JP6409306B2 - モータ、搬送装置及び半導体製造装置 - Google Patents

モータ、搬送装置及び半導体製造装置 Download PDF

Info

Publication number
JP6409306B2
JP6409306B2 JP2014078241A JP2014078241A JP6409306B2 JP 6409306 B2 JP6409306 B2 JP 6409306B2 JP 2014078241 A JP2014078241 A JP 2014078241A JP 2014078241 A JP2014078241 A JP 2014078241A JP 6409306 B2 JP6409306 B2 JP 6409306B2
Authority
JP
Japan
Prior art keywords
motor
rotor
angle
feedback shaft
angle feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014078241A
Other languages
English (en)
Other versions
JP2015201930A (ja
Inventor
遠藤 茂
茂 遠藤
秀樹 金
秀樹 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014078241A priority Critical patent/JP6409306B2/ja
Publication of JP2015201930A publication Critical patent/JP2015201930A/ja
Application granted granted Critical
Publication of JP6409306B2 publication Critical patent/JP6409306B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、例えば、真空雰囲気等で用いられるモータ、搬送装置及び半導体製造装置に関する。
特許文献1には、真空搬送装置に用いられるモータが記載されている。特許文献1に記載の真空搬送装置は、軸方向に積層した第1から第3のダイレクトドライブモータのロータへ、同軸状に入れ子にした第1から第3の駆動軸をそれぞれ備え、固定部となる仕切り壁と第1の駆動軸との間に第1の真空シール(磁性流体シール)を、第1の駆動軸と第2の駆動軸との間に第2の真空シール(磁性流体シール)を、第2の駆動軸と第3の駆動軸との間に第3の真空シール(磁性流体シール)を配置することで、各第1から第3の駆動軸を回転自在にしている。
特開2009−153253号公報
ロボットアーム等の搭載物への追随性、駆動速度を高めるため、真空雰囲気等で用いられるモータには、駆動軸のねじれ剛性と、ロボットアームなどの搭載物の慣性との関係で定まる共振周波数をできるだけ高くしたい要望がある。しかしながら、駆動軸を太くしてねじれ剛性を高めると、大きなトルクを伝達する必要のある磁性流体シールの周速上限を超えて、密封性が低下する可能性がある。
本発明は、上記に鑑みてなされたものであって、圧力の異なる二つの空間を隔てる密封性を維持しつつ、共振周波数を高めた回転を伝達可能なモータ、搬送装置及び半導体製造装置を提供することを目的とする。
上述した課題を解決し目的を達成するために、モータは、励磁コイル及びステータ磁極を備える第1モータステータと、励磁コイル及びステータ磁極を備える第2モータステータと、筒状の部材の径方向外側に、前記第1モータステータと前記第2モータステータとを軸方向に異なる位置に固定するハウジングと、前記第1モータステータのステータ磁極の径方向外側に対して所定の第1磁気ギャップを介して対向すると共に、円周方向に配列される複数のマグネットを備え、前記ハウジングに回転可能に支持される第1モータロータと、前記第2モータステータのステータ磁極の径方向外側に対して所定の第2磁気ギャップを介して対向すると共に、円周方向に配列される複数のマグネットを備え、前記ハウジングに回転可能に支持される第2モータロータと、前記第1モータロータ及び前記第2モータロータの配置された空間に前記第1モータステータ及び前記第2モータステータの配置された空間の気体が流通しないように密閉すると共に、前記第1磁気ギャップ及び前記第2磁気ギャップに配置される隔壁部材と、前記ハウジングの径方向内側に回転可能に支持され、前記第1モータロータと連結された第1角度フィードバックシャフトと、前記ハウジングと、第1角度フィードバックシャフトとの径方向の間に回転可能に支持され、前記第2モータロータと連結された第2角度フィードバックシャフトと、前記第1角度フィードバックシャフトと、前記第2角度フィードバックシャフトとの間の隙間を密封する第1回転型真空シール部材と、前記第2角度フィードバックシャフトと、前記ハウジングとの間の隙間を密封する第2回転型真空シール部材と、を含む。
上記構成により、モータロータと、封止される角度フィードバックシャフトとを別体にすることにより、角度フィードバックシャフトを小径化することができる。このため、回転型真空シール部材の周速上限に余裕ができるため、圧力の異なる二つの空間を隔てる密封性を維持しつつモータロータの回転速度を大きくできる。そして、モータは、圧力の異なる二つの空間を隔てる密封性を維持しつつ、モータロータが共振周波数を高めた回転を伝達可能になる。
本発明の望ましい態様として、前記第1回転型真空シール部材は、前記第2角度フィードバックシャフトの径方向内側に固定され、前記第1角度フィードバックシャフトの径方向外側表面に摺接するリップ部を備えることが好ましい。この構造により、接触抵抗が低減される。
本発明の望ましい態様として、前記第2回転型真空シール部材は、前記ハウジングの径方向内側に固定され、前記第2角度フィードバックシャフトの径方向外側表面に摺接するリップ部を備えることが好ましい。この構造により、接触抵抗が低減される。
本発明の望ましい態様として、前記第1角度フィードバックシャフトの回転角度を検出する第1角度検出器及び前記第2角度フィードバックシャフトの回転角度を検出する第2角度検出器をさらに備えることが好ましい。第1モータロータおよび第2モータロータに加わる、搭載物の質量の大きさ、搭載位置が変化しても第1角度検出器および第2角度検出器のロータ慣性には影響を与えないので、第1角度フィードバックシャフトおよび第2角度フィードバックシャフトのねじれ剛性と角度検出器のロータ慣性との関係で定まる共振周波数が安定し、角度検出器の検出値の精度を高めることができる。
本発明の望ましい態様として、前記第1回転型真空シール部材、前記第2回転型真空シール部材及び前記隔壁部材は、圧力の異なる二つの空間を隔て、前記第1角度検出器、前記第2角度検出器、前記第1モータステータ及び前記第2モータステータは、前記圧力の異なる二つの空間のうち高圧側の空間又は大気雰囲気側空間寄りにあり、前記第1モータロータ及び前記第2モータロータは、前記圧力の異なる二つの空間のうち低圧側の空間寄りにあることが好ましい。この構造により、モータステータ及び角度検出器の配置された空間の気体がモータロータが配置された空間に流通しないように密閉するので、モータステータに起因する不純物ガスの放出が使用する環境雰囲気中に放出される可能性を低減できる。
本発明の望ましい態様として、前記第2モータロータに回転自在に前記第1モータロータを支持する第1軸受装置と、前記ハウジングに回転自在に前記第2モータロータを支持する第2軸受装置と、前記第1角度フィードバックシャフトを回転自在に支持する第3軸受装置と、前記ハウジングに回転自在に前記第2角度フィードバックシャフトを支持する第4軸受装置と、をさらに備え、前記第1回転型真空シール部材、前記第2回転型真空シール部材及び前記隔壁部材は、圧力の異なる二つの空間を隔て、前記第3軸受装置及び前記第4軸受装置は、前記圧力の異なる二つの空間のうち高圧側の空間又は大気雰囲気側空間寄りにあり、前記第1軸受装置及び前記第2軸受装置は、前記圧力の異なる二つの空間のうち低圧側の空間寄りにあることが好ましい。この構造により、角度検出器のロータの振動を抑制することができる。
本発明の望ましい態様として、前記第1モータロータと前記第1角度フィードバックシャフトとが、連結される第1連結部材と、前記第1連結部材とは軸方向に重ならない位置にあり、かつ前記第1磁気ギャップを通じて、前記第2モータロータと前記第2角度フィードバックシャフトとが、連結される第2連結部材と、を備えることが好ましい。この構造により、第1モータロータの回転と第1角度フィードバックシャフトの回転とが連動し、第2モータロータの回転と第2角度フィードバックシャフトの回転とが連動できる。
本発明の望ましい態様として、前記第1連結部材と前記隔壁部材との間の空間にある気体を排気する排気ポートを備え、前記第2連結部材は、前記第1連結部材側の空間と、前記隔壁部材側の空間とを繋ぐ連通孔を備えることが好ましい。排気ポートの排気により、回転型真空シール部材から発生した摩耗粉、第1軸受装置及び第2軸受装置の飛散した潤滑剤などの飛散を抑制することができる。
本発明の望ましい態様として、前記第1モータロータと負荷体とを直結するための第1搭載面を備える第1フランジと、前記第2モータロータと前記負荷体又は他の負荷体とを直結するための第2搭載面を備える第2フランジと、をさらに備えることが好ましい。モータはいわゆるダイレクトドライブモータとなり、直接負荷体を搭載物として回転することができる。また、モータは、負荷体を高精度に位置決めをすることができる。
本発明の望ましい態様として、前記第1角度検出器の検出信号に基づいて、前記第1モータステータの励磁コイルに供給し、前記第2角度検出器の検出信号に基づいて、前記第2モータステータの励磁コイルに供給し、駆動電流を供給するモータ制御回路を備えることが好ましい。この構成により、モータロータに加わる、搭載物の質量の大きさ、搭載位置が変化しても角度検出器のロータ慣性には影響を与えないので、角度フィードバックシャフトのねじれ剛性と角度検出器のロータ慣性との関係で定まる共振周波数が安定し、モータ制御回路における制御ループを簡素化でき、安定性に長けたモータシステムを提供できる。
本発明は、上記に鑑みてなされたものであって、搬送装置は、上述したモータを備える。上述したモータは、モータロータと、封止される角度フィードバックシャフトとを別体にすることにより、角度フィードバックシャフトを小径化することができる。このため、回転型真空シール部材の周速上限に余裕ができるため、圧力の異なる二つの空間を隔てる密封性を維持しつつモータロータの回転速度を大きくできる。そして、モータは、圧力の異なる二つの空間を隔てる密封性を維持しつつ、モータロータが共振周波数を高めた回転を伝達可能になる。その結果、搬送装置は、モータロータで搬送する被搬送物の追随性、駆動速度を高めることができる。
本発明は、上記に鑑みてなされたものであって、半導体製造装置は、上述した搬送装置を備え、搬送装置を備え、搬送装置の被搬送物が半導体部品である。搬送装置が備える上述したモータは、モータロータと、封止される角度フィードバックシャフトとを別体にすることにより、角度フィードバックシャフトを小径化することができる。このため、回転型真空シール部材の周速上限に余裕ができるため、圧力の異なる二つの空間を隔てる密封性を維持しつつモータロータの回転速度を大きくできる。そして、モータは、圧力の異なる二つの空間を隔てる密封性を維持しつつ、モータロータが共振周波数を高めた回転を伝達可能になる。その結果、搬送装置は、モータロータで搬送する被搬送物の追随性、駆動速度を高めることができる。その結果、半導体製造装置は、製造工程の時間を短縮でき、半導体の製造コストを低減することができる。
本発明によれば、圧力の異なる二つの空間を隔てる密封性を維持しつつ、共振周波数を高めた回転を伝達可能なモータ、搬送装置及び半導体製造装置を提供することができる。
図1は、本実施形態に係るモータの使用状態を説明する説明図である。 図2は、積載台及びワークの一例を示す模式図である。 図3は、回転中心を含む仮想平面で本実施形態のモータの構成を切って模式的に示す断面図である。 図4は、本実施形態のモータの構成を回転中心に直交する仮想平面で切ってモータロータを模式的に示す部分断面図である。 図5は、マグネットの貼り付け状態を示す分解斜視図である。 図6は、回転中心に直交する仮想平面で切ってマグネットの取り付け状態を模式的に示す部分断面図である。 図7は、本実施形態に係る回転型真空シール部材の拡大図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
(本実施形態)
図1は、本実施形態に係るモータの使用状態を説明する説明図である。図2は、積載台及びワークの一例を示す模式図である。モータ1は、回転中心Zrを中心に積載台52を回転する。例えば、図2に示すように、積載台52は、円盤状のプレート部52aと、ウエハ搬送用などのためのアーム部52bとを含む。そして、アーム部52bは、ワーク53を搭載する。積載台52のプレート部52aの回転により、半導体製造装置100における真空雰囲気Vaのチャンバ51内に配置されるアーム部52bがワーク53を搭載した状態で位置決めされる。モータ1は、ギヤ、ベルトまたはローラ等の伝達機構を介在させることなく負荷体(搭載物)50であるワーク53及び積載台52に回転力をダイレクトに伝達し、ワーク53を回転させることができる。モータ1は、いわゆるモータ回転軸と負荷体50とを直結したダイレクトドライブモータである。なお、モータ1は、いわゆるモータ回転軸と負荷体50としてワーク53とを直結したダイレクトドライブモータとしてもよい。また、本実施形態に係るモータ1は、後述するように、アウターロータ型と呼ばれ、モータステータがモータロータよりも回転中心Zr寄りとなる配置としている。これにより、モータ1は、高精度のワーク53の位置決めをすることができる。なお、本実施形態において、軸方向とは、回転中心Zrの軸と平行な方向である。
一般に、半導体製造装置100は、半導体の集積度が高まり、それに伴って同時にICのパターン幅の微細化による高密度化が進められている。この微細化に対応できるウエハ(半導体部品)を製造するために、ウエハ品質に対する高度の均一性が要求されている。その要求に応えるためには、真空雰囲気Vaにおける不純物ガス濃度の一層の低減が重要である。このため、チャンバ51の取り付け孔に配置されるモータ1においては、真空雰囲気Vaの空間とハウジング外部の大気雰囲気Atとを離隔することも必要となる。なお、本実施形態では、チャンバ51内を真空雰囲気Vaとしているが、真空雰囲気Vaを真空でなく、例えば、窒素ガス、希ガスなど大気雰囲気Atと異なる雰囲気としてもよい。
図1に示すように、例えば半導体製造100に用いられる製造装置は、チャンバ51と、モータ1と、モータ制御回路90と、モータ制御回路を制御する制御装置99を含む。半導体製造100に用いられる半導体製造装置100は、搬送テーブル(可動部材)を回転させる。製造装置100は、真空雰囲気Vaにある被搬送物(例えば、半導体基板、工作物又は工具)を搬送テーブル(プレート部52a)に搭載して移動させる。制御装置99は、入力回路と、中央演算処理装置であるCPU(Central Processing Unit)と、記憶装置であるメモリと、出力回路とを含む。メモリに記憶させるプログラムに応じて、モータ1を制御するモータ回転指令iを生成し、真空雰囲気Vaにある被搬送物(例えば、半導体基板、工作物又は工具)を搬送テーブル(プレート部52a)に搭載して移動させる搬送装置110を備え、製造装置は、所望の製品を製造することができる。なお、真空雰囲気Vaは、真空環境、減圧環境、プロセスガス充填環境であってもよい。
図1に示すように、外部のコンピュータからモータ回転指令iが入力されたとき、モータ制御回路90は、CPU(Central Processing Unit)91から3相アンプ(AMP:Amplifier)92に駆動信号を出力し、AMP92からモータ1に駆動電流Miが供給される。モータ1は、駆動電流Miにより積載台52が回転し、ワーク53を移動させるようになっている。積載台52が回転すると、後述する回転角度を検出したレゾルバ等の角度検出器から検出信号(レゾルバ信号)Srが出力される。モータ制御回路90は、検出信号Srをレゾルバデジタル変換器(RDC:Resolver to Digital Converter)93でデジタル変換する。RDC93からの検出信号Srのデジタル情報に基づいて、CPU91はワーク53が指令位置に到達したか否かを判断し、指令位置に到達する場合、AMP92への駆動信号を停止する。
図3は、回転中心を含む仮想平面で本実施形態のモータの構成を切って模式的に示す断面図である。モータ1は、静止状態に維持される固定子(以下、モータステータという)30と、モータステータ30A、30Bに対して回転可能に配置された回転子(以下、モータロータという)40A、40Bと、モータステータ30を固定してチャンバ51の支持部材に取り付けられるハウジング20と、モータロータ40A、40Bに固定されてモータロータ40とともに回転可能なロータフランジ45、49と、隔壁部材60と、角度フィードバックシャフト10A、10Bと、角度フィードバックシャフト10A、10Bと、ハウジング20との間の隙間を密封する回転型真空シール部材65A、65Bと、を含む。
ハウジング20、ロータフランジ45、49、モータロータ40A、40B及びモータステータ30A、30Bはいずれも環状の構造体である。ロータフランジ45、モータロータ40A、40B及びモータステータ30A、30Bは、回転中心Zrを中心に同心状に配置されている。モータステータ30A、30Bは、軸方向の異なる位置で後述するハウジングインナに固定されている。そして、モータロータ40Aは、モータステータ30Aよりも回転中心Zrに対して外側(外径側)の位置に配置されており、モータロータ40Bは、モータステータ30Bよりも回転中心Zrに対して外側(外径側)の位置に配置されている。このようなモータ1は、アウターロータ型と呼ばれ、モータステータ30A、30Bがモータロータ40A、40Bよりも回転中心Zr寄りとなる。また、モータ1は、ロータフランジ45、モータロータ40A、40B及びモータステータ30A、30Bがハウジング20の上に配置されている。
ハウジング20は、ハウジングベース21と、ハウジングフランジ24Bと、外側隔壁押さえ部材23とを備える。ハウジングベース21は、筒状のハウジングアウタ22と、筒状のハウジングインナ25とを備えている。ハウジングアウタ22は、チャンバ51の内側の内側面51a上に配置され、不図示のボルト等の固定部材によりOリングなどの密封部材29aを介して固定される。モータ1は、ハウジングアウタ22が支持部材であるチャンバ51に取り付けられることで、チャンバ51に対して位置決め固定される。ハウジングアウタ22は、チャンバ51に取り付けられた状態において、底面21aと接する内側面51aを一連の連続面として少なくとも1つ有している。この連続面は、モータ1の自重や回転時の振動などをチャンバ51に分散して作用させることができる。このため、ハウジングアウタ22に歪み(撓み)が生ずるおそれを防止することができる。
ハウジングインナ25は、円板状のベース部25Aと回転中心Zr近傍に突出する円筒部25Bと、底部25Cを備えている。ハウジングインナ25は、ベース部25Aの外周の取付面25aでハウジングアウタ22の内周と嵌め合い、ボルト等の固定部材を介してハウジングアウタ22に固定されている。
ハウジングアウタ22とハウジングインナ25は別体であるので、材料を異なるものにすることができる。例えば、ハウジングアウタ22はその一部が真空中に曝されるため、オーステナイト系ステンレス、アルミ合金など、真空中での放出ガスが少なく、かつ放出ガスの成分が既知の真空用材料を用いることができる。ハウジングアウタ22は、適用する真空度によっては、電解研磨、平滑化処理、酸化被膜などの表面処理が施されることで、表面積を低減させ、溶存気体の放出を低減させることがより好ましい。ハウジングインナは、本実施形態では、真空中に曝されないため、鋳鉄、低炭素鋼など一般的な構造用材料を用いていてもよい。この構造により、モータ1は、構造用材料の使用の比率を高め、構造用材料よりも高価な、真空用材料の使用量を減らすことができる。
ハウジング20のハウジングインナ25の底部25Cは、チャンバ51の取り付け孔51eに挿入され、チャンバ51の大気側である大気雰囲気Atに露出する。底部25Cは、筒状の部材で囲む中空空間74を備え、中空空間74には、後述する角度検出器70A、70Bを備えている。なお、底部25Cは、中空空間74を覆う蓋部75を備えることで、中空空間74への異物の混入を抑制することができる。
円筒部25Bは、回転中心Zrを囲むようにベース部25Aから凸状に突出した同心円となる突出部である。ハウジングアウタ22は、ハウジングインナ25の円筒部25Bを囲むようにハウジングベース21から凸状に突出した同心円となる突出部である。このため、ハウジングベース21の上面は、ハウジングインナ25の円筒部25Bとハウジングアウタ22に囲まれた円環状の溝を含む。
また、ハウジングフランジ24Bは、ボルト等の固定部材を介してハウジングアウタ22に固定され、ハウジングアウタ22の回転中心Zr側側面の嵌合部24aに軸受装置15の外輪を固定している。
ハウジングインナ25の径方向外側の側面(回転中心Zrとは反対側の側面)には、モータステータ30A、30Bがボルト等の固定部材によって締結されている。これにより、モータステータ30A、30Bはハウジングベース21に対して位置決め固定されている。モータステータ30A、30Bの中心軸は、モータロータ40A、40Bの回転中心Zrと一致する。
モータステータ30A、30Bは、ステータコア31と、励磁コイル32とを含む。モータステータ30A、30Bは、ステータコア31に励磁コイル32が巻きつけられる。モータステータ30A、30Bには、電源からの電力を供給するための配線32aが接続されており、この配線32aを通じて各励磁コイル32に対して上述したモータ制御回路90から電力が供給されるようになっている。
モータロータ40A、40Bは、モータロータ40A、40Bの内径がモータステータ30A、30Bの外径寸法よりも大きい円筒状である。モータロータ40A、40Bは、ロータヨーク41及びロータヨーク41の内周に貼り付けられたマグネット42を含む。なお、マグネット42については、後述する。
ロータフランジ45、49は、円板状であり、下面がロータヨーク41に嵌め合い、ボルト等の固定部材で固定されている。ロータフランジ45、49は、全体が真空中に曝されるため、オーステナイト系ステンレス、アルミ合金など、真空中での放出ガスが少なく、かつ放出ガスの成分が既知の真空用材料であることが好ましい。適用する真空度によっては、表面積の低減や、溶存気体の放出低減を図るべく、電解研磨や平滑化、酸化被膜などの表面処理が施される。ロータフランジ45、49は、適用する真空度によっては、電解研磨、平滑化処理、酸化被膜などの表面処理が施されることで、表面積を低減させ、溶存気体の放出を低減させることがより好ましい。
ロータヨーク41は、ロータフランジ45と逆側の端部から固定部材を介して、ロータヨーク41の外周側面の嵌合部に軸受装置15の内輪を挟み固定する。これにより、軸受装置15の内輪の内径部が中間〜すきまばめされて、内輪の端面が押圧される。軸受装置15は、内輪の端面同士が密着することで、適正な予圧又は適正な軸受すきまが得られる。モータロータ40A、40Bは、円筒状のロータフランジ45、49にボルト等の固定部材により固定されてもよい。ロータフランジ45、49は、中心軸がモータ1の回転中心Zrと同軸に形成されている。
ロータフランジ45は、上面に上述した負荷体(搭載物)50を固定する搭載面50P1を備え、搭載面50P1と重なり合わない範囲(図3においては、径方向内側)で、角度フィードバックシャフト10Aと連結する連結部材である連結板46とがボルト等の固定部材で固定されている。
ロータフランジ49は、上面に上述した負荷体(搭載物)50を固定する搭載面50P2を備え、搭載面50P2と重なり合わない範囲(図3においては、径方向内側)で、角度フィードバックシャフト10Bと連結する連結部材84とがボルト等の固定部材で固定されている。
また、軸受装置14は、内輪がロータヨーク41及びロータフランジ45に固定され、外輪がハウジングフランジ24A及びロータフランジ49に固定されている。軸受装置14は、外輪の外径部がすきまばめされており、図示しないボルト等の固定部材がハウジングフランジ24をロータフランジ49に固定(締結)することで、外輪同士の端面が押圧される。これにより、軸受装置14は、ロータフランジ49に対して、ロータフランジ45及びモータロータ40Aを回転自在に支持することができる。このため、モータ1は、ロータフランジ49及びモータロータ40Aをハウジング20及びモータステータ30Aに対して回転させることができる。
なお、真空側の軸受装置14は、複数のアンギュラ軸受の軸受装置14A、14Bを背面組み合わせとして配置することが好ましい。軸受装置14の外輪は、ロータフランジ49に嵌め合い、外輪の端面がハウジングフランジ24Aに押圧されている。ハウジングフランジ24Aの回転中心Zr側は、ロータヨーク41側に突出する突出部を有していることが好ましい。この突出部は、ハウジングフランジ24Aとロータフランジ45の隙間を狭め、異物の混入を防ぐことができるラビリンスシールとなる。
また、軸受装置15は、内輪がロータヨーク41及びロータフランジ49に固定され、外輪がハウジングフランジ24B及びハウジングアウタ22に固定されている。軸受装置14は、外輪の外径部がすきまばめされており、図示しないボルト等の固定部材がハウジングフランジ24Bをハウジングアウタ22に固定(締結)することで、外輪同士の端面が押圧される。これにより、軸受装置14は、ハウジング20に対して、ロータフランジ49及びモータロータ40Bを回転自在に支持することができる。このため、モータ1は、ロータフランジ49及びモータロータ40Bをハウジング20及びモータステータ30Bに対して回転させることができる。
なお、真空側の軸受装置15は、複数のアンギュラ軸受の軸受装置15A、15Bを背面組み合わせとして配置することが好ましい。軸受装置15の外輪は、ハウジングアウタ22に嵌め合い、外輪の端面がハウジングフランジ24Bに押圧されている。ハウジングフランジ24Bの回転中心Zr側は、ロータヨーク41側に突出する突出部を有していることが好ましい。この突出部は、ハウジングフランジ24Bとロータフランジ49の隙間を狭め、異物の混入を防ぐことができるラビリンスシールとなる。
軸受装置14、15の内輪及び外輪は、マルテンサイト系ステンレス鋼等で形成されている。この構造により、軸受装置14、15の内輪及び外輪は、焼き入れによる硬化を施すことができるため、耐錆性及び耐久性を向上することができる。軸受装置14の転動体は、セラミックボール等で形成されている。軸受装置14、15の転動体は、軸受装置14、15の内輪及び外輪の材料と異なる材料であるので、耐久性を向上させることができる。軸受装置14、15の転動体と転動体との間には、マルテンサイト系ステンレス鋼等のスペーサボールを配置することがより好ましい。この構造により、セラミックボールの転動体同士が接触することを防ぐことができる。軸受装置16、17は、軸受装置14、15と同じ材料で構成してもよく、軸受装置14、15と異なる材料で構成してもよい。
また、モータ1は、角度検出器70A、70Bを備える。角度検出器70A、70Bは、例えばレゾルバであって、モータロータ40A、40B及びロータフランジ45、49の回転位置を高精度に検出することができる。
角度検出器70A、70Bは、静止状態に維持されるレゾルバステータ71A、71Bと、レゾルバステータ71A、71Bと所定のギャップを隔てて対向配置され、レゾルバステータ71A、71Bに対して回転可能なレゾルバロータ72A、72Bを備えている。レゾルバステータ71A、71Bは、ハウジングインナ25に配設されている。また、角度検出器70Aのレゾルバロータ72A、72Bは、角度フィードバックシャフト10Aにレゾルバロータスペーサ76Aを介して取り付けられている。角度検出器70Bのレゾルバロータ72A、72Bは、角度フィードバックシャフト10Bにレゾルバロータスペーサ76Bを介して取り付けられている。
角度フィードバックシャフト10Aは、軸方向の異なる位置に、真空側小径部12と、真空側小径部12と大気側小径部13と、真空側小径部12と大気側小径部13との間であって、真空側小径部12及び大気側小径部13よりも直径を大きくした大径部11とを有している。角度フィードバックシャフト10Bは、筒状の部材であって、軸方向に貫通する空間10Hに、角度フィードバックシャフト10Aが挿入されている。
角度フィードバックシャフト10Aの材質は、マルテンサイト系ステンレス、析出硬化系ステンレス、シリコン(Si)を3.4質量%以上含む析出硬化性ステンレスの高珪素合金のいずれかを用いることで、後述する回転型真空シール部材65Aと摺動する部位の耐摩耗性を向上している。角度フィードバックシャフト10Bは、軸方向に円筒状の摺動部67を備えている。角度フィードバックシャフト10Bと摺動部67とは、Oリングなどの密閉部材29dで密封されて、空間10Hと空間Vdとの間で気体の漏れを防ぐことができる。摺動部67の材質は、マルテンサイト系ステンレス、析出硬化系ステンレス、シリコン(Si)を3.4質量%以上含む析出硬化性ステンレスの高珪素合金のいずれかを用いることで、後述する回転型真空シール部材65Bと摺動する部位の耐摩耗性を向上している。摺動部67は、連結フランジ47Bを貫通し、不図示のセットビスなどの固定部材により、連結フランジ47Bと固定されている。
角度フィードバックシャフト10Aは、軸受装置16により角度フィードバックシャフト10Bに対して回転自在に支持さされている。軸受装置16は、複数の深溝玉軸受の軸受装置16A、16Bで、大径部11の軸方向両側から嵌め合わせる配置としている。
軸受装置16Bの内輪の内径部は角度フィードバックシャフト10Aの大径部11にしまりばめされ、さらに軸受装置16Bの内輪の端面は角度フィードバックシャフト10Aの段付き部(大径部11と大気側小径部12との段差部)および止め輪16Dで軸方向に固定される。外輪の外径部はハウジングインナの座ぐり穴に接着固定され、さらに外輪の端面はハウジングインナの座ぐり穴肩部および止め輪16Cで軸方向に固定される。軸受装置16Bは、軸受隙間(ラジアル内部隙間)が軸受装置16Aよりも小さいことが好ましい。例えば、軸受装置16Bは、軸受隙間(ラジアル内部隙間)がC2又はCMであることが好適である。以上説明したように、軸受装置16Bを径方向および軸方向に固定し、かつ軸受隙間の小さい軸受を用いた構造により、レゾルバロータ72A、72Bを精度良く回転させることが可能となる。このため、角度検出器70Aは、角度検出精度を向上できる。また、レゾルバロータ72A、72Bとレゾルバステータ71A、71Bとの軸方向位置を精度良く位置決めすることができるため、角度検出器70Aは、角度検出精度を向上できる。また、温度変化や衝撃などによりレゾルバロータ72A、72Bとレゾルバステータ71A、71Bとの軸方向位置がずれてしまい、角度検出精度が劣化してしまう可能性を低減できる。
軸受装置16Aは、例えば通常すきまの深溝玉軸受の軸受装置である。軸受装置16Aの内輪の内径部は、角度フィードバックシャフト10Aの真空側小径部12にしまりばめされる。軸受装置16Aの外輪は、角度フィードバックシャフト10Bの内壁にすきまばめされ、外輪の端面と、角度フィードバックシャフト10Bの内側表面の一部を突出させた座ぐり穴肩部10Baとの間に挟まれた予圧ばね26Aにより、軸受装置16Aの基本動定格荷重の0.5%程度の予圧が付加されている。この構造により、レゾルバロータ72A、72Bの振動を抑制しつつ回転させることが可能となる。このため、角度検出器70Aは、角度検出精度を向上できる。また、本実施形態のモータ1は、温度変化により過大な予圧となったり、予圧が抜けたりして、角度検出精度が劣化してしまうことを防ぐことができる。
角度フィードバックシャフト10Bは、軸受装置17によりハウジングインナ25に対して回転自在に支持さされている。軸受装置17は、複数の深溝玉軸受の軸受装置17A、17Bで、角度フィードバックシャフト10Bの軸方向両側から嵌め合わせる配置としている。軸受装置17Bの内輪の内径部は、角度フィードバックシャフト10Bにしまりばめされ、さらに内輪の端面が角度フィードバックシャフト10Bの段付き部および止め輪17Dにて、軸方向に固定される。軸受装置17Bの外輪の外径部は、ハウジングインナ25の座ぐり穴に接着固定され、さらに外輪の端面がハウジングインナ25の座ぐり穴肩部および止め輪17Cにて軸方向に固定される。軸受装置17Bは、軸受隙間(ラジアル内部隙間)が軸受装置17Aよりも小さいことが好ましい。例えば、軸受装置17Bは、軸受隙間(ラジアル内部隙間)がC2又はCMであることが好適である。以上説明したように、軸受装置17Bを径方向および軸方向に固定し、かつ軸受隙間の小さい軸受を用いた構造により、レゾルバロータ72A、72Bを精度良く回転させることが可能となる。このため、角度検出器70Bは、角度検出精度を向上できる。また、レゾルバロータ72A、72Bとレゾルバステータ71A、71Bとの軸方向位置を精度良く位置決めすることができるため、角度検出器70Bは、角度検出精度を向上できる。また、温度変化や衝撃などによりレゾルバロータ72A、72Bとレゾルバステータ71A、71Bとの軸方向位置がずれてしまい、角度検出精度が劣化してしまう可能性を低減できる。
軸受装置17Aは、例えば通常すきまの深溝玉軸受の軸受装置である。軸受装置17Aの内輪の内径部は、角度フィードバックシャフト10Bにしまりばめされる。軸受装置17Aの外輪は、ハウジングインナ25の内壁にすきまばめされ、外輪の端面と、後述するシールホルダ68との間に挟まれた予圧ばね26Bにより、軸受装置17Aの基本動定格荷重の0.5%程度の予圧が付加されている。この構造により、レゾルバロータ72A、72Bの振動を抑制しつつ回転させることが可能となる。このため、角度検出器70Bは、角度検出精度を向上できる。また、本実施形態のモータ1は、温度変化により過大な予圧となったり、予圧が抜けたりして、角度検出精度が劣化してしまうことを防ぐことができる。
真空側小径部12は、真空側小径部12よりも直径が大きな顎状の連結フランジ47Aの中心を貫通し、不図示のセットビスなどの固定部材により、真空側小径部12と、連結フランジ47Aとが固定されている。上述した連結板46は、厚さ0.5mm以上数mm以下の板ばね状であり、図示しないボルトなどの固定部材により、連結フランジ47Aと固定されている。このように、モータ1は、ロータフランジ45と角度フィードバックシャフト10Aとを薄板状の連結板46で連結することで、角度フィードバックシャフト10Aに対するロータフランジ45の軸芯のずれ、ミスアライメント、高さ違いなどを吸収できる。このため、大気側の軸受装置16Bに過大な荷重が加わったり、角度フィードバックシャフト10Aがロータフランジ45につられて振られてしまったりするなどの相互干渉を抑制することができる。
連結部材84は、鍋底部81、円筒部82、つば部(鍋縁)83を有する。連結部材84は、図示しないボルトなどの固定部材により、ロータフランジ49と連結フランジ47Bとを連結している。円筒部82は、モータロータ40Aと隔壁部材60の間の磁気ギャップG1に配置される。連結部材84は、深絞り用非磁性ステンレス鋼板に深絞り加工を施すことで筒状の円筒部82を成型している。この材料は、強加工に伴い誘起されるマルテンサイトに起因する磁化現象を抑えられるため、円筒部82越しにモータロータ40Aを駆動する際の界磁の低下を防ぐことができる。つば部(鍋縁)83は、数mmの肉厚であるのに対し、円筒部82は0.2mm以上0.5mm以下の肉厚まで引き延ばしている。円筒部82は、0.2mm以上0.5mm以下の肉厚まで引き延ばした形状とすることで、モータロータ40Aが回転する際の磁界変化に伴う筒状の円筒部82に生じる渦電流損を抑えることができる。鍋底部81は0.5mm以上数mm以下の肉厚まで引き延ばし、板ばね状とすることで角度フィードバックシャフト10Bに対する摺動部67およびロータフランジ49の軸芯のずれやミスアライメント、高さ違いなどを吸収できる。このため、大気側の軸受装置17Bに過大な荷重が加わったり、角度フィードバックシャフト10Bがロータフランジ49につられて振られてしまったりなどの相互干渉を防ぐことができる。鍋底部81には、連結板46側の空間Vbと、隔壁部材60側の空間Vdとを繋ぐ連通孔81Hが開けられている。
角度フィードバックシャフト10B、連結フランジ47A、47B及び連結板46は、真空中に曝されるため、オーステナイト系ステンレス、アルミ合金など、真空中での放出ガスが少なく、かつ放出ガスの成分が既知の真空用材料であることが好ましい。適用する真空度によっては、表面積の低減や、溶存気体の放出低減を図るべく、電解研磨や平滑化、酸化被膜などの表面処理が施される。ロータフランジ45は、適用する真空度によっては、電解研磨、平滑化処理、酸化被膜などの表面処理が施されることで、表面積を低減させ、溶存気体の放出を低減させることがより好ましい。
そして、モータステータ30Aの励磁コイル32が励磁され、モータロータ40Aが回転駆動すると、連結部材である連結板46で連結された角度フィードバックシャフト10Aが同時に回転駆動する。この構成により、モータロータ40Aの回転角度と角度フィードバックシャフト10Aの回転角度とが同期し、角度フィードバックシャフト10Aの回転角度を角度検出器70Aで検出することでモータロータ40Aの回転角度を検出することができる。また、モータステータ30Bの励磁コイル32が励磁され、モータロータ40Bが回転駆動すると、連結部材84で連結された角度フィードバックシャフト10Bが同時に回転駆動する。この構成により、モータロータ40Bの回転角度と角度フィードバックシャフト10Bの回転角度とが同期し、角度フィードバックシャフト10Bの回転角度を角度検出器70Bで検出することでモータロータ40Bの回転角度を検出することができる。モータロータ40Aおよびモータロータ40に加わる、搭載物の質量の大きさ、搭載位置が変化しても角度検出器70Aおよび角度検出器70Bのロータ慣性には影響を与えないので、角度フィードバックシャフト10Aおよび角度フィードバックシャフト10Bのねじれ剛性とレゾルバロータ72A、72Bのロータ慣性との関係で定まる共振周波数が安定し、角度検出器70A、70Bの検出値の精度を高めることができる。
レゾルバステータ71A、71Bは、複数のステータ磁極が円周方向に等間隔に形成された環状の積層鉄心を有し、各ステータ磁極にレゾルバコイルが巻回されている。各レゾルバコイルには、検出信号(レゾルバ信号)Srが出力される配線73が接続されている。
レゾルバロータ72A、72Bは、中空環状の積層鉄心により構成されており、レゾルバロータスペーサ76A、76Bの内側に固定されている。角度検出器70の配設位置は、モータロータ40A、40B(ロータフランジ45、49)の回転を検出することが可能であれば特に限定されず、ハウジング20の形状に応じて任意の位置へ配設することができる。
モータロータ40A、40Bが回転すると、モータロータ40A、40Bとともにロータフランジ45、49が回転し、連動してレゾルバロータ72A、72Bも回転する。これにより、レゾルバロータ72A、72Bと、レゾルバステータ71A、71Bとの間のリラクタンスが連続的に変化する。レゾルバステータ71A、71Bは、リラクタンスの変化を検出し、RDC93によって上述した検出信号Srをデジタル信号に変換する。モータ1を制御するモータ制御回路90のCPU91は、RDC93の電気信号に基づいて、単位時間当たりのレゾルバロータ72A、72Bと連動するロータフランジ45、49及びモータロータ40A、40Bの位置や回転角度を演算処理することができる。その結果、モータ1を制御するモータ制御回路90は、ロータフランジ45、49の回転状態(例えば、回転速度、回転方向あるいは回転角度など)を計測することが可能となる。
上述したレゾルバロータ72Aは、偏心させた外周を有する円環状となっている。このため、モータロータ40A、40Bの回転に伴ってレゾルバロータ72Aが回転すると、レゾルバステータ71Aとの間の距離を円周方向に連続して変化させ、両者の間のリラクタンスがレゾルバロータ72Aの位置により連続的に変化する。レゾルバロータ72Aの1回転につき、リラクタンス変化の基本波成分が1周期となる単極レゾルバ信号を出力しており、レゾルバロータ72Aと、レゾルバステータ71Aと、はいわゆる単極レゾルバとなる。
また、レゾルバロータ72Bは、突極状の複数の歯が円周方向に等間隔で形成される。このため、モータロータ40A、40Bの回転に伴ってレゾルバロータ72Bが回転すると、レゾルバステータ71Bとの間の距離を円周方向に周期的に変化させ、両者の間のリラクタンスがレゾルバロータ72Bの歯の位置により連続的に変化する。レゾルバロータ72Bの1回転につき、リラクタンス変化の基本波成分が多周期となる多極レゾルバ信号を出力しており、レゾルバロータ72Bとレゾルバステータ71Bとは、いわゆる多極レゾルバとなる。
このように、モータ1は、モータロータ40A、40Bの1回転につき、リラクタンス変化の基本波成分の周期が異なる角度検出器を備えることにより、モータロータ41(ロータフランジ45)の絶対位置を把握することができ、また、モータロータ41(ロータフランジ45)の回転状態(例えば、回転速度、回転方向あるいは回転角度など)を計測する精度を高めることができる。また、モータ1は、一相通電による極検知動作、または原点復帰動作を行う必要がなく、位置決めを行うことができる。
図4は、本実施形態のモータの構成を回転中心に直交する仮想平面で切ってモータロータを模式的に示す部分断面図である。図4及び図5において、モータロータ40A、40Bは、同じ構造であるので、モータロータ40として説明し、モータロータ40A、40Bのそれぞれの説明を省略する。また、ステータ30A、30Bも同じ構造であるので、モータステータ30として説明し、ステータ30A、30Bのそれぞれの説明を省略する。また、図4は、ハウジングインナ25の内径側、ロータヨーク41の外径側の図示を省略した部分断面をしめしている。図4に示すように、モータロータ40は、ロータヨーク41と、マグネット42とを含む。ロータヨーク41は、筒状に形成される。ロータヨーク41は、強磁性体の低炭素鋼で形成され、表面にニッケルめっきを施すことが好ましい。ニッケルめっきを施すことで、ロータヨーク41は錆を防ぐことができ、アウトガスを低減することができる。
マグネット42は、ロータヨーク41の内周表面に沿って貼り付けられ、複数設けられている。マグネット42は、永久磁石であり、S極及びN極がロータヨーク41の円周方向に交互に等間隔で配置される。これにより、図4に示すモータロータ40の極数は、ロータヨーク41の外周側にN極と、S極とがロータヨーク41の円周方向に交互に配置された20極である。
図4に示すように、本実施形態のモータ1は、20極18スロットというスロットコンビネーション構成である。例えば、10極9スロットのスロットコンビネーション構成は、分数スロットであり、コギング力は小さいが径方向に磁気吸引力が生じやすいことが一般的に知られている。これに対して、本実施形態のモータ1は、10極9スロットのスロットコンビネーション構成の2倍の構成であり、径方向の磁気吸引力を相殺することで、固定子と回転子の真円度または、同軸度を高めることなく、回転時の振動を小さくできると共に、コギングを抑制し、非常に滑らかな回転を得ることができる。なお、モータロータ40A、40Bの極数及びモータステータ30A、30Bのスロット数は、20極18スロットの構成に限られず、それぞれ異なってもよく、必要に応じて適宜変更できる。
また、マグネット42の永久磁石は、例えばNd−Fe−B系磁石(ネオジム系磁石)を用いることができる。マグネット42は、表面にニッケルめっきを施すことが好ましい。ニッケルめっきを施すことで、マグネット42は、錆を防ぐと共に真空雰囲気Vaに配置されても、アウトガスを低減することができる。
図5は、マグネットの貼り付け状態を示す分解斜視図である。図6は、回転中心に直交する仮想平面で切ってマグネットの取り付け状態を模式的に示す部分断面図である。ロータヨーク41の内周には、マグネット42を位置決めする位置決めのための一対の磁石押さえ部材43が備えられている。一対の磁石押さえ部材43は、非磁性体であって、例えばオーステナイト系ステンレス鋼等で形成され、モータロータ40の温度変化により締めしろの変化する比率を低減することができる。また、一対の磁石押さえ部材43は、ロータヨーク41の内周に圧入または焼きばめ等により固定される。
一般的に、モータにおけるセグメント状のマグネットの固定には接着剤を用いられることが多い。しかしながら、本本実施形態のモータ1は、真空雰囲気Vaに配置されているので、接着剤から放出されるアウトガスを低減する必要がある。また、真空雰囲気Vaに曝される接着剤は劣化し、接着強度の劣化のおそれがある。本実施形態のモータ1は、接着剤を用いずに、磁石押さえ部材43を用いることでマグネット42を固定することができる。その結果、本実施形態のモータ1は、マグネット42の位置決めを確実にすると共に、使用する環境雰囲気中で不純物ガスの放出を低減することができる。
図5に示すように、磁石押さえ部材43は、ロータヨーク41の内周径に沿った円環部44Aと、円環部44Aに設けられた複数の凸部である位置決め凸部44Bとを含む。位置決め凸部44Bは、磁石の極数をnとするとn−1個が円周方向に複数設けられている。隣合う位置決め凸部44B間は、マグネット42を収容する凹部となる。そして、マグネット42は、マグネット42を収容する凹部に挟み込まれる。マグネット42は、一対の磁石押さえ部材43の間に収容され、ロータヨーク41の内周に取り付けられる。本実施形態では、マグネット42は、ロータヨーク41の内周表面の密着面に沿って貼り付けられ、複数設けられている分割形状(セグメント構造)のセグメント磁石である。
図6に示すように、マグネット42の円周方向の端面は、位置決め凸部44Bに対しての接線の交点Mrが回転中心Zrよりもマグネット42寄りとなるようにしている。このため、磁石押さえ部材43は、マグネット42が位置決め凸部44Bよりも回転中心Zr側に飛び出すおそれを低減している。マグネット42の半径方向の外周部(外周表面)における回転方向の円弧の曲率半径をロータヨーク41の内周径の曲率半径よりも微小に小さい形状とすることで、マグネット42の半径方向の外周部を2点でロータヨーク41の内周径に線接触させることがより好ましい。これにより、モータ1は、マグネット42がロータヨーク41に対してがたつくおそれを低減することができる。
図4に示すように、モータステータ30は、回転中心Zr側にハウジングインナ25を包囲するように筒状に設けられる。図4に示すように、モータステータ30A、30Bは、ステータコア(ステータ磁極)31が上述した回転中心Zrを中心とした円周方向にティース31aが等間隔で並んで、バックヨーク31bが一体に配置される。モータステータ30A、30Bは、このような一体コアに限られず、複数の分割されたステータコア31が上述した回転中心Zrを中心とした円周方向に等間隔で並んで配置される分割コアであってもよい。そして、ステータコア31がハウジングインナ25を介してハウジングアウタ22に固定される。
また、ステータコア31は、略同形状に形成された複数のティース31aが回転中心Zr方向に積層されて束ねられることで形成される。ステータコア31は、電磁鋼板などの磁性材料で形成される。モータステータ30A、30Bは、複数のステータコア31が組み合わされると、環状形状を形成する。
図4に示す励磁コイル32は、線状の電線である。励磁コイル32は、ステータコア31のティース31aにインシュレータを介して集中巻きされる。励磁コイル32は、U相正巻、U相逆巻、U相正巻、V相正巻、V相逆巻、V相正巻、W相正巻、W相逆巻、W相正巻の順を繰り返すことで結線される。この構成により、磁極数を低減でき、かつ分布巻きに比較してコイルエンドが短くなることからコイル量を低減できる。その結果、コストを低減でき、モータ1をコンパクトにすることができる。なお、インシュレータは、励磁コイル32とステータコア31とを絶縁するための部材であり、耐熱部材で形成される。
励磁コイル32は、ステータコア31のティース31aの複数の外周に分布巻きされていてもよい。この構成により、磁極数が増え、磁束の分布が安定することからトルクリップルを抑制することができる。励磁コイル32は、バックヨーク31bの外周にトロイダル巻きされていてもよい。この構成により、分布巻きと同等の磁束分布を発生することができる。その結果、トルクリップルを抑制することができる。
このように構成されたステータコア31の複数のティース31aが周方向に並ぶことにより、モータステータ30A、30Bは、ハウジングインナ25を包囲できる形状となる。つまり、ステータコア31は、ロータヨーク41の内側(回転中心Zrから遠い側)に磁気ギャップGとなる隙間を有して環状に配置される。
次に、隔壁部材60について説明する。図3に示すように、隔壁部材60は、天板部61と、胴部62と、口元フランジ部63とを含む。隔壁部材60は、図4に示すように、胴部62がステータコア31とロータヨーク41との間の磁気ギャップGに配置され、モータロータ40A、40Bの配置された空間にモータステータ30A、30Bの配置された空間の気体が流通しないように密閉する隔壁となる。
隔壁部材60は、天板部61と、胴部62と、口元フランジ部63とを深絞り用非磁性ステンレス鋼板に深絞り加工を施すことで、円筒形状とした一体成形品である。深絞り用非磁性ステンレス鋼板は、強加工に伴い誘起されるマルテンサイトに起因する磁化現象を抑えられるため、隔壁部材60越しにモータロータ40A、40Bを駆動する際の界磁の低下を抑制することができる。隔壁部材60は、天板部61及び口元フランジ部63が数mmの肉厚であるのに対し、胴部は0.2mm以上0.5mm以下の肉厚まで引き延ばしている。このように、胴部62は、0.2mm以上0.5mm以下の肉厚まで引き延ばした形状とすることで、モータロータ40A、40Bが回転する際の、磁界変化に伴う筒状の胴部62の部分に生じる渦電流損を抑えることができる。また、隔壁部材60は、加工硬化により内圧1気圧に十分耐える剛性を得ている。隔壁部材60の口元フランジ部63は、図示しないボルトにて、外側隔壁押さえ部材23を介して、ハウジングアウタ22にはめこまれたOリング等の密閉部材29bに押し当てられる。この構造により、ボルトの軸力は分散され、口元フランジ部63を全周に渡り均一に密閉部材29bに押し当てられることから、空間Vdと空間Veとの間で気体の漏れを防ぐことができる。
隔壁部材60は、天板部61の回転中心Zr近傍に、貫通孔があり、この貫通孔を角度フィードバックシャフト10A、10Bが貫通している。ハウジングインナ25の回転中心Zr近傍において、天板部61の内側端は、Oリング等の密封部材29cを介して、シールホルダ68と内側隔壁押さえ部材28で挟まれる。この構造により、ボルトの軸力は分散され、中心穴部を全周に渡り均一に、密封部材29cに押し当てられることから、空間Vbと空間Vcとの間で気体の漏れを防ぐことができる。そして、天板部61は、内側隔壁押さえ部材28がシールホルダ68に図示しないボルト等の固定部材で固定されることで、位置が固定されている。天板部61は、シールホルダ68と図示しないボルト等の固定部材で直接固定されていてもよい。天板部61は、シールホルダ68が固定されるハウジングインナ25と連結されることで、真空雰囲気Vaと大気雰囲気Atの間の圧力差による変形を抑制することができる。
隔壁部材60は、その一部が真空中に曝されるため、適用する真空度によっては、表面積の低減や、溶存気体の放出低減を図るべく、電解研磨や平滑化、酸化被膜などの表面処理が施される。ロータフランジ45は、適用する真空度によっては、電解研磨、平滑化処理、酸化被膜などの表面処理が施されることで、表面積を低減させ、溶存気体の放出を低減させることがより好ましい。
以上説明したように、ハウジングインナ25とハウジングアウタ22に囲まれた円環状の溝は、隔壁部材60でモータロータの配置された空間Vbとモータステータの配置された空間Vcとに区画され、大気側の気体が真空側に流通しないようにすることができる。
ハウジングアウタ22には真空側に連通した排気ポート80が設けてあり、排気ポート80には、図示しないバルブを介して真空ポンプPが接続されている。真空側に最も近い回転体と固定体の境界つまり、ハウジングフランジ24Aの内径部とロータフランジ45の外径部との間には、コンダクタンス係数を小さくするために微小な隙間が構成されており、気体が流れ難いようにしている。同様に、ハウジングフランジ24Bの内径部とロータフランジ49の外径部との間には、コンダクタンス係数を小さくするために微小な隙間が構成されており、気体が流れ難いようにしている。角度フィードバックシャフト10Aと連結フランジ47Aの間、連結フランジ47Aと連結板46との間、連結板46とロータフランジ45との間の各接合部は略密閉構造としており、気体が流れない。また、鍋底部81には、連結板46側の空間Vbと、隔壁部材60側の空間Vdとを繋ぐ連通孔81Hが開けられている。真空ポンプPは、少なくともチャンバ51内を減圧する場合、あるいは大気圧に戻す場合において、空間Vbの気体を排気ポート80を介して流路a1から流路a2へ真空吸引する。排気ポート80より空間Vb及び空間Vdの気体が真空吸引されることにより、チャンバ51内を減圧する場合、あるいは大気圧に戻す場合に、回転型真空シール部材65A、65Bから発生した磨耗粉、真空側の軸受装置14、15から飛散した潤滑剤などが真空チャンバ内に飛散してしまう可能性を低減できる。
図7は、本実施形態に係る回転型真空シール部材の拡大図である。シールホルダ68は、隙間の大きさを規定するとともに、回転型真空シール部材65Bを固定する。図3に示すように、シールホルダ68、摺動部67は、環状の部材である。図7に示すように、シールホルダ68は、摺動部67の外周面67fに接しない位置に配置され、外周面67fを囲っている。シールホルダ68の外周面67fと対向する、内側表面の一部を突出させて、座ぐり穴肩部68e(突出部)と内側隔壁押さえ部材28との間にできる表面の凹部である座ぐり穴部には、回転型真空シール部材65Bの外径側にある固定部65bが圧入される。回転型真空シール部材65Bは、リップシールと呼ばれ、固定部65bと、外周面67fに接するリップ部65aと、固定部65bとリップ部65aとを連結する環状連結部65cとを備える。また、固定部65bは、内圧1気圧において、回転型真空シール部材65Bが抜けることがないように、シールホルダ68の座ぐり穴肩部68eおよび内側隔壁押さえ部材28で軸方向に挟まれ固定される。回転型真空シール部材65Bは、軸受装置17Aよりも圧力の異なる二つの空間のうち、低圧側の空間Vd(図3参照)寄りに配置されている。この構造により、回転型真空シール部材65Bが、軸受装置17Aに用いられている潤滑剤などを内部空間Vd側に飛散させないようにしている。
図7に示すように、角度フィードバックシャフト10Bは、角度フィードバックシャフト10Aの真空側小径部12の外周面12fに接しない位置に配置され、外周面12fを囲っている。角度フィードバックシャフト10Aの外周面12fと対向する、内側表面の一部を突出させて、座ぐり穴肩部10Ba(突出部)と摺動部67との間にできる表面の凹部である座ぐり穴部には、回転型真空シール部材65Aの外径側にある固定部65bが圧入される。回転型真空シール部材65Aは、リップシールと呼ばれ、固定部65bと、真空側小径部12の外周面12fに接するリップ部65aと、固定部65bとリップ部65aとを連結する環状連結部65cとを備える。また、固定部65bは、内圧1気圧において、回転型真空シール部材65Aが抜けることがないように、シールホルダ68の座ぐり穴肩部10Baおよび摺動部67で軸方向に挟まれ固定される。回転型真空シール部材65Aは、軸受装置16Aよりも圧力の異なる二つの空間のうち、低圧側の空間Vb(図3参照)寄りに配置されている。この構造により、回転型真空シール部材65Aが、軸受装置16Aに用いられている潤滑剤などを低圧側の空間Vb(内部空間)側に飛散させないようにしている。
固定部65b、環状連結部65c及びリップ部65aは、断面形状が略U字形状となっており、固定部65b、環状連結部65c及びリップ部65aが囲む空間は、圧力の異なる二つの空間のうち、高圧側となる外部空間(大気雰囲気At)に向かって開口している。なお、回転型真空シール部材65A、65Bの材質は、ポリエチレン又はポリテトラフルオロチレンであるとより好ましい。ポリエチレン又はポリテトラフルオロチレンは、回転型真空シール部材65A、65Bの材質として、耐摩耗性、耐薬品性に優れ、角度フィードバックシャフト10A又は摺動部67の潤滑に好適である。本実施形態では、角度フィードバックシャフト10Bではなく、摺動部67に回転型シール部材65Bのリップ部65aが接触する実施形態を説明したが、摺動部67が角度フィードバックシャフト10Bの一部であり、角度フィードバックシャフト10Bと一体であってもよい。回転型シール部材65Bのリップ部65aは、角度フィードバックシャフト10Bの外周面に直接接触するようにしてもよい。なお、角度フィードバックシャフト10Bは、摺動部67を別体として有することにより、摩耗の可能性のある摺動部67だけを交換すればよくなる。同様に、角度フィードバックシャフト10Aも、摺動部67のように真空側小径部12を着脱可能に固定することで、摩耗時に交換する部分を減らすことができる。上述したように、接触する角度フィードバックシャフト10A(角度フィードバックシャフト10B)の材質は、高炭素クロム軸受鋼鋼材、マルテンサイト系ステンレス鋼、析出硬化系ステンレス鋼、Siを3.4質量%以上含む析出硬化性ステンレスの高珪素合金のいずれか1つが好ましい。この構造により、回転型真空シール部材65A、65Bによる摩耗が抑制され、モータ1は、密封性を高める部品の交換頻度を低減することができる。また、角度フィードバックシャフト10Bは、摺動部67を別体として有することにより、このような高価な材料の使用割合を低減することができる。
図7に示すように、固定部65b、環状連結部65c及びリップ部65aが囲む空間の内部に付勢部材66が配置されている場合、リップ部65aの押圧力を外周面12f又は摺動部67の外周面67f側へより付勢することができる。付勢部材66は、例えばステンレス鋼などで、いずれも平板状の板状部66a及び板状部66bを屈曲部66cで折り曲げた、断面視でV字状となる弾性体である。付勢部材66は、板状部66a及び板状部66bの先端同士が広がるように付勢されている。なお、付勢部材66は、なくてもよい。
回転型真空シール部材65A、65Bは、リップ部65aの弾性変形による圧力に加え、付勢部材66に付加された圧力を受けたリップ部65aが角度フィードバックシャフト10Aの外周面12f及び摺動部67の外周面67fへ接触する。このため、モータ1は、リップ部65aが角度フィードバックシャフト10Aの外周面12f又は摺動部67の外周面67fへ接触する接触圧を高めることができる。さらに、固定部65b、環状連結部65c及びリップ部65aが囲む空間は、圧力の異なる二つの空間のうち、高圧側となる外部空間(大気雰囲気At)側に向かって開口しているので、圧力の異なる二つの空間の圧力差は、リップ部65aが角度フィードバックシャフト10A(真空側小径部12)の外周面12fへ接触する接触圧を高めることができる。これにより、モータ1は、内部空間Vの真空を高くしても、高い密封性を維持できる。また、リップ部65aの内周側先端のみが外周面12f及び摺動部67の外周面67fへ接触するだけでなく、環状連結部65cに近いリップ部65aの内周側基部の少なくとも一部も外周面12f又は摺動部67の外周面67f及び摺動部67の外周面67fへ接触する。その結果、リップ部65aの内周側が面で外周面12f及び摺動部67の外周面67fへ接触し、外周面12f及び摺動部67の外周面67fに摺動するので、密封性を維持できる。回転型真空シール部材65A、65Bは、リップ部65aを備えているので、モータ1を磁性流体シールや磁気カップリング等、他の形式の回転型真空シールと比較し、安価に真空用ダイレクトドライブモータとすることができる。
リップ部65aが摩耗又は変形を生じても、付勢部材66が接触圧を維持するように作用する。このため、モータ1は、密封性を高める部品である回転型真空シール部材65A、65Bの交換頻度を低減することができる。
以上説明したように、回転型真空シール部材65A、65Bは、シールホルダ68又は角度フィードバックシャフト10Bに接する固定部65bと、固定部65bよりも内側に設けた角度フィードバックシャフト10Aの外周面12f又は固定部65bよりも内側に設けた摺動部67の外周面67fに接するリップ部65aと、固定部65bとリップ部65aとを連結する環状連結部65cとを備える。この構造により、回転型真空シール部材65A、65Bの摺動部67の直径を小さくできるため、接触抵抗が低減される。
外側隔壁押さえ部材23、内側隔壁押さえ部材28、シールホルダ68は、真空中に曝されるため、オーステナイト系ステンレス、アルミ合金など、真空中での放出ガスが少なく、かつ放出ガスの成分が既知の真空用材料を用いることができる。外側隔壁押さえ部材23、内側隔壁押さえ部材28、シールホルダ68は、適用する真空度によっては、電解研磨、平滑化処理、酸化被膜などの表面処理が施されることで、表面積を低減させ、溶存気体の放出を低減させることがより好ましい。
以上説明したように、本実施形態のモータ1は、励磁コイル32及びステータ磁極を備えるモータステータ(第1モータステータ)30A、(第2モータステータ)30Bと、筒状の部材の径方向外側にモータステータ30A、30Bを固定するハウジングインナ25と、ステータ磁極31の径方向外側に対して所定の磁気ギャップG1、G2を介して対向すると共に、円周方向に配列される複数のマグネット42を備え、ハウジング20に回転可能に支持されるモータロータ(第1モータロータ)40A、(第2モータロータ)40Bと、隔壁部材60と、角度フィードバックシャフト10A、10Bと、回転型真空シール部材65A、65Bとを備える。
隔壁部材60は、モータロータ40A、40Bの配置された空間Vb及び空間Vdにモータステータ30A、30Bの配置された空間Veの気体が流通しないように密閉すると共に、磁気ギャップG1、G2に配置される。角度フィードバックシャフト(第1角度フィードバックシャフト)10Aは、ハウジングインナ25の径方向内側に回転可能に支持され、モータロータ40Aと連結される。角度フィードバックシャフト(第2角度フィードバックシャフト)10Bは、ハウジングインナ25と、角度フィードバックシャフト10Aとの径方向の間に回転可能に支持され。モータロータ40Bと連結される。回転型真空シール部材(第1回転型真空シール部材)65Aは、角度フィードバックシャフト10Aと角度フィードバックシャフト10Bとの間の隙間を密封する。回転型真空シール部材(第2回転型真空シール部材)65Bは、角度フィードバックシャフト10Bとハウジングインナ25との間の隙間を密封する。
本実施形態のモータは、上述した特許文献1に記載のようなモータロータと負荷体50とを連結する回転中心Zrにある駆動軸シャフトが存在せず、モータロータ40A、40Bと負荷体50とを直に連結している。一方、特許文献1に記載されたモータは、負荷体(搭載物)とモータロータとが、駆動軸シャフトを介して回転可能となっており、負荷体(搭載物)のイナーシャ(慣性)をm[kg・m]、駆動軸シャフトねじれのばね定数をk[Nm/rad]として、モータロータが制御によりロックした場合、負荷体(搭載物)の回転方向の共振周波数fは下記式(1)で求めることができる。
f=(1/2π)×(k/m)1/2・・・(1)
式(1)に示すように、特許文献1に記載されたモータは、負荷体(搭載物)のイナーシャmが大きくなると、共振周波数fが低くなる。これに対して、本実施形態のモータ1は、モータロータ40A、40Bと負荷体(搭載物)50とが回転中心Zrにある角度フィードバックシャフト10A、10Bを介して連結されておらず、角度フィードバックシャフト10A、10Bの径方向外側で、モータロータ40A、40Bと負荷体50とを直に連結している。つまり、モータロータ40A、40Bは、角度フィードバックシャフト10A、10Bを回転駆動することで、負荷体(搭載物)50を回転させておらず、モータロータ40A、40Bの回転駆動により角度フィードバックシャフト10A、10Bをねじりながら負荷体(積載物)50を回転させるものではない。このため、本実施形態のモータは、特許文献1に記載されたモータと比較して、特許文献1に記載の駆動軸シャフトに相当する部材がなく駆動軸シャフトねじれのばね定数kが非常に大きくなる。本実施形態のモータは、上述した式(1)において、駆動軸シャフトねじれのばね定数kが非常に大きいので、負荷体(搭載物)のイナーシャmが大きくなっても、共振周波数fを高いままに維持できる。なお、レゾルバロータ72A、72Bは、角度フィードバックシャフト10A、10Bに取り付けられているが、レゾルバロータ72A、72Bは、負荷体(積載物)50の回転に連動して、回転されるので、レゾルバロータ72A、72Bが角度フィードバックシャフト10A、10Bをねじりながら負荷体(積載物)50が回転するものではない。従って、レゾルバロータ72A、72Bは、角度フィードバックシャフト10A、10Bを介して、負荷体(搭載物)50と連結されていても、共振周波数fに影響を与えない。
このように、モータロータ40A、40Bと、封止される角度フィードバックシャフト10A、10Bとを別体にすることにより、角度フィードバックシャフト10A、10Bを小径化することができる。このため、回転型真空シール部材65A、65Bの周速上限に余裕ができるため、圧力の異なる二つの空間を隔てる密封性を維持しつつモータロータ40A、40Bの回転速度を高くできる。そして、モータ1は、圧力の異なる二つの空間を隔てる密封性を維持しつつ、モータロータ40A、40Bが共振周波数を高めた回転を伝達可能になる。その結果、搬送装置110および半導体製造装置100は、モータロータ40A、40Bで搬送する被搬送物の追随性、駆動速度を高めることができる。
1 モータ
10A 角度フィードバックシャフト(第1角度フィードバックシャフト)
10B 角度フィードバックシャフト(第2角度フィードバックシャフト)
11 大径部
12 真空側小径部
12f 外周面
13 大気側小径部
14 軸受装置(第1軸受装置)
15 軸受装置(第2軸受装置)
16 軸受装置(第3軸受装置)
17 軸受装置(第4軸受装置)
20 ハウジング
21 ハウジングベース
22 ハウジングアウタ
25 ハウジングインナ
30A モータステータ(第1モータステータ
30B モータステータ(第2モータステータ
31 ステータコア
32 励磁コイル
40A モータロータ(第1モータロータ)
40B モータロータ(第2モータロータ)
42 マグネット
43 磁石押さえ部材
45 ロータフランジ(第1ロータフランジ)
46 連結板(第1連結部材)
49 ロータフランジ(第2ロータフランジ)
50P1 搭載面(第1搭載面)
50P2 搭載面(第2搭載面)
50 負荷体
51 チャンバ
52a プレート部
52b アーム部
52 積載台
53 ワーク
60 隔壁部材
61 天板部
62 胴部
63 口元フランジ部
65A 回転型真空シール部材(第1回転型真空シール部材)
65B 回転型真空シール部材(第2回転型真空シール部材)
65a リップ部
66 付勢部材
67f 外周面
67 摺動部
68 シールホルダ
68e 穴肩部
70A 角度検出器(第1角度検出器)
70B 角度検出器(第2角度検出器)
74 中空空間
80 排気ポート
81 鍋底部
81H 連通孔
82 円筒部
84 連結部材
90 モータ制御回路
99 制御装置
100 製造装置(半導体製造装置)
110 搬送装置
At 大気雰囲気

Claims (11)

  1. 励磁コイル及びステータ磁極を備える第1モータステータと、
    励磁コイル及びステータ磁極を備える第2モータステータと、
    筒状の部材の径方向外側に、前記第1モータステータと前記第2モータステータとを軸方向に異なる位置に固定するハウジングと、
    前記第1モータステータのステータ磁極の径方向外側に対して所定の第1磁気ギャップを介して対向すると共に、円周方向に配列される複数のマグネットを備え、前記ハウジングに回転可能に支持される第1モータロータと、
    前記第2モータステータのステータ磁極の径方向外側に対して所定の第2磁気ギャップを介して対向すると共に、円周方向に配列される複数のマグネットを備え、前記ハウジングに回転可能に支持される第2モータロータと、
    前記第1モータロータ及び前記第2モータロータの配置された空間に前記第1モータステータ及び前記第2モータステータの配置された空間の気体が流通しないように密閉すると共に、前記第1磁気ギャップ及び前記第2磁気ギャップに配置される隔壁部材と、
    前記ハウジングの径方向内側に回転可能に支持され、前記第1モータロータと連結された第1角度フィードバックシャフトと、
    前記ハウジングと、第1角度フィードバックシャフトとの径方向の間に回転可能に支持され、前記第2モータロータと連結された第2角度フィードバックシャフトと、
    前記第1角度フィードバックシャフトと、前記第2角度フィードバックシャフトとの間の隙間を密封する第1回転型真空シール部材と、
    前記第2角度フィードバックシャフトと、前記ハウジングとの間の隙間を密封する第2回転型真空シール部材と、
    前記第1モータロータと前記第1角度フィードバックシャフトとが、連結される第1連結部材と、
    前記第1連結部材とは軸方向に重ならない位置にあり、かつ前記第1磁気ギャップを通じて、前記第2モータロータと前記第2角度フィードバックシャフトとが、連結される第2連結部材と、
    を含むモータ
  2. 前記第1回転型真空シール部材は、前記第2角度フィードバックシャフトの径方向内側に固定され、前記第1角度フィードバックシャフトの径方向外側表面に摺接するリップ部を備える、請求項1に記載のモータ。
  3. 前記第2回転型真空シール部材は、前記ハウジングの径方向内側に固定され、前記第2角度フィードバックシャフトの径方向外側表面に摺接するリップ部を備える、請求項1に記載のモータ。
  4. 前記第1角度フィードバックシャフトの回転角度を検出する第1角度検出器及び前記第2角度フィードバックシャフトの回転角度を検出する第2角度検出器をさらに備える、請求項1から3のいずれか1項に記載のモータ。
  5. 前記第1回転型真空シール部材、前記第2回転型真空シール部材及び前記隔壁部材は、圧力の異なる二つの空間を隔て、前記第1角度検出器、前記第2角度検出器、前記第1モータステータ及び前記第2モータステータは、前記圧力の異なる二つの空間のうち高圧側の空間又は大気雰囲気側空間寄りにあり、前記第1モータロータ及び前記第2モータロータは、前記圧力の異なる二つの空間のうち低圧側の空間寄りにある、請求項4に記載のモータ。
  6. 前記第2モータロータに回転自在に前記第1モータロータを支持する第1軸受装置と、前記ハウジングに回転自在に前記第2モータロータを支持する第2軸受装置と、前記第1角度フィードバックシャフトを回転自在に支持する第3軸受装置と、前記ハウジングに回転自在に前記第2角度フィードバックシャフトを支持する第4軸受装置と、をさらに備え、
    前記第1回転型真空シール部材、前記第2回転型真空シール部材及び前記隔壁部材は、圧力の異なる二つの空間を隔て、前記第3軸受装置及び前記第4軸受装置は、前記圧力の異なる二つの空間のうち高圧側の空間又は大気雰囲気側空間寄りにあり、前記第1軸受装置及び前記第2軸受装置は、前記圧力の異なる二つの空間のうち低圧側の空間寄りにある、請求項1から5のいずれか1項に記載のモータ。
  7. 前記第1連結部材と前記隔壁部材との間の空間にある気体を排気する排気ポートを備え、
    前記第2連結部材は、前記第1連結部材側の空間と、前記隔壁部材側の空間とを繋ぐ連通孔を備える、請求項1から6のいずれか1項に記載のモータ。
  8. 前記第1モータロータと負荷体とを直結するための第1搭載面を備える第1フランジと、
    前記第2モータロータと前記負荷体又は他の負荷体とを直結するための第2搭載面を備える第2フランジと、をさらに備える請求項1からのいずれか1項に記載のモータ。
  9. 前記第1角度検出器の検出信号に基づいて、前記第1モータステータの励磁コイルに供給し、前記第2角度検出器の検出信号に基づいて、前記第2モータステータの励磁コイルに供給し、駆動電流を供給するモータ制御回路を備える、請求項4又は5に記載のモータ。
  10. 請求項1からのいずれか1項に記載のモータと、被搬送物を移動させる可動部材を備え、前記第1モータロータ又は前記第2モータロータの回転と、前記可動部材とが連動する、搬送装置。
  11. 請求項10項に記載の搬送装置を備え、被搬送物が半導体部品である、半導体製造装置。
JP2014078241A 2014-04-04 2014-04-04 モータ、搬送装置及び半導体製造装置 Active JP6409306B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078241A JP6409306B2 (ja) 2014-04-04 2014-04-04 モータ、搬送装置及び半導体製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078241A JP6409306B2 (ja) 2014-04-04 2014-04-04 モータ、搬送装置及び半導体製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018181665A Division JP6658838B2 (ja) 2018-09-27 2018-09-27 モータ、搬送装置及び半導体製造装置

Publications (2)

Publication Number Publication Date
JP2015201930A JP2015201930A (ja) 2015-11-12
JP6409306B2 true JP6409306B2 (ja) 2018-10-24

Family

ID=54552766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078241A Active JP6409306B2 (ja) 2014-04-04 2014-04-04 モータ、搬送装置及び半導体製造装置

Country Status (1)

Country Link
JP (1) JP6409306B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102199918B1 (ko) * 2019-09-05 2021-01-08 네덱(주) 멀티콥터용 모터

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167792A (ja) * 1998-12-04 2000-06-20 Daihen Corp 搬送装置
JP2005124301A (ja) * 2003-10-16 2005-05-12 Nissan Motor Co Ltd 回転電機の回転子構造
US7688017B2 (en) * 2005-02-12 2010-03-30 Applied Materials, Inc. Multi-axis vacuum motor assembly
JP4692050B2 (ja) * 2005-04-08 2011-06-01 日本精工株式会社 回転支持装置
JP5189833B2 (ja) * 2007-12-19 2013-04-24 株式会社ダイヘン 真空搬送装置
JP5962179B2 (ja) * 2012-04-26 2016-08-03 日本精工株式会社 モータ

Also Published As

Publication number Publication date
JP2015201930A (ja) 2015-11-12

Similar Documents

Publication Publication Date Title
CA2233707C (en) Integrated magnetic levitation and rotation system
JP5962179B2 (ja) モータ
JPH09238438A (ja) 密閉型アクチュエ−タ
JP6409306B2 (ja) モータ、搬送装置及び半導体製造装置
JP6428246B2 (ja) アクチュエータ、工作機械、測定装置、半導体製造装置、及びフラットディスプレイ製造装置
JP6507483B2 (ja) モータ、搬送装置及び半導体製造装置
JP5288164B2 (ja) スカラーロボット
JP6658838B2 (ja) モータ、搬送装置及び半導体製造装置
JP6711435B2 (ja) モータ、搬送装置及び半導体製造装置
JP2006296059A (ja) 回転支持装置
JP5987348B2 (ja) モータ
JP6500782B2 (ja) シール機構、シール機構の駆動装置、搬送装置及び製造装置
JP2022150313A (ja) モータ
JP4196433B2 (ja) 密閉型アクチュエータ
JP4618422B2 (ja) ダイレクトドライブモータ
JP2021118677A (ja) モータ
JP4711218B2 (ja) モータシステム
JP5401837B2 (ja) ダイレクトドライブモータ、搬送ロボット及び半導体製造装置
JP2009038911A (ja) ブラシレスモータ
JP2006109654A (ja) モータシステム
JP4736025B2 (ja) ダイレクトドライブモータ
JP2008167588A (ja) ブラシレスモータ
JP2022150108A (ja) モータ
JP4613573B2 (ja) モータシステム
TW202033327A (zh) 運送設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R150 Certificate of patent or registration of utility model

Ref document number: 6409306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150