JP6415410B2 - 光部品の製造方法 - Google Patents

光部品の製造方法 Download PDF

Info

Publication number
JP6415410B2
JP6415410B2 JP2015181975A JP2015181975A JP6415410B2 JP 6415410 B2 JP6415410 B2 JP 6415410B2 JP 2015181975 A JP2015181975 A JP 2015181975A JP 2015181975 A JP2015181975 A JP 2015181975A JP 6415410 B2 JP6415410 B2 JP 6415410B2
Authority
JP
Japan
Prior art keywords
optical
optical component
lens
substrate
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015181975A
Other languages
English (en)
Other versions
JP2017059628A (ja
JP2017059628A5 (ja
Inventor
覚志 村尾
覚志 村尾
敬太 望月
敬太 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015181975A priority Critical patent/JP6415410B2/ja
Publication of JP2017059628A publication Critical patent/JP2017059628A/ja
Publication of JP2017059628A5 publication Critical patent/JP2017059628A5/ja
Application granted granted Critical
Publication of JP6415410B2 publication Critical patent/JP6415410B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

本発明は、光通信に用いられる光部品の製造方法に関する。
光導波路による平面光学系、又はバンドパスフィルタを有する空間光学系の光部品は、光素子である半導体LD(Laser Diode)が出射した信号光を光学部品に入射させる。平面光学系における半導体LDが出射した信号光の光導波路のコアへの結合効率、及び空間光学系における半導体LDが出射した信号光の光ファイバへの結合効率は、信号光と入射側のモードの重なり積分が小さくなるほど低下する。このため、一般に、半導体LDと光学部品との間に配置される光デバイスであるレンズの光軸の位置の公差は、±1μm以下であることが要求される。
特許文献1及び特許文献2は、YAGレーザを照射することで発生する熱歪を利用して、半導体LDと光導波路との間に配置された光学部品であるレンズを把持するステンレス部材を塑性変形させる。特許文献1及び特許文献2は、ステンレス部材を塑性変形させて、レンズを微小移動させることで、半導体LDと光導波路との間に配置されたレンズの位置を調整する方法を開示している。
特開2013−231937号公報 特開2015−40883号公報
特許文献1及び特許文献2に示された方法は、レンズホルダが必要であることから、光部品が大型化して、コストが高騰する可能性があった。また、特許文献1及び特許文献2に示された方法は、レンズホルダとベースとの間のレーザ溶接固定工程、レンズベースの調芯固定工程が必要なこと、および光軸に垂直な2方向の微調芯が必要となるため、コストが高騰する可能性があった。このように、特許文献1及び特許文献2に示された方法は、低コスト化と光学部品の高精度実装の実現との両立を図ることが困難になる傾向であった。
本発明は、上記に鑑みてなされたものであって、低コスト化を図りながら光学部品の高精度実装を実現することができる光部品の製造方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、両端部に第1の光素子及び第2の光素子が固定された基板の中央部に固定されたベース部材に、前記第1の光素子と前記第2の光素子とを光結合する光学部品を固定する光部品の製造方法において、前記光学部品を、接合部材を介して前記ベース部材に置く第1のステップと、前記接合部材を硬化させる第2のステップと、前記ベース部材の前記光学部品の光軸と平行な二つの第1および第2の外側面のうちのいずれか一方が前記基板の上面に重なる縁である加熱領域をレーザ照射することによって加熱する第3ステップとを含む。前記ベース部材を前記基板に対し塑性変形させ、前記光学部品を前記基板の前記上面に平行でかつ前記光軸に直交する方向に移動させる。
本発明に係る光部品は、低コスト化を図りながら光学部品の高精度実装を実現することができる、という効果を奏する。
本発明の実施の形態1に係る光部品の斜視図 図1中のII−II線に沿う断面図 図1に示された光部品のレンズベースとレンズとの間の接着剤が硬化前の状態を模式的に示す断面図 図3に示された光部品の接着剤を硬化させた後の状態を模式的に示す断面図 図4に示された光部品のレンズベースにYAGレーザを照射している状態を模式的に示す断面図 図5に示された光部品のYAGレーザの照射後に十分時間が経過した状態を模式的に示す断面図 本発明の実施の形態2に係る光部品の斜視図 図7に示された光部品の要部の側面図 本発明の実施の形態3に係る光部品の斜視図 図9中のX−X線に沿う断面図 本発明の実施の形態4に係る光モジュールの断面図
以下に、本発明の実施の形態にかかる光部品の製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係る光部品の斜視図であり、図2は、図1中のII−II線に沿う断面図である。
図1に示す光部品1は、信号光を送受信する光通信に用いられる。実施の形態1において、光部品1は、信号光を波長多重化して送信するものである。実施の形態1において、光部品1は、中心波長が異なる4つの信号光を同時に送信できる機能を備えるが、信号光の個数は4つに限定されない。
光部品1は、図1及び図2に示すように、上面10aが平坦な基板10と、基板10上に固定された複数の第1の光素子であるレーザ光源20と、基板10上に固定された第2の光素子である光合分波器30と、基板10上に固定されかつ複数のレーザ光源20と光合分波器30との間に設けられるベース部材であるレンズベース41と、各レーザ光源20に対応する光学部品であるレンズ40と、を備える。
基板10は、セラミックス、樹脂又は金属により構成される。実施の形態1において、基板10の平面形状は、矩形状であるが、基板10の平面形状は矩形状に限定されない。なお、基板10の上面10aに平行でかつレンズ40の図1に一点鎖線で示す光軸Pと平行な方向をZ方向とし、基板10の上面10aに平行でかつレンズ40の光軸Pに直交する方向をX方向とし、基板10の上面10aと光軸Pとの双方に直交する方向をY方向とする。
レーザ光源20は、半導体レーザ又は固体レーザにより構成される。レーザ光源20は、互いに中心波長が異なる信号光を発生する。レーザ光源20は、キャリア21上に半田、接着剤又はレーザ溶接により固定されている。キャリア21は、基板10の上面10aのZ方向の一端部上に半田、接着剤又はレーザ溶接により固定される。複数のレーザ光源20は、X方向に間隔をあけて等間隔に配置されている。レーザ光源20は、駆動回路及び変調回路が接続され、外部からのデジタル信号に基づいて高速変調された信号光のパルスを発生する。実施の形態1において、各レーザ光源20は、1つのレーザ発生部が形成されているが、複数のレーザ発生部が形成されてもよい。実施の形態1において、レーザ光源20の個数は、4個であるが、レーザ光源20の個数は4個に限定されない。
光合分波器30は、ガラス又は透明な樹脂により構成された本体部31と、本体部31に張り合わされる図示しないミラーとを備える。光合分波器30は、基板10の上面10aのZ方向の他端部上に接着剤により固定される。光合分波器30は、レンズ40を介してレーザ光源20からの信号光が入射する側を入射側、本体部31内を伝搬し信号光が出射される側を出射側とする。光合分波器30は、本体部31の出射側にミラーが配置される。入射側から本体部31内に入射された複数のレーザ光源20から信号光は、本体部31内を伝搬してミラーに反射されて合波し、出射側に形成された1つの図示しない光出射口から波長多重化されて出射される。実施の形態1において、光合分波器30は、入射側4チャネル、出射側1チャネルであるが、入射側、出射側ともにチャネル数は限定されない。また、光合分波器30から出射された信号光は、図示しない光ファイバに結合され、さらに外部の通信ネットワークへ伝送される。
レンズ40は、ガラス又は透明な樹脂により構成され、各レーザ光源20から出射される信号光を集光する。レンズ40により集光された信号光は、光合分波器30に通信チャネルごとに設けられた図示しない光入射口に入射する。レンズ40は、対応するレーザ光源20を光合分波器30に光結合するものである。レンズ40は、レーザ光源20と1対1に対応している。レンズ40は、対応するレーザ光源20とZ方向に並べられている。レンズ40の図1に一点鎖線で示す光軸Pは、Z方向と平行である。複数のレンズ40は、レンズベース41を介して基板10に固定される。各レンズ40は、接合部材である接着剤42によりレンズベース41の上面45eに直接固定されている。複数のレンズ40は、X方向に間隔をあけて等間隔に配置されている。実施の形態1において、レンズ40の個数は、4個であるが、レンズ40の個数は4個に限定されない。
レンズベース41の上面45eは、接着剤42によりレンズ40が固定される固定箇所43が設けられている。上面45eは、基板10の上面10aと平行である。固定箇所43は、レンズベース41の上面45eのレーザ光源20寄りの一端部に設けられる。レンズベース41の下面45fは、基板10の上面10aに固定される固定位置47が設けられている。固定位置47は、固定箇所43からZ方向に離れている。こうして、レンズベース41は、固定箇所43から離れた固定位置47が基板10の上面10aに固定される。固定位置47は、レンズベース41の下面45fの光合分波器30寄りの他端部に設けられる。固定位置47は、半田、接着剤及びレーザ溶接のうち少なくとも一つにより、レンズベース41の下面45fを基板10の上面10aに固定する。実施の形態1において、固定位置47は、レンズベース41のX方向の全長にわたって設けられているが、これに限定されない。
レンズベース41は、固定箇所43から離れた加熱領域44が局所加熱される。実施の形態1において、加熱領域44は、レーザ光線が照射されることによって局所加熱されるが、レーザ光線の照射に限定されない。加熱領域44は、レンズベース41の外表面の一部分である。実施の形態1において、加熱領域44は、レンズベース41の上面45eの固定箇所43からレンズ40の光軸Pと平行に離れた位置でかつ上面45eのX方向の中央に設けられる。加熱領域44は、レンズベース41の上面45eの光合分波器30寄りの他端部に設けられる。加熱領域44に照射されるレーザ光線は、レンズベース41の加熱領域44を局所加熱し、溶融させるものである。実施の形態1において、レーザ光線は、YAG(Yttrium Aluminum Garnet)レーザLが用いられるが、レーザ光線はYAGレーザLに限定されない。レンズベース41は、YAGレーザLの吸収率が高いステンレス鋼又は珪素鋼板により構成される。レンズベース41は、加熱領域44にYAGレーザLが照射されて、溶融し凝固した際に生じた熱歪によりレンズ40がY方向に沿って基板10から離れる方向に塑性変形している。レンズベース41は、熱歪による塑性変形により、レンズ40の位置を調整している。実施の形態1において、レンズベース41の個数は、レンズ40と同数の4個であるが、レンズベース41の個数は4個に限定されない。
レンズ40をレンズベース41に固定する接着剤42は、硬化の前後において体積が変化するものである。実施の形態1において、レンズ40をレンズベース41に固定する接着剤42及びレンズベース41を基板10の上面10aに固定する接着剤は、紫外線が照射されると硬化する紫外線硬化型接着剤又は加熱されると硬化する熱硬化型接着剤が用いられるが、接着剤42は紫外線硬化型接着剤又は熱硬化型接着剤に限定されない。また、実施の形態1において、レンズ40をレンズベース41に固定する接着剤42は、硬化後に体積が収縮するものであるが、これに限らない。また、実施の形態1において、接合部材である接着剤42によりレンズ40をレンズベース41に固定するが、接合部材である両面テープによりレンズ40をレンズベース41に固定してもよい。
次に、レンズ40を基板10に固定する光部品1の製造方法を図面に基づいて説明する。光部品1の製造方法は、両端部に複数のレーザ光源20及び光合分波器30が固定された基板10の中央部に固定されたレンズベース41にレンズ40を固定する方法である。図3は、図1に示された光部品のレンズベースとレンズとの間の接着剤が硬化前の状態を模式的に示す断面図であり、図4は、図3に示された光部品の接着剤を硬化させた後の状態を模式的に示す断面図であり、図5は、図4に示された光部品のレンズベースにYAGレーザを照射している状態を模式的に示す断面図であり、図6は、図5に示された光部品のYAGレーザの照射後に十分時間が経過した状態を模式的に示す断面図である。
レンズ40を基板10に固定する前に、複数のレーザ光源20は、キャリア21を介して基板10に固定され、光合分波器30は、レーザ光源20と光結合されて、基板10に固定される。さらに、レンズベース41は、基板10の上面10aの複数のレーザ光源20と光合分波器30との間に固定される。レンズ40を基板10に固定する際に、まず、レンズ40を、接着剤42を介してレンズベース41に置く第1のステップが行われる。第1のステップにおいて、接着剤42を塗布されたレンズ40は、レンズベース41の上面45eに置かれ、図3に示すように、対応するレーザ光源20と光合分波器30との双方と光結合するための最適な位置に調整される。なお、レンズ40のレーザ光源20と光合分波器30との双方と光結合するための最適な位置は、レンズ40の光軸Pと、レーザ光源20及び光分合波器30の光軸のずれが±1μmの範囲に収まる位置である。レンズ40は、X方向の位置とZ方向の位置とが調整され、接着剤42の厚さが調整されることによってY方向の位置が調整される。具体的には、レンズ40の位置は、レーザ光源20からの信号光を光合分波器30に入射させ、レーザ光源20と光合分波器30との双方との光結合効率が最大になる位置に調整される。即ち、レンズ40の位置は、光合分波器30の光出射口より出射される信号光の出力パワーが最大となる位置に調整される。このように、レンズ40のレーザ光源20と光合分波器30との双方と光結合するための最適な位置は、光合分波器30の光出射口より出射される信号光の出力パワーが最大となる位置でもある。
その後、接着剤42を硬化させる第2のステップが行われる。第2のステップにおいて、光部品1は、接着剤42に紫外線が照射又は接着剤42が加熱される。すると、図4に示すように、光部品1は、接着剤42の硬化時の収縮率が少なくとも数%生じるため、接着剤42の収縮によりレンズ40の位置がずれる。光部品1は、接着剤42が円錐形状に塗布されると、接着剤42がX方向及びZ方向に対称に収縮するので、レンズ40がX方向及びZ方向に位置がずれることを抑制できる。しかしながら、光部品1は、接着剤42が材料によって規定された収縮率に従ってY方向に収縮するため、レンズ40がY方向に位置がずれる。実施の形態1において、接着剤42が硬化すると収縮するので、レンズ40は、図4中に点線で示す最適位置からY方向に沿ってy分、基板10に近付く方向に位置がずれる。
その後、レンズベース41の加熱領域44を加熱し、加熱によって生じる熱歪によるレンズベース41の塑性変形により、レンズ40の位置を調整する第3のステップが行われる。第3のステップにおいて、光部品1は、レンズベース41に設けられた加熱領域44にYAGレーザLが照射される。すると、光部品1は、レンズベース41の加熱領域44が局所加熱され、レンズベース41を構成する金属が一旦溶融した後に凝固することにより、熱歪が加熱領域44に発生する。レンズベース41は、図6に示すように、局所加熱されることで生じる熱歪によりレンズ40がY方向に沿って基板10から離れる方向に塑性変形する。すなわち、レンズベース41は、レンズ40がY方向に移動する向きに塑性変形している。その後、光部品1は、YAGレーザLの照射が停止される。こうして、光部品1は、レンズ40がずれたy分、基板10から離れる方向に微小移動されて、レンズ40のY方向の位置がレンズベース41の塑性変形によりレーザ光源20と光合分波器30との双方と光結合するための最適な位置に調整される。
このとき、YAGレーザLの出力、照射時間、パルス波形、加熱領域44内の位置及び照射回数は、レンズ40のY方向の移動量が接着剤42の硬化時の収縮量と等しくなる値とする。光部品1は、接着剤42の硬化前の図6中に点線で示すレーザ光源20と光合分波器30との双方と光結合するための最適な位置とY方向に等しい位置にレンズ40を位置付ける。結果として、光部品1は、±1μm以下の高精度なレンズ40の実装が可能となる。また、実施の形態1は、光合分波器30の光射出口より出射される信号光の出力パワーを監視しながら、レンズベース41に設けられた加熱領域44にYAGレーザLを照射し、光合分波器30の光射出口より出射される信号光の出力パワーが最大になると、YAGレーザLの照射を停止してもよい。
実施の形態1の光部品1は、接着剤42によりレンズ40をレンズベース41に直接固定し、レンズベース41の固定箇所43から離れた固定位置47を基板10に固定し、レンズベース41の固定箇所43からZ方向に離れた加熱領域44にYAGレーザLが照射される。このため、光部品1は、YAGレーザLによりレンズベース41が一旦溶融した後に凝固することにより生じる熱歪により、レンズベース41を塑性変形させることにより、レンズ40の位置を調整することができる。その結果、光部品1は、接着剤42によりレンズ40をレンズベース41に直接固定しても、接着剤42の硬化後に、レンズ40の位置をレーザ光源20と光合分波器30との双方と光結合するための最適な位置に調整することができ、レンズ40の±1μm以下の高精度実装を実現でき、光合分波器30にレーザ光源20及びレンズ40を低損失で光結合させることができる。
また、実施の形態1の光部品1は、接着剤42によりレンズ40を直接基板10に固定するため、接着剤42の厚さを調整することによって、レンズ40のY方向の位置を調整することができる。このために、光部品1は、レンズホルダを不要とでき、大型化を抑制でき、低コスト化を図ることができる。また、光部品1は、レンズ40単体の位置を調整するため、レンズホルダとレンズベース41とのレーザ溶接固定工程、及びレンズベース41の調芯固定工程が不要となる。さらに、光部品1は、レンズ40のX方向の接着剤42の硬化後の位置のずれを抑制することができるため、YAGレーザLの照射によるX方向のレンズ40の位置調整が不要となる。光部品1は、加熱領域44がレンズベース41の上面45eの固定箇所43からZ方向に離れた位置に設けられているので、Y方向のみの位置調整によりレンズ40の高精度実装を実現することができ、量産性の向上を図り低コスト化を図ることができる。
さらに、光部品1は、平板状のレンズベース41を備えるので、基板10に溝を形成する高コストな加工を必要とせず、隣接するレンズ40を固定する接着剤42同士の干渉を防ぐことができ、低コスト化を図ることができる。このため、光部品1は、±1μm以下の高精度実装が可能であることから、レンズ40を複数枚使用することなく低損失結合が実現できるため、大型化を抑制できかつ低コスト化を図ることができる。その結果、光部品1は、レンズ40のY方向の位置がレンズベース41の塑性変形によりレーザ光源20と光合分波器30との双方と光結合するための最適な位置に調整されているので、低コスト化を図りながら光学部品であるレンズ40の高精度実装を実現することができる。
実施の形態2.
図7は、本発明の実施の形態2に係る光部品の斜視図であり、図8は、図7に示された光部品の要部の側面図である。なお、図7及び図8は、実施の形態1と同一部分には、同一符号を付して説明を省略する。
実施の形態2において、図7及び図8に示すように、レンズベース41の加熱領域44が、レンズベース41のレンズ40の光軸Pと平行な二つの外側面45a,45bのうちいずれか一方の基板10の上面10aに重なる縁46aに設けられる。光部品1の他の構成は、実施の形態1と同じ構成である。実施の形態2において、縁46aの全長にわたって加熱領域44が設けられるが、このような構造に限定されない。
実施の形態2において、光部品1は、第3のステップにおいて、レンズ40の位置を調整する際に、外側面45a,45bのうちいずれか一方の縁46aの全長にわたって設けられた加熱領域44にYAGレーザLが照射される。すると、光部品1は、加熱領域44が局所加熱され、レンズベース41を構成する金属が一旦溶融した後に凝固することにより生じる熱歪により、レンズベース41が基板10からX方向に引っ張られて、X方向に沿ってずれる方向にレンズベース41が塑性変形する。実施の形態2において、光部品1は、X方向にレンズ40を微小移動させることができる。具体的には、図7に示す、X方向の矢印X1方向にレンズ40を微小移動させる場合には、レンズベース41の二つの外側面45a,45bのうち矢印X1方向の前側の外側面45aの縁46aの全長にYAGレーザLが照射される。光部品1は、図7に示す、X方向の矢印X1の逆向きの矢印X2方向にレンズ40を微小移動させる場合には、レンズベース41の二つの外側面45a,45bのうち矢印X2方向の前側の外側面45bの縁46aの全長にYAGレーザLが照射される。すなわち、レンズベース41は、レンズ40がX方向に移動する向きに塑性変形している。こうして、実施の形態2の光部品1は、レンズベース41の外側面45a,45bのいずれか一方の縁46aに加熱領域44が設けられることで、レンズ40のX方向の位置がレンズベース41の塑性変形によりレーザ光源20と光合分波器30との双方と光結合するための最適な位置に調整されている。
実施の形態2の光部品1は、接着剤42を塗布したときの形状がX方向に関して対称とならず、接着剤42の硬化後の収縮によって、レンズ40がX方向に位置がずれた場合でも、YAGレーザLの照射により、レンズ40をX方向に微小移動させることができる。その結果、光部品1は、光学部品であるレンズ40の高精度実装を実現することができる。
実施の形態3.
図9は、本発明の実施の形態3に係る光部品の斜視図であり、図10は、図9中のX−X線に沿う断面図である。なお、図9及び図10は、実施の形態1及び実施の形態2と同一部分には、同一符号を付して説明を省略する。
実施の形態3において、図9及び図10に示すように、レンズベース41の加熱領域44は、レンズベース41のレンズ40の光軸Pに直交する他の二つの外側面45c,45dのうちのレーザ光源20寄りの一方の外側面45cの基板10の上面10aに重なる縁46bに設けられる。光部品1の他の構成は、実施の形態1と同じ構成である。実施の形態3において、縁46bの全長にわたって加熱領域44が設けられるが、このような構造に限定されない。
実施の形態3において、光部品1は、レンズ40の位置を調整する際に、外側面45cの縁46bの全長にわたって設けられた加熱領域44にYAGレーザLが照射される。すると、光部品1は、加熱領域44が局所加熱され、レンズベース41を構成する金属が一旦溶融した後に凝固することにより生じる熱歪により、レンズベース41が基板10からY方向に引っ張られ、レンズ40が基板10に近づく方向にレンズベース41が塑性変形する。実施の形態3において、光部品1は、Y方向に沿ってレンズ40を基板10に近づく方向に微小移動させることができる。すなわち、レンズベース41は、レンズ40がY方向に移動する向きに塑性変形している。こうして、実施の形態3の光部品1は、レンズベース41の外側面45cの縁46bの全長にわたって加熱領域44を設けることで、レンズベース41の塑性変形によりレンズ40を基板10に近付けて、レンズ40のY方向の位置がレンズベース41の塑性変形によりレーザ光源20と光合分波器30との双方と光結合するための最適な位置に調整される。
実施の形態3の光部品1は、接着剤42の硬化前のレンズ40の位置が最適位置よりもY方向に沿って基板10から離れた場合、又は、実施の形態1において、レンズ40をY方向に沿って基板10から離れる方向に移動させた際の移動量が大きすぎた場合、レンズ40を基板10に近付けて、レンズ40のY方向の位置を調整することができる。その結果、光部品1は、光学部品であるレンズ40の高精度実装を実現することができる。
実施の形態4.
図11は、本発明の実施の形態4に係る光モジュールの断面図である。なお、図11は、実施の形態1から実施の形態3と同一部分には、同一符号を付して説明を省略する。
図11に示す光モジュール200は、信号光を送受信する光通信に用いられる。実施の形態4において、光モジュール200は、信号光を送信するものである。光モジュール200は、図11に示すように、信号光を波長多重化して送信する実施の形態1から実施の形態3の光部品1と、光部品1を収容する筺体100とを備える。
筐体100は、光部品1を実装する基板10を含みかつ開口101を有するパッケージ102と、パッケージ102に固定されて開口101を塞ぐ蓋103と、を備える。パッケージ102は、平板状の基板10と、基板10の外縁に連なる複数の側部104とを備える。パッケージ102の開口101は、複数の側部104により囲まれている。パッケージ102は、開口101を有する扁平な箱状である。また、図11に示すように、パッケージ102の一つの側部104には、光部品1が送信する波長多重化された信号光を図示しない光ファイバに導くための開口104aが設けられる。開口104aは、信号光を透過する封止ガラス105により封止されている。蓋103は、平板状である。筺体100は、パッケージ102の開口104aが蓋103により塞がれて、パッケージ102と蓋103とが固定される。筺体100は、パッケージ102と蓋103との間が封止される。
実施の形態4によれば、光モジュール200は、実施の形態1から実施の形態3の光部品1を備えるので、低コスト化を図りながら光学部品の高精度実装を実現することができる。
また、実施の形態1から実施の形態3において、光部品1は、信号光を波長多重化して送信するものであるが、光部品1は、波長多重化された信号光を受信するものでもよく、他の光部品でもよい。この場合、光素子は、受光素子である。また、実施の形態1から実施の形態3において、光学部品であるレンズ40の位置を調整しているが、光部品1は、レンズ40に限らず種々の光学部品の位置が調整されてもよい。さらに、光部品1は、第1の光素子としてレーザ光源20以外の光素子が用いられてもよく、第2の光素子として光合分波器30以外の光素子が用いられてもよい。また、光部品1は、実施の形態1から実施の形態3が組み合わされてもよい。すなわち、光部品1は、実施の形態1に示された加熱領域44と、実施の形態2に示された加熱領域44と、実施の形態3に示された加熱領域44のうちの複数にレーザ光線であるYAGレーザLが照射されて局所加熱されてもよい。さらに、光部材1は、レーザ光線が照射される以外のヒートガン又は電磁波により加熱領域44が局所加熱され、熱歪によるレンズベース41の塑性変形により、光学部品であるレンズ40の位置がレーザ光源20と光合分波器30との双方と光結合するための最適な位置に調整されてもよい。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 光部品、10 基板、10a 上面、20 レーザ光源(第1の光素子)、30 光合分波器(第2の光素子)、40 レンズ(光学部品)、41 レンズベース(ベース部材)、42 接着剤(接合部材)、43 固定箇所、44 加熱領域、45a,45b,45c,45d 外側面、45e 上面、46a,46b 縁、47 固定位置、100 筺体、200 光モジュール、L YAGレーザ(レーザ光線)、P 光軸。

Claims (8)

  1. 両端部に第1の光素子及び第2の光素子が固定された基板の中央部に固定されたベース部材に、前記第1の光素子と前記第2の光素子とを光結合する光学部品を固定する光部品の製造方法において、
    前記光学部品を、接合部材を介して前記ベース部材に置く第1のステップと
    前記接合部材を硬化させる第2のステップと、
    前記ベース部材の前記光学部品の光軸と平行な二つの第1および第2の外側面のうちのいずれか一方が前記基板の上面に重なる縁である加熱領域をレーザ照射することによって加熱する第3ステップと、
    を含み、前記ベース部材を前記基板に対し塑性変形させ、前記光学部品を前記基板の前記上面に平行でかつ前記光軸に直交する方向に移動させることを特徴とする光部品の製造方法。
  2. 前記基板に対して前記ベース部材が固定される位置は、前記ベース部材に対して前記光学部品が固定される位置から前記第2の光素子に寄った側の端部であることを特徴とする請求項1に記載の光部品の製造方法。
  3. 前記第1の光素子はレーザ光源であり、前記第2の光素子は光合分波器であり、前記光学部品はレンズであることを特徴とする請求項2に記載の光部品の製造方法。
  4. 前記接合部材は、接着剤であることを特徴とする請求項1から請求項3のいずれか一項に記載の光部品の製造方法。
  5. 両端部に第1の光素子及び第2の光素子が固定された基板の中央部に固定されたベース部材に、前記第1の光素子と前記第2の光素子とを光結合する光学部品を固定する光部品の製造方法において、
    前記光学部品を、接合部材を介して前記ベース部材に置く第1のステップと、
    前記接合部材を硬化させる第2のステップと、
    前記ベース部材の前記光学部品の光軸に直交する二つの第3および第4の外側面のうちの前記第1の光素子寄りの一方が前記基板の上面に重なる縁である加熱領域をレーザ照射することによって加熱する第3ステップと、
    を含み、前記ベース部材を前記基板に対し塑性変形させ、前記光学部品を前記基板の前記上面に直交する方向であって、前記光学部品が前記基板の前記上面に接近する方向に移動させることを特徴とする光部品の製造方法。
  6. 前記基板に対して前記ベース部材が固定される位置は、前記ベース部材に対して前記光学部品が固定される位置から前記第2の光素子に寄った側の端部であることを特徴とする請求項5に記載の光部品の製造方法。
  7. 前記第1の光素子はレーザ光源であり、前記第2の光素子は光合分波器であり、前記光学部品はレンズであることを特徴とする請求項6に記載の光部品の製造方法。
  8. 前記接合部材は、接着剤であることを特徴とする請求項5から請求項7のいずれか一項に記載の光部品の製造方法。
JP2015181975A 2015-09-15 2015-09-15 光部品の製造方法 Expired - Fee Related JP6415410B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015181975A JP6415410B2 (ja) 2015-09-15 2015-09-15 光部品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015181975A JP6415410B2 (ja) 2015-09-15 2015-09-15 光部品の製造方法

Publications (3)

Publication Number Publication Date
JP2017059628A JP2017059628A (ja) 2017-03-23
JP2017059628A5 JP2017059628A5 (ja) 2017-12-14
JP6415410B2 true JP6415410B2 (ja) 2018-10-31

Family

ID=58391729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181975A Expired - Fee Related JP6415410B2 (ja) 2015-09-15 2015-09-15 光部品の製造方法

Country Status (1)

Country Link
JP (1) JP6415410B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117883B2 (ja) * 2018-04-05 2022-08-15 三菱電機株式会社 半導体モジュールおよびその製造方法
JP7460880B2 (ja) * 2019-10-31 2024-04-03 日亜化学工業株式会社 発光装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368320A (ja) * 2001-06-05 2002-12-20 Matsushita Electric Ind Co Ltd 半導体レーザアレイユニット、並びに半導体レーザアレイユニットのアライメント調整方法及び装置
US7013071B2 (en) * 2002-12-31 2006-03-14 Intel Corporation Method and device for achieving optical alignment using laser pulses
JP4306286B2 (ja) * 2003-03-07 2009-07-29 三菱電機株式会社 光モジュールおよび光モジュールの製造方法
US20050036741A1 (en) * 2003-03-17 2005-02-17 Mark Rodighiero Method and apparatus for correcting attachment induced positional shift in a photonic package
JP5336600B2 (ja) * 2009-10-01 2013-11-06 アルプス電気株式会社 発光装置及びその製造方法
WO2013146749A1 (ja) * 2012-03-28 2013-10-03 アルプス電気株式会社 レーザモジュール及びその製造方法
JP2013231937A (ja) * 2012-04-03 2013-11-14 Mitsubishi Electric Corp 光学装置およびその製造方法
JP5655902B1 (ja) * 2013-07-08 2015-01-21 住友電気工業株式会社 光アセンブリの製造方法
JP6037974B2 (ja) * 2013-08-20 2016-12-07 三菱電機株式会社 光送信機の製造方法
JP6025680B2 (ja) * 2013-08-26 2016-11-16 三菱電機株式会社 集積型光モジュールの製造装置および製造方法
JPWO2016117472A1 (ja) * 2015-01-21 2017-08-03 三菱電機株式会社 光学装置の光軸調芯方法および装置ならびに光学装置の製造方法

Also Published As

Publication number Publication date
JP2017059628A (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
US5790730A (en) Package for integrated optic circuit and method
US20190219825A1 (en) Directly written waveguide for coupling of laser to photonic integrated circuit
US11397327B2 (en) Method of manufacturing a grating waveguide combiner for an optical engine
JP2008032835A (ja) 光デバイスおよびその製造方法
JP2015215537A (ja) 光モジュールの製造方法
JP2016114630A (ja) 光送信モジュール
WO2019193706A1 (ja) 光モジュール
JP2013231937A (ja) 光学装置およびその製造方法
JP6415410B2 (ja) 光部品の製造方法
JP6025680B2 (ja) 集積型光モジュールの製造装置および製造方法
JP6037974B2 (ja) 光送信機の製造方法
JP4845333B2 (ja) 光電変換素子パッケージ、その作製方法及び光コネクタ
JP2010185980A (ja) 高出力用光部品
US6529670B1 (en) Optical fiber array and optical light-wave device, and connecting the same
JP2018194802A (ja) 光モジュールおよびその作製方法
JP2006345474A (ja) 光トランシーバモジュール
US10444448B2 (en) Optical module platform structure and method of manufacturing the same
WO2017057243A1 (ja) 光通信モジュールの光軸調芯組立装置および光軸調芯組立方法
US20100021103A1 (en) Wavelength blocker
CN113557119A (zh) 用于在光学技术上起作用的塑料构件与金属组件之间制造接合连接的方法
Murao et al. A 4× 25 Gbps hybrid integrated EML module for 100 GbE transmitters using lens positional control by laser irradiation
JP2022112609A (ja) 発光装置、光源装置、光ファイバレーザ、および発光装置の製造方法
WO2014196043A1 (ja) 光モジュールおよび光モジュールの製造方法
JP2015187636A (ja) 光モジュール
US7223026B1 (en) Solder-free packaging for integrated fiber optics device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6415410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees