JP6441508B2 - 超伝導フラッタコイル及び非磁性補強を有する等時性サイクロトロン - Google Patents

超伝導フラッタコイル及び非磁性補強を有する等時性サイクロトロン Download PDF

Info

Publication number
JP6441508B2
JP6441508B2 JP2017561955A JP2017561955A JP6441508B2 JP 6441508 B2 JP6441508 B2 JP 6441508B2 JP 2017561955 A JP2017561955 A JP 2017561955A JP 2017561955 A JP2017561955 A JP 2017561955A JP 6441508 B2 JP6441508 B2 JP 6441508B2
Authority
JP
Japan
Prior art keywords
superconducting
coil
flutter
coils
isochronous cyclotron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017561955A
Other languages
English (en)
Other versions
JP2018524764A (ja
Inventor
アンタヤ,ティモシー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Antaya Science & Technology
Original Assignee
Antaya Science & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Antaya Science & Technology filed Critical Antaya Science & Technology
Publication of JP2018524764A publication Critical patent/JP2018524764A/ja
Application granted granted Critical
Publication of JP6441508B2 publication Critical patent/JP6441508B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Particle Accelerators (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Optics & Photonics (AREA)

Description

電極のペア及び磁石構造からの電界衝撃を使用して外向きの螺旋においてイオン(帯電粒子)を加速するサイクロトロンは、米国特許第1,948,384号明細書(発明者がErnest O.Lawrenceである1934年に発行された特許)において開示されている。Lawrenceの加速器設計は、いまでは、一般に、「古典」的なサイクロトロンと呼称されており、この場合には、電極が、固定された加速周波数を提供すると共に、磁界が、半径の増大に伴って減少することにより、軌道運動するイオンの垂直方向の位相安定性を維持するための「弱い合焦」を提供されている。
最近のサイクロトロンの1つタイプは、「等時性」を有することを特徴とした種類であり、この場合には、電極によって提供される加速周波数は、古典的なサイクロトロンと同様に、固定されているものの、相対性について補償するべく、磁界が半径の増大に伴って増大しており、且つ、イオン加速の際に、セクタ周期性を有する成形された鉄磁極片から導出された、方位角において変化する磁界成分を介して、軸方向の回復力が印加されている。大部分の等時性サイクロトロンは、抵抗磁石技術を使用し、且つ、1〜3テスラの磁界レベルにおいて動作している。いくつかの等時性サイクロトロンは、超伝導磁石技術を使用しており、この場合には、超伝導コイルが、温かい鉄磁極を磁化し、この鉄磁極が、イオン加速のためのガイド及び合焦場を提供している。これらの超伝導等時性サイクロトロンは、陽子の場合には、3テスラ未満の、且つ、更に重いイオンを加速するように設計されている際には、最大で3〜5テスラの、磁界レベルにおいて、動作することができる。本発明者は、Michigan State Universityにおける1980年代初頭の第1超伝導サイクロトロンプロジェクトに従事した。
本発明者による等時性サイクロトロンの別の最近の設計は、米国特許第8,558,495B2号明細書において記述されている。この特許は、ヨークとの熱接触状態にある超伝導メインコイルを含むコンパクトな低温超伝導等時性サイクロトロンについて記述しており、この場合には、メインコイルとヨークは、いずれも、極低温において維持されている。
サイクロトロンの別の種類が、シンクロサイクロトロンである。古典的なサイクロトロン又は等時性サイクロトロンとは異なり、シンクロサイクロトロンにおける加速周波数は、イオンが外向きに螺旋運動するのに伴って、減少している。又、等時性サイクロトロンとは異なり―但し、古典的なサイクロトロンと同様に−、シンクロサイクロトロン内の磁界は、半径の増大に伴って減少している。シンクロサイクロトロンは、既存の超伝導等時性サイクロトロンと同様に、以前は、温かい鉄磁極及び低温の超伝導コイルを有していたが、更に大きな磁界にも拡張される異なる方式により、加速の際にビーム合焦を維持しており、且つ、従って、例えば、約9テスラの磁界において動作することができる。
本明細書には、等時性サイクロトロンを使用してイオンを加速する等時性サイクロトロン及び方法について記述されており、この場合に、装置及び方法の様々な実施形態は、後述する要素、特徴、及びステップのうちのいくつか又はすべてを含むことができる。
本明細書において記述されている等時性サイクロトロンは、中心軸を中心として実質的に対称である少なくとも2つの超伝導コイルを含み、この場合に、コイルは、中央加速面の反対側において位置している。磁気ヨークが、コイルを取り囲み、且つ、ビームチャンバの少なくとも一部分を収容しており、この場合に、中央加速面は、ビームチャンバを通じて延在している。複数の超伝導フラッタコイルが、中央加速面のそれぞれの側部において位置している。それぞれの超伝導フラッタコイル又は超伝導フラッタコイルのペアは、中央加速面のそれぞれの側部においてセクタ磁極先端部の間に谷を有するセクタ磁極先端部として機能し、且つ、セクタ磁極先端部は、中央加速面に跨って谷を分離する(空隙又は非磁性材料の形態を有する)非磁性ギャップよりも狭いギャップにより、中央加速面に跨って半径方向において分離されている。非磁性補強構造が、超伝導フラッタコイルの位置決めを維持するように、フラッタコイルの間において谷を充填している。内部補強構造が、フラットコイルの内部において取り付けられており、且つ、極低温冷凍機(冷凍機)が、超伝導コイル及び磁気ヨークと熱結合されている。
図1は、二重の低温維持装置と、それぞれの低温維持装置内における、非磁性補強構造62内において埋め込まれた超伝導フラッタコイル21を含むベースプレートと、を有する等時性サイクロトロンの部分断面側面図である。 図2は、図1の等時性サイクロトロンの低温維持装置56、ベースプレート13、及びビームチャンバ24の拡大図である。 図3は、図1の等時性サイクロトロンにおけるヨーク10並びにプライマリコイル30及び32の断面側面図であり、この場合に、示されている計測値の単位は、ミリメートルである。 図4は、等時性サイクロトロンの中心軸28に沿って取り付けられた高強度外部イオンインジェクタの断面側面図のスケッチである。 図5は、等時性サイクロトロン内部のイオン軌道の軸方向基準フレームのスケッチである。 図6は、等時性サイクロトロン内における二重の低温維持装置の構造の斜視図であり、それぞれのサイクロトロン56は、アルミニウム支持構造内において収容された超伝導フラッタコイルを収容するベースプレートを収容したボビンを含む。 図7は、図6の低温維持装置56の上部セクション90の平面図であり、図8には、この断面が示されている。 図8は、図7に示されているセクション8−8に沿って取得された側部断面図であり、ベースプレート(超伝導フラッタコイル21及びこれに準拠したアルミニウム支持構造を有する)並びに超伝導コイル及びボビン11を収容する二重の低温維持装置56を示す。 図9は、低温維持装置の内部において収容されたベースプレート組立体の斜視図であり、この場合に、ベースプレート組立体は、ベースプレート13と、プライマリコイル30と、ボビン11と、を含む。 図10は、図9に示されているベースプレート組立体の平面図である。 図11は、超伝導プライマリ及びフラッタコイル30及び21並びにボビン11を有するベースプレート13の断面側面図であり、この場合に、示されている計測値の単位は、mmである。 図12は、超伝導コイル21及び30並びにボビン11を有するベースプレート13の平面図であり、図11の図が取得された断面(A−A)を示している。 図13は、プライマリコイル30/32の断面図である。 図14は、図13のコイル30/32の断面の拡大図である。 図15は、等時性サイクロトロン85の一実施形態の断面図である(この場合に、且つ、その他の図においても、示されている寸法の単位は、mmである)。 図16は、図15の丸で囲まれたセクションの拡大図である。 図17は、等時性サイクロトロンの一実施形態の側面図である。 図18は、図17の等時性サイクロトロンの平面図である。 図19は、等時性サイクロトロンの一実施形態における低温質量(6つのフラッタコイル21を含む)内のコンポーネントの斜視図及び分解図を含む。 図20は、軸方向支持を伴う図19の低温質量内のコンポーネントの斜視図及び分解図を含む。 図21は、等時性サイクロトロンの一実施形態における低温維持装置の熱遮蔽体55の斜視図及び部分分解図を含む。 図22は、等時性サイクロトロンの一実施形態における低温維持装置組立体の斜視図及び分解図を含む。 図23は、等時性サイクロトロンの一実施形態の上部半体80の斜視図及び分解図を含む。 図24は、等時性サイクロトロンの一実施形態の斜視図と、この等時性サイクロトロンの分離された上部及び下部半体80及び81を示す分解図と、を含む。 図25は、ジャッキングシステム87と共に、サイクロトロンの上部及び下部半体を示す。 図26は、等時性サイクロトロンの一実施形態の断面を示す。 図27は、等時性サイクロトロンの一実施形態における磁石鉄ヨーク10の断面図を示す。 図28は、等時性サイクロトロンの一実施形態における3セクタ/6フラッタコイル構成を示す。 図29は、等時性サイクロトロンの一実施形態における3セクタ/6フラッタコイル構成を示す。 図30は、等時性サイクロトロンの一実施形態において使用される6つの高周波(RF)電極ディーのうちの1つを示す。 図31は、等時性サイクロトロン内において使用されるディー組立体の一実施形態の製造及び組立プロセスを示す。 図32は、等時性サイクロトロンの一実施形態の製造及び組立の更なる断面図を示す。 図33は、等時性サイクロトロンの一実施形態において使用されるフラッタコイル21を示す。 図34は、図34のフラッタコイルの断面図を示しており、フラッタコイル21を形成しているワイヤ巻線の丸い断面を示す。 図35は、等時性サイクロトロンの一実施形態におけるフラッタコイル21の上方におけるRFディー電極のオーバーレイを示す。 図36は、外部ECRイオンインジェクタの一実施形態の断面図を示す。 図37は、ECRイオン供給源82の一実施形態のスケッチである。 図38は、イオンビーム抽出構造と、イオンビーム77をECRイオン供給源82からビームチャンバまでの間において合焦するべく使用されるアインツェルレンズ75の3つの電極の周りにおける電圧の等電位等高線97と、を示す図である。 図39は、3フラッタコイル構成の平面図である。 図40は、6フラッタコイル構成の平面図である。 図41は、水平方向において取り付けられた冷凍機38の平面図である。 図42は、垂直方向において取り付けられた冷凍機38の側面図である。
添付図面においては、同一の参照符号は、異なる図の全体を通じて、同一又は類似の部分を示しており、且つ、同一の参照符号を共有している同一又は類似の品目の複数のインスタンスを弁別するべく、アポストロフィが使用されている。添付の図面は、必ずしも縮尺が正確ではなく、その代わりに、後述される例証における特定の原理の例示に重点が置かれている。
1つ又は複数の本発明の様々な態様における上述の且つその他の特徴及び利点については、以下の1つ又は複数の本発明の相対的に広い範囲における様々な概念及び特定の実施形態に関する更に詳しい説明から、明らかとなろう。主題が、任意の特定の実装方式に限定されるものではないことから、以上において紹介されていると共に以下において更に詳細に記述されている主題の様々な態様は、多数の方法のいずれかにより、実装することができる。特定の実装形態及び用途の例は、主には、例示を目的として、提供されている。
そうではない旨が本明細書において定義、使用、又は記述されていない限り、本明細書において使用されている用語(技術的且つ科学的な用語を含む)は、関連技術の文脈におけるその受け入れられている意味と一貫性を有する意味を有するものと解釈することを要し、且つ、本明細書においてそのように明示的に定義されていない限り、理想化された又は過度に形式的な意味において解釈されてはならない。実際的且つ不完全な現実が適用されうることから、例えば、特定の組成が参照されている場合に、その組成は、完全にではないものの、実質的に、純粋であってもよく、例えば、少なくともわずかな(例えば、1又は2%未満の)不純物の潜在的な存在が、その記述の範囲内に含まれるものと理解することが可能であり、同様に、特定の形状が参照された場合にも、その形状は、例えば、製造公差に起因した、理想的な形状からの不完全な変動を含むものと解釈されたい。本明細書において表現されている百分率又は濃度は、重量又は容積によるものを表すことができる。以下において記述されているプロセス、手順、及び現象は、周辺の圧力(例えば、約50〜120kPa―例えば、約90〜110kPa)及び温度(例えば、−20〜50℃―例えば、約10〜35℃)において発生しうる。
第1の、第2の、第3の、などのような用語が、様々な要素を記述するべく、本明細書において使用されている場合があるが、これらの要素は、これらの用語によって限定されものではない。これらの用語は、1つの要素を別のものから弁別するべく使用されるものに過ぎない。従って、以下において記述されている第1要素は、例示用の実施形態の教示内容から逸脱することなしに、第2要素と呼称することもできよう。
本明細書においては、図に示されている、別の要素に対する1つの要素の関係を記述するべく、「上方」、「下方」、「左」、「右」、「前面」、「背後」、及びこれらに類似したものなどの空間的に相対的な用語が、説明の容易性を目的として、使用されている場合がある。空間的に相対的な要素のみならず、図示されている構成は、本明細書において記述されると共に図に示されている向きに加えて、使用又は動作の際の装置の様々な向きを包含するべく意図されていることを理解されたい。例えば、図中の装置が裏返された場合には、その他の要素又は特徴の「下方(below)」又は「真下(beneath)」にある、と記述されている要素は、それらのその他の要素又は特徴の「上方(above)」において方向付けされることになろう。従って、「上方(above)」という例示用の用語は、上方及び下方の両方の向きを包含することができる。装置は、その他の方式によって(例えば、90度だけ回転された状態において、或いは、その他の向きにおいて)、方向付けされてもよく、且つ、本明細書において使用されている空間的に相対的な記述語は、相応して解釈することができる。
更には、本開示においては、要素が、別の要素「上にある(on)」、「に接続される(connected to)」、「と結合される(coupled to)」、「と接触状態にある(in contact with)」など、として参照された際には、その要素は、そうではない旨が規定されていない限り、その他の要素、上に直接的に位置してもよく、に接続されてもよく、に結合されてもよく、或いは、との接触状態にあってもよく、或いは、介在する要素が存在していてもよい。
本明細書において使用されている用語法は、特定の実施形態を説明することを目的としており、例示用の実施形態を限定することを意図したものではない。「1つの(a)」及び「1つの(an)」などの本明細書において使用されている単数形は、そうではない旨を文脈が通知していない限り、複数形をも同様に含むものと解釈されたい。これに加えて、「含む(includes)」、「含む(including)」、「有する(comprises)」、及び「有する(comprising)」は、記述されている要素又はステップの存在を規定しているものの、1つ又は複数のその他の要素又はステップの存在又は追加を排除するものではない。
これに加えて、本明細書において識別されている様々なコンポーネントは、組み立てられると共に完成した形態において提供することも可能であり、或いは、コンポーネントのいくつか又はすべてを1つにパッケージ化し、且つ、完成した製品を製造するための顧客による組立及び/又は変更用の(例えば、書面、ビデオ、又はオーディオの形態を有する)指示書を有するキットとして販売することもできる。
用語の索引:
以下の文章においては、等時性イオン加速の文脈において使用される以下の変数が参照される場合がある。
=中央加速面26に直交する磁界
=イオンの残りの質量エネルギー
f=磁気フラッタ磁極先端部によって提供される磁気フラッタ
rms=フラッタ磁界の二乗平均
=中央加速面26に直交する磁力
m=イオンの質量
=イオンの残りの質量
n=磁界指数パラメータであり、等時性サイクロトロンにおいては、
Figure 0006441508
である。
p=イオンの運動量
q=イオンの電荷
r=中心軸28からの半径
t=時間
T=加速されたイオンの運動エネルギー
=固定された加速電圧
=電極電圧
α=イオンの運動量圧縮(運動量が半径の関数として変化する方式)
γ(r)=半径の関数としての加速に伴う粒子−質量利得の相対論的因子
ζ=螺旋エッジ角度
θ=中心軸28を中心としたイオンの角度座標
=中央加速面26に直交する加速されたイオンの発振周波数
=加速されたイオンの半径方向発振周波数
τ=加速されたイオンの回転の周期
sinφ=イオンが加速ギャップ(=ωt−θ)を横断した際の正弦波電圧
ω=イオンの角速度
N=磁極当たりの同一の角度的な磁気フラッタセクタの数である等時性サイクロトロンセクタ数。
陽子治療法のための等時性サイクロトロンの適用
本明細書において記述されているサイクロトロン及び方法が適用されうる1つの重要な用途は、癌患者に提供される陽子治療法を目的としたものである。
陽子は、X線によって可能であるものよりも正確な腫瘍の治療を提供することが可能であり、その結果、患者に対する全体放射線量が低減される。具体的には、腫瘍を超えて背後の正常な健康な組織内に延在する射出線量が存在しなくなると共に、腫瘍の前面の正常な健康な組織内において堆積される線量も、格段に小さくなる。
陽子治療法の現時点における好適な1つのモードは、小直径の陽子ビームが、腫瘍の背後(必要とされる最大エネルギー)から、腫瘍の前面(相対的に低いエネルギー)まで、腫瘍層に跨って、層ごとに、ラスタ走査される、ペンシルビーム走査である。陽子ビームが、層を上方に移動するべく、相対的に低いエネルギーに低下した際には、陽子ビームの強度が失われる。大きな腫瘍の場合には、この損失は、1000倍にもなりうる。この強度損失に起因して、全体的な治療には、(例えば、数十秒〜2分などの)相対的に長い時間を所要することになる。患者が治療の際に動いた際には、腫瘍も動くことになり、その結果、陽子治療の高精度という肯定的な効果が低減される。
腫瘍を追尾し、且つ、腫瘍の動きを追尾するように陽子ビーム経路を調節するべく、努力が払われているが、この方式は、多数の技術開発を必要とすることになり、且つ、非常に高価になるものと予想される。腫瘍が完全に休止状態にある際に、(例えば、約3〜4秒内などの)超高速のペンシルビーム走査を介して、患者の1回の息止めの際に、全体的な治療を完了させることが相対的に有利であろう。この速度の実現には、既知の現在の陽子治療法加速器の能力を超える陽子ビーム強度が必要になるものと思われる。
現在の技術における連続波(CW:continuous−wave)サイクロトロンは、超高速ペンシルビーム走査には不十分な陽子ビーム生成技術[即ち、サイクロトロンの中心における内部ペニング(又は、PIG)イオン供給源]を利用している。内部ペニングイオン供給源は、数日間の使用の後に損耗する耐火カソードを有しており、その結果、使用済みのカソードを置換するべく、且つ、陽子ビームを陽子治療法に必要とされる高い品質及び安定性に回復させるためにサイクロトロンを再チューニングするべく、サイクロトロンダウンタイムが必要とされる。又、内部ペニングは、[T.A.Antaya,et.al.,“The Development of Heavy Ion PIG Sources for the NSCL K−500 Superconducting Cyclotron”,10th Int.Conf Cyclotrons and Their Applications,E.Lansing 126−129(1984)に記述されているように]、サイクロトロンの動作及び安定性に対して悪影響を及ぼす―特に、高度に帯電した重いイオンビームの場合に使用されるRF加速システムに対して影響を及ぼす―ガス負荷をサイクロトロンの中心において提示することになり、その理由は、RF加速システムが、このガス負荷に起因して、不規則なインターバルにおいて発火及びシャットダウンしうるからである。更には、PIGイオン供給源は、超高速ペンシルビーム走査用の十分な陽子強度の陽子ビームを生成することもできない。
本明細書において記述されているサイクロトロン設計は、サイクロトロン85内に注入される初期陽子ビームを生成するべく、電子サイクロトロン共振(ECR:electron cyclotoron resonance)イオン供給源82と呼称される、高性能なカソードなし閉じ込め型プラズマビーム技術を有する相対的に高強度の陽子供給源を提供することができる。ECRイオン供給源82は、非常に小さな断面を有するビーム内において、主には陽子の形態において、イオンを生成することができる。既知の現在の技術によるサイクロトロンは、陽子ビームを生成するべく、この高性能のイオン生成技術を利用してはおらず、その理由は、この供給源が、サイクロトロン85の外部に位置しなければならず、その結果、加速が始まるサイクロトロン85の中心内に陽子ビームを供給するべく、なんらかの注入方式が必要とされるからである。ECRイオン供給源82を利用することにより、ペンシルビーム走査に利用可能な強度を大幅に増大させること可能であり、その結果、治療の際のサイクロトロンの不安定性、RF発火及びカソード交換の保守作業に伴うダウンタイム、及び陽子治療法による治療用の高品質の陽子ビームを生成するための後続のサイクロトロンの回復作業を除去しつつ、超高速ペンシルビーム走査が、初めて可能になる。
現在の技術によるCW等時性サイクロトロンは、抵抗磁石を有するのか又は超伝導磁石を有するのかとは無関係に、3テスラ未満の磁界に限定されうる。この相対的に小さな磁界の大きさに起因し、サイクロトロンは、大きくなり、且つ、高価になっている。この結果、ニーズとの関係において、トータルシステムが、ほとんど存在していない状態にあり、且つ、これらのシステムにアクセスできるのは、癌患者の5%未満に過ぎない。
CW等時性サイクロトロンは、RFサイクルごとに(数百万回/秒)、サイクロトロンを離脱する陽子を有しており、その結果、サイクロトロンからの1000超個の小強度パルスによって層を再走査することになる数ミリ秒の層走査が実現される。この反復は、腫瘍が、ビームにより、多数回にわたって再走査されることを保証し、これにより、この層上の腫瘍のいずれの部分も、この層走査において見逃されないことが保証される。
一般に、ペンシルビーム走査は、低強度で低デューティファクタのシンクロサイクロトロンによっては、容易に実行することができず、場合によっては、強磁界でコンパクトな超伝導サイクロトロンによっても、その実行は、容易ではない。超高速のペンシルビーム走査は、これらの装置によっては、まったく不可能である。又、既存のシンクロサイクロトロンは、初期陽子ビームを生成するべく、内部ペニングイオン供給源を利用しており、この場合にも、関連する悪影響のすべてが伴っている。
CW等時性サイクロトロンは、より小さく、且つ、より廉価に、することができる。動作磁界レベルを2テスラから4テスラに2倍にすることにより、費用が3分の1に低減され、且つ、この費用の低減により、更に多くの癌患者に対するこの救命高精度治療の可用性が大幅に改善されることになろう。
CW等時性サイクロトロンは、(1)中心から、最終的なエネルギーの実現を要する半径にまで至る、等時性加速を実現するべく、正しい半径方向プロファイルを磁界に提供すること、(2)加速の全体にわたって軸方向のビーム安定性を提供するべく、ビームチャンバ24内において、磁界の方位角変動である、「フタッタ」と呼称される、正しい軸方向分布を磁界に提供すること、及び(3)陽子をサイクロトロンの中心における低エネルギーから最終的な半径におけるフルエネルギーまで加速するための十分な時変電圧及び周波数のRF加速構造の組の設置及び動作を許容するべく、ビームチャンバ24内において十分なギャップを提供すること、という3項目を実現することにより、更にコンパクトにすることができる。これに加えて、陽子治療法は、少なくとも230MeVの最終的な陽子エネルギーを利用しており、このエネルギーレベルは、高強度陽子ビームが、外部ECRイオン供給源82からサイクロトロン85内に注入された際の、水中における20cmの陽子の移動距離に対応しており、これは、複数の走査された層内において、背後から前面まで、大きな腫瘍の全体を治療するべく、次世代超高速ペンシルビーム走査に必要とされる強度レベルを実現するために、人間がほとんど水を有する、平均的な人間内部の、腫瘍に到達するのに必要であると考えられる深さである。
既知の現在の世代のサイクロトロンにおいては、この3つの基本的な且つ同時のサイクロトロン要件の組と、陽子治療法において必要とされる最終的なエネルギーと、は、約2.5T超の中心磁界を有するCW等時性陽子サイクロトロンの場合に、実現されてはいない。この結果、これらのサイクロトロンは、大きく、且つ、実際的には、組み立てられた状態において搬送することができず、且つ、これらは、重い(例えば、100トン〜250トン、或いは、90700kg〜226800kgである)。又、これらのサイクロトロンは、(劣った)現在の世代のX線治療システムとは異なり、実質的にすべてのコミュニティに広範に配備するには、あまりにも高価である。
陽子治療法の既知の現在の技術によるCW等時性サイクロトロンは、カソードなしの外部ECRイオン供給源82からの高強度陽子ビーム注入を許容するようには、構成されていない。
本明細書において記述されている等時性サイクロトロン85は、4T超の中心磁界と、35トン未満の質量と、を有する230MeVのCW等時性サイクロトロン85において、これらの超高速ペンシルビーム走査の要件のうちのすべての5つを同時に解決し、その結果、既存のX線治療システムの配備と同様に、完全に組み立てられた状態で基本的にどこにでも搬送されると共に実質的に任意のコミュニティにおいて配備されうるのに十分な、十分に小さな全体エンベロープを有するコンパクトな低費用のシステムをもたらすことができる。治療を必要としている人々は、非常に重症でありうることから、彼らの地元のコミュニティにおいて、高速で、正確な、低費用の、優れた治療を提供することは、非常に有益でありうる。
等時性サイクロトロンの設計
図1〜図3及び図6〜図12には、様々な観点から、且つ、断面を介して、等時性サイクロトロン85の実施形態が示されている。図3及び図8〜図10に示されているように、等時性サイクロトロン85は、超伝導プライマリコイル30及び32と、磁極のペア12及び14並びにリターンヨーク22を含む磁気ヨーク10と、(例えば、2の螺旋定数を有するアルキメデス螺旋の経路を辿るエッジを有する)複数の超伝導螺旋形状フラッタコイル21を含むベースプレート13と、フラッタコイル21を取り囲む非磁性外部補強構造62と、フラッタコイル21内部の内部補強構造60と、を含む。ヨーク10は、イオン加速のために中央加速面26が通過するビームチャンバ24の少なくとも一部分を収容している。磁極12及び14は、中央加速面26に跨って、近似的な鏡面対称性を有し、且つ、リターンヨーク22により、磁気ヨーク10の周囲において結合されている。中心軸28の周りのヨーク10内の切り抜き部96は、サイクロトロン85内における等時性イオン加速に必要とされる磁界プロファイル用の磁界成形を提供している。
超伝導プライマリコイルのペア30、32は、ビームチャンバ24内において磁界を生成し、且つ、中央加速面26の反対側において位置決めされ、且つ、その中心において中心軸28を取り囲んでいる。図13及び図14には、超伝導プライマリコイル30及び32の断面図が示されており、この場合に、図14は、図13の図示の断面の拡大図である。図14に示されているように、プライマリコイル30/32の巻線31は、S2ガラス絶縁によって分離されており、且つ、超伝導体ワイヤの外側巻線31は、巻回プロセスによって生成された周囲におけるギャップを充填するスペーサ35によって取り囲まれており、且つ、接地ラップ37が、スペーサ35を周囲において取り囲んでいる。それぞれの超伝導体ワイヤは、超伝導体が動作の際に(例えば、低温維持装置56内の真空の喪失に起因して)正常(非超伝導)温度に到達した場合に且つ際に、電流を搬送しうるU形状の導電(例えば、銅)チャネル内において収容されている。プライマリコイル30及び32は、高インダクタンスを有するように設計されている(例えば、コイルのインダクタンスLcoilは、30H超でありうる)。特定の実施形態においては、プライマリコイル30及び32は、それぞれ、巻線31の27個の列(図13の画像内において水平方向においてカウントされたもの)及び巻線31の71個の行(図13の画像内において垂直方向においてカウントされたもの)を有することが可能であり、且つ、それぞれのプライマリコイル30/32は、中央加速面26から、57mmだけ、離隔させることができる。
超伝導プライマリコイル30及び32には、後述するように、電圧供給源と結合された低温導電性電流リードを介して、電流が供給されている。一方、極低温冷却は、例えば、図9及び図10に示されているように、ボビン11をカバーすると共に冷凍機38の第2ステージ52の端部においてボビン11にボルト締結された低温維持装置56のセクション88内の切り抜き部94を通じて供給される冷凍機38を介して提供され、且つ、コイル30及び32をその臨界温度未満に極低温冷却するべく、且つ、同様に、ボビン11及び超伝導フラッタコイル21を含むベースプレート13を冷却するべく、プライマリコイル30及び32に供給されている。図8〜図12に示されているように、ボビン11は、機械的な支持及び閉じ込めを提供するべく、プライマリコイル30/32の両方を取り囲み、且つ、これら及び非磁性外部補強構造62と同一平面上に位置している。ボビン11は、例えば、アルミニウムから形成することができる。図11には、ベースプレート13、超伝導プライマリコイル30、及びボビン11の例示用の寸法が(ミリメートルを単位として)示されており、この図は、図12に示されているセクションA−Aに沿って取得された断面側面図である。
図13及び図14には、プライマリコイル30及び32の部分概略断面図が提供されている。一実施形態においては、単一ストランドケーブルは、100〜400アンペアを搬送することが可能であり、且つ、約100万アンペアターンを提供することができる。一般に、コイルは、超伝導ストランドの臨界電流搬送容量を超過することなしに、望ましい磁界レベルに必要とされるアンペアターンの数値を生成するのに必要な数の巻線31(例えば、3816巻回など)を有するように設計することができる。超伝導材料は、ニオビウムチタニウム(NbTi)、ニオビウムすず(NbSn)、又はニオビウムアルミニウム(NbAl)などの、低温超伝導体であってもよく、特定の実施形態においては、超伝導材料は、タイプII超伝導体―具体的には、タイプA15結晶構造を有するNbSn―である。又、BaSrCaCu、BaSrCaCu10、MgB、又はYBaCu7−xなどの高温超伝導体を使用することもできる。
プライマリコイル30及び32は、超伝導ワイヤから、或いは、超伝導ワイヤインチャネル(wire−in−channel)導体から、直接的に形成することができる。又、ニオビウムすず(NbSn)のケースにおいては、ニオビウム及びすずの(3:1のモル比の)未反応のストランドをケーブルとして巻回することもできる。次いで、これらのケーブルは、ニオビウムとすずを反応させてNbSnを形成するべく、約650℃の温度に加熱される。次いで、NbSnケーブルは、複合導体を形成するべく、U形状の銅チャネルにはんだ付けされる。銅チャネルは、機械的な支持、急冷の際の熱安定性、及び超伝導材料が正常である(即ち、超伝導状態にはない)際の電流の導電経路を提供する。次いで、この複合導体は、ガラスファイバによってラッピングされ、且つ、次いで、外向きのオーバーレイとして巻回される。又、磁石が急冷された際に迅速な加熱を提供するべく、且つ、更には、コイルを損傷しうる熱及び機械応力を極小化するために、急冷が発生した後にコイルの半径方向断面に跨る温度の均衡を提供するべく、例えば、ステンレス鋼から形成されたストリップヒーターを複合導体の巻回された層の間に挿入することもできる。巻回の後に、真空が印加され、且つ、巻回された複合導体構造にエポキシを含浸させることにより、最終的なコイル構造内においてファイバ/エポキシ複合フィラーを形成する。巻回された複合導体が埋め込まれた、結果的に得られるエポキシ−ガラス複合体は、電気的絶縁及び機械的剛性を提供する。プライマリコイル30及び32の実施形態の特徴及びその構造については、米国特許第7,696,847B2号明細書及び米国特許第7,920,040B2号明細書に更に記述及び図示されている。
その他の実施形態においては、プライマリコイル30及び32は、個々のストランド(小さな丸いワイヤ)から形成することが可能であり、且つ、複合コイルを形成するべく、エポキシによって湿潤巻回した後に硬化させることも可能であり、或いは、乾燥巻回し、且つ、巻回の後に含浸させることもできる。
それぞれのプライマリコイル30/32は、米国特許第8,525,447B2号明細書において記述されているように、エポキシ−ガラス複合体の更なる接地−ラップ外側層と、例えば、銅又はアルミニウムから形成された、テープ−フォイルシートの熱オーバーラップと、により、カバーすることが可能であり、且つ、それぞれのプライマリコイル30/32は、熱的に且つ物理的に、少なくとも1つの冷凍機38の第2ステージ52と結合されている。
超伝導プライマリコイル30及び32は、中央加速面26の反対側において、イオンが加速されるビームチャンバ24の領域を取り囲んでおり、且つ、中央加速面26内において極めて高い磁界を直接的に生成するべく、機能する。印加された電圧を介して起動された際に、超伝導プライマリコイル30及び32は、ヨーク10を更に磁化し、この結果、ヨーク10も、超伝導プライマリコイル30及び32によって直接的に生成された磁界とは別個であると見なされうる、磁界を生成することになる。
超伝導プライマリコイル30及び32は、イオンが加速される中央加速面26の上方及び下方において、等距離において、中心軸28を中心として、実質的に(方位角において)対称に配置されている。超伝導プライマリコイル30及び32は、高周波(RF)加速電極ディー40が、ビームチャンバ24内において、その間に延在することを許容するべく、十分な距離だけ、分離されており、ビームチャンバ24の内部温度は、室温又なその近傍(例えば、約10℃〜約30℃)において維持することができる。
図6〜図8に示されているように、プライマリコイル30及び32は、(セクション88及び90を含む)別個の低温維持装置56内において収容されることが可能であり、或いは、単一の低温維持装置56が、電極及びビームチャンバ24用に設計された温かい絶縁された貫通エンクロージャにより、磁石構造全体を包含することもできる。超伝導プライマリコイル30及び32のそれぞれは、一般には、4〜40Kの範囲である、設計動作温度において、超伝導状態となる導体材料の連続的な経路を含むが、2K未満において動作させてもよく、この場合には、更なる超伝導性能及びマージンが利用可能である。サイクロトロン85を相対的に高い温度において動作させる必要がある場合には、ビスマスストロンチウムカルシウム銅酸化物(BSCCO)、イットリウムバリウム銅酸化物(YBCO)、又はMgBなどの超伝導体を使用することができる。
非磁性外部補強構造62は、フラットコイル21と実質的に同一の形状を有する螺旋形状のアパーチャを生成するべく、例えば、アルミニウムの固体プレートから機械切断することができるが、非磁性外部補強構造62の螺旋形状のアパーチャは、室温において非磁性外部補強構造62とフラッタコイル21の間において空隙/ギャップを生成するべく、室温(例えば、約25℃)において、フラッタコイル21の周囲よりもわずかに大きくなっている。同様に、(例えば、銅又はステンレス鋼から形成された)内部補強構造60も、フラットコイル21と実質的に同一の形状を有するが、螺旋形状の内部補強構造60は、それぞれの内部補強構造60と、これが室温において収容されるフラッタコイル21の間に、ギャップを同様に残すべく、室温において、フラッタコイル21の内部表面よりもわずかに小さくなっている。室温のギャップのサイズは、フラッタコイル21の応力状態を制御しており、且つ、超伝導フラッタコイル21が意図したように動作することを保証するように設定されている。
冷凍機38が起動された際には、熱が、フラッタコイル21から、非磁性外部補強構造62を通じて、且つ、ボビン11を通じて、冷凍機38に、抽出され、これにより、フラッタコイル21の温度は、自身が超伝導となるその臨界温度未満に低下する。非磁性外部補強構造62及び内部補強構造60は、フラッタコイル21と同時に冷却され、且つ、非磁性外部補強構造62は、温度の減少に伴って、フラッタコイル21よりも多く収縮するように構築されている一方で、フラッタコイル21は、温度の減少に伴って、内部補強構造60よりも多く収縮するように構築されている。この結果、これらのコンポーネントが臨界温度(例えば、4k)未満に低下した際に、それぞれのフラッタコイル21は、その外周の周りにおいて、非磁性外部補強構造62と相互接触状態となり、且つ、その内周に沿って、内側補強構造60と相互接触状態となり、これにより、フラッタコイル21を固定し、閉じ込め、且つ、支持することにより、ヨーク10の内部において、フラッタコイル21の位置及び構造的完全性を維持する。
図15及び図16には、等時性サイクロトロン85の断面図が示されており、これらの図は、低温維持装置56及びボビン11内への高温リード23と、低温のヘッドポート44と、熱遮蔽体55と、プライマリコイル30及び32の周りのベースプレート13と、を示している。又、ヨーク10、RFリードチャネル64、及び半径方向支持リンク68も、示されている。図17及び図18には、それぞれ、ジャッキングシステム87と、3セクタフラッタコイル構造の改善された冷却用の3つの冷凍機38の構成と、を有する、サイクロトロン85の側面図及び平面図が示されている。
図19、図28、図29、及び図35の実施形態において示されているように、等時性サイクロトロン85内の3セクタ構成においては、6つの(又は、3つの)フラッタコイル21を提供することができる。図39には、3つの均等に離隔したフラッタコイル21を有する設計が示されており、図40には、6つのフラッタコイル21を有する設計が示されている。図28及び図29は、6コイル構成において、フラッタコイルの2つの組21’及び21’’を示している。電流が、時計回り方向において第1組内のコイル21’を通じて流れた場合に、電流は、反時計回り方向において、第2組内のコイル21’’を通じて流れる。それぞれのフラッタコイル21は、15×80mmの断面を有することが可能であり、且つ、263A/mmのJe/WPの電流密度の場合に、超伝導体ワイヤの640回の巻回(巻線)から形成することができる)。それぞれのフラッタコイルは、4.80Kの最大温度Tmaxにおいて動作することが可能であり、且つ、10.3Tの最大磁界Bmaxを生成することができる。任意の既存の構成の既知の等時性サイクロトロンのうち、この10.3Tという値の2倍内の最大磁界を有するものは存在していない。
図19は、等時性サイクロトロン85の一実施形態の低温質量内のコンポーネントの拡大図である。この実施形態は、(AISI3016ステンレス鋼から形成された)内部補強構造60の周りにおいて、且つ、(Al6061−T6アルミニウム合金から構成された)ベースプレート13の残りの部分にボルト41を介して固定された(こちらもAl6061−T6アルミニウム合金から形成された)ベースプレートカバー15の下方において、6つの(NbSnから構成された)フラッタコイル21を含む。中心支持リンク43が、ベースプレートカバー15を貫通している。又、超伝導プライマリコイル32及びプライマリコイル32の周りの銅ラップ29も、示されている。図19に示されている補助コイル19は、フルエネルギーに到達するように、エッジの半径方向磁界を変更している。
図30には、6フラッタコイル構成用の6つの高周波(RF)電極ディー40のうちの1つのディーの一実施形態が示されている。ディー40は、電極プレート67と、ステム46と、を含む。図31には、6つのディー40を取り付けるための上部/下部プレート63が示されており、この場合に、ディー40のステム46は、プレート63の個々のスロット内に蝋付けされている。図31の最後の画像及び図32に示されているように、個々の電極ディー40の電極プレート67は、一方が上部レート63’内において蝋付けされると共に他方が下部プレート63’’内において蝋付けされ、中央加速面26が電極プレート67のそれぞれのペアの間において延在する状態において、互いに向かい合うように積層されている。
フラッタコイル21は、(例えば、例えば、0.5mm〜2.0mmの直径を有する丸い断面を有するNbTi、NbSn、NbAlなどの)単一ストランドの低温超伝導体ワイヤから形成することができる。ワイヤは、まず、反応物(例えば、ニオビウム及びすず)パウダから形成され、且つ、マンドレルの周りにおいて、(例えば、図34に示されているように、100超の個々の巻回などのように)多数回にわたって外向きに巻回される。次いで、巻回の後に、超伝導体(例えば、Nb3Sn)を生成するべく、(例えば、600Kにおいて、200時間にわたって)パウダを反応させる。次いで、反応済みのワイヤ巻線にファイバガラス/エポキシマトリックスを含浸させ、このファイバガラス/エポキシマトリックスが、図33において観察されるように、全体形状を設定し、且つ、結果的に得られるフラッタコイルにおいて、熱収縮及び磁気応力に対する機械的な支持を提供する。次いで、複合フラッタコイル21は、例えば、エポキシガラス複合体から形成された接地ラップにより、カバーされる。フラッタコイル21は、(プライマリコイル30及び32のものを下回る)低インダクタンスを有するように設計されている。複合フラッタコイル21は、20cm未満の断面高さと、10cm未満の幅と、を有することができる。図35には、フラッタコイル21及びRF電極の両方が示されているが、これらは、組み立てられた等時性サイクロトロン85内においては、低温維持装置56によって分離されており―フラッタコイル21が、上部及び下部低温維持装置56内において収容されている一方で、RF電極は、低温維持装置56の間において位置決めされている。その他の実施形態においては、RF電極は、螺旋形状をすることができる。
非磁性外部補強支持構造62は、図12に示されているように、アルミニウムなどの金属から形成することが可能であり、且つ、内部補強構造60は、ステンレス鋼又は銅などの金属から形成することが可能であり、且つ、これらの組成は、極低温の動作温度においてこれらの構造の間の相互接触を生成するべく、温度の減少に伴う個別の収縮率を提供することができる。特定の実施形態においては、内部補強構造60の組成の熱膨張係数(CTE:coefficient of thermal expansion)は、フラッタコイル21の組成のCTE未満であり、且つ、フラッタコイル21のCTEは、非磁性外部補強構造62のCTE未満である。換言すれば、構造全体が、冷却に伴う圧縮状態において維持されるように、フラッタコイル21が、内部補強構造60よりも多く収縮し、且つ、外部補強構造62が、フラッタコイル21よりも多く収縮する。又、外部補強構造62及び内部補強構造60の組成は、磁性を有していなくてもよく、且つ、高熱伝導性を有することもできる。
図20には、図19の低温質量用の支持コンポーネントの分解図が示されており、この図は、プライマリコイル32用のカバー16と、カバーマウント17と、軸方向支持リング18と、を含む。カバー16及びカバーマウント17は、いずれも、オーステナイトニッケル−クロミウムに基づいた超合金(例えば、Inconel718合金)から形成することができる。図21には、低温維持装置の熱遮蔽体55の斜視(並びに、部分分解)図が示されており、この図は、熱遮蔽体ベース57と、ベース57用のマウント59と、熱遮蔽体中心セグメント61と、を含み、これらは、すべて、銅合金(例えば、CU10100)から形成することができる。更には、図22には、低温維持装置組立体の斜視及び分解図が示されており、この図は、[オーステナイトニッケル−クロミウムに基づいた超合金(例えば、Inconel718合金)から形成された]中心支持マウント45及び低温維持装置真空カバー53と共に、低温維持装置の真空チャンバベース47と結合された(冷凍機38が通過する)冷凍機ボックス49を含む。又、冷凍機ボックス49は、オーステナイトニッケル−クロミウムに基づいた超合金(例えば、Inconel718合金)から形成することが可能であり、低温維持装置の真空カバー53及び低温維持装置の真空チャンバベース47は、316ステンレス鋼から形成することができる。
図23には、(例えば、316ステンレス鋼から形成された)半径方向の支持リンク68及び冷凍機38がそれから延在している低温維持装置56を取り囲む(例えば、1010鋼などの)鉄から形成されたヨーク10と共に、サイクロトロン85の上部半体80の斜視及び分解図が示されている。図25の分解斜視図には、個々の低温維持装置56をそれぞれが収容しているサイクロトロンの上部半体80及び下部半体81が、その間において位置決めされた真空リング83と共に、示されている。図25は、サイクロトロン85と結合されるジャッキングシステム87を示している。
図26には、等時性サイクロトロン85の一実施形態の別の断面図が提供されており、この図は、イオン供給源82と、軸方向支持部66と、半径方向支持部68と、冷凍機38と、フラッタコイル組立体20と、プライマリコイル30及び32と、ボビン11と、を示している。図27には、サイクロトロン85のヨーク10の上部半体の断面図が提供されている。ヨーク10は、190GPaの弾性係数と、305MPaの降伏強度と、を有するAISI1010鋼から形成することが可能であり、且つ、ヨーク10全体の重量は、約14トン(12700kg)でありうる。
等時性サイクロトロン85のヨーク10は、図1に示されているように、100〜300MeVビームを生成するように設計することが可能であり、(図示の向きにおいて)その下部及び上部表面に跨って2メートルの直径と、(図5において提供されている座標フレームに従って、図示の向きにおいて、z軸に沿って垂直方向において計測された)約1.4mの高さと、を有することができる。イオン注入用の150mmの直径を有する中心円筒形チャネル65が、磁極12及び14によって定義されている。最上部の円筒形の切り抜きセクション96’は、90mmの高さと、340mmの直径と、を有し、且つ、上部表面から297.5mmの距離まで延在している。中間の円筒形切り抜きセクション96’’は、最上部の切り抜きセクション96’のものに類似した高さと、540mmの直径と、を有する。下部の円筒形切り抜きセクションは、60mmの高さと、740mmの直径と、を有する。ビームチャンバ24は、37mmの高さを有する。又、図3には、サイクロトロン85のヨーク10及びその他のコンポーネントの(mmを単位とする)様々な寸法が示されている。(図8に示されている)ベースプレート13は、中央加速面26から36.5mmであってもよく、且つ、外部補強構造62の非磁性組成の0.6mmの厚さの壁が、(a)フラッタコイル21(その内部には、内部補強構造60が収容される)と(b)低温維持装置56のベースプレートセクション90の(ビームチャンバ24に対向する)内側壁の間において延在している。超伝導プライマリコイル30及び32は、約114mmの距離だけ、中央加速面26の反対側において、分離することができる。
協働して、超伝導プライマリコイル30及び32、並びに、ヨーク10[リターンヨーク22、ポール12及び14、並びに、螺旋フラッタコイル21を含む]は、中央加速面26内において、例えば、4〜6テスラの、合成ピーク磁界を生成する(磁界は、半径の増大に伴って増大している)。超伝導プライマリコイル30及び32は、電圧が印加された際に、超伝導プライマリコイル30及び32を通じた連続的な超伝導電流の流れを開始及び維持するべく、中央加速面26内において、例えば、3.6テスラ超などの、磁界を直接的に生成することができる。ヨーク10は、超伝導プライマリコイル30及び32によって生成された磁界によって磁化され、且つ、イオン加速のためにチャンバ14内において生成される磁界に寄与することになる。
両方の磁界成分(即ち、超伝導プライマリコイル30及び32によって直接的に生成される磁界成分と磁化されたヨーク10によって生成される磁界成分の両方)は、中央加速面26にほぼ直交するように、中央加速面26を通過する。ヨーク10は、加速の際の相対論的な粒子質量利得について補償するべく、磁界が、中心軸28から、イオンがビームチャンバ24内において抽出される半径まで、増大する半径に伴って、増大するように、中央加速面26に沿って磁界を成形するべく、構成されている(磁極12及び14の間のギャップが増大している磁極切り抜き部96を含む)。
イオン加速を維持するための電圧が、常に、電流リードを介して、ビームチャンバ24内部の中央加速面26に対して平行に、且つ、この上方及び下方において、方向付けされた高電圧電極ディーのペア40に対して提供されている。ヨーク10は、電極ディー40用の十分な空間を提供するように構成されており、電極ディー40は、磁石構造内において真空フィードスルーを通じて延在している。電極装置は、導電性金属から形成されており、電極ディー40の数は、それぞれの電極ディー40が、中心軸28の周りのリング内において、隣接するフラッタコイル21の間において(但し、フラッタコイル21よりも中央加速面26に近接した状態において)、所定の角度において、位置決めされた状態で、フラッタコイル21の数にマッチングすることができる。
電極ディー40には、RF電流リードにより、(例えば、第3高調波解決策の場合には、205.7MHzを有する)RF電圧が供給されており、これらは、サイクロトロン周波数において、或いは、サイクロトロン周波数の整数倍において、発振する電圧を得るように、ディー40を励起するべく、非磁性外部補強構造62を通じて、RFリードアパーチャを通じて、垂直方向(z)軸に対して平行に供給されている。それぞれのコイル21に供給される電圧の周波数は、加速するイオンの軌道周波数の4倍(例えば、イオンが、68MHzの周波数においてビームチャンバ24内において軌道運動している場合には、272MHzの電圧周波数)であってもよく、且つ、個々のフラッタコイル21に供給されるRF電圧は、それぞれのディー40に跨って、且つ、それぞれのディー40の間において、電圧正弦波の180度の範囲を伴って、コイルエッジのそれぞれとアライメントされた際に、加速するイオンに対してピーク電圧が印加されるように、シーケンシングさせることができる。
動作の際には、超伝導プライマリコイル30及び32は、「乾燥」(即ち、液体冷媒内において浸漬されない)状態において維持することが可能であり、むしろ、超伝導プライマリコイル30及び32は、1つ又は複数の極低温冷凍機(冷凍機)38により、超伝導体の臨界温度未満の温度(例えば、大きくは臨界温度を5Kだけ下回るもの、或いは、いくつかのケースにおいては、臨界温度を1K未満だけ下回るもの)に冷却することができる。その他の実施形態においては、超伝導プライマリコイル30及び32は、超伝導プライマリコイル30から極低温冷凍機38への熱伝達のために、液体寒剤との接触状態にあってもよい。超伝導プライマリコイル30及び32が、(例えば、組成に応じて、4K〜30Kの範囲の)極低温に冷却された際には、冷凍機38、ボビン11、超伝導プライマリコイル30及び32、非磁性外部補強構造62、フラッタコイル21、及び内部補強構造60の間における熱接触に起因して、ベースプレート13も、同様に、ほぼ同一の温度に冷却される。
冷凍機38は、Gifford−McMahon冷凍サイクルにおいて、圧縮されたヘリウムを利用することが可能であり、或いは、(図1及び図2に示されている)相対的に高温の第1ステージ50及び相対的に低温の第2ステージ52を有するパルスチューブ冷凍機設計を有することもできる。冷凍機38の相対的に低温の第2ステージ52は、約4.5Kにおいて動作させることが可能であり、且つ、ボビン11と(例えば、ボルトを介して)熱的に且つ機械的に結合させることも可能であり、ボビン11は、超伝導プライマリコイル30及び32並びにベースプレート13との緊密な熱接触状態にある。従って、冷凍機38は、それぞれの超伝導プライマリコイル30/32及びそれぞれの超伝導フラッタコイル21をそれぞれのコイル30/32/21内の導体が超伝導状態である温度(例えば、約4.5K)に冷却することができる。或いはこの代わりに、相対的に高温の超伝導体が使用される際には、冷凍機38の第2ステージ52は、例えば、4〜30Kにおいて動作させることもできる。
サイクロトロン38の相対的に温かい第1ステージ50は、例えば、40〜80Kの温度において動作させることが可能であり、且つ、(例えば、約300Kなどの)室温を有しうる、磁石構造(その内部に収容されたヨーク10及びその他のコンポーネントを含む)と(図8に示されている)低温維持装置56の間において、中間温度障壁を提供するべく、相応して、例えば、約40〜80Kに冷却される、中間熱遮蔽体54と熱結合させることができる。低温維持装置56は、真空ポート58を含み、真空ポート58には、低温維持装置56の内部において高真空を提供し、且つ、これにより、低温維持装置56、中間熱遮蔽体54、及び磁石構造10の間における対流熱伝達を制限するべく、真空ポンプを結合させることができる。低温維持装置56、熱遮蔽体54、及びヨーク10は、それぞれ、伝導熱伝達を極小化する量だけ、互いに離隔させることが可能であり、且つ、これらの構造は、絶縁スペーサによって構造的に支持することができる。
磁石ヨーク10は、超伝導プライマリコイル30及び32によって生成された磁束をビームチャンバ24まで搬送する磁気回路を提供している。又、磁気ヨーク10を通じた磁気回路(特に、フラッタコイル21によって提供される方位角が変化する磁界)は、ビームチャンバ24内におけるイオンの強力な合焦用の磁界成形を提供している。又、この磁気回路は、磁束の大部分を磁気回路の外側部分内において閉じ込めることにより、イオンが加速するビームチャンバ24の部分内の磁界レベルをも改善している。特定の一実施形態においては、磁気ヨーク10(フラッタコイル21を除く)は、低炭素鋼から形成されており、且つ、超伝導プライマリコイル30及び32を取り囲んでいる。純鉄は、弱過ぎる場合があり、且つ、小さ過ぎる弾性係数を有する場合があり、従って、鉄は、望ましい磁気レベルを維持しつつ、十分な強度を提供するように、或いは、更なる剛性を付与するように、十分な量の炭素及びその他の元素によってドーピングすることができる。
図9及び図10に示されている実施形態は、中央加速面26のそれぞれの側部において、4つの螺旋超伝導フラッタコイル21を含んでいるが、その他の実施形態は、例えば、3つの、6つの、又は8つの、均等に離隔したフラッタコイル21を中央加速面26のそれぞれの側部において含むことができる。図39及び図40には、それぞれ、3及び6フラッタコイル構成が示されており、この場合に、セクタの数Nは、3及び6コイル構成のそれぞれにおいて、3である。図39及び図40には、フラッタコイルセクタI、II、及びIIIが示されており、且つ、それぞれのフラッタコイル21を通じた電流の流れの方向が、矢印によって示されている(図39は、それぞれのフラッタコイル21内における電流Iの流れを時計回りの方向であるものとして示しているが、電流Iは、この代わりに、それぞれのフラッタコイル21内において、反時計回り方向を有することもできる)。図示のように、3コイル構成におけるフラッタコイル21は、4コイル構成よりも厚いものになりうる(コイル21当たりに、相対的に多くのアンペアターンを含む)。従って、3コイル構成における電流Iは、6コイル構成における電流Iよりも強力である。例えば、Iは、ほぼ、2×Iに等しくなることが可能であり、且つ、これは、4及び8コイル構成の場合にも、当て嵌まる。
