3の磁性部との間に位置すると共に、前記第1の方向において前記第2及び第3の磁性部と隣り合い、
    前記第1、第3及び第5の磁性部の磁化の向きはいずれも、前記第1の主面側から前記第2の主面側に向かい、
    前記第2、第4及び第6の磁性部の磁化の向きはいずれも、前記第2の主面側から前記第1の主面側に向かい、
    前記他方の駆動コイルは、前記第1の領域に位置している部分を有する、請求項10に記載のミラー駆動装置。
  13. 前記一方の駆動コイルは、前記第1の領域ではない第2の領域に位置している部分を有する、請求項12に記載のミラー駆動装置。
  14. 枠状を呈する配線基板を用意することと、
    枠状を呈する支持部と、前記支持部の内側に位置し且つ対向する第1及び第2の主面を有し、連結部材を介して前記支持部に揺動可能に支持された可動部とを備え、前記可動部は、前記第1及び第2の主面を含む基材と、前記第1の主面側に配置されたミラーと、前記第2の主面側に配置された駆動コイルとを有し、前記支持部は、枠状を呈しており、前記連結部材と接続された基部と、枠状を呈しており、前記第1及び第2の主面が対向する対向方向で前記第2の主面から前記第1の主面へと向かう方向に向けて前記基部から延びている補強部と、前記基部のうち前記補強部とは反対側に位置する表面側で且つ前記対向方向から見て前記可動部を間において向かい合うように配置された第1及び第2の電極とを有し、前記駆動コイルは、前記可動部から前記連結部材を経由して前記支持部へと延びている引き出し導体によって、前記第1及び第2の電極のうち少なくとも一方電気的に接続された、ミラー構造体を用意することと、
    前記可動部の周囲に磁場を形成する磁性体を用意することと、
    前記磁性体が前記対向方向で前記支持部及び前記第2の主面と対向して配置され、前記補強部と、前記基部と、前記第1の電極と、前記配線基板と、前記磁性体とが前記対向方向においてこの順に重なり合って配置され、前記補強部と、前記基部と、前記第2の電極と、前記配線基板と、前記磁性体とが前記対向方向においてこの順に重なり合って配置されるように、前記ミラー構造体、前記磁性体及び前記配線基板を組み立て、前記第1及び第2の電極を前記配線基板と電気的且つ物理的に接続することとを含む、ミラー駆動装置の製造方法。
  15. 前記ミラー構造体を用意した後で且つ前記配線基板と前記駆動コイルとを電気的に接続する前に、前記磁性体の表面上の一部に前記配線基板を配置することをさらに含む、請求項14に記載の方法。
  16. 前記ミラー構造体を用意した後で且つ前記配線基板と前記駆動コイルとを電気的に接続する前に、前記第1及び第2の電極にバンプ電極を配置することをさらに含み、
    前記配線基板と前記駆動コイルとを電気的に接続する際には、前記バンプ電極を前記配線基板に接続することにより、前記ミラー構造体及び前記バンプ電極と、前記磁性体及び前記配線基板とを組み立てる、請求項14又は15に記載の方法。
JP2014133698A 2014-06-30 2014-06-30 ミラー駆動装置及びその製造方法 Active JP6479354B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014133698A JP6479354B2 (ja) 2014-06-30 2014-06-30 ミラー駆動装置及びその製造方法
PCT/JP2015/066752 WO2016002453A1 (ja) 2014-06-30 2015-06-10 ミラー駆動装置及びその製造方法
EP15814142.4A EP3163352B1 (en) 2014-06-30 2015-06-10 Mirror drive device and method for producing same
US15/316,549 US10549981B2 (en) 2014-06-30 2015-06-10 Mirror drive device and method for producing same
JP2019019899A JP6923575B2 (ja) 2014-06-30 2019-02-06 ミラー駆動装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133698A JP6479354B2 (ja) 2014-06-30 2014-06-30 ミラー駆動装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019019899A Division JP6923575B2 (ja) 2014-06-30 2019-02-06 ミラー駆動装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2016012042A JP2016012042A (ja) 2016-01-21
JP6479354B2 true JP6479354B2 (ja) 2019-03-06

Family

ID=55019002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133698A Active JP6479354B2 (ja) 2014-06-30 2014-06-30 ミラー駆動装置及びその製造方法

Country Status (4)

Country Link
US (1) US10549981B2 (ja)
EP (1) EP3163352B1 (ja)
JP (1) JP6479354B2 (ja)
WO (1) WO2016002453A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9819253B2 (en) 2012-10-25 2017-11-14 Intel Corporation MEMS device
US10516773B2 (en) 2016-10-13 2019-12-24 Samsung Electro-Mechanics Co., Ltd. Camera module and portable electronic device including the same
JP6884322B2 (ja) 2016-10-31 2021-06-09 国立大学法人福井大学 2次元光走査ミラー装置の製造方法
KR102046472B1 (ko) 2017-02-15 2019-11-19 삼성전기주식회사 손떨림 보정 반사모듈 및 이를 포함하는 카메라 모듈
KR102046473B1 (ko) 2017-03-08 2019-11-19 삼성전기주식회사 손떨림 보정 반사모듈 및 이를 포함하는 카메라 모듈
EP3598622B1 (en) * 2017-03-13 2023-08-09 Pioneer Corporation Drive device and distance measuring device
KR101892857B1 (ko) 2017-06-12 2018-08-28 삼성전기주식회사 손떨림 보정 반사모듈 및 이를 포함하는 카메라 모듈
JP7112876B2 (ja) 2017-07-06 2022-08-04 浜松ホトニクス株式会社 光学デバイス
CN110799884B (zh) 2017-07-06 2022-03-01 浜松光子学株式会社 光学装置
US11624605B2 (en) 2017-07-06 2023-04-11 Hamamatsu Photonics K.K. Mirror unit and optical module
WO2019009397A1 (ja) 2017-07-06 2019-01-10 浜松ホトニクス株式会社 光学デバイス
TWI822686B (zh) 2017-07-06 2023-11-21 日商濱松赫德尼古斯股份有限公司 光學裝置
JP7015653B2 (ja) * 2017-08-10 2022-02-03 浜松ホトニクス株式会社 光モジュール、及び、光モジュールの製造方法
KR101942743B1 (ko) 2017-10-31 2019-01-28 삼성전기 주식회사 손떨림 보정 반사모듈 및 이를 포함하는 카메라 모듈
US11906727B2 (en) 2017-11-15 2024-02-20 Hamamatsu Photonics K.K. Optical device production method
JP1625135S (ja) * 2018-05-01 2019-03-18
USD903614S1 (en) 2018-05-01 2020-12-01 Hamamatsu Photonics K.K. Laser beam reflector
JP1680385S (ja) * 2018-05-01 2021-03-01
JP1680755S (ja) 2018-05-01 2021-03-08
JP1680388S (ja) * 2018-05-01 2021-03-01
JP1639597S (ja) * 2018-05-01 2019-08-19
JP1680386S (ja) * 2018-05-01 2021-03-01
JP1680387S (ja) * 2018-05-01 2021-03-01
JP1625495S (ja) 2018-05-01 2019-03-18
JP1680507S (ja) * 2018-05-01 2021-03-08
USD907085S1 (en) * 2018-05-01 2021-01-05 Hamamatsu Photonics K.K. Laser beam reflector
CN209928110U (zh) * 2018-07-13 2020-01-10 台湾东电化股份有限公司 光学组件驱动机构及光学组件驱动系统
KR20210040047A (ko) * 2018-08-10 2021-04-12 하마마츠 포토닉스 가부시키가이샤 액추에이터 장치, 및 액추에이터 장치의 제조 방법
JP7313831B2 (ja) * 2019-01-30 2023-07-25 浜松ホトニクス株式会社 光モジュール
JP6960978B2 (ja) * 2019-12-02 2021-11-05 三菱電機株式会社 ミラーデバイス
WO2024070417A1 (ja) * 2022-09-28 2024-04-04 富士フイルム株式会社 マイクロミラーデバイス及び光走査装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414498B2 (ja) 1997-12-09 2010-02-10 オリンパス株式会社 光偏向器
JP4516673B2 (ja) 2000-07-28 2010-08-04 シチズンファインテックミヨタ株式会社 プレーナ型ガルバノミラーの製造方法
US20020130561A1 (en) * 2001-03-18 2002-09-19 Temesvary Viktoria A. Moving coil motor and implementations in MEMS based optical switches
FI20020671A (fi) * 2002-04-09 2003-10-10 Stora Enso Oyj Menetelmä ja laitteisto kartongista valmistettavan tuotteen muovaamiseen
JP2004102267A (ja) * 2002-08-21 2004-04-02 Canon Inc 揺動装置、揺動装置を用いた光偏向器、及び光偏向器を用いた画像表示装置、画像形成装置、並びにその製法
JP2005164859A (ja) 2003-12-01 2005-06-23 Olympus Corp 光偏向器アレイ
KR20060108395A (ko) * 2005-04-13 2006-10-18 삼성전자주식회사 광스캐너 배선 구조 및 제조방법
KR100908120B1 (ko) * 2006-11-01 2009-07-16 삼성전기주식회사 전자기 마이크로 액츄에이터
KR100868759B1 (ko) * 2007-01-25 2008-11-17 삼성전기주식회사 멤스 디바이스 및 이의 제조방법
JP2010169948A (ja) * 2009-01-23 2010-08-05 Sumitomo Precision Prod Co Ltd 光走査装置用揺動ミラー、揺動状態検出装置、及び、光走査装置
US8130436B2 (en) * 2009-02-17 2012-03-06 Prysm, Inc. Flexure actuator
JP5942225B2 (ja) * 2012-02-27 2016-06-29 ミツミ電機株式会社 アクチュエータ及び光走査装置
JP6075062B2 (ja) * 2012-12-27 2017-02-08 セイコーエプソン株式会社 アクチュエーター、光スキャナーおよび画像形成装置

Also Published As

Publication number Publication date
WO2016002453A1 (ja) 2016-01-07
US10549981B2 (en) 2020-02-04
JP2016012042A (ja) 2016-01-21
US20180148314A1 (en) 2018-05-31
EP3163352A1 (en) 2017-05-03
EP3163352A4 (en) 2018-02-14
EP3163352B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
JP6479354B2 (ja) ミラー駆動装置及びその製造方法
WO2014109170A1 (ja) ミラー駆動装置
US10394017B2 (en) Actuator device and mirror drive device
US9766448B2 (en) Mirror drive device
TWI416168B (zh) 光學多環掃描元件
WO2017126289A1 (ja) アクチュエータ装置
US20080100898A1 (en) Electromagnetic micro-actuator
CN102193189B (zh) 光学多环扫描元件
JP6175305B2 (ja) ミラー駆動装置
JPH08334723A (ja) 光偏向素子
JP6463447B2 (ja) ミラー駆動装置
JP6923575B2 (ja) ミラー駆動装置及びその製造方法
WO2014162521A1 (ja) アクチュエータ
JP3712563B2 (ja) 光ディスクドライブの対物レンズ駆動装置
JP2011128173A (ja) Memsアクチュエータ
JP2012212581A (ja) Memsリレー
JP2011096409A (ja) 接点装置及びそれを用いたリレー、並びにマイクロリレー
JP2011096410A (ja) 接点装置及びそれを用いたリレー、並びにマイクロリレー
JP2012182081A (ja) Memsリレー
JP2012174516A (ja) Memsリレー
JP2012212582A (ja) Memsリレー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6479354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250