JP6414899B2 - 負極およびその製造方法、電池 - Google Patents

負極およびその製造方法、電池 Download PDF

Info

Publication number
JP6414899B2
JP6414899B2 JP2015532769A JP2015532769A JP6414899B2 JP 6414899 B2 JP6414899 B2 JP 6414899B2 JP 2015532769 A JP2015532769 A JP 2015532769A JP 2015532769 A JP2015532769 A JP 2015532769A JP 6414899 B2 JP6414899 B2 JP 6414899B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
copper foil
silicon
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015532769A
Other languages
English (en)
Other versions
JPWO2015025650A1 (ja
Inventor
信秋 濱中
信秋 濱中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Publication of JPWO2015025650A1 publication Critical patent/JPWO2015025650A1/ja
Application granted granted Critical
Publication of JP6414899B2 publication Critical patent/JP6414899B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、負極およびその製造方法、電池に関する。
近年、携帯電話やノートパソコン等のモバイル機器の普及により、その電力源となる二次電池の役割が重要視されている。これらの二次電池には、小型・軽量でかつ高容量で充放電を繰り返しても劣化しにくい性能が求められている。この二次電池として現在は、リチウムイオン二次電池が最も多く利用されている。
リチウムイオン二次電池の負極には、主として黒鉛やハードカーボン等の炭素が用いられている。炭素は、充放電サイクルを良好に繰り返すことができるものの、すでに理論容量付近まで容量を使用していることから、今後大幅な容量向上は期待出来ない。その一方で、リチウムイオン二次電池の容量向上の要求は強く、炭素よりも高容量、すなわち高エネルギー密度を有する負極材料の検討が行われている。
そこで、高エネルギー密度を実現可能な負極材料として、ケイ素が挙げられる。非特許文献1には、負極活物質としてケイ素を用いることが記載されている。しかし、負極活物質としてケイ素を用いた負極は、単位体積当りのリチウムイオンの吸蔵放出量が多く、高容量であるものの、リチウムイオンが吸蔵・放出される際に電極活物質自体の膨脹収縮が大きい。このため、負極活物質の微粉化が進行する。このため、負極活物質と、負極集電体である箔の剥がれが生じるという問題点がある。従って、電極抵抗が増大し、充放電サイクル寿命が短くなるという問題も生じる。
特許文献1、2には、これらの課題を解決するために、活物質を集電体中に拡散させ、固溶体を形成させる技術が開示されている。
また、特許文献3には、突起部を有する負極集電体上に、負極集電体との界面で負極集電体と合金化しケイ素の単体および化合物のうちの少なくとも一種を含む負極活物質層を設けた負極が開示されている。
国際公開第2001/031721号 特開2002−190298号公報 特開2004−207113号公報
リー(Li)他4名、「ア ハイ キャパシティ ナノ−シリコン コンポジット アノード マテリアル フォー リチウム リチャージャブル バッテリーズ(A High Capacity Nano−Si Composite Anode Material for Lithium Rechargeable Batteries)、エレクトロケミカル アンド ソリッドステイト レターズ(Electrochemical and Solid−State Letters)、第2巻、第11号、p547−549(1999)
しかしながら、特許文献1、2の手法を用いた場合、活物質が箔に対し拡散するため、箔自体に歪が生じ、塗工後のセル組立時などに湾曲などの問題を生じるという課題があった。
また、特許文献3の手法では、蒸着、焼結、塗布などにより負極活物質層を形成しているため、リチウムのインターカレーション、脱インターカレーションにより負極活物質層の体積の膨張・収縮が起こる。これに伴い、負極活物質と負極集電体(箔)を結着していたバインダにもズリ応力がかかり、最終的には負極集電体から負極活物質が剥がれるようになる。このように特許文献3の手法では、負極集電体と負極集電体層の接着性が不十分という課題があった。
特に銅とケイ素の間には強い相互作用が生じずこれらの材料間の密着性は低いため、上記の課題は銅箔上にケイ素を含有する負極活物質の層を形成した場合に顕著になっていた。すなわち、負極集電体である銅箔上にケイ素を含有する負極活物質を形成した電極では、負極集電体と負極活物質の接着性が悪いため、電極抵抗が著しく増大して、充放電サイクルの初期時に放電容量の劣化が起こっていた。
そこで、本発明の目的は、上記の電極抵抗の増大によって充放電サイクル初期時に放電容量が劣化することを防止する負極およびその製造方法、電池を提供することにある。
一実施形態は、
銅箔をプラズマ処理する工程と、
プラズマ処理後の銅箔上に、シリコン原子を含有する活物質を含むスラリを塗布する工程と、
スラリを塗布した銅箔に熱処理を行い、前記銅箔と活物質の界面に銅とケイ素の金属間化合物を形成する工程と、
を有する負極の製造方法に関する。
他の実施形態は、
銅箔と、
前記銅箔上に、シリコン原子を含有する活物質を含む活物質層と、
前記銅箔と前記活物質の界面に銅シリサイドと、
を有する負極に関する。
電極抵抗の増大を抑制して、充放電サイクルの初期時に放電容量が劣化することを防止できる。
一実施形態に係る電池を表す断面図である。 図1の電池における銅箔と負極活物質層の界面近傍を表す断面図である。
1.電極の製造方法
一実施形態の負極の製造方法は 銅箔をプラズマ処理する工程と、プラズマ処理後の銅箔上にシリコン原子を含有する活物質を含むスラリを塗布する工程と、スラリを塗布した銅箔に熱処理を行い銅箔と活物質の界面に銅とケイ素の金属間化合物を形成する工程を有する。
一般的に、集電体である銅箔と活物質中のシリコン原子の間には強い相互作用が生じない。このため、銅箔と、シリコン原子を含有する活物質を有する負極を備えた関連する電池では、活物質の膨張によって活物質は銅箔から容易に剥離し、電極抵抗が増大して充放電サイクル初期時に電極容量の低下が発生する。
一方、本実施形態の電極の製造方法では、銅箔にプラズマ処理を行うことにより、銅箔表面の銅の金属間結合が切断され、銅箔が活性化される。これにより、銅箔と活物質の界面では、後の熱処理工程で金属間化合物を形成しやすくなる。この後、銅箔上にシリコン原子を含むスラリを塗布した後、熱処理を行うことにより、銅箔表面上には銅とシリコンの金属間化合物(例えば、シリサイド(CuSi))の粒子が形成される。そして、この金属間化合物粒子の界面に存在する銅原子と銅箔を構成する銅原子との間、および金属間化合物粒子の界面に存在するシリコン原子と活物質を構成するシリコン原子との間の相互作用が生じる。この相互作用により、充放電サイクル初期時の充放電に伴う活物質の膨張が起こっても、活物質と銅箔との密着性が向上する。従って、活物質の銅箔からの剥離が抑制され、電極抵抗の増大を抑制して充放電サイクル初期時に起こる電極容量の低下を抑制することができる。なお、金属間化合物や銅シリサイドは、公知の原子組成の分析法によって確認することができる。
シリコン原子を含有する活物質としては、シリコン原子を含有する限り特に限定されないが、シリコン(Si)および酸化シリコン(SiO)からなる群から選択された少なくとも一種の材料が好ましい。この活物質には、シリコンと酸化シリコンの複合物も含まれる。この場合、銅箔と活物質との間に形成される金属間化合物としては銅シリサイドが好ましい。なお、シリコンと酸化シリコンの複合物とは、シリコンと酸化シリコンの混合物、またはシリコンと酸化シリコンの化合物を表す。
プラズマ処理用のガスとしては特に限定されないが、プラズマ照射中の少なくとも一部の間、アルゴンおよびアンモニアを含有する混合ガスを用いるのが好ましい。プラズマ処理用のガスとしてアンモニアガスを使用すると、銅の窒化物が反応中間体として生成し、その後のシリサイド化反応を進みやすくすることができる。
混合ガス中のアルゴンとアンモニアの流量比である、アルゴン/アンモニアは2〜5であることが好ましい。流量比が2以上であることによって、シリサイド化反応を促進して銅シリサイドを効果的に形成することができる。なお、流量比が2以上の場合、銅箔のプラズマ処理の時間は30秒以上であることが好ましい。また、流量比を5以下とすることにより銅の窒化反応が過剰に進んでシリサイド化反応が逆に抑制されることを防止できる。流量比は、4であることがより好ましい。
銅箔のプラズマ処理の条件としては特に限定されないが、プラズマ処理用のガスの流量を200〜300sccm、プラズマ出力電圧を1〜5kW、プラズマ源と銅箔の距離を10〜30mmとすることが好ましい。プラズマ処理の条件を上記範囲内に設定することにより、銅のシリサイド化が過剰に進むことを防止して、電極抵抗の増大をより効果的に抑制することができる。
具体的なプラズマ処理の条件としては例えば、アルゴンガス中でプラズマを発生させ5秒ほど保持し、この後にアルゴン/アンモニア=4となるアルゴンとアンモニアの混合ガス中で30秒ほど、プラズマを照射する条件を挙げることができる。また、例えば、混合ガスの流量が250sccm、プラズマ出力電圧が1〜5kW、プラズマ源と銅箔の距離が20mmの条件を挙げることができる。
銅箔のプラズマ照射後、銅箔上に活物質を含有するスラリを塗布するまでにかかる時間は、2秒以下が好ましい。より好ましくは、プラズマ発生装置とスラリ塗布用のダイが一体化した構造となっており、銅箔のプラズマ照射後、非常に短時間で銅箔上に活物質を塗布するようにするのが好ましい。スラリを塗布した銅箔をドラムホルダにより保持することにより、連続的にプラズマ照射とスラリ塗布を行えるようにすることができる。また、プラズマ処理によって活性化された銅箔の表面が空気中の酸素によって酸化されるのを防止するために、窒素等の不活性ガス雰囲気下でスラリの塗布を行うことが望ましく、スラリ自体も脱気、窒素パージしたものを用いることが望ましい。
銅箔上に塗布するスラリの塗布膜厚、電極密度については、金属間化合物の形成反応の点からは特に制限を設ける必要はない。ただし、熱処理中の銅箔の反りや、充放電サイクル過程での活物質の膨張を考慮して、スラリの膜厚の目付け量が5〜20mg/cmで、電極密度は0.5〜2.0g/cmであることが望ましい。
スラリを塗布した銅箔に行う熱処理の条件は特に限定されないが、温度が250〜330℃、加熱時間が30分〜2時間の条件を挙げることができる。加熱温度が330℃を超えると、銅とシリコンの反応が過剰に進み、シリコン原子に対する銅原子の比率が5を上回る化合物が形成される場合がある。この場合、活物質として機能できるシリコン原子のうち、リチウムのインターカレーションに寄与しない金属間化合物に変化する量が飛躍的に増加して、充放電サイクルの初期時に電極容量の低下を抑制する効果が小さくなる場合がある。また、加熱温度が250 ℃未満の時、銅のシリサイド化反応が良好に進まず、金属間化合物として銅シリサイドが十分に形成されない場合がある。また、加熱温度を250〜330℃に設定した場合であっても、加熱時間が短いと銅シリサイドCuSiの形成が不十分であり、銅箔と活物質の間の密着性の向上が不十分な場合がある。一方、加熱時間が長いと銅シリサイドCuSiの形成が進みすぎて活物質中のSiのうち活物質として寄与できるものが減るため、充放電サイクルの初期時に電極容量の低下を抑制する効果が小さくなる場合がある。このため、加熱時間は、30分〜2時間とすることが好ましい。
以下では、負極の具体的な製造例を挙げる。リチウムを吸蔵・放出可能なシリコン(Si)、酸化シリコン(SiO)、またはシリコンと酸化シリコンの複合物からなる負極活物質、導電付与材である炭素、及びバインダを含む合剤を準備する。この合剤を、N‐メチル‐2‐ピロリドン(NMP)等の溶剤で分散させ混練したスラリを銅箔に塗布して圧延加工した塗布型極板や、直接プレスして加圧成形極板にするなどの製法により、周知の形態の負極活物質層に加工する。より具体的には、アンモニアとアルゴンの混合ガス中で銅箔のプラズマ処理を施した直後に、銅箔上に上記スラリを塗布した後、250〜330℃の範囲内の温度で1時間の炉焼成を行うことにより、負極を形成する。上記の条件で負極を作製することにより、銅箔と負極活物質の界面には、銅とケイ素の金属間化合物(例えば、銅シリサイド)が形成される。
2.電池
一実施形態の電池は、銅箔と、銅箔上にシリコン原子を含有する活物質を含む活物質層と、銅箔と活物質の界面に銅シリサイドと、を有する負極を有する。本実施形態の電池を構成する負極では、この銅シリサイド粒子の界面に存在する銅原子と銅箔を構成する銅原子との間、および銅シリサイド粒子の界面に存在するシリコン原子と活物質を構成するシリコン原子との間の相互作用が生じる。この相互作用により、充放電サイクル初期時の充放電に伴う活物質の膨張が起こっても、活物質と銅箔との密着性が向上する。従って、活物質の銅箔からの剥離が抑制され、電極抵抗の増大を抑制して充放電サイクル初期時に起こる電極容量の低下を抑制することができる。
負極中には、更にバインダおよび導電付与材を含むことが好ましい。これにより電池の放電容量を更に向上させることができる。バインダとしては、ポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂に代表される熱硬化性を有する結着剤を挙げることができる。導電付与材としては、カーボンブラック、黒鉛、ケッチェンブラック等の導電性物質を用いることができる。
図1および2は本実施形態に係るリチウムイオン二次電池の一例を示す断面図であり、図1は電池全体の断面図、図2は負極集電体7と負極活物質であるシリコン粒子3の界面近傍の断面図を表す。図1および2に示すように、本実施形態のリチウムイオン二次電池では、銅箔からなる負極集電体7上に形成した負極活物質層6からなる負極8と、アルミニウム箔などの正極集電体10上に形成した正極活物質層9からなる正極11が、セパレータ12を介して対向配置されている。セパレータ12としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムを用いることができる。また、負極8と正極11から、それぞれ電極端子取り出しのための負極リードタブ14、正極リードタブ15が引き出され、それぞれの先端を除いて、ラミネートフィルムなどの外装フィルム13を用いて外装されている。
また、図2に示すように、負極集電体(銅箔)7上には、負極活物質層6が設けられている。負極活物質層6は、導電付与材1、バインダ2、および負極活物質であるシリコン粒子3を含有する。シリコン粒子3と負極集電体7間には、金属間化合物である銅シリサイド(CuSi)4が存在する。
次に、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、その要旨を超えない限り、下記実施例により限定されるものではない。
(実施例1〜11および比較例1〜4
まず、銅箔にプラズマを照射してプラズマ処理を行う。この場合のプラズマ照射装置は一般の大気圧環境でプラズマを発生するものであれば良いが、アンモニアやアルゴンガスの混合ガスを用いる場合、一般の大気に対し陰圧となるエアカーテン内で行うことが望ましい。プラズマ処理の方法としては、プラズマ源と箔との距離を20mmとし、まず、アルゴンのみを200sccmの流量で流した雰囲気下において下記表1に示す出力・温度でプラズマを5秒、照射した。この後、プラズマ照射の条件を維持したまま、アルゴンガスをアルゴンとアンモニアの混合ガスに連続的に切り替え、プラズマの照射を続けた。
なお、下記表1の「Ar流量」、「NH3流量」および「プラズマ照射時間」欄に記載の数値は、アルゴンとアンモニアの混合ガスの元でプラズマ処理を行う際の条件を示す。
Figure 0006414899
質量比でケイ素(Si):ケイ素酸化物(SiO):炭素=1:1:0.08とした炭素複合体物質粒子(ケイ素とケイ素酸化物は活物質、炭素は導電付与材)を準備した。次に、バインダとしてポリイミドを、炭素複合体物質粒子およびバインダの総質量に対して質量比で5%となるように混合した。この後、溶剤としてNMPを、炭素複合体物質粒子およびバインダの総質量100部に対して質量比で90部、混合したスラリを調整し、ダイからこのスラリを押し出して、プラズマ照射後の銅箔上に塗布した。このときのスラリの塗布膜厚は10mg/cmに設定した。次に、125℃で5分間、乾燥処理をした後、ロールプレスを用いて電極密度が1.0g/cmとなるように圧縮成型を行い、負極活物質層を作製した。上記のようにして作製した銅箔と炭素複合体物質粒子の界面には、銅とケイ素の金属間化合物として銅シリサイドが形成されていることを確認した。
また、比較例として、前記のプラズマ処理を一切行わないで、銅箔上に前記スラリを塗布し、125℃で5分間、乾燥処理をした後、ロールプレスを用いて電極密度が1.0g/cmとなるように圧縮成型を行った。次に、再度、乾燥炉にて330℃、30分間、N雰囲気中で乾燥処理を行い、負極活物質層を作製した。
次いで、上記のようにして銅箔上に形成された負極活物質層を3.0×3.0cmに打ち抜いて負極とし、超音波により、電荷取り出し用のニッケルからなる負極リードタブを負極に融着した。
正極活物質層については、ニッケル酸リチウムからなる活物質粒子を92質量%、導電付与材としてアセチレンブラックを4質量%、バインダとしてポリフッ化ビニリデンを4質量%の混合比で混合した。この混合物100質量部に対して溶剤としてNMPを60質量部、混合して合剤を得た。次に、20μmのアルミ箔上に合剤を塗布した後、125℃、5分間の加熱処理を行い、さらに圧延プレスを行って正極活物質層を作製した。アルミ箔上に形成した正極活物質層を2.9×2.9cmに打ち抜いて正極とし、超音波により、電荷取り出しのためのアルミからなる正極リードタブを正極に融着した。
次に、負極活物質層および正極活物質層がそれぞれセパレータと対面するように、負極、セパレータ、正極の順に積層した後、積層体をラミネートフィルムで覆った。積層体内に電解液を注液し、真空下にて封止することによりラミネートフィルムを用いたフィルム外装電極積層型の非水系電解質二次電池を作製した。なお、電解液には、エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)と、エチルメチルカーボネート(EMC)の体積比3:5:2の混合溶媒に1mol/LのLiPFを溶解したものを用いた。
上記の方法により作製したそれぞれの電池について、45℃の環境下、21日間保管した後、15mAの定電流で、充電終止電圧を4.2V、その放電終止電圧を2.5Vとして充放電試験を行った。10サイクル後の負極活物質の重さあたりの放電容量を下記表2に示す。
Figure 0006414899
実施例1〜及び比較例1〜2、4の比較から、本発明による大きな効果の得られるアルゴンとアンモニアの混合比は実施例1の4:1であることが分かる。また、実施例1、、および比較例の比較から、本発明による大きな効果を得るためには、プラズマ処理時には最適なプラズマ出力があり、本実施例で検討した条件では、実施例1、およびに示すように2〜5kWで大きな効果が得られることが分かる。
実施例1、10、比較例3の比較から、本発明による大きな効果を得るためには、プラズマ照射時の温度には最適な範囲があり、本実施例で検討した条件では、実施例1に示すように300℃付近で最も大きな効果が得られることが分かる。
1 導電付与材
2 バインダ
3 シリコン粒子
4 銅シリサイド
6 負極活物質層
7 負極集電体
8 負極
9 正極活物質層
10 正極集電体
11 正極
12 セパレータ
13 外装フィルム
14 負極リードタブ
15 正極リードタブ

Claims (7)

  1. 銅箔をプラズマ処理する工程と、
    プラズマ処理後の銅箔上に、シリコン原子を含有する活物質を含むスラリを塗布する工程と、
    スラリを塗布した銅箔に熱処理を行い、前記銅箔と活物質の界面に銅とケイ素の金属間化合物を形成する工程と、
    を有し、
    前記プラズマ処理は、アルゴン及びアンモニアを含有する混合ガスを用いて行い、前記混合ガス中のアルゴンとアンモニアの流量比である、アルゴン/アンモニアが2〜5であり、
    前記熱処理を200〜330℃で行うことを特徴する負極の製造方法。
  2. 前記活物質は、シリコンおよび酸化シリコンからなる群から選択された少なくとも一種の材料を含み、
    前記金属間化合物が銅シリサイドである、請求項1に記載の負極の製造方法。
  3. 混合ガスの流量を200〜300sccm、プラズマ出力電圧を1〜5kW、プラズマ源と前記銅箔の距離を10〜30mmとした条件下で前記プラズマ処理を行う、請求項1又は2に記載の負極の製造方法。
  4. 温度が250〜330℃、加熱時間が30分〜2時間の条件下で前記熱処理を行う、請求項1〜の何れか1項に記載の負極の製造方法。
  5. 前記スラリは、更に、バインダと、導電付与材とを含む、請求項1〜4の何れか1項に記載の負極の製造方法
  6. 請求項1〜5の何れか1項に記載の負極の製造方法を含む電池の製造方法。
  7. 前記電池は、リチウムイオン二次電池である請求項6に記載の電池の製造方法。
JP2015532769A 2013-08-22 2014-07-17 負極およびその製造方法、電池 Active JP6414899B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013172043 2013-08-22
JP2013172043 2013-08-22
PCT/JP2014/069061 WO2015025650A1 (ja) 2013-08-22 2014-07-17 負極およびその製造方法、電池

Publications (2)

Publication Number Publication Date
JPWO2015025650A1 JPWO2015025650A1 (ja) 2017-03-02
JP6414899B2 true JP6414899B2 (ja) 2018-10-31

Family

ID=52483432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015532769A Active JP6414899B2 (ja) 2013-08-22 2014-07-17 負極およびその製造方法、電池

Country Status (3)

Country Link
US (1) US10038194B2 (ja)
JP (1) JP6414899B2 (ja)
WO (1) WO2015025650A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895721B2 (ja) * 2016-07-12 2021-06-30 帝人株式会社 金属化合物膜の製造方法、及び金属化合物膜を含む積層体
US11133498B2 (en) * 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
CN112768624A (zh) * 2021-01-06 2021-05-07 华中科技大学 一种等离子体技术原位生成金属化合物的集流体制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031722A1 (fr) 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour pile au lithium et accumulateur au lithium
JP4245270B2 (ja) * 2000-12-22 2009-03-25 三洋電機株式会社 二次電池用電極の製造方法
JP2002237294A (ja) * 2001-02-08 2002-08-23 Tokuyama Corp リチウム二次電池用負極
JP3935067B2 (ja) 2002-12-26 2007-06-20 ソニー株式会社 二次電池用負極およびそれを用いた二次電池
JP4140425B2 (ja) * 2003-04-10 2008-08-27 ソニー株式会社 二次電池
JP4186115B2 (ja) * 2003-06-11 2008-11-26 ソニー株式会社 リチウムイオン二次電池
JP2006004634A (ja) * 2004-06-15 2006-01-05 Matsushita Electric Ind Co Ltd 非水電解質二次電池の製造方法およびこの方法によって作製された非水電解質二次電池
EP2065927B1 (en) * 2007-11-27 2013-10-02 Imec Integration and manufacturing method of Cu germanide and Cu silicide as Cu capping layer
JP2014199715A (ja) * 2011-08-10 2014-10-23 パナソニック株式会社 リチウムイオン電池用負極とその製造方法及びリチウムイオン電池
US8841030B2 (en) * 2012-01-24 2014-09-23 Enovix Corporation Microstructured electrode structures

Also Published As

Publication number Publication date
US20160211525A1 (en) 2016-07-21
JPWO2015025650A1 (ja) 2017-03-02
WO2015025650A1 (ja) 2015-02-26
US10038194B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6126546B2 (ja) リチウムイオン二次電池用負極の製造方法及び製造装置
JP6438804B2 (ja) 非水二次電池用正極および非水二次電池
JP4367311B2 (ja) 電池
CN111403691A (zh) 电极和通过连续局部热解制造电化学电池的电极的方法
JP5334156B2 (ja) 非水電解液二次電池の製造方法
JP6286829B2 (ja) リチウムイオン二次電池
JP5800354B2 (ja) リチウムイオン二次電池及びその製造方法
US20160036045A1 (en) Anodes for lithium-ion devices
WO2012042764A1 (ja) リチウム一次電池およびその製造方法
JP2014080685A (ja) 導電部材、電極、二次電池、キャパシタ、ならびに、導電部材および電極の製造方法
JP2008171816A (ja) リチウム電池用アノード及びそれを採用したリチウム電池
JP5664943B2 (ja) リチウムイオン二次電池用電極及びその製造方法、並びにその電極を用いたリチウムイオン二次電池
JP7309032B2 (ja) リチウム金属負極の製造方法、これによって製造されたリチウム金属負極及びこれを含むリチウム‐硫黄電池
JP6414899B2 (ja) 負極およびその製造方法、電池
JP2011086448A (ja) リチウムイオン二次電池
JP2008243828A (ja) 負極および二次電池の製造方法
JP6672971B2 (ja) 電極体の製造方法
JP2005085633A (ja) 負極および電池
JP4779633B2 (ja) 二次電池
JP2018113220A (ja) リチウムイオン二次電池の製造方法
JP6457272B2 (ja) 二次電池の充電ムラ低減方法及び二次電池の製造方法
JP2014022068A (ja) 電極体
KR101356895B1 (ko) 이차 전지용 전극 및 이의 제조방법
WO2014156068A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP3883881B2 (ja) 非水系二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180927

R150 Certificate of patent or registration of utility model

Ref document number: 6414899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250