フラッタコイル21の3又は6コイル構成は、磁極面当たりに3つの同一の120度の角度幅の磁気セクタを有するN=3セクタ等時性サイクロトロンであるものと見なされる。3コイル実施形態においては、フラッタコイルの電流方向は、すべての3つのコイル21において、同一である。6フラッタコイル実施形態においては、フラッタコイルの電流方向は、上方から観察された際に、1つのコイル21から次のコイル21へと(順番に)、時計回り及び反時計回りが交互に変化している。フラッタコイル21の4又は8コイル構成は、磁極面当たりに4つの同一の90度の角度幅の磁気セクタを有するN=4セクタ等時性サイクロトロンであるものと見なされる。4コイル実施形態においては、フラッタコイルの電流方向は、すべての4つのコイル21において、同一である。8コイル実施形態においては、フラッタコイルの電流方向は、上方から観察された際に、1つのコイル21から次のコイル21へと(順番に)、時計回り及び反時計回りが交互に変化している。
半径方向軌道の安定性の研究[John J.Livingood,“Principles of Cyclic Particle Accelerators”,D.Van Nostrand Co.,Princeton,NJ,p 239−240(1961)を参照されたい]は、最終的なエネルギーが200MeV超である陽子ビームの場合には、最小セクタ数がN=4セクタでなければならず、且つ、200MeV超の最終的なエネルギーを有するN=3セクタ陽子サイクロトロンが不可能であると示唆している。具体的には、この半径方向の安定性の研究においては、v<N/2である場合に、等時性サイクロトロン内の半径方向の軌道発振が安定すると仮定している。N=3セクタサイクロトロンの場合には、v<1.5が真となる。等時性サイクロトロンにおいては、vr〜γであり、γは、加速に伴う粒子−質量利得の相対論的因子であることから、これは、最終的なγをγ<1.5に、或いは、最終的なエネルギーを0.5×陽子の残りの質量−約450MeVに、制限することになろう。実際には、その他の要因によって0.3がvの最終的な値に追加され、その結果、γは、γ<1.2に、或いは、最終的なエネルギーは、200MeVに、制限されることになる。本発明により、我々は、200MeV超の最終的なエネルギーを有するN=3セクタ陽子サイクロトロンが許容されることを初めて実証した。N=3セクタ等時性サイクロトロンは、相対的に大きなフラッタを有しており、且つ、低減されたフラッタ磁極の複雑性に起因して、本質的に、相対的に低費用であり、且つ、構築が相対的に容易である。
螺旋形状のフラッタコイル21は、上述のように、磁界内において方位角の変動を提供するためのセクタ磁石として機能し、この場合に、螺旋形状は、磁界の変動(即ち、「フラッタ」)を改善している。超伝導フラッタコイル21は、プライマリコイル30及び32と同一の組成[例えば、ニオビウムチタニウム(NbTi)、ニオビウムすず(NbSn)、又はニオビウムアルミニウム(NbAl)などの低温超伝導体、或いは、BaSrCaCu、BaSrCaCu10、MgB、又はYBaCu7−xなどの高温超伝導体]から構成することが可能であり、且つ、上述のように、丸い断面を有することが可能であり、且つ、巻回することができる。6つ以上のフラッタコイル21が使用される場合には、電流が、電流が隣接するフラッタコイル21内において流れている方向とは反対の方向において、それぞれのフラッタコイル21内において流れるように、RF電圧を異なる方式によって個々のフラッタコイル21に印加することができる。
個々のボビン11及びプライマリコイル30/32を有するベースプレート13のペアは、図9及び図10に示されているように、(それぞれが、図6に示されているように、セクション88及び90を有する)個々の低温維持装置56内において収容されている。図8に示されているように、低温維持装置56のセクション88は、ベースプレート13の周りを包んでおり、ベースプレート13は、フラッタコイル21と、取り囲む非磁性外部補強構造62と、を含んでいる。冷凍機38が、その内部に収容されている補強された磁石構造に対して極低温冷却を提供するべく、反対側から低温維持装置56を貫通している。
冷凍機38は、この場合には、且つ、図41においては、水平方向の向きにおいて示されている。それぞれの冷凍機38は、真空フランジを介して、低温維持装置56の冷凍機ボックス49に結合されている。又、図41に示されているように、冷凍機38は、プライマリ超伝導コイル30/32に接触する(且つ、これとの緊密な熱接触状態にある)(3〜5Kを有する)低温のフットアンカー100をも含む。一体型の保守ブーツ組立体101が、低温のフットアンカー100上において取り付けられており(且つ、これとの緊密な熱接触状態にあり)、且つ、冷凍機38の第1ステージ109まで延在している。一体型の保守ブーツ組立体101は、冷凍機38の第2ステージ110に至る、低温フットアンカー100と低温フット延長部112の間のリンクを形成している。一体型の保守ブーツ組立体10は、低熱伝導性を有する複合材料から形成することが可能であり、従って、これにより、低温維持装置内の真空を破壊することなしに、且つ、サイクロトロン85内の磁石構造を温める必要性なしに、冷凍機38がその内部に(例えば、保守又は交換のために)交換自在に挿入及び除去されうる、絶縁ブーツを低温フットアンカー100の周りにおいて形成している。この構成は、冷凍機が、通常、第1ステージにおいては、遮蔽体に、且つ、第2ステージにおいては、サイクロトロン内の低温質量に、「ハード接続」されている、冷凍機を取り付けるための伝統的な手段とは対照的である。冷凍機38の(第1ステージ109の遠端における)第1ステージ接触部106は、30〜70Kにおいて維持することが可能であり、冷凍機38の(第2ステージ110の遠端における)第2ステージ接触部103は、3〜5Kにおいて維持することができる。真空が、冷凍機38の第1及び第2ステージの周りの容積102内において維持されている。
低温ポンプ38のそれぞれの側部には、電流が(近真空環境において維持された)電気バスを介してプライマリコイル30/32に供給される電流−リード−及び−真空フィードスルー(current−lead−and−vacuum feedthrough)105が存在している。電気バスは、温かい(室温の)電流リードから、(低温の抵抗性電流リード107と結合されている、30〜70Kを有する)高温の超伝導リード104まで,電流を供給する、低温の(例えば、銅から形成された)抵抗性電流リード107を含む。高温電流リード104は、その遠端において、(高温電流リード104と結合されている、3〜5Kを有する)プライマリ超伝導コイル30/32との熱接触状態にある。一方、取り囲んでいる低温維持装置は、(例えば、293Kなどの)室温を有する。
一代替実施形態においては、図42に示されているように、冷凍機38は、サイクロトロン85によって生成される磁界に対する潜在的に有害な曝露を低減するべく、垂直方向において折り畳むことができる。この特定の実施形態においては、低温フットアンカー100は、この場合にも、プライマリコイル32及び低温の質量108から、水平方向において(中央加速面に対して平行に)延在している。但し、この場合には、一体的な保守ブーツ組立体が、低温のフットアンカー100から上向きに、直交するように、方向付けされている(且つ、中央加速面に対して直交するように方向付けされている)。又、冷凍機38の第1及び第2ステージ109及び110も、垂直方向において方向付けされており、これにより、冷凍機のヘッド111は、プライマリコイル32の上方において、且つ、サイクロトロンのヨークの上方において、配置されている。
又、図7及び図99〜図10において観察されるように、等時性サイクロトロン85内のフラッタコイル21のそれぞれにRF電圧を提供するために、個々のRF共振器の通過を実現するべく、低温維持装置56を通じて、且つ、非磁性外部補強構造62を通じて、アパーチャ64が定義されている。イオン注入又はイオン注入装置の挿入のための低温維持装置56及び非磁性外部補強構造62を通じた更なるアパーチャ65も示されている。
図4及び図37には、等時性サイクロトロン85のビームチャンバ24にイオンを注入するための外部高強度イオンインジェクタ82の実施形態が示されており、この場合には、インジェクタカラム84が、イオンインジェクタ82内のECRイオン供給源82からビームチャンバ24内への経路を提供している。イオン77のストリームをサイクロトロン85の加速チャンバ内に放出するプラズマを形成するべく、サイクロトロン85の外部において、ガス供給源69からの[例えば、水素(H)などの]ガスの流れ及び(106Hzの周波数を有する)マイクロ波供給源70からのマイクロ波が、プラズマチャンバ71内に導かれている。プラズマチャンバの内部においては、陽子が生成された際に、電圧供給源93からの電子は、水素供給源69からのH分子と衝突して、2つの水素(H)イオン及び1つの自由電子を生成する(半分の時間)。電子が水素(H)イオンと衝突した際に、生成物は、Hと、2つの電子と、である。H/電子の相互作用のその他の半分において、H分子との間における電子の衝突は、H と、2つの電子と、を生成する。Hイオン(即ち、陽子)は、プラズマチャンバ71のベースにおけるアパーチャ79を通じて逃避することができる。
正イオン77(例えば、陽子)は、このアパーチャ79を通じてインジェクタカラム84内に通過し、ここで、陽子は、ビームチャンバ24に進入する前に、まず、イオン焦点73を通過し、高速偏向プレート74を通過し、マッチング/ストッピングアインツェルレンズトリプレット75を通過し、且つ、最後に、制限アパーチャ76を通過する。
図36〜図38には、ECRイオン供給源82及びアインツェルレンズトリプレット75の実施形態の更なる図が提供されている。図38に示されているように、イオンは、ECRイオン供給源82から、イオン焦点73内の抽出アパーチャを通過し、抽出ギャップを横断し、且つ、次いで、アインツェルトリプレットレンズ75を通過する。代表的なアインツェルレンズ75の電極シーケンスは、図38に示されているように、(1)負、(2)正、(3)負、の電荷シーケンスを有するが、ここで使用されているアインツェルレンズ75は、(1)正、(2)負、(3)正、の電荷シーケンスを有する3つのリング形状の電極のシーケンスを有する。従って、第1電極上の正の電荷は、ECRイオン供給源82からの正のイオンの流れをシャットダウンするべく、増大させることができる。図37のアインツェルレンズトリプレット75の第1電極の折り曲げられた先端は、イオンビームに収束性を付与している。図38に示されているように、電界は、電極に跨って、電圧等高線97に対して垂直である。イオン77は、電極の間の第1ギャップを横断する際に、減速し、且つ、次いで、次のギャップに跨って加速する。図36及び図37において示されている、周期的な合焦構造89は、イオンビームの均一なプロファイルを維持する永久四極磁石から形成されている。
又、図36には、サイクロトロンに注入されるイオンビーム電流を監視及び調節するための、中央磁界成形用の鉄のセクション113及び(例えば、Hなどの)イオンビームの通過を反転によって制御する遮断ビームコレクタ114も示されている。又、図36の図は、マイクロ波供給源70のマイクロ波注入導波路をも示しているが、マイクロ波電源は、示されていない。更には、図36の図は、水素ガス供給源の水素ガス供給コンジット69を示しているが、水素ガスのタンク又はその他のリザーバは、示されていない。
一代替実施形態においては、プラズマチャンバ71に跨って、そのベースの近傍において、金属スクリーンを提供することができる。金属スクリーンは、マイクロ波を遮断することが可能であり、且つ、これにより、スクリーン下方のプラズマの形成を妨げることができる。この実施形態においては、負イオンは、等時性加速のために、中心軸28に沿って、z軸方向において、インジェクタカラム84を通過し、且つ、ビームチャンバ24内に通過することができる。ビームチャンバ24の中心において、イオンは、中央加速面26に跨って外向きに膨張する螺旋において加速するように、(例えば、それぞれと結合された個別の電圧供給源を介して)反対の電荷が提供された螺旋インフレクタ78のペアにより、x−yプレーンに沿った軌跡内にリダイレクトされる。
半径方向支持リンク68及び軸方向支持リンク66は、ボビン11及び収容されている磁石構造を固定された位置において維持するべく、低温維持装置56の外側セクション88を通過し、且つ、ボビン11内において、マウント92(図9に示された)と結合されている。支持リンク66及び68は、半径方向においては、圧縮された状態にあると共に、(支持リンク66/68の長手軸に沿った)長手方向においては、引っ張られた状態にある、(例えば、ファイバガラス/エポキシ複合体又は炭素ファイバ/エポキシ複合体などの)複合体から、形成することができる。支持リンク66及び68は、(Super Glue Corp.of Ontario,CanadaからSUPER GLUE接着剤として市販されている)シアノアクリレート接着剤により、それぞれの端部上において、取り付けカップ92内に相互接触状態において固定されている。半径方向支持リンク68は、ボビン11を半径方向外向きに引っ張られた状態において配置すると共にプライマリコイル30及び32を、中心軸28を中心としてセンタリングされた(即ち、実質的に対称的な)状態において維持するように、半径方向支持リンク68が、複数の位置において外向きの締め付け力をボビン11に対して(x/yプレーン内において)提供しうる構成において、プライマリコイル30及び32並びにボビン11と結合されている。従って、半径方向リンク68は、磁気的な脱センタリング力に抗して半径方向の支持を提供しており、これにより、一側部において鉄に接近する低温質量は、指数的に増大する力を経験することになり、且つ、鉄に対して更に近接するように運動することになる。半径方向支持リンク68は、(例えば、従来のレース又はランニングトラックの近似形状を有する)リニアセグメントによって結合された丸い端部を有する、且つ、正確な円形断面を有する、2つ以上の弾性引っ張りバンドを有することができる。これらのバンドは、例えば、エポキシが含浸された螺旋巻回ガラス又は炭素テープから形成され、且つ、サイクロトロン85の高温の外側フレームから低温のプライマリコイル30及び32への熱伝達を極小化するように設計されている。様々な脱センタリング力がプライマリコイル30及び32に対して作用するのに伴って、センタリングを維持するべく、更なる引っ張り力を半径方向支持リンク68のうちの任意のものに対して印加するために、外向きの力を半径方向支持リンク68に対して印加することができる。適切な支持リンクについては、米国特許出願第7,656,258B1号明細書において記述されており、この明細書においては、「引っ張りリンク」として参照されている。
同様に、軸方向支持リンク66も、プライマリコイル30及び32の位置を、中央加速面26を中心として対称的に維持するべく、且つ、プライマリコイル30及び32の間の吸引力を相殺するべく、軸方向の磁気的な脱センタリング力に抗するように、z軸に対して平行な軸に沿ってボビン11に装着することができる。軸方向及び半径方向支持リンク66及び68の組は、必要とされるセンタリング力の提供に加えて、重力に抗して、プライマリコイル30及び32及びボビン11の質量を支持している。図8〜図12に示されているように、ボビン11は、機械的な支持及び閉じ込めを提供するべく、プライマリコイル30/32の両方並びに非磁性外部補強構造62を取り囲むと共に、これらと同一平面上に位置している。
動作の際に、電子サイクロトロン共振(ECR)イオン供給源82は、マイクロ波供給源70及び(例えば、水素などの)ガス供給源69からチャンバ内に(例えば、10GHzなどの周波数を有する)マイクロ波エネルギーを導入してチャンバの外側の周りにおいて陽子を生成するための正電荷を有するプラズマを生成することにより、イオン(例えば、陽子)を生成する。チャンバは、陽子が逃避しうるアパーチャ79をそのベースにおいて含んでいる。逃避したイオンは、ECRイオン供給源82から、中心軸28に沿って、抽出ギャップに跨って、注入され、且つ、次いで、アインツェルレンズトリプレット75によって合焦される。アインツェルレンズトリプレット75を通過した後に、イオンは、制限アパーチャ76を通過し、且つ、次いで、イオンの経路は、図4に示されているように、螺旋インフレクタ電極78より、加速プレーンに直交するように、中央加速面26内に折り曲げられる。次いで、イオンは、ビームチャンバ24内の電極ディー42に印加されたRF電圧により、加速される。電圧は、ビームチャンバ24に跨って、イオンがチャンバ24から抽出される外径にまで至る、外向きの螺旋におけるイオンの等時性加速用の磁界を生成するべく、プライマリコイル30及び32並びにフラッタコイル21に対して供給されている。図10に示されているように、電圧は、それぞれ、電圧供給源のアノード及びカソードに電気的に接続された電流リード34を介して、フラッタコイル21に供給されている。電圧は、フラッタコイル21の間に電気経路を形成する超伝導低温バス36を介して、直列状態において、フラッタコイル21を通じて循環されている。
電流リード34は、低温維持装置56内の電気絶縁された封止体を通じて、電圧供給源から(例えば、銅ワイヤとして)延在し、且つ、中間熱遮蔽体54を通じて、低温維持装置56内部の真空チャンバを通過し、フラッタコイル21にまで至っており、中間熱遮蔽体54は、(例えば、〜40Kを有する)冷凍機38の第1ステージ50と熱結合され、且つ、その結果、例えば、ビスマスストロンチウムカルシウム銅酸化物(BSCCO)、イットリウムバリウム銅酸化物(YBCO)、又はMgBから形成された高温超伝導リードの形態を有する。更なる電流リード34も、同様に、電圧供給源を超伝導プライマリコイル30及び32と結合している。電流リード34は、冷凍機38と共に、ヨーク10を通じて延在することができる。
本教示内容と一貫性を有する更なる例が、以下の付番された条項において記述されている。
1.等時性サイクロトロンであって、
中心軸を中心として実質的に対称である少なくとも2つの超伝導プライマリコイルであって、中央加速面の反対側において位置する超伝導プライマリコイルと、
超伝導プライマリコイルを取り囲み、且つ、ビームチャンバの少なくとも一部分を収容する磁気ヨークであって、中央加速面は、ビームチャンバを通じて延在している、磁気ヨークと、
中央加速面のそれぞれの側部における複数の超伝導フラッタコイルであって、それぞれの超伝導フラッタコイル又はフラットコイルのペアは、中央加速面のそれぞれの側部においてセクタ磁極先端部の間に谷を有するセクタ磁極先端部として機能し、且つ、セクタ磁極先端部は、中央加速面に跨って谷を分離する非磁性ギャップよりも狭いギャップにより、中央加速面に跨って半径方向において分離されている、超伝導フラッタコイルと、
超伝導フラッタコイルの位置決めを維持するように、フラッタコイルの間の谷を充填する非磁性外部補強構造と、
超伝導フラッタコイルの内部において取り付けられた内部補強構造と、
超伝導プライマリコイル、超伝導フラッタコイル、及び磁気ヨークと熱結合された少なくとも1つの極低温冷凍機と、
を有する等時性サイクロトロン。
2.非磁性外部補強構造は、アルミニウムを有する条項1に記載の等時性サイクロトロン。
3.第1低温維持装置は、超伝導プライマリコイルのうちの第1のもの、超伝導フラッタコイルのうちの第1のもの、及び第1非磁性外部補強構造を収容しており、且つ、第2低温維持装置は、超伝導プライマリコイルのうちの第2のもの、超伝導フラッタコイルのうちの第2のもの、及び第2非磁性外部補強構造を収容している条項1又は2に記載の等時性サイクロトロン。
4.極低温冷凍機が熱的に結合された1つ又は複数のプライマリコイルから極低温冷凍機を分離し、且つ、極低温冷凍機が除去された場合に低温維持装置内の真空を維持するように構成された一体型の保守ブーツ組立体を更に有する条項3のいずれか1項に記載の等時性サイクロトロン。
5.非磁性外部補強構造は、電極ディーに対する電流リードが通過しうる複数のアパーチャを定義している条項1〜4のいずれか1項に記載の等時性サイクロトロン。
6.超伝導フラッタコイルは、中央加速面に対して平行なプレーン内において螺旋形状を有する条項1〜5のいずれか1項に記載の等時性サイクロトロン。
7.内部補強構造は、温度の減少に伴って超伝導フラッタコイルよりも少なく収縮し、且つ、超伝導フラッタコイルは、温度の減少に伴って非磁性外部補強構造よりも少なく収縮する条項1〜6のいずれか1項に記載の等時性サイクロトロン。
8.ギャップが、200〜300Kの温度において、フラッタコイルのうちのそれぞれのフラッタコイルの内側表面とその個々の内部補強構造の間において、且つ、フラッタコイルのうちのそれぞれのフラッタコイルの外側表面と非磁性外部補強構造の間において、存在する条項1〜7のいずれか1項に記載の等時性サイクロトロン。
9.内部補強構造は、銅及びステンレス鋼から選択された少なくとも1つの金属を有する条項1〜8のいずれか1項に記載の等時性サイクロトロン。
10.超伝導フラッタコイルは、中心軸を中心とした3セクタ構成のみを有する条項1〜9のいずれか1項に記載の等時性サイクロトロン。
11.3又は6個の超伝導フラッタコイルのみが等時性サイクロトロン内に含まれている条項10に記載の等時性サイクロトロン。
12.超伝導フラッタコイルは、中心軸を中心とした4セクタ以上の構成を有する条項1〜9のいずれか1項に記載の等時性サイクロトロン。
13.等時性サイクロトロンは、35トン未満の質量を有する条項1〜12のいずれか1項に記載の等時性サイクロトロン。
14.それぞれの極低温冷凍機は、ヘッドを有し、且つ、1つ又は複数のプライマリコイルとの間におけるそれぞれの極低温冷凍機の結合は、磁気ヨークを超えた中央加速面からの距離においてそれぞれの極低温冷凍機のヘッドを配置するように方向付け及び構成されている条項1〜13のいずれか1項に記載の等時性サイクロトロン。
15.等時性イオン加速用の方法であって、
等時性サイクロトロンを利用するステップであって、等時性サイクロトロンは、
a)中心軸を中心として実質的に対称的である少なくとも2つの超伝導プライマリコイルであって、中央加速面の反対側において位置する超伝導プライマリコイルと、
b)超伝導プライマリコイルを取り囲み、且つ、ビームチャンバの少なくとも一部分を収容する磁気ヨークであって、中央加速面は、ビームチャンバを通じて延在している、磁気ヨークと、
c)中央加速面のそれぞれの側部における複数の超伝導フラッタコイルであって、それぞれの超伝導フラッタコイル又はフラッタコイルのペアは、中央加速面のそれぞれの側部においてセクタ磁極先端部の間に谷を有するセクタ磁極先端部として機能し、且つ、セクタ磁極先端部は、中央加速面に跨って谷を分離する非磁性ギャップよりも狭いギャップにより、中央加速面に跨って半径方向において分離されている、超伝導フラッタコイルと、
d)超伝導フラッタコイルの位置決めを維持するように、谷を充填する外部補強構造と、
e)フラッタコイルの内部において取り付けられた内部補強構造と、
f)超伝導コイル及び磁気ヨークと熱結合された極低温冷凍機と、
g)高周波電圧供給源と結合され、且つ、ビームチャンバ内において取り付けられた複数の電極と、
を有する、ステップと、
内径において中央加速面内にイオンを導入するステップと、
中央加速面に跨って膨張する軌道において固定された周波数においてイオンを加速するべく、高周波電圧供給源から電極に電流を提供するステップと、
超伝導プライマリコイル及び超伝導フラッタコイルを極低温冷凍機によって冷却するステップであって、超伝導プライマリ及びフラッタコイルは、その超伝導遷移温度を上回らない温度に冷却される、ステップと、
超伝導プライマリコイルから、且つ、磁気ヨークから、中央加速面内において半径方向において増大する磁界を生成する超伝導電流を超伝導プライマリコイル内において生成するべく、冷却された超伝導プライマリコイルに電圧を提供するステップと、
超伝導フラッタコイル内において超伝導電流を生成するべく、冷却された超伝導フラッタコイルに電圧を提供するステップと、
ビームチャンバから、外径において、加速されたイオンを抽出するステップと、
を有する方法。
16.加速されたイオンは、10〜250MeVのエネルギーに到達する条項15に記載の方法。
17.磁気ヨークは、イオンが加速されるのに伴って、200K超の温度において維持される条項15又は16に記載の方法。
18.等時性サイクロトロンは、フラッタコイルと同数の電極を含み、且つ、電極は、中心軸を中心としてフラッタコイルの間において所定の角度において位置決めされている条項15〜17のいずれか1項に記載の方法。
19.人間の患者内部の腫瘍に向かって、抽出されたイオンを導くステップを更に有する条項15〜18のいずれか1項に記載の方法。
20.抽出されたイオンのビームは、ペンシルビーム走査を介して腫瘍に跨って走査される条項19に記載の方法。
21.ペンシルビーム走査プロセスは、10秒以下において完了される条項20に記載の方法。
22.ペンシルビーム走査プロセスは、5秒以下において完了される条項20に記載の方法。
23.イオンは、イオンを外部電子サイクロトロン共振イオン供給源から注入することにより、中央加速面内に導入される条項15〜22のいずれか1項に記載の方法。
24.抽出されたイオンは、少なくとも220MeVのエネルギーを有する陽子である条項15〜23のいずれか1項に記載の方法。
25.等時性サイクロトロンは、3.5T超の中央磁界を中央加速面内において生成する条項15〜24のいずれか1項に記載の方法。
26.条項1〜14のいずれか1項に記載の等時性サイクロトロンを使用して実行される条項15〜25のいずれか1項に記載の方法。
本発明の実施形態の説明においては、わかりやすさを目的として、特定の用語法が使用されている。説明を目的として、特定の用語は、類似の結果を実現するべく類似の方式によって動作する技術的且つ機能的な均等物を少なくとも含むものと解釈されたい。これに加えて、本発明の特定の実施形態が複数のシステム要素又は方法ステップを含むいくつかの例においては、それらの要素又はステップは、単一の要素又はステップによって置換されてもよく、同様に、単一の要素又はステップは、同一の目的のために機能する複数の要素又はステップによって置換されてもよい。更には、様々な特性のパラメータ又はその他の値が、本発明の実施形態のために、本明細書において規定されている場合には、それらのパラメータ又は値は、そうではない旨が規定されていない限り、1/100、1/50、1/20、1/10、1/5、1/3、1/2、2/3、3/4、4/5、9/10、19/20、49/50、99/100などだけ、上方又は下方に(或いは、1、2、3、4、5、6、8、10、20、50、100などの倍数だけ、上方に)調節することが可能であり、或いは、これらの丸められた近似値だけ、調節することができる。更には、本発明は、その特定の実施形態を参照して図示及び記述されているが、当業者は、形態及び詳細における様々な置換及び変更が、本発明の範囲を逸脱することなしに、これらの実施形態において実施されうることを理解するであろう。更には、その他の態様、機能、及び利点も、本発明の範囲に含まれており、且つ、本発明のすべての実施形態は、必ずしも、上述の利点のすべてを実現する必要はなく、或いは、特性のすべてを保有する必要はない。これに加えて、一実施形態との関連において本明細書において記述されているステップ、要素、及び特徴も、同様に、その他の実施形態との関連において使用することができる。テキストの全体を通じ引用されている参照テキスト、ジャーナル記事、特許、特許出願などを含む、参考文献の内容は、引用により、そのすべてが、本明細書において包含され、且つ、これらの参考文献からの適切なコンポーネント、ステップ、及び特徴付けは、本発明の実施形態に包含されてもよく、或いは、包含されなくてもよい。更には、「背景技術」の節において識別されているコンポーネント及びステップは、本開示と一体的あり、且つ、本発明の範囲内において、本開示のどこか別の場所において記述されているコンポーネント及びステップとの関連において使用されることが可能であり、且つ、これらを置換することもできる。ステージが、―参照の容易性のために追加された順序付けされた前置き文字を伴って又はこれを伴うことなしに―、特定の順序において記述されている方法請求項においては、これらのステージは、そうではない旨が用語又はフレーズによって規定又は意味されていない限り、これらが記述されている順序に時間的に限定されるものと解釈してはならない。

Claims (28)

  1. 等時性サイクロトロンにおいて、
    中心軸を中心として実質的に対称である少なくとも2つの超伝導プライマリコイルであって、中央加速面の反対側において位置する超伝導プライマリコイルと、
    前記超伝導プライマリコイルを取り囲み、且つ、ビームチャンバの少なくとも一部分を収容する磁気ヨークであって、前記中央加速面は、前記ビームチャンバを通じて延在している、磁気ヨークと、
    前記中央加速面のそれぞれの側部における複数の超伝導フラッタコイルであって、それぞれの超伝導フラッタコイル又は超伝導フラッタコイルのペアは、前記中央加速面のそれぞれの側部においてセクタ磁極先端部の間に谷を有する前記セクタ磁極先端部として機能し、且つ、前記セクタ磁極先端部は、前記中央加速面に跨って前記谷を分離する非磁性ギャップよりも狭いギャップにより、前記中央加速面に跨って分離されている、超伝導フラッタコイルと、
    前記超伝導フラッタコイルの位置決めを維持するように、前記超伝導フラッタコイルの間の前記谷を充填する非磁性外部補強構造と、
    前記超伝導フラッタコイルの内部において取り付けられた内部補強構造と、
    前記超伝導プライマリコイル、前記超伝導フラッタコイル、及び前記磁気ヨークとの間において熱結合された少なくとも1つの極低温冷凍機と、
    を有することを特徴とする等時性サイクロトロン。
  2. 請求項1に記載の等時性サイクロトロンにおいて、前記非磁性外部補強構造は、アルミニウムを有することを特徴とする等時性サイクロトロン。
  3. 請求項1に記載の等時性サイクロトロンにおいて、第1低温維持装置は、前記超伝導プライマリコイルのうちの第1のもの、前記超伝導フラッタコイルのうちの第1のもの、及び第1非磁性外部補強構造を収容しており、且つ、第2低温維持装置は、前記超伝導プライマリコイルのうちの第2のもの、前記超伝導フラッタコイルのうちの第2のもの、及び第2の非磁性外部補強構造を収容していることを特徴とする等時性サイクロトロン。
  4. 請求項3に記載の等時性サイクロトロンにおいて、前記極低温冷凍機が熱結合された前記1つ又は複数のプライマリコイルから前記極低温冷凍機を分離し、且つ、前記極低温冷凍機が除去された場合に、前記低温維持装置内において真空を維持するように構成された一体型の保守ブーツ組立体を更に有することを特徴とする等時性サイクロトロン。
  5. 請求項1に記載の等時性サイクロトロンにおいて、前記非磁性外部補強構造は、電極ディーに対する電流リードが通過しうる複数のアパーチャを定義していることを特徴とする等時性サイクロトロン。
  6. 請求項1に記載の等時性サイクロトロンにおいて、前記超伝導フラッタコイルは、前記中央加速面に対して平行なプレーン内において螺旋形状を有することを特徴とする等時性サイクロトロン。
  7. 請求項1に記載の等時性サイクロトロンにおいて、前記内部補強構造は、温度の減少に伴って前記超伝導フラッタコイルよりも少なく収縮し、且つ、前記超伝導フラッタコイルは、温度の減少に伴って前記非磁性外部補強構造よりも少なく収縮することを特徴とする等時性サイクロトロン。
  8. 請求項1に記載の等時性サイクロトロンにおいて、ギャップが、200〜300Kの温度において、前記超伝導フラッタコイルのうちのそれぞれの超伝導フラッタコイルの内側表面とその個々の内部補強構造の間において、且つ、前記超伝導フラッタコイルのうちのそれぞれの超伝導フラッタコイルの外側表面と前記非磁性外部補強構造の間において、存在していることを特徴とする等時性サイクロトロン。
  9. 請求項1に記載の等時性サイクロトロンにおいて、前記内部補強構造は、銅及びステンレス鋼から選択された少なくとも1つの金属を有することを特徴とする等時性サイクロトロン。
  10. 請求項1に記載の等時性サイクロトロンにおいて、前記超伝導フラッタコイルは、前記中心軸を中心とした3セクタ構成のみを有することを特徴とする等時性サイクロトロン。
  11. 請求項10に記載の等時性サイクロトロンにおいて、3又は6個の超伝導フラッタコイルのみが前記等時性サイクロトロンに含まれていることを特徴とする等時性サイクロトロン。
  12. 請求項1に記載の等時性サイクロトロンにおいて、前記超伝導フラッタコイルは、前記中心軸を中心とした4セクタ以上の構成を有することを特徴とする等時性サイクロトロン。
  13. 請求項1に記載の等時性サイクロトロンにおいて、前記等時性サイクロトロンは、35トン未満の質量を有することを特徴とする等時性サイクロトロン。
  14. 請求項1に記載の等時性サイクロトロンにおいて、それぞれの極低温冷凍機は、ヘッドを含み、且つ、前記1つ又は複数のプライマリコイルとの間におけるそれぞれの極低温冷凍機の結合は、前記磁気ヨークを超えた前記中央加速面からの距離においてそれぞれの極低温冷凍機の前記ヘッドを配置するように方向付け及び構成されていることを特徴とする等時性サイクロトロン。
  15. 請求項1に記載の等時性サイクロトロンにおいて、前記等時性サイクロトロンは、3つ又は4つの超伝導フラッタコイルを含み、且つ、それぞれの超伝導フラッタコイルは、セクタ磁極先端部として機能することを特徴とする等時性サイクロトロン。
  16. 請求項1に記載の等時性サイクロトロンにおいて、前記等時性サイクロトロンは、6又は8個の超伝導フラッタコイルを含み、且つ、超伝導フラッタコイルのそれぞれのペアは、セクタ磁極先端部として機能し、且つ、前記超伝導フラッタコイルは、前記超伝導フラッタコイルのそれぞれのペアの個々の超伝導フラッタコイル内において交互に変化する電流の流れ方向を生成するように、電圧供給源と結合されていることを特徴とする等時性サイクロトロン。
  17. 等時性イオン加速用の方法において、
    等時性サイクロトロンを利用するステップであって、前記等時性サイクロトロンは、
    a)中心軸を中心として実質的に対称的である少なくとも2つの超伝導プライマリコイルであって、中央加速面の反対側に位置する超伝導プライマリコイルと、
    b)前記超伝導プライマリコイルを取り囲み、且つ、ビームチャンバの少なくとも一部分を収容する磁気ヨークであって、前記中央加速面は、前記ビームチャンバを通じて延在している、磁気ヨークと、
    c)前記中央加速面のそれぞれの側部における複数の超伝導フラッタコイルであって、それぞれの超伝導フラッタコイル又は超伝導フラッタコイルのペアは、前記中央加速面のそれぞれの側部においてセクタ磁極先端部の間に谷を有する前記セクタ磁極先端部として機能し、且つ、前記セクタ磁極先端部は、前記中央加速面に跨って前記谷を分離する非磁気ギャップよりも狭いギャップにより、前記中央加速面に跨って分離されている、超伝導フラッタコイルと、
    d)前記超伝導フラッタコイルの位置決めを維持するように、前記谷を充填する外部補強構造と、
    e)前記超伝導フラッタコイルの内部において取り付けられた内部補強構造と、
    f)前記超伝導プライマリ及びフラッタコイル並びに前記磁気ヨークと熱結合された少なくとも1つの極低温冷凍機と、
    g)高周波電圧供給源と結合され、且つ、前記ビームチャンバ内において取り付けられた複数の電極と、
    を有する、ステップと、
    前記中心軸に対する内周において前記中央加速面内にイオンを導入するステップと、
    前記中央加速面に跨って膨張する軌道において固定された周波数において前記イオンを加速するべく、前記高周波電圧供給源から前記電極に電圧を提供するステップと、
    前記極低温冷凍機により、前記超伝導プライマリコイル及び前記超伝導フラッタコイルを冷却するステップであって、前記超伝導プライマリ及びフラッタコイルは、その超伝導遷移温度を上回らない温度に冷却される、ステップと、
    前記超伝導コイルから、且つ、前記磁気ヨークから、前記中央加速面内において外側方向に増大する磁界を生成する超伝導電流を前記超伝導プライマリコイル内において生成するべく、電圧を前記冷却された超伝導プライマリコイルに提供するステップと、
    前記超伝導フラッタコイル内において超伝導電流を生成するべく、前記冷却された超伝導フラッタコイルに電圧を提供するステップと、
    前記中心軸に対する外周において、ビームチャンバから、前記加速されたイオンを抽出するステップと、
    を有することを特徴とする方法。
  18. 請求項17に記載の方法において、加速されたイオンは、10〜250MeVのエネルギーに到達することを特徴とする方法。
  19. 請求項17に記載の方法において、前記磁気ヨークは、前記イオンが加速されるのに伴って、200K超の温度において維持されることを特徴とする方法。
  20. 請求項17に記載の方法において、前記等時性サイクロトロンは、超伝導フラッタコイルと同数の電極を含み、且つ、前記電極は、前記中心軸を中心として前記超伝導フラッタコイルの間において所定の角度において位置決めされていることを特徴とする方法。
  21. 請求項17に記載の方法において、人間の患者内部の腫瘍に向かって、前記抽出されたイオンを導くステップを更に有することを特徴とする方法。
  22. 請求項21に記載の方法において、抽出されたイオンのビームは、ペンシルビーム走査を介して前記腫瘍に跨って走査されることを特徴とする方法。
  23. 請求項22に記載の方法において、前記ペンシルビーム走査プロセスは、10秒以下において完了されることを特徴とする方法。
  24. 請求項22に記載の方法において、前記ペンシルビーム走査プロセスは、5秒以下において完了されることを特徴とする方法。
  25. 請求項17に記載の方法において、前記イオンは、外部電子サイクロトロン共振イオン供給源から前記イオンを注入することにより、前記中央加速面内に導入されることを特徴とする方法。
  26. 請求項17に記載の方法において、前記抽出されたイオンは、少なくとも220MeVのエネルギーを有する陽子であることを特徴とする方法。
  27. 請求項17に記載の方法において、前記等時性サイクロトロンは、3.5T超の中心磁界を前記中央加速面内において生成することを特徴とする方法。
  28. 請求項17に記載の方法において、前記等時性サイクロトロンは、6又は8個の超伝導フラッタコイルを含み、且つ、超伝導フラッタコイルのそれぞれのペアは、セクタ磁極先端部として機能し、且つ、前記超伝導フラッタコイルに提供される前記電圧は、前記それぞれのペアの個々の超伝導フラッタコイル内において交互に変化する電流の流れ方向を生成することを特徴とする方法。
JP2017561955A 2015-05-26 2016-05-26 超伝導フラッタコイル及び非磁性補強を有する等時性サイクロトロン Expired - Fee Related JP6441508B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562166148P 2015-05-26 2015-05-26
US62/166,148 2015-05-26
PCT/US2016/034408 WO2016191592A1 (en) 2015-05-26 2016-05-26 Isochronous cyclotron with superconducting flutter coils and non-magnetic reinforcement

Publications (2)

Publication Number Publication Date
JP2018524764A JP2018524764A (ja) 2018-08-30
JP6441508B2 true JP6441508B2 (ja) 2018-12-19

Family

ID=57394244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017561955A Expired - Fee Related JP6441508B2 (ja) 2015-05-26 2016-05-26 超伝導フラッタコイル及び非磁性補強を有する等時性サイクロトロン

Country Status (9)

Country Link
US (4) US9895552B2 (ja)
EP (1) EP3305038B1 (ja)
JP (1) JP6441508B2 (ja)
KR (1) KR101976972B1 (ja)
CN (1) CN107615891B (ja)
CA (1) CA2986899C (ja)
HK (1) HK1246570B (ja)
SA (1) SA517390397B1 (ja)
WO (1) WO2016191592A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10751554B2 (en) * 2010-04-16 2020-08-25 Scott Penfold Multiple treatment beam type cancer therapy apparatus and method of use thereof
US10117320B2 (en) * 2014-12-08 2018-10-30 Hitachi, Ltd. Accelerator and particle beam irradiation system
CN107615891B (zh) 2015-05-26 2018-12-11 安塔亚科技公司 具有超导颤振线圈和非磁性增强件的等时性回旋加速器
CN107635749A (zh) * 2015-06-10 2018-01-26 Ipg光子公司 多光束增材制造
WO2018116647A1 (ja) * 2016-12-22 2018-06-28 株式会社日立製作所 加速器ならびに粒子線治療装置
JP6768845B2 (ja) * 2017-02-01 2020-10-14 株式会社日立製作所 円形加速器
JP2020095774A (ja) * 2017-03-28 2020-06-18 住友重機械工業株式会社 空芯型サイクロトロン
US10362666B2 (en) * 2017-05-25 2019-07-23 Uchicago Argonne, Llc Compac carbon ion LINAC
CN107087340B (zh) * 2017-07-04 2018-04-03 合肥中科离子医学技术装备有限公司 一种用于超导质子回旋加速器的束流能散调节机构
CN107910240B (zh) * 2017-12-13 2024-04-30 合肥中科离子医学技术装备有限公司 一种超导质子治疗装置离子源的验证工装
CN108478940A (zh) * 2018-04-28 2018-09-04 合肥中科离子医学技术装备有限公司 基于重离子回旋加速器进行肿瘤放射治疗的系统
JP7039423B2 (ja) * 2018-08-31 2022-03-22 ジャパンスーパーコンダクタテクノロジー株式会社 超伝導マグネット装置
KR102238857B1 (ko) * 2019-01-29 2021-04-09 성균관대학교산학협력단 가속 질량분석 사이클로트론 시스템
KR102170156B1 (ko) * 2019-01-31 2020-10-26 성균관대학교 산학협력단 다중 이온소스
JP7096779B2 (ja) * 2019-02-14 2022-07-06 株式会社日立製作所 イオン源、およびこれを用いた円形加速器ならびに粒子線治療システム
JP7352412B2 (ja) * 2019-08-28 2023-09-28 住友重機械工業株式会社 サイクロトロン
CN111408070A (zh) * 2020-03-30 2020-07-14 合肥中科离子医学技术装备有限公司 一种基于等时性回旋加速器的多离子治疗系统
US11280850B2 (en) 2020-04-02 2022-03-22 Varian Medical Systems Particle Therapy Gmbh Magnetic field concentrating and or guiding devices and methods
US11570880B2 (en) 2020-04-02 2023-01-31 Varian Medical Systems Particle Therapy Gmbh Isochronous cyclotrons employing magnetic field concentrating or guiding sectors
CN112327110A (zh) * 2020-10-19 2021-02-05 中国科学院电工研究所 一种基于制冷机传导冷却的宽温区液体介质环境试验装置
JP7458309B2 (ja) 2020-12-11 2024-03-29 株式会社日立製作所 レーザイオン源、円形加速器および粒子線治療システム
CN116033642B (zh) * 2023-01-09 2023-09-26 中国科学院近代物理研究所 一种强流超导回旋加速器高频装置
CN115802580B (zh) * 2023-01-29 2023-05-23 合肥中科离子医学技术装备有限公司 磁场校正线圈装置和具有其的回旋加速器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1948384A (en) 1932-01-26 1934-02-20 Research Corp Method and apparatus for the acceleration of ions
US3925676A (en) * 1974-07-31 1975-12-09 Ca Atomic Energy Ltd Superconducting cyclotron neutron source for therapy
CA1008125A (en) * 1975-03-07 1977-04-05 Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited Method and apparatus for magnetic field shimming in an isochronous cyclotron
FR2544580B1 (fr) * 1983-04-12 1985-07-05 Cgr Mev Cyclotron a systeme de focalisation-defocalisation
GB8512804D0 (en) * 1985-05-21 1985-06-26 Oxford Instr Ltd Cyclotrons
JP2693899B2 (ja) * 1992-10-09 1997-12-24 栄電子工業株式会社 Ecrプラズマ加工方法
JP3945601B2 (ja) * 1998-05-11 2007-07-18 三菱電機株式会社 等時性サイクロトロン
EP1069809A1 (en) * 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
WO2007130164A2 (en) * 2006-01-19 2007-11-15 Massachusetts Institute Of Technology High-field superconducting synchrocyclotron
US7656258B1 (en) 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
JP2008234874A (ja) * 2007-03-16 2008-10-02 Sii Nanotechnology Inc 集束イオンビーム装置
GB2467595B (en) * 2009-02-09 2011-08-24 Tesla Engineering Ltd Cooling systems and methods
US20100290575A1 (en) * 2009-05-15 2010-11-18 Rosenthal Glenn B Particle beam isotope generator apparatus, system and method
JP5682903B2 (ja) * 2010-06-09 2015-03-11 学校法人早稲田大学 空芯型サイクロトロン
US8525447B2 (en) * 2010-11-22 2013-09-03 Massachusetts Institute Of Technology Compact cold, weak-focusing, superconducting cyclotron
US8558485B2 (en) * 2011-07-07 2013-10-15 Ionetix Corporation Compact, cold, superconducting isochronous cyclotron
US8558495B2 (en) * 2011-08-01 2013-10-15 Atmel Corporation Sensorless BLDC motor control by comparing instantaneous and average BEMF voltages
WO2013113913A1 (en) * 2012-02-03 2013-08-08 Ion Beam Applications S.A. Magnet structure for an isochronous superconducting compact cyclotron
US8581525B2 (en) 2012-03-23 2013-11-12 Massachusetts Institute Of Technology Compensated precessional beam extraction for cyclotrons
JP6091999B2 (ja) * 2012-06-01 2017-03-08 住友重機械工業株式会社 サイクロトロン
US8975836B2 (en) * 2012-07-27 2015-03-10 Massachusetts Institute Of Technology Ultra-light, magnetically shielded, high-current, compact cyclotron
JP6523957B2 (ja) * 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド 磁場を変更するための磁性シム
CN104813747B (zh) * 2012-09-28 2018-02-02 梅维昂医疗系统股份有限公司 使用磁场颤振聚焦粒子束
EP2785154B1 (en) * 2013-03-29 2015-10-21 Ion Beam Applications S.A. Compact superconducting cyclotron
US9576767B2 (en) * 2013-05-15 2017-02-21 Indian Institute Of Technology Kanpur Focused ion beam systems and methods of operation
US8791656B1 (en) * 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
JP6255549B2 (ja) * 2013-10-16 2018-01-10 学校法人早稲田大学 空芯型サイクロトロン
JP6231039B2 (ja) * 2015-04-22 2017-11-15 住友重機械工業株式会社 サイクロトロン及び超伝導電磁石
CN107615891B (zh) 2015-05-26 2018-12-11 安塔亚科技公司 具有超导颤振线圈和非磁性增强件的等时性回旋加速器

Also Published As

Publication number Publication date
US9895552B2 (en) 2018-02-20
US20160353562A1 (en) 2016-12-01
EP3305038A4 (en) 2019-01-16
US20200164229A1 (en) 2020-05-28
JP2018524764A (ja) 2018-08-30
WO2016191592A1 (en) 2016-12-01
US10702709B2 (en) 2020-07-07
EP3305038B1 (en) 2020-01-15
KR20180013977A (ko) 2018-02-07
US10363435B2 (en) 2019-07-30
US20180161598A1 (en) 2018-06-14
CN107615891A (zh) 2018-01-19
US20200338365A1 (en) 2020-10-29
CA2986899A1 (en) 2016-12-01
CN107615891B (zh) 2018-12-11
EP3305038A1 (en) 2018-04-11
KR101976972B1 (ko) 2019-05-09
CA2986899C (en) 2018-11-06
SA517390397B1 (ar) 2020-10-27
US11116996B2 (en) 2021-09-14
HK1246570B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
JP6441508B2 (ja) 超伝導フラッタコイル及び非磁性補強を有する等時性サイクロトロン
TWI566645B (zh) 小型的、冷的、弱聚焦的超導迴旋加速器
EP2730152B1 (en) Compact, cold, superconducting isochronous cyclotron
JP5481070B2 (ja) 粒子加速のための磁場生成方法、磁石構造体及びその製造方法
US8791656B1 (en) Active return system
CN104813748A (zh) 聚焦粒子束
Lyneis et al. Development of the third generation electron cyclotron resonance ion source
Leitner et al. Status of the Superconducting ECR Ion Source Venus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181121

R150 Certificate of patent or registration of utility model

Ref document number: 6441508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees