JP6400134B2 - 超音波探傷装置 - Google Patents

超音波探傷装置 Download PDF

Info

Publication number
JP6400134B2
JP6400134B2 JP2017011054A JP2017011054A JP6400134B2 JP 6400134 B2 JP6400134 B2 JP 6400134B2 JP 2017011054 A JP2017011054 A JP 2017011054A JP 2017011054 A JP2017011054 A JP 2017011054A JP 6400134 B2 JP6400134 B2 JP 6400134B2
Authority
JP
Japan
Prior art keywords
transmission
array probe
scanning line
flaw detection
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017011054A
Other languages
English (en)
Other versions
JP2018119848A (ja
Inventor
功崇 梅澤
功崇 梅澤
貴大 齊藤
貴大 齊藤
田中 洋次
洋次 田中
博 内藤
博 内藤
晴彦 増田
晴彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryoden Shonan Electronics Corp
Original Assignee
Ryoden Shonan Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryoden Shonan Electronics Corp filed Critical Ryoden Shonan Electronics Corp
Priority to JP2017011054A priority Critical patent/JP6400134B2/ja
Publication of JP2018119848A publication Critical patent/JP2018119848A/ja
Application granted granted Critical
Publication of JP6400134B2 publication Critical patent/JP6400134B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

この発明はアレイ探触子を使用する超音波探傷装置に関する。
特許文献1の請求項1には、「複数のアレイ探触子のうちの第1のアレイ探触子と第2のアレイ探触子とは、互いに直交する超音波ビームを照射し、第1のアレイ探触子が照射した超音波ビームの反射波エコーを用いて算出した前記第1の距離に基づく前記試験体の偏芯量に基づいて、前記第2のアレイ探触子の励振条件を変え、前記第2のアレイ探触子の超音波ビームの向きを変えて照射を行い、前記第2のアレイ探触子が照射した超音波ビームの反射波エコーを用いて算出した前記第1の距離に基づく前記試験体の偏芯量に基づいて、前記第1のアレイ探触子の励振条件を変え、前記第1のアレイ探触子の超音波ビームの向きを変えて照射を行う超音波自動探傷装置」が記載されている。
特許第5464849号
特許文献1の場合は、それぞれのアレイ探触子を精度よく配置する必要があり、例えばアレイ探触子どうしの相対的位置ずれが探傷に影響するという課題がある。
また、特許文献1の場合には、一方のアレイ探触子の測定結果を用いて他方のアレイ探触子の送信条件を補正している。このため特許文献1では第3図のように、試験体の搬送方向に対してそれぞれのアレイ探触子がオフセットしているので、試験体の進行方向において、一方のアレイ探触子と他方のアレイ探触子との間で試験体に曲りが有る場合に、補正量が曲りの影響を受けてしまい、補正精度の低下するおそれがあるという課題がある。
本発明は、簡易な構成で、精度の高い超音波探傷が可能な、超音波探傷装置の提供を目的とする。
この発明の超音波探傷装置は、
長手形状をなし長手方向へ搬送される試験体に向けて超音波を送受信するアレイ探触子と、
前記超音波として前記試験体の位置検出用の複数の位置検出走査線を前記アレイ探触子に送信させると共に、前記試験体の表面で反射したそれぞれの前記位置検出走査線を前記アレイ探触子に受信させることにより、それぞれの前記位置検出走査線の既知である送信位置と、前記試験体の表面の反射位置との間の2点間距離を計算し、
複数の前記送信位置と、それぞれの前記送信位置に対応する前記2点間距離とに基づいて、前記アレイ探触子に対する前記試験体の位置を示す試験体位置を決定し、
決定した前記試験体位置に応じて、前記アレイ探触子が送受信する探傷用の前記超音波である探傷走査線の送信条件と受信条件とを示す送受信条件を決定する制御部と
を備える。
本発明により、簡易な構成で、精度の高い超音波探傷が可能な、超音波探傷装置を提供できる。
実施の形態1の図で、試験体とアレイ探触子との位置関係を示す側面図。 実施の形態1の図で、超音波探傷装置のハードウェア構成を示す図。 実施の形態1の図で、垂直走査線を示す図。 実施の形態1の図で、斜角走査線を示す図。 実施の形態1の図で、探傷工程におけるスキャンとステップの関係を示す図。 実施の形態1の図で、制御部の動作を示すフローチャート。 実施の形態1の図で、位置検出走査線よる丸棒との距離検出を示す図。 実施の形態1の図で、位置検出走査線よる丸棒位置の検出を示す別の図。 実施の形態1の図で、位置検出走査線よる検出結果を示す図。 実施の形態1の図で、補正量を検出するステップと他のステップとの関係を示す図。 実施の形態1の図で、位置検出走査線よる検出結果から丸棒位置を求める工程を示す図。 実施の形態1の図で、芯ずれ量テーブルを示す図。 実施の形態1の図で、制御部が計算によって送受信条件を求める場合を模式的に説明する図。 実施の形態1の図で、送受信条件テーブルを示す図。 実施の形態1の図で、制御部が計算によって芯ずれ量を求める場合を説明する図。 実施の形態1の図で、制御部が計算によって芯ずれ量を求める場合を説明する別の図。 実施の形態1の図で、試験体が角材の場合を示す図。 実施の形態1の図で、位置検出走査線よる、角材との距離検出を示す図。
以下、本発明の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。
実施の形態1.
図1は、試験体30と、アレイ探触子19a等との位置関係を示す図である。図2の左側はアレイ探触子19a等及び試験体30を図1のX方向から見たX方向矢視を示し、図2の右側は超音波探傷装置10のハードウェア構成を示している。図1は側面図に相当し、図2の左側は正面図に相当する。図2のように、複数のアレイ探触子19a等は、試験体30のまわりに配置されている。複数のアレイ探触子19a等は、超音波ビーム(走査線)を発する。なお、図1ではアレイ探触子19b、19dは省略している。
図1のように、試験体30は長手形状をなし長手方向へ搬送される。試験体30は、例えば、長手方向を法線方向とする断面が、円形の棒状体あるいは四角形の柱状体である。搬送方向41は試験体30の長手方向である。アレイ探触子19a〜19dは、構造物を支持する架台40に固定された探触子ホルダ25に設置されている。架台40内には、超音波の伝達を促す目的で水等を充填する事がある。
***構成の説明***
図2のように、複数のアレイ探触子19a等は、試験体30のまわりに配置されている。超音波探傷装置10は、ハードウェア構成として、プロセッサ11、主記憶装置12、補助記憶装置13、送受信部14、アレイ探触子19a、19b、19c、19dを備えている。プロセッサ11、主記憶装置12、補助記憶装置13、送受信部14は、バス15で接続されている。
アレイ探触子19a等は、信号線18によって、送受信部14と接続している。アレイ探触子19a等は、試験体30に向けて超音波を送受信する。つまり、アレイ探触子19aは、試験体30に向けて超音波を送信し、自信の送信した超音波のうち試験体30で反射された反射波を受信する。アレイ探触子19b,19c,19dもアレイ探触子19aと同様である。アレイ探触子19a等は、複数の振動子を有している。送受信部14は、アレイ探触子19a等を介して、超音波ビーム(走査線あるいは単にビームともいう)の送受信を行う。
超音波探傷装置10は機能要素として、制御部110及び警報部111を備える。制御部110及び警報部111を実現するプログラムは補助記憶装置13に格納されており、このプログラムは、プロセッサ11により主記憶装置12に読み出され、プロセッサ11が主記憶装置12から読み出して実行することで、制御部110と警報部111との機能が実現される。
制御部110は、超音波ビームの制御を行う。制御部110は、アレイ探触子19a等の各々の振動子(素子)から発振される超音波ビ−ムの試験体表面からの反射時間の測定結果から、試験体基準位置と複数のアレイ探触子との相対位置ズレを算出し、アレイ探触子が次に照射する超音波ビ−ムの照射方向を試験体基準位置とするように自動補正する。
制御部110は、超音波として試験体の位置検出用の複数の位置検出走査線(ステップS11で後述する)をアレイ探触子に送信させると共に、試験体の表面で反射したそれぞれの位置検出走査線をアレイ探触子に受信させることにより、それぞれの位置検出走査線の既知である送信位置と、試験体の表面の反射位置との間の2点間距離を計算する。そして制御部110は、複数の送信位置と、それぞれの送信位置に対応する2点間距離とに基づいて、アレイ探触子に対する試験体の位置を示す試験体位置を決定する。制御部110は、決定した試験体位置に応じて、アレイ探触子が送受信する探傷用の超音波である探傷走査線の送信条件と受信条件と示す送受信条件を決定する。
***動作の説明***
図3〜図17を参照して、超音波探傷装置10の制御部110による、試験体30の芯ずれ量の計算と、探傷走査線の送受信条件の補正方法とを説明する。アレイ探触子では、制御部110による、送受信素子の選択及び各種の送受信設定に従って、1本の走査線が形成される。指定された探傷方式に従って、垂直探傷に使用される図3に示す垂直走査線、斜角探傷に使用される図4に示す斜角走査線などの探傷用の探傷走査線がアレイ探触子から送信され、超音波探傷が行われる。
図5は、スキャンとステップとの関係を示す図である。本実施の形態では、1スキャンとは、一つのアレイ探触子において複数の走査線を順次送信する一巡をいう。図5では、走査線A→走査線B→走査線C→走査線Dが一巡である例を示している。なお、走査線A、走査線Bの内容は、それぞれ探傷走査線1と探傷走査線2であるが、走査線C、走査線Dの内容は、それぞれ、探傷走査線3及び位置検出走査線X、位置検出走査線Yである。1スキャンの次は、次の1スキャンとなるが、次の1スキャンも走査線A→走査線B→走査線C→走査線Dの一巡である。このように、走査線の一巡(走査線A〜走査線D)をスキャンと称し、スキャン中の各走査線による探傷をステップと称する。図5では、前記のように探傷走査線3と位置検出走査線Xとの両方を送信するステップ<3>と、位置検出走査線Yのみを送信するステップ<4>と含む。1スキャンには、探傷走査線と位置検出走査線との両方を送信するステップと、位置検出走査線のみを送信するステップとの両方が存在してもよいし、いずれか一方のみが存在してもよい。ステップ<3>のように、探傷走査線3と位置検出走査線Xとの両方を送信する場合、位置検出走査線Xに使用する素子には、通常、探傷走査線3を生成する素子は使用しない。
図5の例のように、ステップ<1>は素子1〜素子20の20個の素子を送信制御することにより一本の探傷走査線1を生成する工程である。ステップ<2>は、素子21〜素子40を送信制御することにより一本の探傷走査線2を生成する工程である。ステップ<3>は、素子41〜素子60を送信制御することにより一本の探傷走査線3を生成し、かつ、素子20を送信制御することにより一本の位置検出走査線Xを生成する工程である。ステップ<4>は、素子dを送信制御することにより一本の位置検出走査線Yを生成する工程である。
本実施の形態における、制御部110が実行する芯ずれ量の計算方法を説明する。処理の流れは図6のフローチャートを参照して説明する。
(1)制御部110は、それぞれのアレイ探触子の送受信条件を、他のアレイ探触子とは独立に送受信条件を補正する。このため、以下の説明ではアレイ探触子はアレイ探触子19aとする。アレイ探触子19aの説明は、アレイ探触子19b〜19dにも当てはまる。
(2)また、以下の説明では特に断りのない限り、試験体30は丸棒31とする。
(3)図6の動作の主体は制御部110である。なお超音波の送受信は、制御部110が、送受信部14及びアレイ探触子19aを介して行う。
<ステップS11>
超音波探傷装置10では、垂直・斜角の各種探傷を行う探傷走査線とは別に、アレイ探触子19aと丸棒31との相対位置関係を特定するための位置検出走査線を使用する。この位置検出走査線は、図5の説明で述べたように、1スキャン中の探傷走査線のステップにおいて送受信され、あるいは位置走査線の単独のステップで送受信される。位置検出走査線に関しては、探傷走査線とは超音波的に相互に影響を与え合わないように、制御部110によって、位置検出走査線を送信受信する素子及び位置検出走査線の送受信タイミングが調整され、制御部110によって、探傷走査線とは独立して、位置検出走査線の送受信が行われる。本実施の形態では、制御部110は、位置検出走査線を、1素子のみで送受信させるものとするが、これに限定されるものではない。
<ステップS12>
図7に示すように、位置検出走査線によって得られる材料表面エコー(位置検出走査線ED)からは、丸棒31の芯ずれ量の有無に関わらず、励振した素子の位置(送信位置)と、丸棒31の中心とを結んだ直線上での、素子と材料表面の線分に等しい経路に相当する伝搬時間が得られる。この理由は、素子を振動させた場合には、超音波は球面波として広い指向性を有して伝搬するからである。この結果、丸棒31の中心を通過する成分が最も伝搬時間が短くなる。
一方、探傷に用いる探傷走査線は複数の素子を同時に駆動して生成するが、この場合、探傷走査線は狭い指向性になる。指向角は以下の式で求められる。
指向角=Kλ/D
K:指向角係数、
λ:波長。
D:素子の寸法。
上記の伝搬時間から、素子位置(送信位置)と丸棒31中心とを結んだ直線上における、素子と丸棒31の表面との距離がわかる。
本実施の形態は一つのアレイ探触子を対象として探傷走査線の送受信条件を補正する点が特徴である。
図8、図9は一つのアレイ探触子に対する丸棒31の芯ずれの検出を示す図である。一つのアレイ探触子に対し、図8に示すように、複数本(n本)の位置検出走査線を使用することにより、図9の結果を取得する。図9の(a)は丸棒31に芯ずれのない場合を示し、図9の(b)は丸棒31に芯ずれがある場合を示す。図9の(a)及び(b)の横軸は位置検出走査線を示し、縦軸は、位置検出走査線を送受信する素子位置(送信位置)と、丸棒31での反射位置との距離を示す。図9の結果から、数値計算あるいは芯ずれ量テーブル13aにより、一つのアレイ探触子に対する丸棒31の相対位置(芯ずれ量)を得ることができる。
制御部110の行う芯ずれ量の計算では、スキャン中の任意のステップに対し、そのステップから遡って1スキャン分に存在する位置検出走査線エコーEDを用いる。
図10は、芯ずれ量の計算を行う現在のステップ(走査線A(i+5))から1スキャン分だけ遡る場合を示す。1スキャンは図5と同じとする。つまり、1スキャンでは走査線Aから走査線Dが送信される。図10では現在のステップ(走査線A(i+5))に対して、走査線Dから走査線Aまで4ステップだけ遡る。1スキャンにおいて、複数の位置検出走査線エコーEDが取得されるとする。少なくとも異なる2本の位置検出走査線エコーEDが取得されるとする。
ステップS12において、1スキャン分の位置検出走査線エコーEDがN個得られたとする。上記のようにNは2以上である。N個のデータの取得元であるN個の素子(位置検出走査線は一つの素子が送信)は、芯ずれ量が精度よく計算できるように、制御部110によって、アレイ探触子19aのカバーする角度の全域にわたるように選択される。また、N個の数は、芯ずれ量の精度を保つだけの十分なデータ数である。
<ステップS13>
制御部110は、芯ずれ量を計算から求めるか、芯ずれ量テーブル13aを使用して芯ずれ量を求めるか判定する。制御部110は以下のように判定する。制御部110は探傷開始前に指定される条件コードから判定する。条件コードとは、芯ずれ量を計算で求めるか、芯ずれ量テーブル13aを使用して求めるかを指定するコードである。制御部110には条件コードが予め設定されている。
あるいは別の判定方法として、探傷装置の手前に丸棒31(試験体)の通過速度(搬送速度)を測定する速度測定装置を配置する。制御部110は、速度測定装置の測定した丸棒31の速さを受信し、予め設定されている閾値と速さを比較し、速さが閾値以下の場合は芯ずれ量を計算から求め、速さが閾値を超える場合には芯ずれ量テーブル13aを使用して芯ずれ量を求める。
<ステップS13でYESの場合→ステップS14a>
制御部110は、芯ずれ量を計算から求める。N個の位置検出走査線エコーEDと、丸棒31との位置関係は、図11のように、位置検出走査線を送受信した素子の位置を中心とし、半径rがその位置検出走査線エコーEDである円に、外接するように丸棒31(丸棒31の断面の円)が位置する事になる。この位置関係を利用して、制御部110は、数値計算を行い、数値計算から芯ずれ量(△x,△y)を求めることができる。半径r1等は、各素子の送信位置と丸棒31の表面の反射位置との間の2点間距離である。芯ずれ量(△x,△y)は、この例では、アレイ探触子19aに対する丸棒31の既知である正規位置としての中心を座標(0,0)とした場合の、実際の丸棒31の中心座標である。つまり、アレイ探触子19aに対する丸棒31の正規位置における、丸棒31の搬送方向41を法線方向とする断面の中心の座標を(0,0)とする。座標(0,0)に対して、アレイ探触子19aによって検出された丸棒31の中心が座標(△x,△y)であり、この座標が芯ずれ量を示す。この場合、座標(△x,△y)が試験体の正規位置からの位置ずれ量である試験体位置である。
<ステップS13でNOの場合→ステップS14b>
制御部110は、位置ずれ量テーブルの例である芯ずれ量テーブル13aを使用して、芯ずれ量(△x,△y)を求める。
図12は芯ずれ量テーブル13aを示す図である。芯ずれ量テーブル13aは補助記憶装置13に格納されている。一番上の行のED1〜EDNは、位置検出走査線1〜位置検出走査線Nに対する、素子の位置と丸棒31の反射位置との間の2点間距離を示す。なお、ED1〜EDNは、2点間距離のかわりに位置検出走査線1〜位置検出走査線Nのそれぞれの送信時刻から受信時刻までの時間でもよい。2行目から下は、ED1〜EDNのそれぞれの範囲と、芯ずれ量(△x,△y)との対応を示す。a、b等は数値を示すものとする。例えば2行目は、ED1〜EDNのそれぞれが、a〜b、c〜d、e〜fの範囲に属する場合に、芯ずれ量(△x,△y)が(△x1,△y2)になることを示し、3行目は、ED1〜EDNのそれぞれ、g〜h、i〜j、k〜lの範囲に属する場合に、芯ずれ量(△x,△y)が(△x2,△y2)になることを示している。制御部110は、ステップS12で取得した位置検出走査線EDからED1〜EDNの値を求め、求めた値から図12の芯ずれ量テーブル13aを参照して、芯ずれ量(△x,△y)を決定する。なお、制御部110は、ステップS14aあるいはステップS14bで求めた芯ずれ量(△x,△y)が閾値を超える場合、警報部111を用いて警報を発する。
<ステップS15>
制御部110は、探傷走査線の送受信条件の補正量を、求めた芯ずれ量を用いて計算で求めるか、または求めた芯ずれ量を用いて送受信条件テーブル13bを使用して求めるか判定する。判定方法はステップS13と同じである。なお、条件コードと閾値は、テップS13と同じでもよいし、ステップS15に特有の、条件コード及び閾値を用いてもよい。制御部110は、芯ずれ量(△x,△y)を用いることにより、垂直走査線および斜角走査線に対して、芯ずれ量(△x,△y)に応じた補正を行う。制御部110が芯ずれ量(△x,△y)を用いた計算によって補正量(後述の遅延時間)を求め、あるいは芯ずれ量(△x,△y)から補正量が求まる送受信条件テーブル13bを用いて、計算によらず補正量(遅延時間)を求める。
芯ずれ量(△x,△y)が存在する場合、各種の探傷走査線は設定した通りの伝搬経路とはならないため、エコーレベルの低下及び傷エコーのS/Nの劣化等を招く。そのため、制御部110は、芯ずれ量(△x,△y)を探傷走査線設定(走査線の送受信条件)に反映させる。探傷走査線設定に芯ずれ量(△x,△y)を反映することで、芯ずれ量(△x,△y)が存在した場合でも、設定した通りの屈折角となるように超音波ビームを制御することができる。
<ステップS15でYESの場合→ステップS16a>
制御部110は、送受信条件の補正量であるビーム制御のための遅延時間を、数値計算で求める。
図13は、制御部110が計算によって送受信条件を求める場合を模式的に説明する図である。図13を参照してステップ16aを説明する。丸棒31に芯ずれ量が有る場合、各走査線から目標位置までの距離に、距離差△Rが生じる。図13では5本の走査線を示しており、2本の走査線について距離差△R及び距離差△Ri−1を示している。図13において、実線の円が丸棒31の正規の位置(芯ずれのない)である。破線の円が芯ずれ位置の丸棒31を示す。正規の丸棒31の中心はアレイ探触子19aの表面19a−1の曲率中心でもある。一点鎖線19a−2は、芯ずれ位置の丸棒31からみた場合の表面19a−1に相当する。よって、芯ずれ位置の丸棒31の中心31aと、一点鎖線19a−2との距離はRに等しい。中心31aと、各走査線の矢印先端との距離がRである。そして、中心31aと表面19a−1との距離からRを引いたものが、それぞれの走査線の距離差△Rである。それぞれの走査線の距離差を△R,△Ri−1,△Ri−2・・・とする。
制御部110は、送受信条件における送信遅延時間を、例えば以下の式で求める。
送信遅延時間=(△R−△Rk−1)/音速。
ここでの(△R−△Rk−1)は隣接する走査線どうしの距離差△Rの差を意味しており、例えば、(△R−△Ri−1)あるいは(△Ri−1−△Ri−2)などである。受信遅延時間は送信遅延時間と同じ値を用いることができる。
<ステップS15でNOの場合→ステップS16b>
ビーム制御のための遅延時間は、一般的には数値計算で求めるが、処理の高速化のため、あらかじめ芯ずれ量(△x,△y)に対するビーム制御(走査線制御)のための遅延時間が登録されている送受信条件テーブル13bを使用する。送受信条件テーブル13bは補助記憶装置13に格納されている。
図14は、送受信条件テーブル13bを示す図である。送受信条件テーブル13bは、芯ずれ量(△x,△y)と送受信条件との対応を示す。A,B等は送受信条件を示す。例えば、芯ずれ量(△x,△y)が(0.5mm,0mm)の場合、送受信条件がBとなる。送受信条件のBは、それぞれの探傷走査線を形成する各素子について、送信遅延時間と受信遅延時間とが規定されている。送受信条件テーブル13bにおける送受信条件Bでは、例えば図5で述べた探傷走査線1をつくる素子1〜素子20について、素子1〜素子0のそれぞれの送信遅延時間と受信遅延時間とが、*1〜*20、及び**1〜**20になることが定義されている。*1、**1等は数値を示すとする。図5で述べた探傷走査線2及び探傷走査線3を形成する素子21〜素子40、素子41〜素子60についても同様である。制御部110は、ステップS16aあるいはステップS16bで取得した芯ずれ量(△x,△y)から、送受信条件テーブル13bを用いて送受信条件を決定する。制御部110は送受信条件テーブル13bによって、芯ずれ量(△x,△y)に対する適切な送受信条件(遅延時間)を高速に選択できる。
<ステップS17>
制御部110は、ステップS16aあるいはステップS16bで求めたビーム制御条件(遅延時間)を、図10で説明したように、そのステップの次のステップのビーム制御条件に反映する。
図15、図16を参照して、図6のステップS14aにおける、制御部110による計算方法を説明する。
図15は計算例1の場合を示す。図15では実線の円が正規の丸棒31の位置を示し、一点鎖線の円が芯ずれ時の丸棒31を示す。破線を含む円はアレイ探触子の曲率半径Rを半径とする円を示し、この円の中心は正規の丸棒31の中心と一致する。
図16は計算例2の場合を示す。図15及び図16は、芯ずれ量(△x,△y)を求める計算方法の例を示す。
<計算例1>
まず図15を説明する。偏芯時の丸棒31の仮想中心(△x,△y)を以下で求める。仮想中心点(△x,△y)が芯ずれ量(△x,△y)となる。定められた任意の2点あるいは3点(座標が明確な点)で超音波を送受信する。これらの点は位置検出走査線を送受信する各素子の送信位置である。制御部110は、この送受信結果から、制御部110は、距離L1と距離L2(3点の場合はさらに距離L3)を取得する。距離L1等は素子と丸棒31表面との2点間距離である。制御部110は、仮想中心点(△x,△y)の象限を特定する。制御部110は、下記の式1、式2(3点の場合はさらに式3)の連立方程式から、丸棒31の中心座標(偏芯量)を算出する。芯ずれ量テーブル13a、送受信条件テーブル13bを使用する場合は以下のようである。制御部110は芯ずれ量テーブル13aと送受信条件テーブル13bを検索する。制御部110は送受信条件テーブル13bのプリセットデータ(芯ずれなし状態)を送受信部14に自動設定し、送受信部14は次の送受信タイミング(次のステップ)で送受信条件(照射方向)を更新して送受信する。
(r+L2)=(X+△x)+(Y+△y) (式1)
(r+L1)=(X−△x)+(Y+△y) (式2)
(r+L3)=(△x)+(Y+Y’+△y) (式3)
ここでY’=R−Y、
座標軸の原点(0,0)は、アレイ探触子に対する丸棒31の正規の位置における丸棒31中心である。
L1,L2,L3:各素子と丸棒31表面との距離、
r:丸棒31の半径、
X及びY:各素子の位置、
R:アレイ探触子の表面の曲率半径。
(1)丸棒31の半径rが既知の場合
制御部110は、式1と式2の連立により、2つの未知数である△x、△yを求める。
(2)丸棒31の半径rが未知の場合
制御部110は、式1〜式3の連立により、3つの未知数である△x、△y及びrを求める。
<計算例2>
図16を参照して計算例2を説明する。図16でも実線の円が正規の丸棒31の位置を示し、一点鎖線の円が芯ずれ時の丸棒31を示す。破線を含む円はアレイ探触子の曲率半径Rを半径とする円を示し、この円の中心は正規の丸棒31の中心と一致する。図16において上から3つめの素子mの位置検出走査線mに関しては,芯ずれ時の丸棒31の中心からみた、素子mまでの水平距離及び垂直距離は、
<△x+Rcosθm、△y+Rsinθm>である。
位置検出走査線mが芯ずれ時の丸棒31の表面と交差する際の、芯ずれ時の丸棒31の中心と交際する点との水平距離及び垂直距離は、
<r×cosφm、r×sinφm>
である。ここで、
θm≒φmとすると、
<r×cosθm、r×sinθm>と書ける。
従って、直角三角形mbcに三平方の定理を適用すると、
(Lm)=(△x+(R−r)cosθm)+(△y+(R−r)sinθm) (式4)
が成立する。制御部110は、Lm及びθm違いの3点の素子に対して式4を立てることで、3つの式から未知数(△x、△y、r)を求めることができる。
Lm:素子aと芯ずれ時の丸棒31表面との検出距離、
φm:素子aと芯ずれ時の丸棒31中心との成す角、
θm:素子aと正規位置の丸棒31中心との成す角、
r:丸棒31の半径。
<他の試験体30の例>
丸棒31以外の例として、試験体30として、断面が四角形の角材32の場合を説明する。
図17、図18は角材32の場合を説明する図である。図17に示す角材32の場合は、位置検出走査線は球面波ではなく、探傷走査線と同様の狭い指向性のものを使用する。
図17のように、アレイ探触子33では、複数の素子の配置される面は曲面ではなく平面である。図18はアレイ探触子33による検出結果を示し、図9の(a)あるいは(b)に対応する。図18は、アレイ探触子33において複数の素子が配置された配置面33aと角材表面32aとの、配置面33aに対する垂直方向(Y方向)の距離を示す。制御部110は、図18の検出結果を用いて、探傷走査線の送受信条件を決定することができる。
***実施の形態1の効果***
(1)超音波探傷装置10ではアレイ探触子ごとに送受信条件を補正している。よって、超音波探傷装置10は、複数のアレイ探触子の配置によるアレイ探触子の相対位置ずれ及びアレイ探触子において素子が配置される曲面の曲率半径Rの製造誤差の影響を受けずに探傷を行うことができる。
(2)超音波探傷装置10ではアレイ探触子ごとに送受信条件を補正している。よって、試験体30に曲りがある場合でも、送受信条件の補正に曲りの影響を受けることはない。つまり曲りの影響を反映した送受信条件の補正ができる。
(3)超音波探傷装置10は、数値計算により丸棒31の径を求めることができる。よって、この場合は丸棒31の製造誤差が芯ずれ量算出に影響を受けない。
(4)一つのアレイ探触子を用い、丸棒31を回転させながら搬送させて一つのアレイ探触子で探傷する場合にも、丸棒31の周囲に円周状に複数のアレイ探触子を配置する探傷と同様の探傷を行える。この場合でも芯ずれ補正を行うことができる。
10 超音波探傷装置、11 プロセッサ、110 制御部、111 警報部、12 主記憶装置、13 補助記憶装置、13a 芯ずれ量テーブル、13b 送受信条件テーブル、14 送受信部、15 バス、18 信号線、19a,19b,19c,19d アレイ探触子、19a−1 表面、21b 超音波ビーム、26 探触子ホルダ、30 試験体、31 丸棒、31a 中心、32 角材、32a 角材表面、33 アレイ探触子、33a 配置面、40 架台、41 搬送方向。

Claims (8)

  1. 長手形状をなし長手方向へ搬送される試験体に向けて超音波を送受信するアレイ探触子と、
    前記超音波として前記試験体の位置検出用の複数の位置検出走査線を前記アレイ探触子に送信させると共に、前記試験体の表面で反射したそれぞれの前記位置検出走査線を前記アレイ探触子に受信させることにより、それぞれの前記位置検出走査線の既知である送信位置と、前記試験体の表面の反射位置との間の2点間距離を計算し、
    複数の前記送信位置と、それぞれの前記送信位置に対応する前記2点間距離とに基づいて、前記アレイ探触子に対する前記試験体の位置を示す試験体位置を決定し、
    決定した前記試験体位置に応じて、前記アレイ探触子が送受信する探傷用の前記超音波である探傷走査線の送信条件と受信条件と示す送受信条件を決定する制御部と
    を備える超音波探傷装置。
  2. 前記アレイ探触子は、複数の素子を有し、
    前記制御部は、
    それぞれの前記位置検出走査線を、一つの前記素子によって送受信させる請求項1に記載の超音波探傷装置。
  3. 前記制御部は、
    前記アレイ探触子に対する前記試験体の既知である正規位置からの前記試験体の位置ずれ量を、前記試験体位置として決定し、
    決定した前記位置ずれ量に応じて、前記探傷走査線の前記送受信条件を決定する請求項1または請求項2に記載の超音波探傷装置。
  4. 前記制御部は、
    前記位置ずれ量を、複数の前記2点間距離を使用する計算から求めて決定する請求項3に記載の超音波探傷装置。
  5. 前記制御部は、
    前記送受信条件を、前記位置ずれ量を使用する計算から求めて決定する請求項3または請求項4に記載の超音波探傷装置。
  6. 前記制御部は、
    前記位置ずれ量を、複数の前記2点間距離から前記位置ずれ量を決定可能な位置ずれ量テーブルを使用して決定する請求項3に記載の超音波探傷装置。
  7. 前記制御部は、
    前記送受信条件を、前記位置ずれ量から前記送受信条件を決定可能な送受信条件テーブルを使用して決定する請求項3または請求項6に記載の超音波探傷装置。
  8. 前記制御部によって決定された前記位置ずれ量が閾値を超える場合に警報を出力する警報部を備える請求項3から請求項7のいずれか1項に記載の超音波探傷装置。
JP2017011054A 2017-01-25 2017-01-25 超音波探傷装置 Active JP6400134B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017011054A JP6400134B2 (ja) 2017-01-25 2017-01-25 超音波探傷装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017011054A JP6400134B2 (ja) 2017-01-25 2017-01-25 超音波探傷装置

Publications (2)

Publication Number Publication Date
JP2018119848A JP2018119848A (ja) 2018-08-02
JP6400134B2 true JP6400134B2 (ja) 2018-10-03

Family

ID=63044209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017011054A Active JP6400134B2 (ja) 2017-01-25 2017-01-25 超音波探傷装置

Country Status (1)

Country Link
JP (1) JP6400134B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372543B2 (ja) * 2020-03-06 2023-11-01 愛知製鋼株式会社 探傷方法及び探傷システム
JP7372209B2 (ja) 2020-06-01 2023-10-31 日立Geニュークリア・エナジー株式会社 超音波検査装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191960A (ja) * 1985-02-20 1986-08-26 Sumitomo Light Metal Ind Ltd 管材または棒材の超音波検査方法
JPS63236959A (ja) * 1987-03-25 1988-10-03 Kobe Steel Ltd 丸棒状金属体の超音波探傷方法
JP2001318083A (ja) * 2000-05-02 2001-11-16 Nkk Corp 超音波探傷装置および超音波探傷方法
JP2007147544A (ja) * 2005-11-30 2007-06-14 Daido Steel Co Ltd 超音波探傷方法および超音波探傷装置
JP5464849B2 (ja) * 2008-12-16 2014-04-09 三菱電機株式会社 超音波自動探傷装置及び超音波自動探傷方法

Also Published As

Publication number Publication date
JP2018119848A (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
JP4816731B2 (ja) 超音波探傷方法、溶接鋼管の製造方法及び超音波探傷装置
JP5889742B2 (ja) 超音波探傷装置及びその方法
CN104792866A (zh) 一种基于tofd和相控阵的超声波检测定位方法、装置
JPS6391554A (ja) 鋼管溶接部の超音波探傷方法およびその装置
JP2008051645A (ja) 超音波探傷装置
JP6400134B2 (ja) 超音波探傷装置
US8150652B2 (en) Method and system for automatic wedge identification for an ultrasonic inspection system
JP2018059800A (ja) フレキシブル探触子の感度校正方法及び超音波探傷用対比試験片並びに超音波探傷方法
JP6399275B1 (ja) 欠陥検出装置、欠陥検出方法及びプログラム
JP2010122175A (ja) 配管検査装置および配管検査方法
JP2010025676A (ja) 超音波探傷方法及び装置
JP2009002832A (ja) 超音波探傷検査装置及び超音波探傷検査方法
JP6733650B2 (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備列、及び鋼材の製造方法
JP4633268B2 (ja) 超音波探傷装置
JP2008286639A (ja) 超音波斜角探傷装置のカップリングチェック方法
WO2020189042A1 (ja) 超音波探傷装置及び超音波探傷方法並びに超音波探傷プログラム
JPS61198056A (ja) アレイ形探触子による鋼管の超音波探傷法
JP2018136252A (ja) 超音波検査装置、それを備えた超音波検査システム、及び超音波検査方法並びにプログラム
CN109196348A (zh) 用于超声波检测细长中空型材的方法
JP5464849B2 (ja) 超音波自動探傷装置及び超音波自動探傷方法
JP4112526B2 (ja) 超音波探傷方法および装置
JP2501488B2 (ja) 管体の超音波探傷法
CN111373254B (zh) 缺陷检测装置、缺陷检测方法以及程序
JP6992678B2 (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備列、鋼材の製造方法、及び鋼材の品質保証方法
JP5738034B2 (ja) 超音波探傷装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6400134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250