JP6417998B2 - 軸受 - Google Patents

軸受 Download PDF

Info

Publication number
JP6417998B2
JP6417998B2 JP2015029314A JP2015029314A JP6417998B2 JP 6417998 B2 JP6417998 B2 JP 6417998B2 JP 2015029314 A JP2015029314 A JP 2015029314A JP 2015029314 A JP2015029314 A JP 2015029314A JP 6417998 B2 JP6417998 B2 JP 6417998B2
Authority
JP
Japan
Prior art keywords
ceramic member
peripheral surface
inner peripheral
bearing
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015029314A
Other languages
English (en)
Other versions
JP2016151048A (ja
Inventor
衛介 小川
衛介 小川
清水 健一郎
健一郎 清水
諒 長沼
諒 長沼
則雄 熊谷
則雄 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015029314A priority Critical patent/JP6417998B2/ja
Publication of JP2016151048A publication Critical patent/JP2016151048A/ja
Application granted granted Critical
Publication of JP6417998B2 publication Critical patent/JP6417998B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼板に亜鉛めっき等の金属めっきを施すために溶融金属めっき浴中に浸漬するシンクロールやサポートロール等の軸受に関する。
図8に示すように、表面を清浄化及び活性化した鋼板を亜鉛等の溶融金属めっき浴中で走行させながら連続的にめっきを行う連続溶融金属めっき装置では、シンクロール104やサポートロール105等は溶融金属めっき浴103中に浸漬されている。焼鈍炉から送出された鋼板101は、酸化防止のスナウト102を通り、溶融金属めっき浴103に浸漬される。鋼板101は溶融金属めっき浴103中に懸架された軸104aに固定されたシンクロール104により進行方向を変えられ、浴面に上昇する。シンクロール104の回転力は、通常走行する鋼板によって付与される。
シンクロール104を通過した鋼板101は浴面に近い位置で支持された一対のサポートロール105で挟まれてパスラインを保ち、シンクロール104を通過した際に生じる鋼板101の反りや振動を防ぐ。サポートロール105は、通常モーターにより駆動されるか、鋼板の走行によって駆動される。溶融金属めっき浴103の上方にあるガスワイピングノズル106は、めっきした鋼板101に高速ガスを吹き付け、ガス圧及び吹き付け角度によりめっき層の厚さを均一化する。
シンクロール104は鋼板101により常に上方に押圧されているので、シンクロール軸104aを軸受で回転自在に支持する必要がある。軸受は溶融金属めっき浴中に浸漬されるので、内部に溶融金属が進入する。軸受を溶融金属めっき浴から取り出したときに溶融金属が軸受から除去できないと、溶融金属は軸受内で凝固してしまうという問題がある。この問題を解決するために、種々の提案がなされている。
例えば、特開2002-294419号(特許文献1)は、連続溶融金属めっきロール用軸受207であって、ロール軸から負荷を受ける内面部分に軸方向全長にわたり溝214が設けられた金属製軸受ホルダー211と、ロール軸との摺動面が曲面状の断面扇状セラミック部材212とを具備し、セラミック部材212は軸受ホルダー211の溝214に装着されており、軸受ホルダー211の溝214の内壁面217とそれと対向するセラミックス部材212の外壁面との間に、溶融金属を排出させるための隙間213が形成されている軸受207を開示している。この構造により、軸受ホルダー211とセラミックス部材212との隙間213に入った溶融金属を容易に排出できる。しかし、最近の鋼板の薄肉化及び生産性向上のため、鋼板製造ラインのスピードが高速化し、特許文献1の軸受を使用しても、長期間に渡って安定した摺動性が得られず、軸受が振動することがある。軸受が振動すると、鋼板の幅方向に横縞模様(振動模様)が生じ、高品質なめっき鋼板が得られない。
特開2002-294419号公報
従って、本発明の目的は、ラインスピードが高速化しても高い摺動性を維持することにより振動を抑制できる軸受を提供することである。
軸受を構成するセラミック部材の形状及び内周面の気孔の状態、並びに金属製ホルダーとのクリアランス等について鋭意検討した結果、発明者は、(a) セラミック部材の周方向端面とホルダーの対向斜面とのクリアランスδが所定の条件を満たし、(b) セラミック部材の内周面が所定のスキューネスRskを有し、(c) セラミック部材の内周面の気孔面積率が外周面の気孔面積率より高く、かつ(d) セラミック部材の内周面の気孔面積率を2〜6%と高くすることにより、ラインスピードが高速化しても高い摺動性を維持することにより振動を抑制でき、もって鋼板への振動模様の形成が抑制された軸受が得られることを発見し、本発明の構成に想到した。
すなわち、溶融金属めっき浴中に浸漬されるロール軸を回転自在に支持する本発明の軸受は、
断面扇形状のセラミック部材と、前記セラミック部材の外周面を支持する円弧状溝を有する金属製ホルダーとを有し、
前記ロール軸の回転により前記セラミック部材が前記ホルダーの前記円弧状溝内を移動して、前記セラミック部材の周方向一端面が前記ホルダーの対向斜面に当接したとき、前記セラミック部材の周方向他端面と前記ホルダーの対向斜面とのクリアランスδが、K=(r1+t’)δ/t=1〜20[ただし、r1は前記セラミック部材の内周面の周方向端面に形成した面取りの半径方向長さ(mm)であり、t’は前記セラミック部材の周方向端面の半径方向長さ(mm)であり、tは前記セラミック部材の半径方向厚さ(mm)である。]の条件を満たし、
前記セラミック部材の内周面のスキューネスRskが−0.4〜+0.1であり、
前記セラミック部材の内周面の気孔面積率が外周面の気孔面積率より高く、
前記セラミック部材の内周面の気孔面積率が2〜6%であることを特徴とする。
前記セラミック部材の内周面における気孔の円換算孔径は15μm以下であるのが好ましい。
前記セラミック部材の内周面での円換算孔径が3μm以上の気孔の合計面積は、全気孔面積の40〜70%であるのが好ましい。
前記面取りは曲面状又は平坦面状であるのが好ましい。
前記セラミック部材の内周面の中心角θ1は90〜150°であるのが好ましい。
前記セラミック部材は窒化珪素質セラミックスからなるのが好ましい。
前記セラミック部材の外周面の輪郭度は100μm以下であるのが好ましい。
上記特徴を有する本発明の軸受は、ラインスピードが高速化しても高い摺動性を維持することにより振動を抑制でき、もって鋼板への振動模様の形成を抑制できる。
本発明の一実施形態による軸受を示す断面図である。 本発明の一実施形態による軸受を示す分解断面図である。 本発明の軸受を構成するセラミック部材を示す側面図である。 ロール軸が摺動中の本発明の軸受を示す部分断面正面図である。 図3のB-B断面図である。 図3の領域Aを示す拡大図である。 セラミック部材の端部形状の別の例を示す拡大図である。 シンクロールの支持機構を示す部分断面側面図である。 連続溶融金属めっき装置を示す概略図である。 特開2002-294419号の軸受を示す概略図である。
本発明の実施形態を添付図面を参照して以下詳細に説明するが、本発明はそれらに限定されるものではない。一実施形態に関する説明は、特に断りがなければ他の実施形態にも適用される。
[1] 軸受の構造
図1及び図2に示すように、本発明の軸受10は、断面扇形のセラミック部材12と、セラミック部材12を支持する金属製ホルダー14とを備えている。ホルダー14はステンレス鋼製であるのが好ましい。セラミック部材12は、円弧状外周面12a及び円弧状内周面12bと、周方向両端面12c,12c’と、平坦な軸方向両端面12d,12dとを有する。ホルダー14は、内周にセラミック部材12を支持する円弧状溝14aを有するとともに、溝(内周面)14aの両端にセラミック部材12の周方向両端面12c,12c’が当接する斜面14b,14b’を有し、各斜面14b,14b’の下に脚部14c,14c’が延在している。両斜面14b,14b’の間隔は、ロール軸(たとえばシンクロール軸)104aの回転によりセラミック部材12が周方向に移動し得るが、セラミック部材12が移動しても円弧状溝14aから脱落しないような距離に設定されている。セラミック部材12の外周面12aとホルダー14の内周面14aとの間に、スペーサ、緩衝部材、アタッチメント等を介在させても良い。
セラミック部材12の周方向両端面12c,12c’はホルダー14の溝14aの両端面14b,14b’と対向している。セラミック部材12の内周面12bの中心角はθ1であり、ホルダー14の内周面(溝)14aの中心角はθ2である。
セラミック部材12については、半径方向厚さtは好ましくは5〜40 mm、より好ましくは10〜35 mmであり、内周面12b側の面取りの半径方向r1は好ましくは3〜15 mmであり、外周面12a側の面取りの半径方向r2は好ましくは3〜20 mmであり、外周面12aの曲率半径は好ましくは40〜170 mm、より好ましくは50〜140 mmであり、内周面12bの曲率半径は好ましくは20〜150 mm、より好ましくは30〜120 mmであり、内周面12bの中心角θ1は好ましくは90〜150°であり、より好ましくは100〜140°である。ホルダー14については、内周面14aの曲率半径はセラミック部材12の外周面12aの曲率半径とほぼ同じであるのが好ましい。軸受10の軸方向長さは好ましくは300 mm以下であり、より好ましくは30〜200 mmであり、最も好ましくは50〜100 mmである。
摺動性を向上するにはセラミック部材12の外周面の輪郭度(JIS B 0621)は100μm以下が好ましい。セラミック部材12のガタツキを少なくし、鋼板に振動模様が形成される要因を排除するためには、外周面の輪郭度は10μm以下がより好ましく、5μm以下が最も好ましい。
図4に示すように、セラミック部材12の軸方向の移動を抑制するため、金属製ホルダー14の軸方向の両端面に留め具15、15が溶接等により固定されている。各留め具15は平板状で良いが、セラミック部材12の脱落を確実に防止するために下端部にL字状のツメを設けても良い。
図7は、ハンガー108によって保持された軸受10がシンクロール軸104aを回転自在に支持する様子を示す。ロール軸104aは、たとえばステンレス鋼の表面にWC-Co系の溶射膜等を被覆したものが使われている。軸受10はサポートロール用等、溶融金属めっき浴中で使用する他のロールにも使用できる。
[2] クリアランス
連続溶融金属めっき装置では、図3に示すように軸受10のセラミック部材12はロール軸(たとえばシンクロール軸)104aにより押し上げられる。ロール軸104aが回転してセラミック部材12の内周面12bに対して摺動すると、セラミック部材12の周方向一端面12c’はホルダー14の対向斜面14b’に当接し、図5に示すようにセラミック部材12の周方向他端面12cとホルダー14の対向斜面14bとの間に最大のクリアランスδ(mm)が生じる。
クリアランスδは、軸受10を溶融金属に浸漬したときの溶融金属の流入し易さ、及び軸受10を溶融金属から引き上げたときの溶融金属の排出し易さに影響する。クリアランスδの影響力は、セラミック部材12の半径方向厚さ等により変動するので、溶融金属の流入及び排出のし易さをK=(r1+t’)δ/tのパラメータにより表す。ここで、tはセラミック部材12の半径方向厚さ(mm)であり、r1は内周面12bの周方向端部の面取りの半径方向長さ(mm)であり、t’は周方向端面12cの半径方向長さ(mm)である。t’はt−r1−r2[ただし、r2はセラミック部材12の外周面12aの周方向端部の面取りの半径方向長さ(mm)である。]により求められる。
本発明の軸受10は、K=(r1+t’)δ/t=1〜20の関係を満たす必要がある。K≧1であると、ロール軸104aに摺接するセラミック部材12の内周面12b(摺動面)に溶融金属が流入し易くなり、流入した溶融金属が潤滑剤として機能することにより摺動性が向上し、振動が抑制される。一方、Kが20を超えると、クリアランスが大きすぎ、ホルダー14に対してセラミック部材12ががたついたり傾斜したりする。セラミックス12の振動防止とともにセラミックス12の内周面12bの潤滑性(摺動性)を高くするために、Kは3〜12が好ましく、4.5〜10がより好ましい。
ロール軸104aはいずれの方向にも回転可能であるので、セラミック部材12の両端部は同じ面取り構造を有する。従って、K=(r1+t’)δ/t=1〜20の関係は、セラミック部材12の両端部で満たされる。
面取りは図5に示すように曲面状とは限らず、図6に示すように平坦な面取りでも良い。その場合でも、K=(r1+t’)δ/t=1〜20の関係を満たす。なお、図2に示すようにセラミック部材12の軸方向両端面12d,12dの角部も面取りされている。
[3] セラミックス内周面のRsk
さらに本発明の軸受10では、セラミックス12の内周面12bの面粗さを表すスキューネスRskが−0.4〜+0.1である必要がある。Rskが−0.4未満であると、セラミックス12の内周面12bの凹部が深すぎ、破壊の起点となるおそれがある。また、Rskが+0.1を超えると、セラミックス12の内周面12bの凸部に荷重が集中し、凸部にひっかかりながらロール軸104aが回転するために振動が生じやすい。Rskは−0.3〜0が好ましく、−0.3〜−0.1がより好ましい。
K及びRskが上記範囲内であると、ロール軸104aに摺接するセラミック部材12とホルダー14との間に溶融金属が流入し易くなり、セラミック部材12のガタつきを防ぐことができ、軸受10とロール軸104aの摺動性が向上し、もって軸受10とロール軸104aの振動を抑制できる。
Rskは表面粗さを表すパラメータの1種で、表面粗さ曲線の上下方向の偏りを示すものであり、JIS B 0601 (2001)で下記式により定義される。ただし、Z(x)は一次元表面粗さ(座標:x)における表面形状(座標xにおける表面の高さ)を示し、Lは基準長さを示し、Rqは二乗平均平方根粗さを示す。スキューネスRskは上下方向の凹凸形状の対称性を示す。Rskはセラミック部材12の内周面12bに研削加工、ブラスト処理又はレーザー加工により調整できる。
Figure 0006417998
Figure 0006417998
[4] セラミック部材の気孔
セラミック部材12の外周面12aは緻密でできるだけ気孔が少ない方が良いが、内周面12bは溶融金属を保持してロール軸104aとの摺動性を増すために、比較的多くの気孔を有するのが好ましい。摺動面における気孔の量は「気孔面積率」により表される。気孔面積率はセラミック部材12の表面の顕微鏡写真から求めることができる。
本発明の軸受10は、(a) 内周面12bの気孔面積率が外周面の気孔面積率より大きく、(b) 内周面12bの気孔面積率が2〜6%であることを特徴とする。2〜6%の範囲の気孔面積率により、ロール軸104aがセラミック部材12の内周面12bに摺接する際にめっき浴の溶融金属がセラミック部材12の内周面12bに保持され、両者の摺動性が増す。セラミック部材12の内周面12bの摺動性をさらに向上させるとともにセラミック部材12の内周面12bの摩耗を低減するためには、セラミック部材12の内周面12bの気孔面積率は3〜5%がより好ましい。同様の理由で、セラミック部材12の内周面12bにおける気孔の円換算孔径(各気孔の面積と同じ面積を有する円の直径)は好ましくは15μm以下であり、より好ましくは10μm以下であり、最も好ましくは8μm以下である。ただし、円換算孔径の下限は2μmが好ましい。
セラミック部材12の内周面12bにおいて、摺動性を向上するには、円換算孔径が3μm以上の気孔の合計面積は全気孔面積の40〜70%であるのが好ましい。セラミック部材12の内周面12bで摺動性を向上するとともに、セラミック部材12の内周面12bの摩耗を低減するには、円換算孔径が3μm以上の気孔の合計面積は全気孔面積の50〜70%であるのがより好ましい。セラミック部材12の内周面12bにおける気孔面積率及び気孔径は成形圧力等の成形条件や焼結条件により調整できる。
[5] セラミック部材の製造方法
セラミック部材12は、溶融金属めっき浴に対して良好な耐食性及び耐熱衝撃性を有する必要があり、例えばジルコニア等の酸化物セラミックス、炭化珪素セラミックス、又は窒化珪素質セラミックス等からなるのが好ましい。特に、窒化ケイ素質セラミックス(窒化ケイ素、サイアロン等)は、20℃から500℃までの間の平均熱膨張係数が約3×10-6/℃と小さく耐熱衝撃性に優れ、高温で高強度を有するので好ましい。
窒化珪素質セラミックスからなるセラミック部材12の場合、断面組織において、長軸径が10μm以下で、アスペクト比(短軸径に対する長軸径の比)が5以上である窒化珪素粒子が10面積%以下であるのが好ましく、1〜9%であるのがより好ましい。
円筒状セラミックス焼結体を得た後、円筒状セラミックス焼結体の内周面、外周面及び端面を研削加工する。窒化珪素質セラミックスからなる円筒状セラミックス焼結体の場合、表面層より内部の方で気孔率が高い構造とし、内周面を外周面より深く研削するのが好ましい。例えば、円筒状サイアロンセラミックス焼結体の場合、内周面12b側では焼結肌を深さ1〜3 mmまで研削し、外周面12a側では0.5〜1 mm程度まで研削する。これにより、内周面12bの気孔面積率が外周面の気孔面積率より大きくなる。
セラミックス焼結体の製造及び仕上げ加工の段階までは、セラミックス焼結体は円筒状である方が精度が良い。従って、仕上げ加工した円筒状セラミックス焼結体を軸線方向に切断することによりセラミック部材12を形成する。
本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されない。
実施例1
(1) セラミック部材
溶融金属めっき浴に対して優れた耐食性、耐熱衝撃性及び高温高強度を有するサイアロンセラミックスによりセラミック部材12を以下の工程により製造した。まず、平均粒径0.8μmのα-Si3N4粉末:87質量%、平均粒径0.5μmのAl2O3粉末:5質量%、平均粒径0.5μmのAlN固溶体粉末:3質量%、平均粒径1.0μmのY2O3粉末:5質量%を配合し、得られた原料粉末100質量部にバインダーとして0.5質量部のポリビニルブチラールを添加し、得られた混合物を造粒して、1000 kgf/cm2の圧力でCIP(Cold Isostatic Press)成形し、円筒状の成形体を得た。この成形体を常圧の窒素雰囲気下、1750℃で5時間焼結して円筒状のサイアロンセラミックス焼結体を得た。
円筒状サイアロンセラミックス焼結体の内周面、外周面及び端面を研削加工した。その際、内周の焼結肌を深さ2 mmまで研削し、内周面12bとした。研削加工後のサイアロンセラミックス焼結体は、内周面12bの曲率半径が80 mm、外周面の曲率半径が101.5 mm、半径方向厚さが21.5 mm、軸方向長さが100 mmであった。セラミック部材12の外周面の輪郭度は100μm以下であった。
この円筒状サイアロンセラミックス焼結体を軸線方向に沿って3分割し、内周面12bの中心角θ1が118°の部分円筒状セラミック部材12を作製した。周方向両端面の角部に、半径方向長さr1,r2が3 mmの円形状面取りを形成した。従って、セラミック部材12の周方向端面の半径方向長さt’は15.5 mmであった。セラミック部材12の軸方向両端面の角部に、曲率半径10 mmの円形状面取りを形成した。
サイアロンセラミックス焼結体の端部から採取した試料は、常温におけるビッカース硬度Hvが1580、常温における3点曲げによる曲げ強さが800 MPaであった。サイアロンセラミックス焼結体の端部から採取した試料の断面組織を観察すると、長軸径が10μm以下で、短軸径に対する長軸径の比が5以上の窒化珪素粒子は断面組織中で7.5面積%であった。また、上記試料の内周面12b等に相当する位置で、気孔の面積及び分布を測定した。内周面12bのRskは−0.2、外周面12a及び内周面12bの気孔面積率はそれぞれ0.5%及び2.0%、内周面12bにおける気孔の円換算孔径の最大値は8μm、及び内周面における円換算孔径が3μm以上の気孔の合計面積は全気孔面積の65%であった。
(2) ホルダー
溝14aの内周面が120°の中心角θ2及び101.5 mmの曲率半径(セラミック部材12の外周面の曲率半径と同じ)となるように、ホルダー14をステンレス鋼により製造した。
(3) 軸受の組立て
セラミック部材12及びホルダー14を、図1に示す構造の軸受10に組み立てた。ホルダー14の溝14aの内周面にセラミック部材12の外周面を接触させた状態で、セラミック部材12の周方向一端面12c’とホルダー14の斜面14b’を接触させたとき、セラミック部材12の周方向他端面12cとホルダー14の斜面14bとのクリアランスδが3 mmとなるように、セラミック部材12及びホルダー14の寸法を決定した。従って、実施例1の軸受10では、K=(r1+t’)δ/t=(3+15.5)×3/21.5=2.6 mmであった。
(4) 連続溶融亜鉛めっき
図7に示す支持機構に軸受10を取り付けた。シンクロール104及びその軸104aはステンレス鋼からなり、表面にWC-Co膜が溶射されている。ついで、図7に示す支持機構を図8に示す連続溶融亜鉛めっき装置に使用し、140 rpmと高速のロール回転数で薄い鋼板の亜鉛めっきを行った。得られた亜鉛めっき鋼板を連続的に目視検査し、振動模様の有無を判定した。鋼板のめっき終了後、めっき浴から軸受10を引き上げ、酸で洗浄してからセラミック部材12の内周面12bの摺動部を目視観察し、以下の基準で評価した。
〇:摺動部にスクラッチ傷が認められなかった。
△:摺動部にスクラッチ傷が僅かに認められた。
スクラッチ傷は鋼板の振動模様に影響ないが、スクラッチ傷から亀裂が進行してセラミック部材12の破壊につながる可能性がある。実施例1の軸受では、鋼板に振動模様ができず、またセラミック部材12の内周面12bの摺動部には僅かなスクラッチ傷しか発生していなかった。
実施例2
(1) セラミック部材
実施例1と同じ造粒粉を500 kgf/cm2の圧力でCIP成形し、円筒状の成形体を得た。この成形体を常圧、窒素雰囲気下、1680℃で5時間焼結して円筒状のサイアロンセラミックス焼結体を得た。円筒状サイアロンセラミックス焼結体の内周面、外周面及び端面を研削加工した。その際、内周の焼結肌を深さ1 mmまで研削し、内周面12bとした。研削加工後のサイアロンセラミックス焼結体は、内周面12bの曲率半径が80 mm、外周面の曲率半径が105 mm、半径方向厚さが25 mm、軸方向長さが100 mmであった。セラミック部材12の外周面の輪郭度は100μm以下であった。
この円筒状サイアロンセラミックス焼結体を軸線方向に沿って3分割し、内周面12bの中心角θ1が111°の部分円筒状セラミック部材12を作製した。周方向両端面の角部に、半径方向長さr1が13 mmで、r2が5 mmの円形状面取りを形成した。従って、セラミック部材12の周方向端面の半径方向長さt’は7 mmであった。セラミック部材12の軸方向両端面の角部に、曲率半径10 mmの円形状面取りを形成した。
サイアロンセラミックス焼結体の端部から採取した試料は、常温におけるビッカース硬度Hvが1550、常温における3点曲げによる曲げ強さが600 MPaであった。サイアロンセラミックス焼結体の端部から採取した試料の断面組織を観察すると、長軸径が10μm以下で、短軸径に対する長軸径の比が5以上の窒化珪素粒子は断面組織中で7.0面積%であった。また、上記試料の内周面12b等に相当する位置で、気孔の面積及び分布を測定した。内周面12bのRskは−0.4、外周面12a及び内周面12bの気孔面積率はそれぞれ1.0%及び4.8%、内周面12bにおける気孔の円換算孔径の最大値は12.7μm、及び内周面における円換算孔径が3μm以上の気孔の合計面積は全気孔面積の24.2%であった。
(2) ホルダー
溝14aの内周面が120°の中心角θ2及び105 mmの曲率半径(セラミック部材12の外周面の曲率半径と同じ)となるように、ホルダー14をステンレス鋼により製造した。
(3) 軸受の組立て
クリアランスδが12.7 mmとなるように、セラミック部材12及びホルダー14を図1に示す構造の軸受10に組み立てた。従って、実施例2の軸受では、K=(r1+t’)δ/t=(13+7)×12.7/25=10.2 mmであった。
(4) 連続溶融亜鉛めっき
得られた軸受10を実施例1と同様にして薄い鋼板の連続溶融亜鉛めっきに用いたところ、軸受の振動は抑制され、鋼板に振動模様が形成されなかった。
実施例3〜13
表1に示すようにt、r1、r2、t’、δ、K及びRskを変え、表2に示すようにCIP圧を300〜950 kgf/cm2間で調整した以外実施例1と同様にして、セラミック部材12及びホルダー14を作製し、軸受10に組み立てた。セラミック部材12の内周面12bのRskは、内周の焼結肌を深さ2 mmまで研削した後ブラスト処理を施すことにより、表1に示すように調整した。軸受10とシンクロール104を図7の構造のように配置し、図8の装置に使用した。
実施例1と同じロール回転数で薄い鋼板の連続溶融亜鉛めっきを行ったところ、軸受の振動は抑制され、鋼板に振動模様が形成されなかった。特に実施例3〜5、7及び10では、軸受の振動が抑制されただけでなく、セラミック部材12の内周面12bにスクラッチ傷が認められなかった。
比較例1及び2
表1に示すようにt、r1、r2、t’、δ及びKを変えた以外実施例1と同様にしてセラミック部材12及びホルダー14を作製し、軸受10に組み立てた。軸受10とシンクロール104を図7の構造のように配置し、図8の装置に使用した。
実施例1と同じロール回転数で薄い鋼板の連続溶融亜鉛めっきを行ったところ、比較例1では潤滑性が低く、軸受10に振動を生じて、鋼板に振動模様が形成された。また、比較例2では軸受10にガタつきを生じて、それによる振動で鋼板に振動模様を形成することもあった。
比較例3
SiC粒子を用いたブラスト処理によりセラミック部材12の内周面12bのRskを−0.6とした以外実施例1と同様にして、軸受10を製造した。軸受10とシンクロール104を図7の構造のように配置し、図8の装置に使用した。実施例1と同じロール回転数で薄い鋼板の連続溶融亜鉛めっきを行ったところ、早期にセラミック部材12が割損した。
比較例4
レーザー加工によりセラミック部材12の内周面12bのRskを+0.15とした以外実施例1と同様にして、軸受10を製造した。軸受10とシンクロール104を図7の構造のように配置し、軸受10とシンクロール104を図7の構造のように配置し、図8の装置に使用した。実施例1と同じロール回転数で薄い鋼板の連続溶融亜鉛めっきを行ったところ、軸受10の振動により鋼板に振動模様が形成された。
実施例及び比較例の測定結果を表1に示し、製造条件を表2に示す。
Figure 0006417998
注:(1) セラミック部材12の外周面12a及び内周面12bの気孔面積率。
(2) 鋼板に形成された振動模様。
(3) セラミック部材12の内周面12bの摺動部におけるスクラッチ傷。
Figure 0006417998
r1:セラミック部材の内周面の周方向端部に形成した面取りの半径方向長さ
r2:セラミック部材の外周面の周方向端部に形成した面取りの半径方向長さ
t’:セラミック部材の周方向端面の半径方向長さ
δ:セラミック部材の周方向端面とホルダーの斜面とのクリアランス
t:セラミック部材の半径方向厚さ
10:軸受
12:セラミック部材
12a:外周面
12b:内周面
12c,12c’:周方向端面
12d:軸線方向端面
14:ホルダー
14a:ホルダーの溝
14b,14b’:ホルダーの斜面
14c,14c’:ホルダーの脚部
15:止め具
101:鋼板
102:スナウト
103:溶融金属めっき浴
104:シンクロール
104a:シンクロール軸
105:サポートロール
106:ガスワイピングノズル
108:ハンガー

Claims (7)

  1. 溶融金属めっき浴中に浸漬されるロール軸を回転自在に支持する軸受であって、
    断面扇形状のセラミック部材と、前記セラミック部材の外周面を支持する円弧状溝を有する金属製ホルダーとを有し、
    前記ロール軸の回転により前記セラミック部材が前記ホルダーの前記円弧状溝内を移動して、前記セラミック部材の周方向一端面が前記ホルダーの対向斜面に当接したとき、前記セラミック部材の周方向他端面と前記ホルダーの対向斜面とのクリアランスδが、K=(r1+t’)δ/t=1〜20[ただし、r1は前記セラミック部材の内周面の周方向端面に形成した面取りの半径方向長さ(mm)であり、t’は前記セラミック部材の周方向端面の半径方向長さ(mm)であり、tは前記セラミック部材の半径方向厚さ(mm)である。]の条件を満たし、
    前記セラミック部材の内周面のスキューネスRskが−0.4〜+0.1であり、
    前記セラミック部材の内周面の気孔面積率が外周面の気孔面積率より高く、
    前記セラミック部材の内周面の気孔面積率が2〜6%であることを特徴とする軸受。
  2. 請求項1に記載の軸受において、前記セラミック部材の内周面における気孔の円換算孔径が15μm以下であることを特徴とする軸受。
  3. 請求項1又は2に記載の軸受において、前記セラミック部材の内周面での円換算孔径が3μm以上の気孔の合計面積が全気孔面積の40〜70%であることを特徴とする軸受。
  4. 請求項1〜3のいずれかに記載の軸受において、前記面取りが曲面状又は平坦面状であることを特徴とする軸受。
  5. 請求項1〜4のいずれかに記載の軸受において、前記セラミック部材の内周面の中心角θ1が90〜150°であることを特徴とする軸受。
  6. 請求項1〜4のいずれかに記載の軸受において、前記セラミック部材が窒化珪素質セラミックスからなることを特徴とする軸受。
  7. 請求項1〜6のいずれかに記載の軸受において、前記セラミック部材の外周面の輪郭度が100μm以下であることを特徴とする軸受。
JP2015029314A 2015-02-18 2015-02-18 軸受 Active JP6417998B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029314A JP6417998B2 (ja) 2015-02-18 2015-02-18 軸受

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029314A JP6417998B2 (ja) 2015-02-18 2015-02-18 軸受

Publications (2)

Publication Number Publication Date
JP2016151048A JP2016151048A (ja) 2016-08-22
JP6417998B2 true JP6417998B2 (ja) 2018-11-07

Family

ID=56696196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029314A Active JP6417998B2 (ja) 2015-02-18 2015-02-18 軸受

Country Status (1)

Country Link
JP (1) JP6417998B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301623B2 (ja) * 1999-03-26 2009-07-22 株式会社東芝 耐摩耗部材
JP3698001B2 (ja) * 2000-03-14 2005-09-21 Jfeスチール株式会社 連続溶融金属めっき浴中ロール用すべり軸受装置
JP4678565B2 (ja) * 2001-04-02 2011-04-27 日立金属株式会社 連続溶融金属めっき浴中ロール用軸受
US9234545B2 (en) * 2012-08-02 2016-01-12 Hitachi Metals, Ltd. Bearing

Also Published As

Publication number Publication date
JP2016151048A (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
KR101119791B1 (ko) 반송 롤 및 연속 어닐링로용 하스 롤
JP4683217B2 (ja) 溶融金属めっき浴用ロール
JP5175449B2 (ja) 皮膜付き摺動部材
JP6417998B2 (ja) 軸受
JP3698001B2 (ja) 連続溶融金属めっき浴中ロール用すべり軸受装置
JP5269435B2 (ja) 溶融金属めっき用浴中ロール
JP4474639B2 (ja) 連続溶融金属めっき用ロール
JP2001089836A (ja) 連続溶融金属めっき用ロール
JP4678580B2 (ja) 溶融金属めっき浴用ロール
JP2006193814A (ja) 溶融金属めっき浴用ロール
JP4678565B2 (ja) 連続溶融金属めっき浴中ロール用軸受
JP2003306753A (ja) 連続溶融金属めっき用ロール
WO1998001594A1 (fr) Materiels mecaniques disposes dans un bain de metallisation a chaud
JP2005232578A (ja) 溶融めっき槽の浴中ロール用軸受
JP2001089837A (ja) 連続溶融金属めっき用ロール
JPH0742562B2 (ja) 連続溶融金属めっき用ロール及びそれを用いた装置
JP4453072B2 (ja) 連続溶融金属めっき用ロール
JP2015067896A (ja) 軸受
JP2002161347A (ja) 連続溶融金属めっき用ロール
JP2004183011A (ja) 連続溶融金属めっき用ロール
JP2004182486A (ja) 連続溶融金属めっき用ロール
JP3178465B2 (ja) 連続溶融金属メッキ装置,連続溶融金属メッキ装置用軸受、及び連続溶融金属メッキ装置用ロール
JP6975602B2 (ja) 遠心噴霧法粉末製造用ディスク
JP2006193812A (ja) 溶融金属めっき浴用ロール
JP2000317514A (ja) 鋼帯支持ロール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6417998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350