JP6395941B2 - 太陽電池セルおよび太陽電池セルの製造方法 - Google Patents

太陽電池セルおよび太陽電池セルの製造方法 Download PDF

Info

Publication number
JP6395941B2
JP6395941B2 JP2017534044A JP2017534044A JP6395941B2 JP 6395941 B2 JP6395941 B2 JP 6395941B2 JP 2017534044 A JP2017534044 A JP 2017534044A JP 2017534044 A JP2017534044 A JP 2017534044A JP 6395941 B2 JP6395941 B2 JP 6395941B2
Authority
JP
Japan
Prior art keywords
grid electrode
surface side
impurity diffusion
diffusion layer
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017534044A
Other languages
English (en)
Other versions
JPWO2017026016A1 (ja
Inventor
隼人 幸畑
隼人 幸畑
濱本 哲
哲 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017026016A1 publication Critical patent/JPWO2017026016A1/ja
Application granted granted Critical
Publication of JP6395941B2 publication Critical patent/JP6395941B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、グリッド電極を有する太陽電池セルおよび太陽電池セルの製造方法に関する。
従来、高い光電変換効率を有する太陽電池セルの構造として、太陽電池セルの表裏面をパッシベーションし、表裏面におけるキャリアの再結合を抑制する構造がある。この場合、裏面電界層(Back Surface Field:BSF)を選択拡散層とすることが重要である。しかし、裏面電界層を選択拡散層とする場合には、裏面電界層のうち高濃度に不純物が拡散された裏面側高濃度拡散層上に電極を形成しないと、裏面側電極と裏面側高濃度拡散層との電気的接続が不十分となり、太陽電池セルの特性の低下の原因となる。
裏面側電極と裏面側高濃度拡散層との電気的接続を改善する太陽電池として、特許文献1には、フィンガー電極に接続突出部が形成された太陽電池が開示されている。特許文献1においては、裏面側電極が、バスバー電極と、フィンガー電極と、フィンガー電極からフィンガー電極と交差する方向に突出する接続突出部とを含んだ太陽電池が開示されている。このような特許文献1の太陽電池の接続突出部は、裏面側高濃度拡散層とフィンガー電極とのアライメント時に、工程誤差などによって裏面側高濃度拡散層とフィンガー電極とがずれる場合にも、裏面側高濃度拡散層とフィンガー電極とを電気的に接続する役割を果たす。
特開2014−216652号公報
しかしながら、上記特許文献1に示された太陽電池においては、フィンガー電極に部分的に突出部が設けられている。フィンガー電極は、通常、金属材料を含んだ電極材料ペーストを印刷および焼成することにより形成されている。そして、フィンガー電極のコストの大半を占める金属材料は、太陽電池セルを構成する材料の中では高額な材料である。特に、フィンガー電極には銀(Ag)が多く用いられるが、銀は金属材料の中でも高価な材料である。
このため、太陽電池セルのコストを低減するためには、フィンガー電極のコストの大半を占める金属材料の使用量を低減することが望まれる。しかしながら、金属材料の使用量の低減は、上記特許文献1に示された接続突出部を有するフィンガー電極の実現において制約になる、という問題があった。
本発明は、上記に鑑みてなされたものであって、電極材料の使用量を低減しつつ電極と高濃度拡散層との電気的接続に起因した光電変換効率の低下を抑制可能な太陽電池セルおよび太陽電池セルの製造方法を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、太陽電池セルが、第1導電型の半導体基板と、半導体基板の一面側に第1導電型または第2導電型の不純物元素が拡散された不純物拡散層と、一面側に配置されて不純物拡散層に電気的に接続するペースト電極であって半導体基板の面方向における特定方向に第1の配置間隔で平行に延在して線状形状を有する複数本のグリッド電極と、を備える。不純物拡散層は、グリッド電極の下部領域に第1導電型または第2導電型の不純物元素を第1濃度で含んで線状形状を有する、半導体基板の面方向において特定方向に平行に延在する複数本の第1不純物拡散層と、第1不純物拡散層と同じ導電型の不純物元素を第1濃度よりも低い第2濃度で含む第2不純物拡散層とを有する。グリッド電極は、グリッド電極の側面からグリッド電極の延在方向と交差する方向に突出するとともにグリッド電極の延在方向に沿って配置された複数の突出部を有する。複数の接続用突出部は、グリッド電極の延在方向において半導体基板の一面側における特定の基準位置から離れるに従ってグリッド電極の側面からの突出長さが長くなることを特徴とする。
本発明にかかる太陽電池セルは、電極材料の使用量を低減しつつ電極と高濃度拡散層との電気的接続に起因した光電変換効率の低下を抑制できる、という効果を奏する。
本発明の実施の形態にかかる太陽電池セルを受光面側から見た上面模式図 本発明の実施の形態にかかる太陽電池セルを受光面と対向する裏面側から見た下面模式図 本発明の実施の形態にかかる太陽電池セルの要部断面模式図であり、図1のA−A方向における太陽電池セルの要部断面図 本発明の実施の形態にかかる太陽電池セルの裏面側グリッド電極を拡大して示す要部平面図 本発明の実施の形態にかかる太陽電池セルの裏面側高濃度不純物拡散層を拡大して示す要部平面図 本発明の実施の形態にかかる太陽電池セルの裏面側グリッド電極を説明する模式図 本発明の実施の形態にかかる太陽電池セルにおいて裏面側高濃度不純物拡散層に対する裏面側グリッド電極の重ね合わせ誤差が発生した場合における接続用突出部による電気的接続の原理を説明するための平面図 本発明の実施の形態にかかる太陽電池セルの製造方法のプロセスフローを示したフローチャート 本発明の実施の形態にかかる太陽電池セルの製造工程を説明する要部断面図 本発明の実施の形態にかかる太陽電池セルの製造工程を説明する要部断面図 本発明の実施の形態にかかる太陽電池セルの製造工程を説明する要部断面図 本発明の実施の形態にかかる太陽電池セルの製造工程を説明する要部断面図 本発明の実施の形態にかかる太陽電池セルの製造工程を説明する要部断面図 本発明の実施の形態にかかる太陽電池セルの製造工程を説明する要部断面図 本発明の実施の形態にかかる太陽電池セルの製造工程を説明する要部断面図 本発明の実施の形態にかかる太陽電池セルの製造工程を説明する要部断面図 本発明の実施の形態にかかる太陽電池セルの製造工程を説明する要部断面図 本発明の実施の形態にかかる裏面側グリッド電極のパターンにAg含有ペーストを印刷するための印刷マスクの構成を示す模式図 本発明の実施の形態にかかる裏面側グリッド電極が中心位置Cを中心にして左回転する方向に形成位置の位置ずれが生じる傾向がある場合に用いる裏面側グリッド電極のパターンを示す模式図 本発明の実施の形態にかかる裏面側グリッド電極が中心位置Cを中心にして右回転する方向に形成位置の位置ずれが生じる傾向がある場合に用いる裏面側グリッド電極のパターンを示す模式図 本発明の実施の形態にかかる受光面側不純物拡散層を選択拡散層構造とした太陽電池セルの要部断面模式図
以下に、本発明の実施の形態にかかる太陽電池セルおよび太陽電池セルの製造方法を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。
実施の形態
図1は、本発明の実施の形態にかかる太陽電池セル1を受光面側から見た上面模式図である。図2は、本発明の実施の形態にかかる太陽電池セル1を受光面と対向する裏面側から見た下面模式図である。図3は、本発明の実施の形態にかかる太陽電池セル1の要部断面模式図であり、図1のA−A方向における太陽電池セル1の要部断面図である。
本実施の形態にかかる太陽電池セル1においては、第2導電型であるp型の不純物であるボロン(B)が拡散されたp型の受光面側不純物拡散層3が、第1導電型であるn型の半導体基板2の受光面全体に形成されて、pn接合を有する半導体基板11が形成されている。また、受光面側不純物拡散層3上には、絶縁膜からなる反射防止膜4が形成されている。この太陽電池セル1においては、反射防止膜4側から光Lが入射する。
半導体基板2としては、n型の単結晶シリコン基板を用いている。以下では、n型の単結晶シリコン基板からなる半導体基板2をn型シリコン基板2と呼ぶ場合がある。なお、半導体基板2はn型の単結晶シリコン基板に限定されるものではなく、n型の多結晶シリコン基板を用いてもよい。
n型シリコン基板2における受光面側、すなわちp型の受光面側不純物拡散層3における受光面側には、テクスチャ構造が形成されている。テクスチャ構造の微小凹凸は、非常に微細であるため、図3および以下の図面では凹凸形状として図示していない。
半導体基板2における受光面側には、長尺細長の複数本の受光面側グリッド電極5aが、半導体基板11における一対の辺方向に沿って並列に配置されている。また、受光面側グリッド電極5aと導通する複数本の受光面側バス電極5bが受光面側グリッド電極5aと直交した状態で、半導体基板11における他の一対の辺方向に沿って並列に配置されている。受光面側グリッド電極5aおよび受光面側バス電極5bは、それぞれ底面部においてp型の受光面側不純物拡散層3に電気的に接続している。受光面側グリッド電極5aおよび受光面側バス電極5bは銀を含んだ電極材料により構成されている。そして、受光面側グリッド電極5aと受光面側バス電極5bとにより、櫛型状を呈する第1電極である受光面側電極5が構成されている。
受光面側グリッド電極5aは、例えば40μm以上、70μm以下程度の幅を有するとともに既定の間隔で平行に70本以上、300本以下の本数が配置され、半導体基板11の内部で発電した電気を集電する。また、受光面側バス電極5bは、例えば0.5mm以上、1.0mm以下程度の幅を有するとともに太陽電池セル1枚当たりに2本以上、5本以下の本数が配置され、受光面側グリッド電極5aで集電した電気を外部に取り出す。受光面側グリッド電極5aの本数としては、100本以上、200本以下がより望ましい。
一方、半導体基板2において受光面と対向する面である裏面側の表層には、リン(P)が拡散されたn型の裏面側不純物拡散層7がn型の半導体基板2の受光面と対向する裏面の全体に形成されてBSF層を構成している。裏面側不純物拡散層7上には、絶縁膜からなる裏面側絶縁膜8が形成されている。
また、裏面側不純物拡散層7上には、長尺細長の複数本の裏面側グリッド電極6aが、半導体基板11における一対の辺方向に沿って並列に配置されている。また、裏面側グリッド電極6aと導通する複数本の裏面側バス電極6bが裏面側グリッド電極6aと直交した状態で、半導体基板11における他の一対の辺方向に沿って並列に配置されている。裏面側グリッド電極6aおよび裏面側バス電極6bは、後述するn型の裏面側不純物拡散層7の裏面側高濃度不純物拡散層7a上に形成されて、それぞれ底面部においてn型の裏面側不純物拡散層7の裏面側高濃度不純物拡散層7aに電気的に接続している。裏面側グリッド電極6aおよび裏面側バス電極6bは銀を含んだ電極材料により構成されている。そして、裏面側グリッド電極6aと裏面側バス電極6bとにより、櫛型状を呈する第2電極である裏面側電極6が構成されている。
裏面側グリッド電極6aは、例えば40μm以上、70μm以下程度の幅を有するとともに既定の間隔で平行に70本以上、300本以下の本数が配置され、半導体基板11の内部で発電した電気を集電する。また、裏面側バス電極6bは、例えば0.5mm以上、1.0mm以下程度の幅を有するとともに太陽電池セル1枚当たりに2本以上、5本以下の本数が配置され、裏面側グリッド電極6aで集電した電気を外部に取り出す。裏面側グリッド電極6aの本数としては、100本以上、200本以下がより望ましい。
n型の裏面側不純物拡散層7は、半導体基板2における裏面の表層にn型の不純物としてリンが拡散されたn型の不純物拡散層である。太陽電池セル1においては、n型の裏面側不純物拡散層7として2種類の層が形成されて選択拡散層構造が形成されている。すなわち、n型シリコン基板2の裏面側の表層部において、裏面側電極6の下部領域およびその周辺領域には、n型の不純物が裏面側不純物拡散層7において相対的に高濃度に拡散された第1不純物拡散層である裏面側高濃度不純物拡散層7aが形成されている。また、n型シリコン基板2の裏面側の表層部において、裏面側高濃度不純物拡散層7aが形成されていない領域には、n型の不純物が裏面側不純物拡散層7において相対的に低濃度に均一に拡散された第2不純物拡散層である裏面側低濃度不純物拡散層7bが形成されている。
裏面側高濃度不純物拡散層7aは、裏面側低濃度不純物拡散層7bに比べて低い電気抵抗を有する低抵抗拡散層である。裏面側低濃度不純物拡散層7bは、裏面側高濃度不純物拡散層7aに比べて高い電気抵抗を有する高抵抗拡散層である。そして、裏面側高濃度不純物拡散層7aと裏面側低濃度不純物拡散層7bとにより裏面側不純物拡散層7が構成される。
したがって、裏面側高濃度不純物拡散層7aの不純物拡散濃度を第1濃度とし、裏面側低濃度不純物拡散層7bの不純物拡散濃度を第2濃度とすると、第2濃度は、第1濃度よりも低くなる。また、裏面側高濃度不純物拡散層7aの電気抵抗値を第1電気抵抗値とし、裏面側低濃度不純物拡散層7bの電気抵抗値を第2電気抵抗値とすると、第2電気抵抗値は、第1電気抵抗値よりも大きくなる。
以上のように構成された本実施の形態にかかる太陽電池セル1においては、裏面側低濃度不純物拡散層7bが、BSF層としてn型シリコン基板2の裏面におけるキャリアの再結合を抑制することができるため、良好な開放電圧を得ることができる。また、裏面側高濃度不純物拡散層7aが、裏面側不純物拡散層7と裏面側電極6との接触抵抗を低減するため、良好な曲線因子を得ることができる。
つぎに、本実施の形態にかかる裏面側グリッド電極6aについて説明する。図4は、本発明の実施の形態にかかる太陽電池セル1の裏面側グリッド電極6aを拡大して示す要部平面図である。図5は、本発明の実施の形態にかかる太陽電池セル1の裏面側高濃度不純物拡散層7aを拡大して示す要部平面図である。図6は、本発明の実施の形態にかかる太陽電池セル1の裏面側グリッド電極6aを説明する模式図である。
図4に示すように、裏面側グリッド電極6aは、基本形状として長尺細長形状を有し、半導体基板11の一対の辺方向に沿って既定の第1の配置間隔D1で互いに平行に配置されている。裏面側グリッド電極6aは、該裏面側グリッド電極6aの両側面に複数の接続用突出部6tが形成されている。接続用突出部6tは、裏面側グリッド電極6aの長手方向と交差する方向に裏面側グリッド電極6aの両側面から突出している。また、接続用突出部6tは、既定の第2の配置間隔D2で裏面側グリッド電極6aの長手方向に沿って複数個が分割配置されている。
図4においては、接続用突出部6tは、半導体基板11の面方向において裏面側グリッド電極6aの長手方向と直交する方向に突出している。このような接続用突出部6tは、裏面側グリッド電極6aの形成時における裏面側高濃度不純物拡散層7aと裏面側電極6とのアライメント時に位置ずれが生じた場合に、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの電気的な接続を補助する機能を有する。
長尺細長形状の裏面側高濃度不純物拡散層7aは、裏面側グリッド電極6aにおいて接続用突出部6tを除いた長尺細長形状部分と同一幅および同一形状を有する。すなわち、裏面側グリッド電極の幅6aWは、裏面側高濃度不純物拡散層の幅7Wと同一幅とされている。そして、裏面側グリッド電極6aの長尺細長形状部分は、裏面側高濃度不純物拡散層7a上に重ねて形成されている。なお、本明細書における裏面側グリッド電極の幅6aWは、裏面側グリッド電極6aにおいて接続用突出部6tを除いた長尺細長形状部分の幅であり、接続用突出部6tの突出分は含んでいない。したがって、接続用突出部6tは、裏面側高濃度不純物拡散層7aの側面からはみ出して、裏面側低濃度不純物拡散層7b上に形成されている。
本実施の形態においては、裏面側グリッド電極6aが電気的に接続される裏面側高濃度不純物拡散層の幅7Wを必要最小限、すなわち裏面側グリッド電極の幅6aWと同一幅としている。これにより、裏面側不純物拡散層7における裏面側低濃度不純物拡散層7bの領域の比率を増大させて、裏面パッシベーション効果を増大させることができる。
接続用突出部6tは、裏面側グリッド電極6aの長手方向において、特定の基準位置から離れるに従って裏面側グリッド電極6aの側面からの突出量が大きく、すなわち裏面側グリッド電極6aの側面からの接続用突出部6tの突出長さ6tLが長くなっている。したがって、接続用突出部6tは、裏面側グリッド電極6aの長手方向において特定の基準位置に近いほど突出量が小さく、すなわち裏面側グリッド電極6aの側面からの突出長さ6tが短くなっている。
ここで、本実施の形態においては、特定の基準位置を、裏面側グリッド電極6aの形成時における裏面側高濃度不純物拡散層7aと裏面側電極6とのアライメント時の位置合わせ位置である半導体基板11の面方向における中心位置Cとする。特定の基準位置は、裏面側高濃度不純物拡散層7aと裏面側電極6との位置合わせ精度が最も高い位置である。そして、複数の裏面側グリッド電極6aの各々においては、中心位置Cを通って裏面側グリッド電極6aの長手方向に直交する仮想線Vを特定の基準位置と考えることもできる。なお、ここでは、アライメント時の位置合わせ位置を半導体基板11の面方向における中心位置Cとしたが、アライメント時の位置合わせ位置は、これに限定されず、半導体基板11の面内における任意の位置とすることが可能である。この場合も、アライメント時の位置合わせ位置が、特定の基準位置となる。
この場合、複数本の裏面側グリッド電極6aにおける接続用突出部6tは、裏面側グリッド電極6aの長手方向において中心位置Cから離れるに従って、突出長さ6tLが長くなっている。すなわち、複数本の裏面側グリッド電極6aにおける接続用突出部6tは、それぞれの裏面側グリッド電極6aと直交する仮想線Vから離れるに従って、突出長さ6tLが長くなっている。そして、それぞれの裏面側グリッド電極6aにおける接続用突出部6tは、裏面側グリッド電極6aの長手方向において、中心位置Cまたは中心位置Cに対応する位置からの距離に正比例して突出長さ6tLが長くなっている。したがって、それぞれの裏面側グリッド電極6aにおける接続用突出部6tは、裏面側グリッド電極6aの長手方向において、中心位置Cに対応する位置からの距離に正比例して突出長さ6tLが長くなっている。
換言すると、複数本の裏面側グリッド電極6aにおける接続用突出部6tは、裏面側グリッド電極6aの長手方向において、太陽電池セル1の端部から中心位置Cに近づくに従って、突出長さ6tLが短くなっている。すなわち、複数本の裏面側グリッド電極6aにおける接続用突出部6tは、裏面側グリッド電極6aの長手方向において、太陽電池セル1の端部から、それぞれの裏面側グリッド電極6aと直交する仮想線Vに近づくに従って、突出長さ6tLが短くなっている。
裏面側グリッド電極6aの形成時において裏面側高濃度不純物拡散層7aに対して裏面側電極6の形成位置を位置合わせする際に、半導体基板11の面方向において特定の基準位置である中心位置Cを中心にして回転する方向に裏面側グリッド電極6aの形成位置の位置ずれが生じる場合がある。この場合は、中心位置Cから近い位置では、裏面側高濃度不純物拡散層7aに対する裏面側グリッド電極6aの重ね合わせ精度が高くなる。以下、裏面側高濃度不純物拡散層7aに対する裏面側グリッド電極6aの重ね合わせ精度を重ね合わせ精度と呼ぶ場合がある。すなわち、それぞれの裏面側グリッド電極6aは、仮想線Vから近い位置では重ね合わせ精度が高くなる。このため、仮想線Vから近い位置では接続用突出部6tはほとんど不要であり、突出長さ6tLは短くてよい。
一方、それぞれの裏面側グリッド電極6aは、仮想線Vから遠い位置では、重ね合わせ精度が低くなる。すなわち、仮想線Vから遠い位置の裏面側グリッド電極6aの裏面側高濃度不純物拡散層7aに対するずれ量は、仮想線Vから近い位置の裏面側グリッド電極6aの裏面側高濃度不純物拡散層7aに対するずれ量よりも大きくなる。そして、仮想線Vから最も遠い位置の裏面側グリッド電極6aの端部のずれ量が最も大きくなる。
この場合、上述したように、裏面側高濃度不純物拡散層7aにおける接続用突出部6tの突出長さ6tLを仮想線Vから離れるに従って長くすることにより、図7に示すように、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとを接続用突出部6tにより電気的に接続することができる。これにより、裏面側グリッド電極6aが裏面側高濃度不純物拡散層7aからずれたことにより低減した裏面側グリッド電極6aと裏面側高濃度不純物拡散層7aとの接触面積を増大させることができる。そして、裏面側高濃度不純物拡散層7aに対する裏面側グリッド電極6aのずれ量が大きく、裏面側グリッド電極6aの長尺細長形状部分と裏面側高濃度不純物拡散層7aとが接触しなくなった裏面側グリッド電極6aの端部付近においても、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとを接続用突出部6tにより電気的に接続することができる。図7は、本発明の実施の形態にかかる太陽電池セル1において裏面側高濃度不純物拡散層7aに対する裏面側グリッド電極6aの重ね合わせ誤差が発生した場合における接続用突出部6tによる電気的接続の原理を説明するための平面図である。
なお、図7においては、裏面側グリッド電極6aにおける仮想線Vよりも右側の領域について示しているが、仮想線Vよりも左側の領域についても同様である。ただし、図7の場合の仮想線Vよりも左側の領域では、裏面側グリッド電極6aは裏面側高濃度不純物拡散層7aの下側にずれる。そして、裏面側グリッド電極6aにおける上側の側面から突出した接続用突出部6tにより、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとを電気的に接続することができる。
したがって、本実施の形態にかかる太陽電池セル1においては、中心位置Cを中心にして回転する方向に裏面側グリッド電極6aの形成位置が裏面側高濃度不純物拡散層7aに対してずれた場合でも、接続用突出部6tにより裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとを電気的に接続することができるため、裏面側グリッド電極6aの細線化を図ることが可能である。そして、裏面側グリッド電極6aの細線化を図ることにより、裏面側グリッド電極6aに用いられる金属材料の量を低減でき、裏面側グリッド電極6aおよび太陽電池セル1のコストの低下を実現できる。
このように、裏面側グリッド電極6aの長手方向における中心位置Cまたは仮想線Vからの距離に応じて接続用突出部6tの突出長さ6tLを適切に設定することにより、裏面側グリッド電極6aに用いられる金属材料の量を低減して、裏面側グリッド電極6aおよび太陽電池セル1のコストを低減できる。仮想線Vからの距離に応じた接続用突出部6tの突出長さ6tLは、中心位置Cを中心にして回転する方向に裏面側グリッド電極6aの形成位置の位置ずれが生じる傾向を把握することにより、適切に設定可能である。
また、本実施の形態にかかる太陽電池セル1においては、中心位置Cを中心にして回転する方向に裏面側グリッド電極6aの形成位置が裏面側高濃度不純物拡散層7aに対してずれた場合でも、接続用突出部6tにより裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとを電気的に接続することができる。このため、裏面側高濃度不純物拡散層の幅7Wを必要最小限、すなわち裏面側グリッド電極の幅6aWと同一幅とすることができる。これにより、裏面側不純物拡散層7における裏面側低濃度不純物拡散層7bの領域の比率を増大させて、裏面パッシベーション効果を増大させることができる。
一方、裏面側グリッド電極6aの長手方向において全ての接続用突出部6tの突出長さ6tLが等しくされている場合は、上記のような効果は非常に小さくなる。図7において、全ての接続用突出部6tの突出長さ6tLが、仮想線V側の接続用突出部6tに合わせて小さく設定されている場合は、突出長さ6tLが短いため、裏面側高濃度不純物拡散層7aに対する裏面側グリッド電極6aのずれ量が大きい裏面側グリッド電極6aの端部側では、接続用突出部6tによる裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの接続面積が小さくなり、または無くなる。
すなわち、図7において全ての接続用突出部6tの突出長さ6tLが、たとえば仮想線Vから近く重ね合わせ精度が高い位置、またこの位置の近傍の接続用突出部6tの突出長さ6tLに合わせて短くされている場合は、仮想線Vから遠く重ね合わせ精度が低い端部側では、接続用突出部6tによる裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの接続面積が小さくなり、または無くなる。この場合は、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの導通が不十分となり、接触抵抗が大きくなる。
また、図7において、全ての接続用突出部6tの突出長さ6tLが、仮想線Vから遠く重ね合わせ精度が低い端部側の位置における接続用突出部6tの突出長さ6tLに合わせて大きくされている場合は、裏面側グリッド電極6aの端部付近においても、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとを接続用突出部6tにより電気的に接続することができる。しかしながら、この場合は、接続用突出部6tの面積が大きくなるため、半導体基板11の裏面でのキャリアの再結合が増加し、また接続用突出部6tに用いられる金属材料の量が増大して裏面側グリッド電極6aおよび太陽電池セル1のコストが増大する。
接続用突出部の幅6tWは、全ての接続用突出部6tにおいて同一とされ、裏面側グリッド電極の幅6aW以下とされる。一例として、裏面側グリッド電極の幅6aWに対する接続用突出部の幅6tWの比率:6tW/6aWは、0.3以上、1以下とされる。前記の比率:6tW/6aWが0.3未満の場合は、接続用突出部の幅6tWが小さいため、接続用突出部6tによる裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの電気的接続面積が不十分になるおそれがある。また、前記の比率:6tW/6aWが1より大の場合は、接続用突出部の幅6tWが大きいため、接続用突出部6tの面積が大きくなり、半導体基板11の裏面でのキャリアの再結合が増加して太陽電池セル1の特性が低下するおそれがある。前記の比率:6tW/6aWは、太陽電池セル1の大きさ、太陽電池セル1の種類、裏面側グリッド電極6aの構成材料、裏面側高濃度不純物拡散層7aの不純物濃度等の諸条件により、適宜適切に設定可能である。
裏面側グリッド電極6aの側面からの接続用突出部6tの突出長さ6tLは、隣り合う裏面側グリッド電極6a間の配置間隔である第1の配置間隔D1よりも小さくされる。また、長尺細長形状部分を挟んで対向する2つの接続用突出部6tの突出長さ6tLは、同一とされている。そして、第1の配置間隔D1に対する突出長さ6tLの比率:6tL/D1は、0.6以下とされる。前記の比率:6tL/D1が0.6より大の場合は、隣り合う裏面側グリッド電極6aの接続用突出部6t同士が互いに連結されるおそれがある。また、接続用突出部6tの長さが長いため、接続用突出部6tの面積が大きくなり、半導体基板11の裏面でのキャリアの再結合が増加して太陽電池セル1の特性が低下するおそれがある。太陽電池セル1の特性が低下するおそれがある。なお、第1の配置間隔D1は、0.5mm以上、2.0mm以下程度とされる。
なお、第2の配置間隔D2は、0.5mm以上、2.0mm以下程度とされる。第2の配置間隔D2が0.5mm未満である場合には、裏面側グリッド電極6aの長手方向において接続用突出部6tが密に位置することになり、裏面側グリッド電極6aの面積が広くなり、太陽電池セル1の特性が低下するおそれがある。第2の配置間隔D2が2.0mmより大の場合は、接続用突出部6tによる裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの電気的接続面積が不十分になるおそれがある。
一例として、前記の比率:6tL/D1は、0.05以上、0.3以下とされる。前記の比率:6tL/D1が0.05未満の場合は、突出長さ6tLが小さいため、裏面側高濃度不純物拡散層7aに対する裏面側グリッド電極6aの重ね合わせ誤差に対して、接続用突出部6tにより裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとを電気的に接続することができないおそれがある。前記の比率:6tL/D1が0.3より大の場合は、突出長さ6tLが不必要に長くなり、接続用突出部6tの面積が不必要に大きくなるおそれがある。前記の比率:6tL/D1は、中心位置Cを中心にして回転する方向に裏面側グリッド電極6aの形成位置の位置ずれが生じる傾向を把握することにより、仮想線Vからの距離に応じて適切に設定可能である。
接続用突出部6tは、既定の第2の配置間隔D2で裏面側グリッド電極6aの長手方向に沿って複数個が配置されている。そして、複数の接続用突出部6tは、裏面側グリッド電極6aにおいて、仮想線Vを挟んで、仮想線V側から両端部側に向かって第2の配置間隔D2で配置されている。裏面側グリッド電極6aの長手方向において複数の接続用突出部6tを備えることにより、中心位置Cを中心にして回転する方向に裏面側グリッド電極6aの形成位置の位置ずれが生じる場合に、裏面側グリッド電極6aの長手方向の全領域にわたって裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの電気的接続を補助することができる。
第2の配置間隔D2は、裏面側グリッド電極の幅6tWよりも大きくされる。第2の配置間隔D2が裏面側グリッド電極の幅6tWよりも小さい場合には、裏面側グリッド電極6aの長手方向において接続用突出部6tが密に位置することになり、裏面側グリッド電極6aの面積が広くなり、太陽電池セル1の特性が低下するおそれがある。
裏面側にBSF層としての裏面側不純物拡散層7を有する太陽電池セル1の高出力化においては、裏面側低濃度不純物拡散層7bの濃度低減と、裏面側不純物拡散層7における裏面側低濃度不純物拡散層7bの領域の比率の増大とが重要である。すなわち、裏面側不純物拡散層7における裏面側高濃度不純物拡散層7aの領域の比率の低減は、太陽電池セル1の出力向上に対する寄与が大きい。これは、半導体基板11の裏面の表層におけるキャリアの再結合に起因している。裏面側グリッド電極6aに対応した裏面側高濃度不純物拡散層7a、すなわち裏面側グリッド電極6aが電気的に接続される裏面側高濃度不純物拡散層の幅7Wを必要最小限、すなわち裏面側グリッド電極の幅6aWとほぼ同等として、接続用突出部6tにより裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの電気的な接続を確保する太陽電池セル1の構造は、出力向上に対する寄与が大きい。また、裏面側グリッド電極6aの長手方向において、裏面側高濃度不純物拡散層7aと直交する仮想線Vからの距離に正比例して突出長さ6tLを変化させることは、上述したように裏面側グリッド電極6aの細線化を図ることを可能とし、さらに裏面側高濃度不純物拡散層の幅7Wを細くすることに寄与する。
なお、裏面側高濃度不純物拡散層の幅7Wは、裏面側グリッド電極の幅6aWと厳密に同一幅でなくてもよく、裏面側グリッド電極の幅6aWよりも多少広くすることも可能である。ただし、裏面側グリッド電極6aからはみ出した裏面側高濃度不純物拡散層7aは、太陽電池セル1の特性低下を招くため、可能な範囲で狭くすることが望ましい。上述した裏面側不純物拡散層7における裏面側高濃度不純物拡散層7aの領域の比率の低減による太陽電池セル1の出力向上の観点から、裏面側高濃度不純物拡散層の幅7Wは、裏面側グリッド電極の幅6aWの2倍程度の幅までであれば広くすることが可能である。この場合は、裏面側高濃度不純物拡散層の幅7Wが裏面側グリッド電極の幅6aWと同一である場合に比べてほぼ同等の出力向上効果が得られる。本明細書においては、この範囲を含めて、裏面側高濃度不純物拡散層の幅7Wは裏面側グリッド電極の幅6aWと同一幅である、とする。
そして、上記の範囲で裏面側高濃度不純物拡散層の幅7Wが裏面側グリッド電極の幅6aWよりも広い場合には、中心位置Cを中心にして回転する方向に裏面側グリッド電極6aの形成位置の位置ずれが生じる場合でも、裏面側グリッド電極の幅6aWが裏面側高濃度不純物拡散層の幅7Wと同一幅である場合と比べて、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの電気的接続面積が大きくなる。したがって、突出長さ6tLを全体的に短くしてもよい。
つぎに、本実施の形態にかかる太陽電池セル1の製造方法について図8から図17を参照しながら説明する。図8は、本発明の実施の形態にかかる太陽電池セル1の製造方法のプロセスフローを示したフローチャートである。図9から図17は、本発明の実施の形態にかかる太陽電池セル1の製造工程を説明する要部断面図である。
図9は、図8のステップS10の説明図である。ステップS10では、半導体基板2としてn型シリコン基板2が用意され、洗浄およびテクスチャ構造の形成が行われる。n型シリコン基板2は、単結晶引き上げステップで得られた単結晶シリコンインゴットをバンドソーまたはマルチワイヤーソー等の切断装置を用いて所望のサイズおよび厚さにカットおよびスライスして製造するため、表面にスライス時のダメージ層が残っている。そこで、ダメージ層の除去も兼ねて、n型シリコン基板2の表面をエッチングすることにより、スライス時の表面汚染およびシリコン基板の切り出し時に発生してn型シリコン基板2の表面近くに存在するダメージ層を取り除く洗浄が行われる。洗浄は、たとえば1wt%以上、10wt%以下程度の水酸化ナトリウムを溶解させたアルカリ溶液にn型シリコン基板2を浸漬させて行われる。
そして、ダメージ層の除去後、n型シリコン基板2において受光面となる第1主面の表面に微小凹凸を形成してテクスチャ構造が形成される。微小凹凸は非常に微細であるため、図9から図17では凹凸形状として表現していない。テクスチャ構造の形成には、たとえば0.1wt%以上、10wt%以下程度のアルカリ溶液中にイソプロピルアルコールまたはカプリル酸等の添加剤を混合した薬液が用いられる。このような薬液中にn型シリコン基板2を浸漬することで、n型シリコン基板2の表面がエッチングされてn型シリコン基板2の表面全面にテクスチャ構造が得られる。テクスチャ構造の形成は、n型シリコン基板2における受光面だけでなく、n型シリコン基板2の裏面にも形成してもかまわない。なお、スライス時の表面汚染およびダメージ層の除去と、テクスチャ構造の形成と、は同時に行ってもよい。
つぎに、テクスチャ構造が形成されたn型シリコン基板2の表面を洗浄する。n型シリコン基板2の表面の洗浄には、たとえば、RCA洗浄と呼ばれる洗浄方法が用いられる。RCA洗浄は、洗浄液として、硫酸および過酸化水素の混合溶液と、フッ化水素酸水溶液と、アンモニアおよび過酸化水素の混合溶液と、塩酸および過酸化水素の混合溶液と、を用意し、これらの洗浄液による洗浄を組み合わせて、有機物と金属と酸化膜とを除去する。
また、上記の洗浄液の種類の全ての洗浄液を用いずに、上記の洗浄液のうちの一つまたは複数の洗浄液による洗浄の組み合わせてもよい。また、上記の洗浄液の他に、フッ化水素酸および過酸化水素水の混合溶液およびオゾンを含有させた水を洗浄液として含めてもよい。
なお、各々の洗浄液自体が、他の洗浄液の汚染、または意図せぬ洗浄液同士もしくはシリコンとの反応の原因とならないように、また洗浄装置外に取り出した後の安全確保のために、各々の洗浄処理間またはn型シリコン基板2の乾燥前の段階などの任意のタイミングで、純水などによるn型シリコン基板2の水洗を行う。
図10は、図8のステップS20の説明図である。ステップS20は、n型シリコン基板2の表面にp型の不純物拡散層3aを形成してpn接合を形成する工程である。p型の不純物拡散層3aの形成は、テクスチャ構造が形成されたn型シリコン基板2を熱拡散炉に装入し、三臭化ホウ素(BBr)蒸気存在下または三塩化ホウ素(BCl)蒸気存在下で熱処理することで実現される。
p型の不純物拡散層3aの形成後のn型シリコン基板2の表裏面には、n型シリコン基板2の面方向においてボロンが均一な濃度で拡散したp型の不純物拡散層3aと、酸化膜でありボロンを含有した不純物含有ガラス層である図示しないボロン含有ガラス層とがこの順で形成されている。
図11は、図8のステップS30の説明図である。ステップS30は、熱酸化により、n型シリコン基板2の表面に酸化膜21を形成する工程である。ステップS30の工程の目的には、n型シリコン基板2の表面のシリコンと酸化膜との界面に形成されたボロンリッチレイヤであるボロン含有ガラス層を酸化膜に取り込む目的と、後の工程でn型シリコン基板2の裏面へBSF層を形成する際の拡散保護膜を形成する目的とがある。ステップS30の熱酸化により、n型シリコン基板2の表面上には、n型シリコン基板2の表面のボロン含有ガラス層を取り込んで一体となった酸化膜21が形成される。
図12は、図8のステップS40の説明図である。ステップS40は、n型シリコン基板2において受光面と反対の裏面となる面に形成された酸化膜21と不純物含有層であるp型の不純物拡散層3aとを除去する工程である。酸化膜21とp型の不純物拡散層3aとの除去は、たとえば片面エッチング装置を用いて、フッ硝酸水溶液にn型シリコン基板2の裏面のみを接触させる片面エッチングにより行うことができる。これにより、n型シリコン基板2の受光面側に形成されたp型の不純物拡散層3aが、p型の受光面側不純物拡散層3となる。そして、n型単結晶シリコンからなるn型シリコン基板2と、該n型シリコン基板2の受光面側に形成されたp型の受光面側不純物拡散層3と、によりpn接合が構成された半導体基板11が得られる。
この後、半導体基板11の裏面、すなわちn型シリコン基板2の裏面へのn型不純物の拡散を実施し、選択拡散層を形成する。ここでは、一例として裏面側高濃度不純物拡散層7aを形成するためのドーピングペーストと、裏面側低濃度不純物拡散層7bを形成するためのオキシ塩化リン(POCl)によるリン拡散工程を用いた場合について説明する。
図13は、図8のステップS50の説明図である。ステップS50は、半導体基板11の裏面、すなわちn型シリコン基板2の裏面上にn型不純物の拡散源であるドーピングペーストとしてリン含有ドーピングペースト22を選択的に印刷する工程である。ここでは、ドーピングペーストとして、リン酸化物を含んだ樹脂ペーストであるリン含有ドーピングペースト22を、スクリーン印刷法を用いてn型シリコン基板2の裏面上に選択的に印刷する。リン含有ドーピングペースト22の印刷パターンは、n型シリコン基板2の裏面における裏面側電極6の形成領域およびその周辺領域となる領域である。すなわち、リン含有ドーピングペースト22は、裏面側グリッド電極6aの形成領域と、裏面側バス電極6bの形成領域およびその周辺領域となる領域に印刷される。リン含有ドーピングペースト22の印刷パターンは、たとえば線幅150μm幅の線状パターンを1.5mm間隔で平行配列したパターンと、線幅2.0mmの2本の線状パターンを平行配列したパターンとからなる櫛形状のパターンである。印刷後、リン含有ドーピングペースト22を乾燥させる。なお、図13の要部断面図においては、裏面側高濃度不純物拡散層7aを形成するためのリン含有ドーピングペースト22の印刷パターンのみを示している。
図14は、図8のステップS60の説明図である。ステップS60は、リン含有ドーピングペースト22が印刷された半導体基板11を熱処理して、選択拡散層構造を有するBSF層を形成する工程である。ステップS60では、リン含有ドーピングペースト22が印刷された半導体基板11を熱拡散炉に装入し、オキシ塩化リン(POCl)蒸気存在下で熱処理が行われる。
具体的には、横型炉に半導体基板11を載置したボートを装入し、1000℃以上、1100℃以下程度で30分間、半導体基板11を熱処理する。この熱処理により、リン含有ドーピングペースト22内のドーパント成分であるリンがリン含有ドーピングペースト22の直下のn型シリコン基板2内に熱拡散する。これにより、リン含有ドーピングペースト22の直下のn型シリコン基板2の裏面の表層に、裏面側高濃度不純物拡散層7aが形成される。裏面側高濃度不純物拡散層7aは、リン含有ドーピングペースト22の印刷パターンと同じ櫛形状のパターンで形成される。
一方、n型シリコン基板2の裏面側の表層において、リン含有ドーピングペースト22の直下領域以外の領域は、リン含有ドーピングペースト22のドーパント成分が拡散することがない。しかし、オキシ塩化リン(POCl)蒸気のリンが、n型シリコン基板2の裏面側の表層におけるリン含有ドーピングペースト22の直下領域以外の領域の表層に熱拡散する。そして、n型シリコン基板2の面方向においてリンが均一な濃度で拡散した裏面側低濃度不純物拡散層7bが形成される。これにより、選択拡散層構造を有するBSF層である、裏面側高濃度不純物拡散層7aと裏面側低濃度不純物拡散層7bとを有する裏面側不純物拡散層7が形成される。
ここで、半導体基板11は、半導体基板11の受光面側は熱拡散炉内の雰囲気に直接暴露されないように、2枚の半導体基板11の受光面側を対向させた状態で重ね合わせて、ボートに装入される。これにより、半導体基板11の受光面側におけるリンガラスの成膜が大きく制限される。さらに、半導体基板11の受光面側の表面には、酸化膜21が形成されている。そして、この酸化膜21が拡散バリアとして機能するため、半導体基板11の受光面側からのn型シリコン基板2の内部への、炉内雰囲気からのリンの混入が防止される。すなわち、n型シリコン基板2へのリンの拡散は、裏面に選択的に実施され、裏面にn型の不純物拡散層が形成される。
つぎに、図8のステップS70において、酸化膜21とリン含有ドーピングペースト22とが除去される。酸化膜21およびリン含有ドーピングペースト22の除去は、半導体基板11をフッ酸水溶液に浸漬することにより行うことができる。
つぎに、図8のステップS80において、n型シリコン基板2の受光面側に形成されたp型の受光面側不純物拡散層3と、n型シリコン基板2の裏面側に形成された裏面側不純物拡散層7とを電気的に分離するpn分離工程が行われる。具体的には、たとえばステップS70までの工程を経た50枚から300枚程度の半導体基板11を積み重ねて側面部をプラズマ放電によりエッチング処理する端面エッチングを行う。また、半導体基板11の受光面側または裏面側の側端部近傍または半導体基板11の側面をレーザ照射により溶融させてn型シリコン基板2を露出させるレーザ分離を行ってもよい。
なお、上記においてはpn分離を行う際に好ましい方法について述べたが、p型の受光面側不純物拡散層3と裏面側不純物拡散層7との分離の状況、すなわちリーク電流の大小、最終的な発電製品となる太陽電池モジュール内における太陽電池セルの配列によっては、ステップS80のpn分離工程は省略することも可能である。
つぎに、半導体基板11の受光面側の表面、すなわちp型の受光面側不純物拡散層3の表面に形成されているシリコン酸化膜が、たとえば5%以上、25%以下のフッ化水素酸水溶液を用いて除去される。そして、半導体基板11の表面に付着しているフッ化水素酸水溶液を水洗により除去する。この際、水洗による酸化膜、一般的に自然酸化膜と呼ばれるものを、後述するパッシベーション層またはその一部として用いてもよい。また、同じ目的で、オゾンを含む水での半導体基板11の洗浄による酸化膜を、後述するパッシベーション層またはその一部として用いてもよい。
図15は、図8のステップS90の説明図である。ステップS90は、裏面側絶縁膜8および反射防止膜4を形成する工程である。まず、半導体基板11の裏面に、すなわち裏面側不純物拡散層7上に、たとえばプラズマCVDを用いて窒化シリコン膜を形成して、半導体基板11の裏面に絶縁膜からなる裏面側絶縁膜8が形成される。なお、裏面側絶縁膜8の窒化シリコン膜と裏面側不純物拡散層7との間には、パッシベーション層が形成されてもよい。この場合、パッシベーション層はシリコン酸化膜が好ましく、一般的な熱酸化の他、前述のように水洗またはオゾン含有水の洗浄による酸化膜を用いてもよい。
続いて、半導体基板11の受光面側に、すなわちp型の受光面側不純物拡散層3上に、たとえばプラズマCVDを用いて窒化シリコン膜からなる反射防止膜4が形成される。なお、反射防止膜4の窒化シリコン膜とp型の受光面側不純物拡散層3との間には、パッシベーション層が形成されてもよい。この場合、パッシベーション層はシリコン酸化膜、酸化アルミニウム膜の何れか、またはシリコン酸化膜と酸化アルミニウム膜との積層膜が好ましい。パッシベーション層にシリコン酸化膜が用いられる場合は、一般的な熱酸化膜の他、前述のように水洗またはオゾン含有水の洗浄による酸化膜を用いてもよい。また、酸化アルミニウム膜が用いられる場合は、酸化アルミニウム膜は、たとえばプラズマCVDまたはALD(Atomic Layer Deposition;原子堆積法)により形成される。この場合、成膜に内包される固定電荷がパッシベーション能力を高める効果を持つため、より好ましい。
また、裏面側絶縁膜8、反射防止膜4および半導体基板11の表裏面に形成されるパッシベーション層の形成の順序については、必ずしも上記の順番のみに限定されるものではなく、上記以外の順番を適宜選択し、形成してもよい。
図16は、図8のステップS100の説明図である。ステップS100は、電極を印刷して、乾燥状態の受光面側電極5および裏面側電極6を形成する工程である。電極材料としては、たとえば銅、銀、アルミニウム、およびこれらの混合物などが用いられる。たとえば。銅、銀、アルミニウム、およびこれらの混合物の金属粉体と、ガラスまたはセラミック成分の粉体と、有機溶剤と、を混合してペースト状にした電極材料ペーストが、たとえばスクリーン印刷により所望の形状およびパターンに印刷される。
まず、半導体基板11の受光面側の反射防止膜4上に、たとえばAgとガラスフリットとを含有する電極材料ペーストであるAg含有ペースト5pが受光面側グリッド電極5aおよび受光面側バス電極5bの形状に、スクリーン印刷によって塗布される。その後、Ag含有ペースト5pが乾燥されることによって、櫛形状を呈する乾燥状態の受光面側電極5が形成される。
つぎに、半導体基板11の裏面側の裏面側高濃度不純物拡散層7a上に、Agおよびガラスフリットを含有する電極材料ペーストであるAg含有ペースト6pが裏面側グリッド電極6aおよび裏面側バス電極6bの形状に、スクリーン印刷によって塗布される。その後、Ag含有ペースト6pが乾燥されることによって、櫛形状を呈する乾燥状態の裏面側電極6が形成される。ここで、裏面側グリッド電極6aの形状は、図4に示したように接続用突出部6tを有する形状に塗布される。これにより、接続用突出部6tのみを別途形成する必要がなく、工程を追加することなく、接続用突出部6tを有する裏面側グリッド電極6aを形成できる。ここで、裏面側グリッド電極6aの長尺細長形状部分の線幅は、裏面側高濃度不純物拡散層7aと同じ150μm幅の線状パターンとし、裏面側高濃度不純物拡散層7aと同じ1.5mm間隔で平行配列したパターンで接続用突出部6tを有する裏面側グリッド電極6aを形成する。
裏面側電極6を形成するためのAg含有ペースト6pは、位置合わせ機構を用いて、裏面側高濃度不純物拡散層7a上に印刷される。たとえば半導体基板11の裏面側に赤外線を照射した状態を赤外線カメラで撮影する。これにより、裏面側高濃度不純物拡散層7aと裏面側低濃度不純物拡散層7bとを識別することが可能となる。このようにして裏面側高濃度不純物拡散層7aの領域の位置を認識してAg含有ペースト6pの印刷位置を決定することによって、Ag含有ペースト6pを裏面側高濃度不純物拡散層7a上に印刷することが可能となる。
ここで、裏面側グリッド電極6aが裏面側高濃度不純物拡散層7aからずれた場合は、裏面側グリッド電極6aが裏面側高濃度不純物拡散層7aの領域からずれた領域では裏面側グリッド電極6aと裏面側高濃度不純物拡散層7aとの接触をとることができない。このため、裏面側グリッド電極6aと裏面側高濃度不純物拡散層7aとの間の電気抵抗が増加して抵抗損失が生じ、太陽電池セル1の特性低下を招く。しかし、裏面側高濃度不純物拡散層7aの領域の増加および裏面側グリッド電極6aの電極幅の増加は、光電変換効率の低下およびコストの増加を招くため有効ではない。また、裏面側グリッド電極6aと裏面側高濃度不純物拡散層7aとの間の位置合わせ精度も限界がある。
そこで、本実施の形態では、図4に示したように接続用突出部6tを有する裏面側グリッド電極6aのパターンに対応した開口パターン32を同一間隔で並列に有する印刷マスク31を半導体基板2の一面側の特定の基準位置である半導体基板11の面方向における中心位置Cにおいて半導体基板2の裏面側に対して位置合わせして、Ag含有ペースト6pの印刷を行う。図18は、本発明の実施の形態にかかる裏面側グリッド電極6aのパターンにAg含有ペースト6pを印刷するための印刷マスク31の構成を示す模式図である。これにより、乾燥状態の裏面側グリッド電極6aが形成できる。図4に示したパターンでAg含有ペースト6pを印刷することで、裏面側高濃度不純物拡散層7aに対する裏面側グリッド電極6aの印刷位置が多少ずれた場合でも、接続用突出部6tにより、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとを電気的に接続することができる。これにより、裏面側高濃度不純物拡散層7aに対する裏面側グリッド電極6aの回転位置ずれに起因した抵抗損失の増加を抑制できる。
図17は、図のステップS110の説明図である。ステップS110は、半導体基板11の受光面側および裏面側に印刷されて乾燥された電極材料ペーストを同時に焼成する工程である。具体的には、半導体基板11が焼成炉へ導入され、大気雰囲気中でピーク温度600℃以上、900℃以下程度の温度、例えば800℃で3秒の、短時間の熱処理が行われる。これにより、電極材料ペースト中の樹脂成分は消失する。そして、半導体基板11の受光面側では、Ag含有ペースト5pに含有されるガラス材料が溶融して反射防止膜4を貫通している間に銀材料がp型の不純物拡散層3のシリコンと接触し再凝固する。これにより、受光面側グリッド電極5aおよび受光面側バス電極5bが得られ、受光面側電極5と半導体基板11のシリコンとの電気的導通が確保される。
また、半導体基板11の裏面側では、Ag含有ペースト6pに含有されるガラス材料が溶融して裏面側絶縁膜8を貫通している間に銀材料が裏面側高濃度不純物拡散層7aのシリコンと接触し再凝固する。これにより、裏面側グリッド電極6aおよび裏面側バス電極6bが得られ、裏面側電極6と半導体基板11のシリコンとの電気的導通が確保される。
以上のような工程を実施することにより、図1から図3に示す本実施の形態にかかる太陽電池セル1を作製することができる。なお、電極材料であるペーストの半導体基板11への配置の順番を、受光面側と裏面側とで入れ替えてもよい。
また、中心位置Cを中心にして左回転する方向または右回転する方向に裏面側グリッド電極6aの形成位置の位置ずれが生じる傾向が把握できる場合には、裏面側グリッド電極6aの形状を変更してもよい。すなわち、図19および図20に示すように、裏面側グリッド電極6aの延在方向において中心位置Cまたは仮想線Vを挟んで対向する裏面側グリッド電極6aの2つの領域において、裏面側グリッド電極6aの両側面のうちそれぞれ異なる側面のみに接続用突出部6tが形成されていてもよい。図19は、本発明の実施の形態にかかる裏面側グリッド電極6aが中心位置Cを中心にして左回転する方向に形成位置の位置ずれが生じる傾向がある場合に用いる裏面側グリッド電極6aのパターンを示す模式図である。図20は、本発明の実施の形態にかかる裏面側グリッド電極6aが中心位置Cを中心にして右回転する方向に形成位置の位置ずれが生じる傾向がある場合に用いる裏面側グリッド電極6aのパターンを示す模式図である。
また、上記においては、BSF層を選択拡散層構造とした場合について説明したが、受光面側不純物拡散層を選択拡散層構造として、受光面側グリッド電極5aを裏面側グリッド電極6aと同様のパターンとすることも可能である。この場合は、図21に示すように、受光面側高濃度不純物拡散層3bと受光面側低濃度不純物拡散層3cとにより受光面側不純物拡散層3が構成される。受光面側高濃度不純物拡散層3bの不純物拡散濃度を第3濃度とし、受光面側低濃度不純物拡散層3cの不純物拡散濃度を第4濃度とすると、第4濃度は、第3濃度よりも低くなる。図21は、本発明の実施の形態にかかる受光面側不純物拡散層を選択拡散層構造とした太陽電池セルの要部断面模式図である。
そして、受光面側高濃度不純物拡散層3bは、受光面側グリッド電極5aと同形状および同寸法とされ、受光面側グリッド電極5aが受光面側高濃度不純物拡散層3b上に印刷形成される。この場合も、裏面側グリッド電極6aを用いる場合と同様に、受光面側グリッド電極5aを印刷形成する際に印刷位置が回転方向に多少ずれた場合でも、受光面側グリッド電極5aに設けられた接続用突出部により、受光面側高濃度不純物拡散層3bと受光面側グリッド電極5aとを電気的に接続することができる。これにより、受光面側高濃度不純物拡散層3bに対する受光面側グリッド電極5aの回転位置ずれに起因した抵抗損失の増加を抑制できる。
また、上記においては、接続用突出部6tが裏面側グリッド電極6aの長手方向と直交する方向に突出している場合について示したが、接続用突出部6tは裏面側グリッド電極6aの長手方向に対して傾斜した方向に突出してもよい。
また、上記においては、裏面側高濃度不純物拡散層7aが接続用突出部を有さない長尺細長形状である場合について示したが、裏面側高濃度不純物拡散層7aは、裏面側グリッド電極6aと同様の形状および寸法を有する接続用突出部を備えた形状とされてもよい。この場合は、裏面側グリッド電極6aの形状および寸法は裏面側高濃度不純物拡散層7aの形状および寸法と同じとされる。
なお、上記においては半導体基板2としてn型の単結晶シリコン基板を用いる場合について説明したが、半導体基板2はこれに限定されない。すなわち、太陽電池基板として機能するのであれば、半導体基板2は、n型の多結晶シリコン基板を用いてもよい。また、半導体基板2として、p型のシリコン基板を用いてもよい。また、半導体基板2の受光面側と裏面側に形成する拡散層は、半導体基板2の導電型により適宜決定されればよい。また、半導体基板2の受光面側と裏面側の拡散層を形成する不純物元素は、適宜選択されればよい。
上述したように、本実施の形態にかかる太陽電池セル1においては、裏面側グリッド電極6aが接続用突出部6tを備える。これにより、受光面側高濃度不純物拡散層3bに対する受光面側グリッド電極5aの回転位置ずれが生じた場合でも、接続用突出部6tにより、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとを電気的に接続することができる。このため、裏面側グリッド電極6aの細線化を図る際に問題となる、受光面側高濃度不純物拡散層3bに対する受光面側グリッド電極5aの回転位置ずれが生じた場合の裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの電気的接続の不足を抑制でき、裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの間における抵抗損失の増加を抑制できる。
したがって、太陽電池セル1においては、裏面側高濃度不純物拡散層の幅7Wを必要最小限、すなわち裏面側グリッド電極の幅6aWと同一幅とすることが可能であり、裏面側不純物拡散層7における裏面側低濃度不純物拡散層7bの領域の比率を増大させて、裏面パッシベーション効果を増大させることができる。
また、太陽電池セル1においては、裏面側グリッド電極6aの細線化を図ることにより、裏面側グリッド電極6aに用いられる金属材料の量を低減でき、裏面側グリッド電極6aおよび太陽電池セル1コストの低下を実現できる。
したがって、本実施の形態にかかる太陽電池セル1によれば、裏面側グリッド電極6aの細線化により電極材料の使用量を低減して低コスト化が可能であり、また裏面側高濃度不純物拡散層7aと裏面側グリッド電極6aとの間の電気的接続に起因した光電変換効率の低下を抑制可能な太陽電池セルが得られる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 太陽電池セル、2 半導体基板、3 受光面側不純物拡散層、3a p型の不純物拡散層、4 反射防止膜、5 受光面側電極、5a 受光面側グリッド電極、5b 受光面側バス電極、5p Ag含有ペースト、6 裏面側電極、6a 裏面側グリッド電極、6aW 裏面側グリッド電極の幅、6b 裏面側バス電極、6p Ag含有ペースト、6t 接続用突出部、6tW 接続用突出部の幅、7 裏面側不純物拡散層、7W 裏面側高濃度不純物拡散層の幅、7a 裏面側高濃度不純物拡散層、7b 裏面側低濃度不純物拡散層、8 裏面側絶縁膜、11 半導体基板、21 酸化膜、22 リン含有ドーピングペースト、D1 配置間隔、D2 配置間隔、V 仮想線。

Claims (13)

  1. 第1導電型の半導体基板と、
    前記半導体基板の一面側に第1導電型または第2導電型の不純物元素が拡散された不純物拡散層と、
    前記一面側に配置されて前記不純物拡散層に電気的に接続するペースト電極であって前記半導体基板の面方向における特定方向に第1の配置間隔で平行に延在して線状形状を有する複数本のグリッド電極と、
    を備え、
    前記不純物拡散層は、前記グリッド電極の下部領域に第1導電型または第2導電型の前記不純物元素を第1濃度で含んで線状形状を有する、前記半導体基板の面方向において前記特定方向に平行に延在する複数本の第1不純物拡散層と、前記第1不純物拡散層と同じ導電型の前記不純物元素を前記第1濃度よりも低い第2濃度で含む第2不純物拡散層とを有し、
    前記グリッド電極は、前記グリッド電極の側面から前記グリッド電極の延在方向と交差する方向に突出するとともに前記グリッド電極の延在方向に沿って配置された複数の突出部を有し、
    前記複数の突出部は、前記グリッド電極の延在方向において前記半導体基板の一面側における特定の基準位置から離れるに従って前記グリッド電極の側面からの突出長さが長くなること、
    を特徴とする太陽電池セル。
  2. 前記特定の基準位置は、前記第1不純物拡散層と前記グリッド電極との位置合わせ精度が最も高い位置であること、
    を特徴とする請求項1に記載の太陽電池セル。
  3. 前記複数の突出部は、前記グリッド電極の延在方向において前記特定の基準位置からの距離に正比例して前記突出長さが長くなること、
    を特徴とする請求項2に記載の太陽電池セル。
  4. 記突出部は、前記グリッド電極の延在方向において前記特定の基準位置を挟んで対称であること、
    を特徴とする請求項3に記載の太陽電池セル。
  5. 記突出部は、前記グリッド電極の延在方向において前記特定の基準位置を挟んで対向する前記グリッド電極の2つの領域において、少なくとも前記グリッド電極の両側面のうちそれぞれ異なる側面に配置されていること、
    を特徴とする請求項3に記載の太陽電池セル。
  6. 前記第1不純物拡散層は、前記グリッド電極と同じ幅を有すること、
    を特徴とする請求項1から5のいずれか1つに記載の太陽電池セル。
  7. 前記グリッド電極の幅に対する前記突出部の幅の比率が、0.3以上、1以下であること、
    を特徴とする請求項1に記載の太陽電池セル。
  8. 前記突出長さは、前記第1の配置間隔よりも小さいこと、
    を特徴とする請求項1に記載の太陽電池セル。
  9. 前記第1の配置間隔に対する前記突出長さの比率が、0.6以下であること、
    を特徴とする請求項8に記載の太陽電池セル。
  10. 前記第1の配置間隔に対する前記突出長さの比率が、0.05以上、0.3以下であること、
    を特徴とする請求項8に記載の太陽電池セル。
  11. 複数の前記突出部が、前記グリッド電極の延在方向において第2の配置間隔で分散配置され、
    前記第2の配置間隔は、前記グリッド電極の幅よりも大きいこと、
    を特徴とする請求項1に記載の太陽電池セル。
  12. 前記半導体基板の他面側に第2導電型の不純物元素が拡散された第2導電型不純物拡散層と、
    前記第2導電型不純物拡散層に電気的に接続する受光面側電極と、
    を有し、
    前記不純物拡散層が、前記半導体基板の受光面側と対向する裏面に第1導電型の不純物元素が拡散された裏面電界層であり、
    前記グリッド電極が裏面電極であること、
    を特徴とする請求項1に記載の太陽電池セル。
  13. 第1導電型の半導体基板の一面側に、第1導電型または第2導電型の不純物元素を第1濃度で含んで線状形状を有し、前記半導体基板の面方向において特定方向に平行に延在する複数本の第1不純物拡散層と、前記第1不純物拡散層と同じ導電型の前記不純物元素を前記第1濃度よりも低い第2濃度で含む第2不純物拡散層とからなる不純物拡散層を形成する第1工程と、
    前記特定方向に平行に延在して前記第1不純物拡散層に電気的に接続する線状形状の複数本のグリッド電極をスクリーン印刷による電極材料ペーストの印刷により前記第1不純物拡散層上に形成する第2工程と、
    を含み、
    前記グリッド電極は、前記グリッド電極の延在方向において、前記半導体基板の一面側の特定の基準位置から離れるに従って前記グリッド電極の側面からの突出長さが長くなる、前記グリッド電極の側面から前記グリッド電極の延在方向と交差する方向に突出するとともに前記グリッド電極の延在方向に沿って配列された複数の突出部を備えたパターンを有し、
    前記第2工程では、電極材料ペーストを、前記グリッド電極のパターンに対応した開口パターンを同一間隔で並列に有する印刷マスクを前記半導体基板の一面側の特定の基準位置において前記半導体基板の一面側に対して位置合わせして、前記複数本の第1不純物拡散層上に形成すること、
    を特徴とする太陽電池セルの製造方法。
JP2017534044A 2015-08-07 2015-08-07 太陽電池セルおよび太陽電池セルの製造方法 Expired - Fee Related JP6395941B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072560 WO2017026016A1 (ja) 2015-08-07 2015-08-07 太陽電池セルおよび太陽電池セルの製造方法

Publications (2)

Publication Number Publication Date
JPWO2017026016A1 JPWO2017026016A1 (ja) 2017-11-09
JP6395941B2 true JP6395941B2 (ja) 2018-09-26

Family

ID=57984149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017534044A Expired - Fee Related JP6395941B2 (ja) 2015-08-07 2015-08-07 太陽電池セルおよび太陽電池セルの製造方法

Country Status (3)

Country Link
JP (1) JP6395941B2 (ja)
KR (1) KR101981903B1 (ja)
WO (1) WO2017026016A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803476A (zh) * 2017-11-17 2019-05-24 核工业西南物理研究院 一种体放电等离子体发生装置
WO2019139425A1 (ko) * 2018-01-12 2019-07-18 (주)이노페이스 태양전지의 후면전극용 스텐실 마스크
DE102019122125A1 (de) * 2019-08-16 2021-02-18 Hanwha Q Cells Gmbh Wafer-Solarzelle
CN112133773B (zh) * 2020-09-22 2022-08-09 常州时创能源股份有限公司 太阳能电池片、光伏组件
CN114361266B (zh) * 2020-09-28 2024-03-22 苏州阿特斯阳光电力科技有限公司 光伏组件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590327A (en) * 1984-09-24 1986-05-20 Energy Conversion Devices, Inc. Photovoltaic device and method
JP4593980B2 (ja) * 2004-03-29 2010-12-08 京セラ株式会社 光電変換装置とこれを用いた太陽電池素子、並びに太陽電池モジュール
JP5497043B2 (ja) * 2008-09-12 2014-05-21 エルジー・ケム・リミテッド 電力損失を最少に抑えた太陽電池用前面電極及びそれを含む太陽電池
KR100989322B1 (ko) * 2009-02-05 2010-10-25 에스에스씨피 주식회사 선택적 에미터 구조를 가지는 태양 전지 기판의 제조 방법 및 태양 전지
JP5488015B2 (ja) * 2009-02-10 2014-05-14 信越化学工業株式会社 スクリーン印刷方法
KR101135585B1 (ko) * 2010-06-21 2012-04-17 엘지전자 주식회사 태양 전지 및 그 제조 방법
JP2012009578A (ja) * 2010-06-24 2012-01-12 Sharp Corp 太陽電池
WO2012057316A1 (ja) * 2010-10-29 2012-05-03 三洋電機株式会社 太陽電池モジュールの製造方法
JP2012134398A (ja) * 2010-12-22 2012-07-12 PVG Solutions株式会社 太陽電池セルおよびその製造方法
DE112011105671B4 (de) * 2011-09-28 2023-08-03 Panasonic Intellectual Property Management Co., Ltd. Solarzelle und Verfahren zum Fertigen einer Solarzelle
JP6048761B2 (ja) * 2012-03-23 2016-12-21 パナソニックIpマネジメント株式会社 太陽電池
JP2013201282A (ja) * 2012-03-26 2013-10-03 Sharp Corp スクリーン、太陽電池の製造方法、および太陽電池
KR20140126819A (ko) 2013-04-22 2014-11-03 엘지전자 주식회사 태양 전지

Also Published As

Publication number Publication date
KR101981903B1 (ko) 2019-05-23
WO2017026016A1 (ja) 2017-02-16
KR20180034600A (ko) 2018-04-04
JPWO2017026016A1 (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6395941B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
KR101452881B1 (ko) 이면 전극형 태양전지 및 이면 전극형 태양전지의 제조방법
EP2662903B1 (en) Solar cell and method for manufacturing the same
JP4334455B2 (ja) 太陽電池モジュール
JP6410951B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
US9997650B2 (en) Solar cell, manufacturing method thereof, and solar cell module
JP5220197B2 (ja) 太陽電池セルおよびその製造方法
WO2015133539A1 (ja) 太陽電池の製造方法および太陽電池
US20160233353A1 (en) Solar cell, manufacturing method thereof, and solar cell module
KR101649060B1 (ko) 태양전지 셀의 제조 방법
WO2016117180A1 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法、太陽電池モジュールの製造方法
JP2010123759A (ja) 太陽電池用基板の粗面化方法および太陽電池セルの製造方法
KR101160116B1 (ko) 후면 접합 태양전지의 제조방법
JP4322199B2 (ja) 太陽電池セル、太陽電池セルユニットの製造方法および太陽電池モジュール
TWI668880B (zh) Solar battery unit and solar battery module
JP2010283052A (ja) 配線シート、裏面電極型太陽電池セル、配線シート付き太陽電池セルおよび太陽電池モジュール
JP6234633B2 (ja) 太陽電池および太陽電池の製造方法
JP5436276B2 (ja) 太陽電池の製造方法
WO2016110970A1 (ja) 太陽電池セルの製造方法
US20130104976A1 (en) Solar cell with interconnection sheet, solar cell module, and method for manufacturing solar cell with interconnection sheet
JP6239156B2 (ja) 太陽電池の製造方法
JP2011165806A (ja) 太陽電池の製造方法
KR101729305B1 (ko) 태양전지
JPWO2016117180A1 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法、太陽電池モジュールの製造方法
KR101161805B1 (ko) 후면접합 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180828

R150 Certificate of patent or registration of utility model

Ref document number: 6395941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees