JP6405635B2 - 光受信器の調整方法 - Google Patents

光受信器の調整方法 Download PDF

Info

Publication number
JP6405635B2
JP6405635B2 JP2014013595A JP2014013595A JP6405635B2 JP 6405635 B2 JP6405635 B2 JP 6405635B2 JP 2014013595 A JP2014013595 A JP 2014013595A JP 2014013595 A JP2014013595 A JP 2014013595A JP 6405635 B2 JP6405635 B2 JP 6405635B2
Authority
JP
Japan
Prior art keywords
light
polarization
maintaining fiber
polarization maintaining
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014013595A
Other languages
English (en)
Other versions
JP2015142219A (ja
Inventor
義弘 立岩
義弘 立岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014013595A priority Critical patent/JP6405635B2/ja
Priority to US14/606,687 priority patent/US9544063B2/en
Publication of JP2015142219A publication Critical patent/JP2015142219A/ja
Application granted granted Critical
Publication of JP6405635B2 publication Critical patent/JP6405635B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6162Compensation of polarization related effects, e.g., PMD, PDL
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4213Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • H04B10/6151Arrangements affecting the optical part of the receiver comprising a polarization controller at the receiver's input stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光受信器の調整方法に関する。
コヒーレント通信用光受信デバイス等の光受信器では、偏波や位相が多重化された光信号が偏波保持ファイバを介して入力され、偏光ビームスプリッタ(PBS:Polarization beam splitter)により偏光に応じて分波される。分波された光信号は、例えば光90度ハイブリッド素子により位相に応じて分離される。分離された光信号は、受光素子により電気信号に変換される。例えば特許文献1には、コヒーレント通信用光受信デバイスに、光90度ハイブリッド素子として光カプラが用いられる技術が開示されている。
特開平5−158096号公報
例えば光90度ハイブリッド素子等を用いて光信号の位相を分離する処理においては、参照光としてCW光(CW:Continuous Wave)が用いられる。参照光は信号光に対する基準となる。このため、参照光の偏波は、一定方向に制御された状態にて光受信器の偏波保持ファイバに入力される必要がある。
参照光の偏波を一定方向に制御するために、偏波保持ファイバの軸角度を調整する。偏波保持ファイバの軸角度の調整方法として、例えばマスター偏波保持ファイバと、光受信器の偏波保持ファイバと、をコネクタによって互いに接続し、偏波保持ファイバのクロストークを測定する方法が考えられる。この方法では、当該クロストークが最小となるように偏波保持ファイバの軸角度を調整する。
上記調整方法では、測定原理上マスター偏波保持ファイバが必須であり、高い精度にてマスター偏波保持ファイバを調整する事が重要となる。しかしながら、PBS等の部品を介して偏波保持ファイバが実装される場合、マスター偏波保持ファイバの調整精度を高く保持することができない問題がある。また、上記調整方法では、偏波保持ファイバのクロストークの最小点付近では変化量が小さいため、偏波保持ファイバの軸角度の調整が十分に最適化されない問題がある。
本発明は、このような問題を鑑みてなされたものであり、偏波保持ファイバのクロストークを用いずに偏波保持ファイバの角度調整を行うことができる光受信器の調整方法を提供することを目的とする。
本発明の一側面に係る光受信器の調整方法は、光源から出射された光が入力される偏波保持ファイバと、偏波保持ファイバから出力された光が照射される偏光子と、を備える光受信器の調整方法であって、それぞれ波長が異なる複数の光を偏波保持ファイバに入力し、偏波保持ファイバから出力された複数の光の強度を検知する工程と、検知された複数の光の強度の比率に基づいて、偏波保持ファイバの角度の調整値を演算する工程と、演算された調整値に基づいて偏波保持ファイバの角度を調整する工程と、を備える。
本発明によれば、偏波保持ファイバのクロストークを用いずに偏波保持ファイバの角度調整を行うことができる光受信器の調整方法を提供できる。
図1は、本発明の実施形態に係る光受信器の調整方法を行うための測定系を示すブロック図である。 図2は、本発明の実施形態に係る光受信器の調整方法を示すフローチャートである。 図3(a)は、偏波保持ファイバ中を伝播する光のイメージを示す図であり、図3(b)は、偏波保持ファイバ中を伝播する光の偏波の変化を示す図である。 図4は、偏波保持ファイバの偏波角が偏光子の偏光角に対して傾いている場合における光の振幅の変動を示す図である。 図5は、所定の波長範囲における偏波保持ファイバの角度の調整前後の受光感度の変化を示す。 図6は、所定の波長範囲における偏波保持ファイバの角度の調整前後の受光感度の変化を示す。 図7は、所定の波長範囲における偏波保持ファイバの角度の調整前後の受光感度の変化を示す。 図8は、本発明の実施形態に係る光受信器の内部構成を示す図である。
[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。本願発明の一実施形態は、光源から出射された光が入力される偏波保持ファイバと、偏波保持ファイバから出力された光が照射される偏光子と、を備える光受信器の調整方法であって、それぞれ波長が異なる複数の光を偏波保持ファイバに入力し、偏波保持ファイバから出力された複数の光の強度を検知する工程と、検知された複数の光の強度の比率に基づいて、偏波保持ファイバの角度の調整値を演算する工程と、演算された調整値に基づいて偏波保持ファイバの角度を調整する工程と、を備える光受信器の調整方法である。
この光受信器の調整方法によれば、偏波保持ファイバから出力された複数の光の強度が検知される。光受信器における偏波保持ファイバの角度が適切に調整されていない場合、偏波保持ファイバから出射され、偏光子を透過した光の強度は、波長によって変化する。この現象を利用し、検知された複数の光の強度の比率に基づいて、偏波保持ファイバの角度の調整値を演算することができる。また、演算された調整値に基づいて偏波保持ファイバの角度を調整することができる。これにより、偏波保持ファイバのクロストークを用いずに偏波保持ファイバの角度調整を行うことができる。
また、偏波保持ファイバから出力された複数の光の各々は、光受信器の受光感度が最大になるように偏波が調整されたものであってもよい。このように偏波を調整することによって、偏波保持ファイバの角度を調整するための調整値が、精度よく演算される。
また、調整値を角度θとし、検出された複数の光の強度の内、最も高い強度をPmaxとし、検出された複数の光の強度の内、最も低い強度をPminとした時、角度θは、以下の式(1)から求められてもよい。このように偏波保持ファイバの角度を調整するための角度θを演算することにより、当該調整値が一層精度よく演算される。
Figure 0006405635
また調整値は、偏波保持ファイバの偏波角と偏光子の偏光角とのずれ量であり、偏波保持ファイバの角度を調整する工程は、ずれ量を小さくする工程であってもよい。偏波保持ファイバの偏波角が偏光子の偏光角に対してずれていると、検知される光の強度は、光の波長に応じて異なる。したがって、検知された光の強度の比率に基づいて、偏波保持ファイバの偏波角と偏光子の偏光角とのずれ量を演算することによって、偏波保持ファイバのクロストークを用いずに偏波保持ファイバの角度調整を行うことができる。
[本願発明の実施形態の詳細]
以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、以下の説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
図1は、本実施形態による光受信器の調整方法を行うための測定系を示すブロック図である。図1に示されるように、測定系1は、例えば制御部11、光源12、偏波コントローラ13、偏波保持ファイバ14,15、光受信器16及び測定器17を備える。制御部11は、例えば光源12、偏波コントローラ13及び測定器17を制御する。
光源12は、それぞれ波長が異なる複数の光を、偏波コントローラ13を介して光受信器16に出射する。光源12から出射される光は、複数の波長を切り替えてもよく、複数の波長が重畳された光でもよい。光源12は、光受信器16における参照光を出射してもよい。
偏波コントローラ13は、光源12から出射された光の偏波を制御する。偏波コントローラ13は、光受信器16によって検知される光の感度が最大になるように、複数の光のいずれかを直線偏波に調整してもよい。偏波コントローラ13は、コネクタ13aを備える。
偏波保持ファイバ14,15は、入力される光の偏波方向によって屈折率が異なる(すなわち、光の速度が異なる)ように構成され、例えばPANDAファイバ、ボウタイファイバ等が挙げられる。偏波保持ファイバ14は、コネクタ14aを介して偏波コントローラ13のコネクタ13aに接続される。偏波保持ファイバ14には、光源12から出射された波長が異なる複数の光が入力される。なお、以下では、偏波保持ファイバ14によって保持される光の偏波の角度を、偏波保持ファイバ14の偏波角とする。
光受信器16は、例えば参照光を信号光に干渉させることによって、信号光内の信号を受信する。光受信器16は、図1に示されるように、例えばファイバホルダ21,22、偏光子23及び受光素子24を備える。ファイバホルダ21は、偏波保持ファイバ14を回動自在に保持し、ファイバホルダ22は、偏波保持ファイバ15を回動自在に保持する。
偏光子23は、特定の偏光方向の光のみを透過させる部材であり、例えば偏光板が挙げられる。以下では、偏光子23が透過する偏光方向を偏光子23の偏光角とする。偏光子23には、偏波保持ファイバ14から出力された光が照射される。受光素子24は、照射された光の強度を検知する部材であり、例えばフォトダイオードが挙げられる。受光素子24は、偏光子23を透過した光を検知する。
測定器17は、各種パラメータを測定し、偏波保持ファイバ14の角度の調整値を演算する。偏波保持ファイバ14の角度の調整値は、例えば偏波保持ファイバ14の偏波角と偏光子23の偏光角とのずれ量である。偏波保持ファイバ14の角度の調整値は、受光素子24によって検知された複数の光の強度に基づいて演算される(当該演算方法の詳細は、後述する)。測定器17は、例えば演算した結果を制御部11に入力してもよく、制御部11は、当該演算結果に基づいて光源12及び偏波コントローラ13を制御してもよい。
次に、図1及び図2を用いながら本実施形態に係る光受信器の調整方法を説明する。図2は、本実施形態に係る光受信器16の調整方法を示すフローチャートである。
まず、図2に示されるように、第1ステップとして、偏波保持ファイバ14を光受信器16に接続する(ステップS11)。偏波保持ファイバ14は、光受信器16に設けられたファイバホルダ21に回動自在に接続される。
次に、第2ステップとして、光源12から偏波保持ファイバ14に入力される光の偏波調整を行う(ステップS12)。当該偏波調整は偏波コントローラ13によって行われ、受光素子24の受光感度が最大になるように偏波が調整される。これにより、偏波保持ファイバ14に入力される光が直線偏波となり、光受信器16の受光感度が高まる。当該直線偏波の角度は、偏光子23の偏光角と一致する。なお、光源12から複数の光が出射され、当該複数の光の波長はそれぞれ異なる。
次に、第3ステップとして、入力された光強度を検知する(ステップS13)。ステップS13において、偏波保持ファイバ14に入力されたそれぞれ波長が異なる複数の光の強度は、受光素子24によって検知される。検知された光の強度は、例えば受光感度(A/W)で示される。第3ステップにて、受光素子24によって検知される強度(受光感度)の極大値及び極小値が取得される。
次に、第4ステップとして、偏波保持ファイバ14の角度の調整値を演算する(ステップS14)。偏波保持ファイバ14の角度の調整値は、受光素子24によって検知された複数の光の強度に基づいて演算される。本実施形態では、偏波保持ファイバ14の角度の調整値は、偏波保持ファイバ14の偏波角と偏光子23の偏光角とのずれ量である。
次に、第5ステップとして、演算された調整値に基づいて偏波保持ファイバ14の角度を調整する(ステップS15)。本実施形態では、偏波保持ファイバ14の偏波角と偏光子23の偏光角とのずれ量が小さくなるように調整される。好ましくは、偏波保持ファイバ14の偏波角と偏光子23の偏光角とのずれ量が0になるように調整される。偏波保持ファイバ14の角度の調整方法は、例えば偏波保持ファイバ14を自動又は手動にて回動する方法が挙げられる。
最後に、第6ステップとして、偏波保持ファイバ14の固定を行う(ステップS16)。偏波保持ファイバ14は、例えばYAGレーザ等で溶接することによって、ファイバホルダ21に固定される。以上により、光受信器16の偏波保持ファイバ14の位置及び角度が調整される。
次に、上記測定系により、偏波保持ファイバが光受信器等に実装される際の角度の調整値を演算する方法について説明する。まず、図3を用いながら、偏波保持ファイバから出力される光の偏波方向が波長依存性を有することを説明する。図3(a)は、偏波保持ファイバ中を伝播する光のイメージを示す図であり、図3(b)は、偏波保持ファイバ中を伝播する光の偏波の変化を示す図である。
偏波保持ファイバ14では偏波方向によって屈折率が異なることから、偏波方向によって光の速度が異なる。このため、偏波保持ファイバ14の偏波角に対して傾いた光が入力された場合、図3(a)に示されるように、当該光は振動方向が90度異なる2つの偏波成分が異なる挙動を示す。分波した2つの偏波成分の各々には速度差が生じることから、いずれか一方が偏波保持ファイバ14内の光のSlow軸成分sとなり、他方が光のFast軸成分fとなる。光のSlow軸成分sと光のFast軸成分fとの伝播定数の差Δβにより、互いの軸成分間の結合が生じにくくなり、互いの軸成分が保持される。また、光のSlow軸成分sと光のFast軸成分fとの間には、出射端にて位相差が生じる。したがって、偏波保持ファイバ14から出射する光(すなわち、Slow軸成分sとFast軸成分fとが合成された光)の偏波角は、偏波保持ファイバ14の偏波角及び光源12から入力される光の偏波方向と異なるものとなる。
この偏波の変化は、偏波保持ファイバ14内の全域で生じている。具体的には、図3(b)に示されるように、偏波保持ファイバ14内では、偏波保持ファイバ14の長手方向Zに沿って、直線偏波から楕円偏波等を経て元の直線偏波に戻る変化が生じる。当該直線偏波から元の直線偏波に戻るまでの距離をビート長Lとする。L=2π/Δβである。Z=L/4=π/2Δβと、Z=3L/4=3π/2Δβとの場合、光の偏波は楕円偏波となる。Z=L/2=π/Δβの場合、光の偏波は偏波保持ファイバ14の偏波角に対して対称に傾いた直線偏波となる。ここで、ビート長Lは光の波長に依存して変化する。故に、任意の長さの偏波保持ファイバ14に入力される光が、偏波保持ファイバ14の偏波角に対して所定の角度傾いて入力される場合、当該光は、当該所定の角度の直線偏波を基準とし、当該光の波長に応じた偏波状態にて偏波保持ファイバ14から出射される。したがって、受光素子24によって検知される光の強度は、光の波長によって大きく変動する。
次に、上記光の偏波方向の波長依存性を利用して偏波保持ファイバ14の角度の調整値を演算する方法の一例を説明する。偏波保持ファイバ14の偏波角に対して傾いた光が入力された場合、上述のように偏波保持ファイバ14から出射する光の偏波方向は、光の波長に応じて変化する。したがって、偏波コントローラ13によって光受信器16の受光感度が最大になるように光が調整されたとしても、光受信器16によって検知される光の強度は、光の波長に応じて変動する。ここで、光受信器16における受光素子24によって検知された複数の光の強度の内、最も高い強度をPmaxとし、検知された複数の光の強度の内、最も低い強度をPminとする。また、偏波保持ファイバ14の角度の調整値を角度θとすると、角度θとPmax,Pminとの関係は、以下の式(1)によって示される。したがって、偏波保持ファイバ14の角度の調整値は、以下の式(1)から求められる。
Figure 0006405635
上記式(1)について、図4を用いながら説明する。図4は、偏波保持ファイバの偏波角が偏光子の偏光角に対して傾いている場合における光の振幅の変動を示す図である。図4において、軸Fは偏波保持ファイバ14の偏波角に相当し、軸Pは偏光子23の偏光角に相当する。軸Fは、軸Pに対して角度θ傾いている。すなわち、角度θは偏波保持ファイバ14の角度の調整値であり、偏波保持ファイバ14の偏波角は、偏光子23の偏光角に対して角度θずれている。
偏波コントローラ13によって受光素子24の受光感度が最大になるように調整された光の偏波方向は、直線偏波(縦偏波)となり、当該縦偏波の角度は偏光子23の偏光角と一致する。その状態から光の波長を様々に変化させると、偏波保持ファイバ14が有する波長依存性によって、偏波保持ファイバ14から出力される光の偏波方向は、上記縦偏波の方向と、軸Fを対称軸としたときに該方向に対して線対称な方向との間で変化する。つまり、偏波保持ファイバ14の偏波角が偏光子23の偏光角に対して角度θずれている場合、偏波保持ファイバ14から出力される光の偏波方向は、光の波長の変化に伴って、軸Fを中心に±θの範囲内で変動する。したがって、偏光子23を通過した後の光の強度は、光の波長の変化に伴って変動することとなる。その光量は受光素子24によって検知される。
ここで、図4には、軸Fと軸Pとの交点から軸Pに沿って延びる両矢印Aが描かれている。この両矢印Aの方向は縦偏波の方向を示し、両矢印Aの長さは光の振幅を示している。この両矢印Aに示される状態の光が偏光子23に達すると、その偏光方向は偏光子23の偏光角と一致しているので、ほぼ全ての光量が通過する。したがって、偏波保持ファイバ14から出力される光の偏波方向が両矢印Aの方向であるとき、受光素子24によって検知される光強度は極大となる。また、図4には、更に、軸Fを対称軸としたときに両矢印Aに対して線対称な方向に延びる両矢印Bが描かれている。この両矢印Bの方向は、光の波長の変化に伴って縦偏波の方向から最も変動したときの偏波方向を示し、両矢印Bの長さは光の振幅を示している。この両矢印Bに示される状態の光が偏光子23に達すると、その偏光方向が偏光子23の偏光角に対して2θずれているので、両矢印Bのうち偏光子23の偏光角の方向成分(図中の両矢印C)のみが偏光子23を通過する。したがって、偏波保持ファイバ14から出力される光の偏波方向が両矢印Bの方向であるとき、受光素子24によって検知される光強度は極小となる。
図4において、両矢印Bを斜辺とし、両矢印Cを底辺とする直角三角形Tを想定した場合、斜辺と底辺とがなす角度は2θとなる。また、光の強度は光の振幅の2乗に比例することから、光の強度の平方根は光の振幅となる。したがって、両矢印Aで示される光の振幅が受光素子24によって検知される際の光の強度(受光感度)をPmaxとし、両矢印Cで示される光の振幅が受光素子24によって検知される際の光の強度(受光感度)をPminとした場合、cos2θは、PmaxとPminとの比率の平方根である上記式(1)で示される。
上記式(1)と、受光素子24によって検知された光の強度Pmax,Pminとに基づいて、軸Fと軸Pとがなす角度θが演算される。図5は、所定の波長範囲における偏波保持ファイバの角度の調整前後の受光感度の変化を示す。図5において、実線は、偏波保持ファイバ14の調整前における光の波長と受光素子24の受光感度との関係を示している。破線は、偏波保持ファイバ14の調整後における光の波長と受光素子24の受光感度との関係を示している。受光素子24が検知した光の波長の範囲は、1530nm〜1538nmとした。
図5に示されるように、偏波保持ファイバ14の調整前では検知された受光感度に波長依存性が見られており、受光感度の極大値は61.3mA/Wであり、極小値は55.7mA/Wであった。これらの値及び上記式(1)に基づいて、偏波保持ファイバ14の偏波角と偏光子23の偏光角とのずれ量である角度θは約9.7°と算出された。当該角度θが0になるように偏波保持ファイバ14を調整することにより、図5の破線にて示されるように、光の波長にかかわらず平坦な感度特性が得られることが確認された。
また、上記式(1)を用いずに上述の波長依存性を利用して偏波保持ファイバ14の角度の調整値を演算してもよい。この場合、光受信器16によって検知される光の波長は少数に絞られてもよい。光受信器16によって検知される光の波長が1つの場合、検知された受光感度が極大値であるか否かを判定することができない。したがって、検知される光の波長は少なくとも2以上の波長であることが好ましい。
図6に示されるように、所定の波長範囲において2つの異なる波長W1,W2における受光感度を確認して、これらの受光感度が極大値となるように偏波保持ファイバ14の角度を調整してもよい。この場合、図6に示される破線のように、光の波長にかかわらず平坦な感度特性が得られることができる。加えて、所定の波長範囲の全ての光の強度を検知しないことから、偏波保持ファイバ14の角度の調整値を簡易に演算することができる。
また、図7に示されるように、所定の波長範囲において3つの異なる波長W3,W4,W5における受光感度を確認してもよい。これらの受光感度が極大値となるように偏波保持ファイバ14の角度を調整してもよい。この場合であっても、図7に示される破線のように、光の波長にかかわらず平坦な感度特性が得られることができる。また、取得する波長の間隔を比較的広く設定し、所定の波長範囲において3つの異なる波長W3,W4,W5における受光感度を確認する場合、これらの受光感度の差が最小になるように偏波保持ファイバ14の角度を調整してもよい。
以上に説明した、本実施形態の光受信器16の調整方法によって得られる効果について説明する。前述したように、本実施形態に係る光受信器16の調整方法によれば、偏波保持ファイバ14から出力された複数の光の強度が、光受信器16の受光素子24によって検知される。光受信器16における偏波保持ファイバ14の角度が適切に調整されていない場合、偏波保持ファイバ14から出射され、偏光子23を透過した光の強度は、波長によって変化する。この現象を利用し、受光素子24によって検知された複数の光の強度の比率に基づいて、偏波保持ファイバ14の角度の調整値を演算することができる。また、演算された調整値に基づいて偏波保持ファイバ14の角度を調整することができる。これにより、偏波保持ファイバ14のクロストークを用いずに偏波保持ファイバ14の角度調整を行うことができる。また、上記調整方法によれば、複数の光の強度は、光の波長によって大きく変動することから、高精度の調整値推定が可能となる。加えて、上記調整方法によれば、光源12及び偏波コントローラ13のみを用いて偏波保持ファイバ14の角度の調整値が演算されるため、従来の調整方法と比較して簡易な設備にて偏波保持ファイバ14の角度を調整できる。
また、偏波保持ファイバ14から出力された複数の光の各々は、受光素子24の受光感度が最大になるように偏波が調整されたものであってもよい。このように偏波を調整することによって、偏波保持ファイバ14の角度を調整するための調整値が、精度よく演算される。
また、調整値を角度θとし、検知された複数の光の強度の内、最も高い強度をPmaxとし、検知された複数の光の強度の内、最も低い強度をPminとした時、角度θは、上記式(1)から求められてもよい。このように偏波保持ファイバ14の角度を調整するための角度θを演算することにより、当該角度θが一層精度よく演算される。
また当該調整値は、偏波保持ファイバ14の偏波角と偏光子23の偏光角とのずれ量であり、偏波保持ファイバ14の角度を調整する工程は、当該ずれ量を小さくする工程であってもよい。偏波保持ファイバ14の偏波角が偏光子23の偏光角に対してずれていると、受光素子24によって検知される光の強度は、光の波長に応じて異なる。したがって、受光素子24によって検知された光の強度の比率に基づいて、偏波保持ファイバ14の偏波角と偏光子23の偏光角とのずれ量を演算することによって、偏波保持ファイバ14のクロストークを用いずに偏波保持ファイバ14の角度調整を行うことができる。
図8は、光受信器16の内部構成の一例を示す図である。図8に示されるように、光受信器16は、パッケージ30と、PBS31と、偏光子23と、ビームスプリッタ32と、偏光回転子33と、光90度ハイブリッド素子34x,34yと、受光素子35x,35yと、増幅器36x,36yと、スキュー調整素子37x,37yと、入射された光を反射するミラー38x,38yと、入射された光を集光するコリメートレンズ39a〜39dと、を有する。
パッケージ30には、光ケーブルを接続・固定するための第1入力窓41と、第2入力窓42とが形成されている。第1入力窓41には、ファイバホルダ21が取り付けられ、当該ファイバホルダ21に偏波保持ファイバ14が固定される。第1入力窓41には、偏波保持ファイバ14を介して参照光が入力される。第2入力窓42には、ファイバホルダ22が取り付けられ、当該ファイバホルダ22に偏波保持ファイバ15が固定される。第2入力窓42には、信号光が導入される。また、ファイバホルダ21はレンズ43を有し、ファイバホルダ22はレンズ44を有する。
PBS31は、偏波保持ファイバ15により導入される信号光を、互いに直交するX偏光とY偏光とに分離する。X偏光の光は、Y側の光90度ハイブリッド素子34yに入射される。Y偏光の光は、偏光回転子33により偏光面が90°回転されてX偏光となった後、X側の光90度ハイブリッド素子34xに入射される。X偏光としてはTM光、Y偏光としてはTE光を用いることができるが、X偏光をTE光、Y偏光をTM光としてもよい。PBS31に入射される光Randは、偏光方向がランダムとなっている。PBS31を直進した光は、TE光となってスキュー調整素子37yを通過し、コリメートレンズ39dにより集光されて、Y側の光90度ハイブリッド素子34yへ入射される。一方、PBS31により90°反射された光は、TM光となった後、偏光回転子33を通過することによりTE光に変換される。そして、ミラー38xにより90°反射された後、コリメートレンズ39bにより集光されて、X側の光90度ハイブリッド素子34xへ入射される。
ビームスプリッタ32は、偏波保持ファイバ14から出射される参照光を、2つに分離する。参照光は、例えば偏光子23を介することによって予めX偏光に設定され、X側光90度ハイブリッド素子34x及びY側光90度ハイブリッド素子34yに入射されてもよい。ビームスプリッタ32を直進した参照光の一方は、スキュー調整素子37xを通過し、コリメートレンズ39aにより集光されて、X側の光90度ハイブリッド素子34xへ入射される。一方、ビームスプリッタ32により90°反射された参照光の他方は、ミラー38yにより再び90°反射された後、コリメートレンズ39cにより集光されて、Y側の光90度ハイブリッド素子34yへ入射される。
光90度ハイブリッド素子34x,34yは、それぞれ入射された信号光及び参照光を、内部の光回路において干渉させ、干渉光を4つの成分に分離する。光90度ハイブリッド素子34x,34yは、例えば、石英系平面光波回路により構成されてもよい。X偏光の信号光は、光90度ハイブリッド素子34xにて参照光と合成された後に、それぞれ同相成分Iの正成分(p)及び負成分(n)と、直交位相成分Qの正成分(p)及び負成分(n)とに分離され、4つの光信号(X−Ip、X−In、X−Qp、X−Qn)として出力される。同様に、Y偏光の信号光も、光90度ハイブリッド素子34yにて参照光と合成された後に、それぞれ同相成分Iの正成分(p)及び負成分(n)と、直交位相成分Qの正成分(p)及び負成分(n)とに分離され、4つの光信号(Y―1p、Y−In、Y−Qp、Y−Qn)として出力される。
受光素子35x,35yは、光90度ハイブリッド素子34x,34yの各々から出力された干渉光を光重量変換し、アナログの電気信号にする。受光素子35x,35yは、図1における受光素子24に相当する。なお、図8において、光90度ハイブリッド素子34xと受光素子35xとは集積された構成であり、光90度ハイブリッド素子34yと受光素子35yとは集積された構成である。
増幅器36x,36yは、受光素子35x,35yから出力された対となる電気信号の正成分と負成分とを合成し、増幅する。増幅器36x,36yは、例えばトランスインピーダンスアンプ(TIA)を含む。
スキュー調整素子37x,37yは、入射される光の位相を遅延させ、X側とY側における光の光路長が等しくなるように調整を行う素子である。スキュー調整素子37x及び37yは、空気よりも屈折率の高い物質(例えばガラス等)によって構成される。偏波保持ファイバ14から入射された参照光のうち、Y側の光90度ハイブリッド素子34yに入射される光は、X側の光90度ハイブリッド素子34xに入射される光に比べ、ビームスプリッタ32とミラー38yの距離の分だけ光路長が長くなっている。そこで、X側に配置されたスキュー調整素子37xにより、X側の参照光の位相を遅延させ、X側の参照光の光路長及びY側の参照光の光路長が等しくなるように調整される。同様に、Y側に配置されたスキュー調整素子37yにより、X側の信号光の光路長及びY側の信号光の光路長が等しくなるように調整される。
本発明による半導体装置は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。また、上記実施形態ではステップS11〜S16をそれぞれ独立したステップとして例示したが、これらのステップは任意に組み合わせて同時に行われてもよい。
また、上記実施形態では光受信器16によって検知される光の波長を2つ又は3つに絞る場合を例示したが、4つ以上の光の波長を検知して偏波保持ファイバ14の角度の調整値を演算してもよい。
また、図8においては、光90度ハイブリッド素子34xと受光素子35xとは集積された構造を例示したが、光90度ハイブリッド素子34xと受光素子35xとは、それぞれ独立した構造でもよい。同様に、光90度ハイブリッド素子34yと受光素子35yとは、それぞれ独立した構造でもよい。
1…測定系、11…制御部、12…光源、13…偏波コントローラ、13a,14a…コネクタ、14,15…偏波保持ファイバ、16…光受信器、17…測定器、21,22…ファイバホルダ、23…偏光子、24,35x,35y…受光素子、30…パッケージ、31…PBS、32…ビームスプリッタ、33…偏光回転子、34x,34y…光90度ハイブリッド素子、36x,36y…増幅器、37x,37y…スキュー調整素子、38x,38y…ミラー、39a〜39d…コリメートレンズ、41…第1入力窓、42…第2入力窓、43,44…レンズ、L…ビート長、S11〜S16…ステップ、θ…角度。

Claims (3)

  1. 光源から出射された光が入力される偏波保持ファイバと、
    前記偏波保持ファイバから出力された前記光が照射される偏光子と、を備える光受信器の調整方法であって、
    それぞれ波長が異なる複数の光を前記偏波保持ファイバに入力し、前記偏波保持ファイバから出力された前記複数の光の強度を検知する工程と、
    検知された前記複数の光の前記強度の比率に基づいて、前記偏波保持ファイバの角度の調整値を演算する工程と、
    演算された前記調整値に基づいて前記偏波保持ファイバの前記角度を調整する工程と、
    を備え
    前記偏波保持ファイバから出力された前記複数の光の各々は、前記光受信器の受光感度が最大になるように偏波が調整されたものである、光受信器の調整方法。
  2. 光源から出射された光が入力される偏波保持ファイバと、
    前記偏波保持ファイバから出力された前記光が照射される偏光子と、を備える光受信器の調整方法であって、
    それぞれ波長が異なる複数の光を前記偏波保持ファイバに入力し、前記偏波保持ファイバから出力された前記複数の光の強度を検知する工程と、
    検知された前記複数の光の前記強度の比率に基づいて、前記偏波保持ファイバの角度の調整値を演算する工程と、
    演算された前記調整値に基づいて前記偏波保持ファイバの前記角度を調整する工程と、を備え、
    前記調整値を角度θとし、
    検出された前記複数の光の前記強度の内、最も高い強度をPmaxとし、
    検出された前記複数の光の前記強度の内、最も低い強度をPminとした時、
    前記角度θは、以下の式(1)から求められる、光受信器の調整方法。
    Figure 0006405635
  3. 前記調整値は、前記偏波保持ファイバの偏波角と前記偏光子の偏光角とのずれ量であり、
    前記偏波保持ファイバの前記角度を調整する前記工程は、前記ずれ量を小さくする工程である、請求項1又は2に記載の光受信器の調整方法。
JP2014013595A 2014-01-28 2014-01-28 光受信器の調整方法 Active JP6405635B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014013595A JP6405635B2 (ja) 2014-01-28 2014-01-28 光受信器の調整方法
US14/606,687 US9544063B2 (en) 2014-01-28 2015-01-27 Method for adjusting optical receiver and apparatus for adjusting polarization of optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013595A JP6405635B2 (ja) 2014-01-28 2014-01-28 光受信器の調整方法

Publications (2)

Publication Number Publication Date
JP2015142219A JP2015142219A (ja) 2015-08-03
JP6405635B2 true JP6405635B2 (ja) 2018-10-17

Family

ID=53680104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013595A Active JP6405635B2 (ja) 2014-01-28 2014-01-28 光受信器の調整方法

Country Status (2)

Country Link
US (1) US9544063B2 (ja)
JP (1) JP6405635B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180006729A1 (en) * 2016-06-30 2018-01-04 Sumitomo Electric Device Innovations, Inc. Process of assembling coherent optical receiver
US10833767B2 (en) * 2018-01-24 2020-11-10 Indian Institute Of Technology Bombay Self-homodyne carrier multiplexed transmission system and method for coherent optical links
JP2023008550A (ja) * 2021-07-06 2023-01-19 住友電気工業株式会社 受信回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158096A (ja) 1991-12-09 1993-06-25 Fujitsu Ltd コヒーレント光波通信用光受信機
JPH08248259A (ja) * 1995-03-09 1996-09-27 Anritsu Corp 光部品の組立方法及び装置
JP3824885B2 (ja) * 2001-05-28 2006-09-20 富士通株式会社 偏波補正器及びこれを用いた波長分割多重装置
JP3829112B2 (ja) * 2002-02-19 2006-10-04 三菱電機株式会社 偏波モード分散補償装置
JP2010060656A (ja) * 2008-09-01 2010-03-18 Fujitsu Ltd 偏光状態安定化方法及び装置、光信号処理システム
JP2011188132A (ja) * 2010-03-05 2011-09-22 Sumitomo Electric Ind Ltd コヒーレント光通信用受信機及びその光軸調整方法
JP6236912B2 (ja) * 2013-06-24 2017-11-29 住友電気工業株式会社 光受信器及びその光軸調芯方法

Also Published As

Publication number Publication date
US20150215049A1 (en) 2015-07-30
JP2015142219A (ja) 2015-08-03
US9544063B2 (en) 2017-01-10

Similar Documents

Publication Publication Date Title
US9780885B2 (en) Optical receiver and optical axis alignment method thereof
US20110299162A1 (en) Free-Space Optical Hybrid
JP2008224313A (ja) 干渉計及び復調器
JP6405635B2 (ja) 光受信器の調整方法
JP6696159B2 (ja) 光受信器
CN114322976A (zh) 光纤陀螺及其相对强度噪声光学抑制方法
US11435594B2 (en) Method for adjusting optical source
JP2009142860A (ja) レーザ加工モニタリング装置及びレーザ加工装置
JP2019020571A (ja) コヒーレント光受信モジュール及びその製造方法
US7595886B2 (en) Wavelength monitor using interference signals
JP6791471B2 (ja) コヒーレントレシーバの組立方法
EP1736749B1 (en) Light intensity measurement system
JP4071723B2 (ja) 電界センサおよび電界検出方法
US10094648B2 (en) Homodyne optical sensor system incorporating a multi-phase beam combining system
JP2004309466A (ja) 光ファイバジャイロ
JP5124223B2 (ja) 光チャープ特性測定装置
JP6696180B2 (ja) 光受信器
JP2010014579A (ja) 光学センサおよびそれを用いた計測システム
JP7394307B2 (ja) 光学調整装置、及び、光学調整方法
JPS633236A (ja) 光フアイバの波長分散測定器
JP2018182708A (ja) 光受信装置の試験方法
JP6491980B2 (ja) 光モジュールの製造方法
JP2010243575A (ja) 光ハイブリッド、光復調器及び光受信器
WO2009031769A2 (en) Apparatus and method for stabilizing frequency of laser
JP2012150327A (ja) 2光束合波回路および復調器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6405635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250