JP6376700B2 - SiC化学気相成長装置 - Google Patents

SiC化学気相成長装置 Download PDF

Info

Publication number
JP6376700B2
JP6376700B2 JP2015041306A JP2015041306A JP6376700B2 JP 6376700 B2 JP6376700 B2 JP 6376700B2 JP 2015041306 A JP2015041306 A JP 2015041306A JP 2015041306 A JP2015041306 A JP 2015041306A JP 6376700 B2 JP6376700 B2 JP 6376700B2
Authority
JP
Japan
Prior art keywords
gas
gas introduction
chemical vapor
introduction pipe
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015041306A
Other languages
English (en)
Other versions
JP2016162921A (ja
Inventor
啓介 深田
啓介 深田
伊藤 雅彦
雅彦 伊藤
功穂 鎌田
功穂 鎌田
秀一 土田
秀一 土田
裕明 藤林
裕明 藤林
秀幸 上東
秀幸 上東
内藤 正美
正美 内藤
一都 原
一都 原
青木 宏文
宏文 青木
小澤 隆弘
隆弘 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Central Research Institute of Electric Power Industry
Denso Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Showa Denko KK
Central Research Institute of Electric Power Industry
Denso Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Central Research Institute of Electric Power Industry, Denso Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Showa Denko KK
Priority to JP2015041306A priority Critical patent/JP6376700B2/ja
Publication of JP2016162921A publication Critical patent/JP2016162921A/ja
Application granted granted Critical
Publication of JP6376700B2 publication Critical patent/JP6376700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、SiC化学気相成長装置に関する。
炭化珪素(SiC)は、シリコン(Si)に比べて絶縁破壊電界が1桁大きく、また、バンドギャップが3倍大きく、さらに、熱伝導率が3倍程度高い等の特性を有することから、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。このため、近年、上記のような半導体デバイスにSiCエピタキシャルウェハが用いられるようになっている。
SiCエピタキシャルウェハは、SiCエピタキシャル膜を形成する基板として昇華法等で作製したSiCのバルク単結晶から加工したSiC単結晶基板を用い、通常、この上に化学的気相成長法(Chemical Vapor Deposition:CVD)によってSiC半導体デバイスの活性領域となるSiCエピタキシャル膜を成長させることによって製造する。
SiC半導体デバイスは、この成長するSiCエピタキシャル膜の厚さや組成、添加する不純物の濃度などがばらつくとその性能が変化してしまうため、被処理体上に均一に薄膜を形成することが求められている。
化学気相成長装置において被処理体上に均一に薄膜を形成するためには、被処理体に対して均一に原料ガスを供給することが重要である。そのため、様々な検討が進められてきた。
例えば、特許文献1では、原料ガスを一度処理室に供給し、シャワー部材を介して炉内に均一に原料ガスを供給するCVD処理装置が記載されている。また、このシャワー部材から炉内へ導入される原料ガスの動圧ムラを小さくするために、処理室への原料ガスの導入口をテーパー形状とすることも記載されている。処理室への原料ガスの導入口をテーパー形状とすることで、炉内へ導入される原料ガスの動圧ムラを小さくすることができるのは、テーパー形状によって供給されるガスの流速が低減され、処理室内の圧力変化を抑制するためである。
また、エピタキシャル成長では、均一性の他に、エピタキシャル膜に結晶欠陥が存在すると特性に悪影響を与えるため、その発生を抑制するという課題がある。結晶欠陥の発生原因の1つに炉体内のパーティクルがある。パーティクルがウェハの表面に付着し、それを起点として結晶欠陥が発生する。炉体内のパーティクルは、原料ガス起因の炉体内堆積物が原因で発生することが多い。特に、SiC化学気相成長装置では、炉体内が高温になるので原料ガスが分解しやすく、炉体内にその分解物が堆積しやすいという問題がある。
炉体内の温度としては、SiC薄膜を成長させるためには、1200℃程度以上の温度が必要であることが知られ、特に電子デバイスで用いられる4H−SiCは1500℃程度以上の高温が一般的に用いられていることが知られている。この温度は、Si薄膜を成長させるための600℃程度の温度と比較しても極めて高い。
このような炉体内に付着した堆積物の発生を抑制するために、例えば、特許文献2では、比較的安定性の高いガスによって基板上でのガスの整流状態を形成しながら、別経路を経由して反応性に富むソースガスを基板近傍に供給することが記載されている。
特開2009−74180号公報 特開2011−195346号公報
本発明者らは鋭意検討の結果、SiCエピタキシャル膜の均一性を高めるためには、炉体内のガスの対流や拡散を考慮しなければならないことを見出した。また結晶欠陥の原因となるパーティクルの多くは、ガス導入管内でも発生しており、ガス導入管内での反応ガスの分解等も制御しなければならないことを見出した。
特許文献1のCVD処理装置では、シャワーヘッド内の温度をCVD用反応ガスの反応温度より低く、かつ、CVD用反応ガスを構成する成分の液化温度より高い温度とすることが記載されている(段落0046)。CVD用反応ガスの反応温度より低くすると、CVD用反応ガスの分解は抑制することができる。しかし、SiC化学気相成長装置において当該構成を用いると、SiCは高温での成長を必要とするため、炉体内のSiCウェハの載置面とガス導入口付近で温度差が非常に大きくなる。すなわち、温度勾配によるガスの対流や拡散がより促進されてしまい、均一なSiCエピタキシャル膜を形成することができない。また原料ガスの流れが乱れると、壁面やガス導入管に付着した堆積物がパーティクルとして発生し、SiCエピタキシャル膜の欠陥を生み出すという問題があった。つまり、特許文献1のような構成は、比較的成長温度の低いSi薄膜等の化学気相成長装置においては利用することができるが、SiC等の高温の成長温度を必要とする化学気相成長装置においては、原料ガスが全く分解しない温度に維持することは困難である。また、炉体内に温度勾配の急峻な部分があると、対流や拡散を助長し、弊害を生み出す。
なお、CVD用反応ガスを構成する成分の液化温度は、例えばトリクロロシランの場合大気圧下で32℃であり、当該温度より高くすることは化学気相成長装置において当然の条件である。
また、特許文献2の成膜装置では、反応に使用するガスを分離して導入している。そのため、分解した異なる反応ガス同士が反応することを阻害し、副生成物が発生することを抑制できることが記載されている。しかしながら、第1及び第2のガス供給路は、輻射の影響を受け高温になるため、供給されるガスはガス供給路内で分解する。これらの分解したガスは、異なるガスと反応しなくても堆積物を生み出す可能性があり、この堆積物はパーティクルの原因となる。具体的には、例えば、第1の反応ガスを供給する第1のガス供給路内には、Siの堆積物が付着していると考えられる。このような堆積物が剥離すると、SiCエピタキシャル膜の欠陥の原因となりうる。
本発明は上記問題に鑑みてなされたものであり、原料ガス起因のパーティクルを抑制し、かつ炉体内のガスの対流や拡散を抑制したSiC化学気相成長装置を提供することを目的とする。
本発明者らは、鋭意検討の結果、ガス導入管の周囲にヒートシールドを設け、そのヒートシールド自体を効率的に冷却する構成を設けることで当該問題を解決できることを見出し、発明を完成させた。
即ち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明のSiC化学気相成長装置は、成長空間を構成する炉体と、前記炉体内に備えられ、SiCウェハを載置する載置台と、前記炉体内へ原料ガスを導入するガス導入管と、前記ガス導入管の周囲に配置され、貫通孔を有するヒートシールドと、前記ヒートシールドの貫通孔に冷却ガスを供給する冷却ガス供給口とを備える。
(2)上記(1)のSiC化学気相成長装置は、前記貫通孔のガスの流れ方向に対して垂直な方向の断面積が、貫通孔1個あたり100mm以下であってもよい。
(3)上記(1)または(2)のいずれかに記載のSiC化学気相成長装置は、前記貫通孔が、前記ヒートシールドの厚さ方向に対して傾きを有していてもよい。
(4)上記(1)〜(3)のいずれか一つに記載のSiC化学気相成長装置は、前記ヒートシールドを複数備えてもよい。
(5)上記(4)のに記載のSiC化学気相成長装置は、前記ヒートシールドが複数あり、隣り合うヒートシールドの貫通孔が平面視で重ならないことが好ましい。
(6)上記(1)〜(5)のいずれか一つに記載のSiC化学気相成長装置は、前記ヒートシールドが平面視円形であり、前記円形のヒートシールドの中央部から外周部にわたってスリットが設けられていてもよい。
(7)上記(1)〜(6)のいずれか一つに記載のSiC化学気相成長装置は、前記冷却ガスとして、H、Ar、Heからなる群から選ばれる1種以上のガスを用いてもよい。
(8)上記(1)〜(7)のいずれか一つに記載のSiC化学気相成長装置は、前記ガス導入管が複数備えられていてもよい。
(9)上記(1)〜(8)のいずれか一つに記載のSiC化学気相成長装置は、複数の前記ガス導入管は、その一部がSi系原料ガスを前記炉体内へ導入するSi系原料ガス導入管であり、別の一部がC系原料ガスを前記炉体内へ導入するC系原料ガス導入管であり、前記Si系原料ガス導入管と前記C系原料ガス導入管はそれぞれ分離されていてもよい。
(10)上記(1)〜(9)のいずれか一つに記載のSiC化学気相成長装置は、前記ガス導入管を覆う外管を備え、前記ガス導入管と外管が二重管構造を構成し、前記ガス導入管と外管の間から前記ガス導入管の周囲に冷却ガスを供給できてもよい。
(11)上記(1)〜(10)のいずれか一つに記載のSiC化学気相成長装置は、前記ガス導入管が前記載置台の上部に配置された縦型の炉体構造でもよい。
本発明の一実施形態にかかるSiC化学気相成長装置は、ガス導入管の周囲に配置されたヒートシールドを備える。SiC化学気相成長装置は、ヒートシールドを備えることで、輻射を低減し、ガス導入管の温度が高温になりすぎることを抑制できる。またこのヒートシールドは貫通孔を有しており、冷却ガス供給口から供給された冷却ガスを、貫通孔に供給することができる。そのため、ヒートシールド自体が熱を有し、ヒートシールドからの熱伝導によりガス導入管の温度が高くなることを抑制できる。
すなわち、ガス導入管内で原料ガスが分解し、原料ガス起因のSiC付着物の生成を抑制することができる。また、輻射の低減による温度上昇の抑制であるため、例えば、ガス導入管を水冷等で冷却するような極端な温度変化を生じさせない。そのため、緩やかな温度勾配による温度上昇の抑制が可能となり、炉体内のガスの対流や拡散を抑制することができる。
本発明の一態様に係るSiC化学気相成長装置は、貫通孔のガスの流れ方向に対して垂直な方向の断面積が、貫通孔1個あたり100mm以下であってもよい。貫通孔の断面積が小さければ、それだけ輻射によりガス導入管が高温になることを抑制する効果を高めることができる。
本発明のSiC化学気相成長装置は、貫通孔が、ヒートシールドの厚さ方向に対して傾きを有していてもよい。貫通孔がヒートシールドの厚さ方向に対して傾きを有していることで、平面視した際にヒートシールドが形成されていない部分の面積をより狭くすることができ、輻射によるガス導入管が高温になることをより抑制することができる。また貫通孔の内表面の面積が大きくなるため、ヒートシールドをより効率的に冷やすことができる。そのため、熱伝導によりガス導入管が高温になることを抑制することができる。
本発明のSiC化学気相成長装置は、ヒートシールドを複数備えてもよい。ヒートシールドを複数備えることで、ヒートシールド毎に輻射低減効果を得ることができ、より段階的かつ効率的に温度変化を行うことができる。そのため、急激な温度変化を避けることができ、炉体内のガスの対流や拡散を抑制することができる。
本発明のSiC化学気相成長装置は、ヒートシールドが複数あり、隣り合うヒートシールドの貫通孔が平面視で重ならないことが好ましい。ヒートシールドが複数あり、隣り合うヒートシールドの貫通孔が平面視で重ならなければ、輻射を伝播する電磁波が障壁無く通過できる部分を無くすことができ、輻射によりガス導入管が高温になることをより抑制できる。
本発明の一実施形態に係るSiC化学気相成長装置は、ヒートシールドが平面視円形であり、円形のヒートシールドの中央部から外周部に渡ってスリットが設けられていてもよい。SiC化学気相成長装置は、高温でSiCエピタキシャル膜を成長させるため、ヒートシールドも加熱により熱応力を受ける。このような熱応力は、ヒートシールドの破損等を招く。しかしながら、ヒートシールドがスリットを有すれば、このスリットにより熱応力を緩和することができるため、装置の耐久性を高めることができる。またこのスリットは、貫通孔を兼ねることができる。
本発明の一実施形態に係るSiC化学気相成長装置は、冷却ガスとして、H、Ar、Heからなる群から選ばれる1種以上のガスを用いてもよい。これらのガスは、炉体内に供給された場合、キャリアガス等として機能することができる。そのため、冷却用に特別なガスを準備する必要が無く、経済的な面で効率的である。
本発明の一実施形態にかかるSiC化学気相成長装置は、ガス導入管を複数有していてもよい。ガス導入管を複数有すれば、原料ガスを炉体内へ分散導入することができる。そのため、ガス導入管ごとに付着する堆積物の量を少なくすることができる。また、導入されるガスの面内均一性を高めることができる。
本発明の一実施形態にかかるSiC化学気相成長装置は、複数のガス導入管が、その一部がSi系原料ガスを炉体内へ導入するSi系原料ガス導入管であり、別の一部がC系原料ガスを炉体内へ導入するC系原料ガス導入管であり、Si系原料ガス導入管とC系原料ガス導入管はそれぞれ分離されていてもよい。原料ガスを分離して導入することで、不要なSiC生成物がガス導入管や炉体内壁面等に形成されることを抑制することができる。
本発明の一実施形態にかかるSiC化学気相成長装置は、ガス導入管を覆う外管を備え、ガス導入管と外管が二重管構造を構成し、ガス導入管と外管の間からガス導入管の周囲に冷却ガスを供給することができる構成としてもよい。二重管構造の外側に冷却ガスを供給することで、内管であるガス導入管がヒートシールドと直接接触することを防ぎ、熱伝導によりガス導入管の温度が高くなることをより抑制することができる。またガス導入管の周囲に供給した冷却ガスを、そのまま炉体内に流す構成とすると、冷却ガスにより導入される原料ガスが、ガス導入管に再度回り込むことを防ぐことができる。すなわち、ガス導入管の導入口に堆積物が付着することを効果的に抑制することができる。
本発明の一実施形態にかかるSiC化学気相成長装置は、ガス導入管が載置台の上部に配置された縦型の炉体構造でもよい。温度勾配による対流は、上下の温度差によって生じることが多い。従って、対流はガス導入管と載置台に温度差が生じやすい縦型の炉体構造において発生しやすいため、本発明は縦型の炉体構造において特に有用である。またガス導入管の導入口に堆積した付着物は、重力により下部にパーティクルとして落下することが考えられるため、この点においても縦型の炉体構造において特に有用である。
本発明の一実施形態であるSiC化学成長装置を模式的に説明する断面模式図である。 本発明の一実施形態に係るSiC化学気相成長装置に用いられるヒートシールドを平面視した図である。 本発明の一態様に係るSiC化学気相成長装置に用いられるヒートシールドの一例であり、貫通孔を通るように切断した断面の模式図である。 本発明の一態様に係るSiC化学気相成長装置に用いられるヒートシールドの一例であり、ヒートシールドが複数からなる場合の断面模式図である。 本発明の一態様に係るSiC化学気相成長装置に用いられるヒートシールドの一例であり、ヒートシールドがスリットを有する場合の平面模式図である。 本発明の一実施形態に係るSiC化学気相成長装置が複数のガス導入管を有する場合の断面模式図であり、簡単のために炉体の下部は図示していない。 本発明の一実施形態に係るSiC化学気相成長装置が複数のガス導入管を有する場合に用いられるヒートシールドを平面視した図である。 本発明の一実施形態に係るSiC化学気相成長装置が複数のガス導入管を有する場合に用いられるヒートシールドを平面視した図である。 本発明の一実施形態に係るSiC化学気相成長装置に用いられるガス導入管が外管によって覆われた二重管構造を有する場合の断面模式図である。 本発明の一実施形態に係るSiC化学気相成長装置に用いられるガス導入管の周囲に複数の冷却ガス通過用貫通孔が設けられている場合のSiC化学気相成長装置の断面模式図であり、簡単のために炉体の下部は図示していない。 本発明の他の実施形態であるSiC化学成長装置を模式的に説明する断面模式図であり、炉体が横型のSiC化学気相成長装置の断面模式図である。
以下、本発明を適用したSiC化学気相成長装置について、図を適宜参照しながら詳細に説明する。
なお、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。また、以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
図1を参照して、本発明の第1実施形態のSiC化学気相成長装置100の一例について説明する。
第1実施形態のSiC化学気相成長装置100は、成長空間を構成する炉体10と、炉体10内に備えられ、SiCウェハを載置する載置台20と、炉体10内へ原料ガスを導入するガス導入管30と、ガス導入管30の周囲に配置されたヒートシールド40と、ヒートシールド40の貫通孔41に冷却ガスを供給する冷却ガス供給口50とを備える。さらに、ヒートシールド40を冷やすための冷却ガスが供給される空間と反応空間の仕切り板42(以下、仕切り板42と呼ぶ)を備えてもよい。ここで、反応空間とは、SiCエピタキシャル成長を行うために原料ガスが供給されている空間を意味する。仕切り板42は、成膜ガスが反応空間から冷却ガス導入空間に流入することを防ぐ。図1では、ヒートシールド40を冷やすための冷却ガスが供給される空間は、仕切り板42によって反応空間と完全に分離されている。この場合、SiC化学気相成長装置100は、ヒートシールド40を冷やし終えた冷却ガスが、炉体10の外へ流れ出る流路を有する(図視略)。また、後述するように、ヒートシールド40を冷やすための冷却ガスが供給される空間は、炉体10の反応空間と完全に分離されている必要はなく、接続されていてもよい。炉体10はガスを排出する排出口60を有する。載置台20上にSiCウェハWを載置し、SiC化学気相成長装置を動作させることで、SiCウェハWの表面にSiCエピタキシャル膜を成長させる。
なお、図1は、成長用の基板を下側に配置し、上側から原料ガスを供給して、上から下へ原料ガスを流通してエピタキシャル成長を行う縦型の配置の化学気相成長装置である。本発明は、当該縦型の配置の化学気相成長装置に限られず、横型の配置の化学気相成長装置でもよい(図11参照)。
SiC化学気相成長装置100は、ガス導入管30の周囲にヒートシールド40を備える。ヒートシールド40は、輻射を低減する効果を有し、ガス導入管30の温度上昇を抑制する。そのため、ガス導入管30内で原料ガスが分解し、原料ガス起因のSiC付着物の生成を抑制することができる。また、輻射の低減による温度上昇の抑制であるため、例えば、ガス導入管を水冷等で冷却するような極端な温度変化を生じさせない。そのため、緩やかな温度勾配による温度上昇の抑制が可能となり、炉体内のガスの対流や拡散を抑制することができる。
ここで、ヒートシールド40を設けることで、ガス導入管30の温度上昇を抑制できる原理について説明する。SiCウェハW上にSiCエピタキシャル膜をエピタキシャル成長させる際には、1200℃程度以上の温度が必要であることが知られ、特に電子デバイスで用いられる4H−SiCは1500℃程度以上の高温が一般的に用いられている。すなわち、このような高温の条件下では、数μm程度の非常に大きな波長(赤外線波長)を有する電磁波が発生しており、この電磁波による伝熱が熱輻射である。
伝熱は大きく分けて、熱伝導、熱伝達、熱輻射の三パターンにより形成されるが、熱輻射による伝熱を阻害することができれば、ガス導入管30の温度上昇を抑制することができる。
電磁波は、異なる物質同士の境界面で、透過、吸収及び反射する。すなわち、ガス導入管30の周囲に、異なる物質の境界面を形成することが出来れば、電磁波による伝熱を阻害し、ガス導入管30が高温になることを抑制することができる。ヒートシールド40は、このような境界面を提供する。
ヒートシールド40を構成する材質としては、1000度以上の耐熱性を有すれば、特に限定されない。例えば、無垢のカーボン、SiCコートカーボン、TaCコートカーボン等のカーボン部材、TaC、NbC、WC等の金属炭化物、SiC等を用いることができる。
またヒートシールド40を複数備えることが好ましい。ヒートシールド40が複数あれば、それだけヒートシールド40による電磁波の反射及び吸収が行われ、より輻射を低減することができる。またヒートシールド40が複数あることで、温度変化をより段階的なものとすることができる。そのため、より炉体内のガスの対流や拡散を抑制することができる。
ヒートシールド40の厚みは、1mm以上30mm以下であることが好ましい。ヒートシールド40の厚みが1mm以上だと、ヒートシールド40内の熱伝導により、面内方向の温度分布を均一にすることができる。すなわち、局所的に温度が高くなることを抑制することができる。ヒートシールド40による面内均一性を高める効果は、ヒートシールド40の厚みを非常に厚くしても大きく変わるものではない。そのため、30mm以下とすることが効率的である。また、ヒートシールド40の厚みがこの範囲内であれば、強度も十分であり、かつ後述する貫通孔41等の加工も容易となる。
仕切り板42を構成する材質としては、1000度以上の耐熱性を有すれば、特に限定されない。例えば、無垢のカーボン、SiCコートカーボン、TaCコートカーボン等のカーボン部材、TaC、NbC、WC等の金属炭化物、SiC等を用いることができる。
なお、仕切り板42は熱輻射による伝熱を阻害する。すなわちヒートシールドとしても働きうる。しかし、仕切り板42として機能させるために、その形状が炉の形状やガス導入構造に応じて制限される。例えば厚みが大きすぎる箇所や、小さすぎる箇所ができてしまうことがある。そのため、必ずしもヒートシールド40としての機能を十分有さない場合もある。
図2は、本発明の一実施形態に係るSiC化学気相成長装置に用いられるヒートシールド40を平面視した図である。SiC化学気相成長装置100として使用する際には、図2のヒートシールド40の中央部には、ガス導入管30が配置される。
ヒートシールド40は貫通孔41を有し、この貫通孔41には冷却ガス供給口50から導入された冷却ガスを供給することができる。貫通孔41は、円形でも四角形でもよく、その形状を問わない。またヒートシールド40にランダムに配置されていても、規則的に配置されていてもよい。貫通孔41の加工方法は、特に問わず、一般に使用される機械加工等を用いることができる。
ヒートシールド40が貫通孔41を有し、その貫通孔に冷却ガスを供給することで、ヒートシールド40自体が熱を有し、ヒートシールド40からの熱伝導によりガス導入管30の温度が高くなることを抑制できる。
なお、ヒートシールド40は、ガス導入管30の周囲に配置されるものであって、図2の中央のガス導入管30が配置されるための穴は、貫通孔41ではない。
冷却ガスとしては、例えば、H、Ar、He、等を用いることができる。また、HCl等のエッチングガス、N等の不純物ドーピングガスを添加することもできる。これらのガスは分解による堆積物の付着の恐れがなく、冷却ガスに添加しても悪影響がない。
また貫通孔41のガスの流れ方向に対して垂直な方向の断面積は、貫通孔1個あたり100mm以下であることが好ましい。また5mm以上であることが好ましい。貫通孔の断面積が小さければ、それだけ輻射によりガス導入管30が高温になることを抑制する効果を高めることができる。また貫通孔41の断面積が、5mm以上であれば、冷却ガスが貫通孔41を十分通過することができ、ヒートシールド40を効率的に冷却する事ができる。
図3は、本発明の一態様に係るSiC化学気相成長装置に用いられるヒートシールドの一例であり、貫通孔を通るように切断した断面の模式図である。
ヒートシールド40の貫通孔41は、ヒートシールド40の厚さ方向に対して傾きを有していることが好ましい。ヒートシールド40の厚さ方向とは、図3のZ方向を意味する。貫通孔41がヒートシールド40の厚さ方向に対して傾きを有すると、平面視した際にヒートシールド40が形成されていない部分の面積をより少なくすることができ、輻射によるガス導入管が高温になることをより抑制することができる。また貫通孔41の内表面の面積が大きくなるため、ヒートシールド40をより効率的に冷やすことができる。そのため、ヒートシールド40からの熱伝導によりガス導入管30が高温になることを抑制することができる。
貫通孔41の傾斜角は、ヒートシールドの厚みによって異なるが、平面視した際に貫通孔を通して反対側が見えなくなる程度傾けることが好ましい。
図4は、本発明の一態様に係るSiC化学気相成長装置に用いられるヒートシールドの一例であり、ヒートシールドが複数からなる場合の断面模式図である。
図4に示すように、ヒートシールド40が複数ある場合、隣り合うヒートシールド40の貫通孔41が平面視で重ならないことが好ましい。ヒートシールド40が複数あり、隣り合うヒートシールド40の貫通孔41が平面視で重ならなければ、輻射を伝播する電磁波が障壁無く通過できる部分を無くすことができ、より輻射によりガス導入管が高温になることを抑制できる。
ヒートシールド40は、平面視円形であり、円形のヒートシールドの中央部から外周部に渡ってスリットが設けられていることが好ましい。図5は、本発明の一態様に係るSiC化学気相成長装置に用いられるヒートシールドの一例であり、ヒートシールドがスリットを有する場合の平面模式図である。ここで、円形とは、概略円形の形状を有していればよく、円盤及び円環の両方を含む。また「中央部」とは、円環の場合は、円環の内周部を意味し、円盤の場合は中心付近を意味する。ヒートシールド40に形成されたスリットは、熱応力を緩和することが目的であるため、中心付近とは完全に中心である必要はない。
ヒートシールド40は、SiCエピタキシャル膜を成長させる際に、加熱により熱応力を受け、ヒートシールド40の破損等を招く。しかしながら、ヒートシールド40がスリットを有すれば、このスリットにより熱応力を緩和することができるため、装置の耐久性を高めることができる。またスリットを1箇所のみに設けることで、一方の端面から他方の端面まで分離することなく連続した1つの部材とすることができ、設置等が容易になり作業性を高めることができる。また円形であることで、全方位に対して均等に応力を分散させることができ、より破損を避けることができる。また炉体10の上面(図視Y方向)の形状が円形の場合は、隙間なくヒートシールド40を設けることができ、より熱輻射を抑制することができる。
またこのヒートシールド40に形成されたスリットは、貫通孔41を兼ねることができる。そのため複数のヒートシールド40を積層する場合は、スリットが形成されている位置をヒートシールド40毎にずらしておくことが好ましい。スリット位置をずらして、ヒートシールド40を積層することで、熱源からの輻射の漏れを抑制し、熱効率を高めることができる。
ヒートシールド40の形状は、図2の構造に限られない。また後述するが、ガス導入管30が複数ある場合は、図7に示すように円盤状の形状としてもよい。さらに、炉体10の上面(図視Y方向)の形状が円形以外の場合には、炉体10の上面の形状に合わせてもよい。隙間なくヒートシールド40を設けることにより、より熱源からの輻射の漏れを抑制し、熱効率を高めることができる。
上述のように、SiC化学気相成長装置100は、ヒートシールド40を有し、そのヒートシールド40が貫通孔41を介して冷却ガスにより冷やされることで、ガス導入管30温度を700℃〜1100℃程度にすることができる。この温度領域であれば、原料ガスが分解し、ガス導入管30に付着物を発生させることを抑制することができる。また1200℃〜1500℃程度まで加熱される載置台20との温度差も、水冷等で冷却する場合と比較して大きくなく、ガスの対流や拡散を抑制することができる。
ガス導入管30は、図1に示すように、その導入口32がテーパー形状を有していることが好ましい。原料ガスは、ガス導入路31を通り、導入口32から炉体10内部に供給される。ガス導入管30の導入口32がテーパー形状を有していることで、ガス導入管30の導入口32付近での乱流を防ぐことができる。乱流を防ぐことができると、ガス導入管30の導入口32内壁へ原料ガスが巻上がることを抑制し、ガス導入管30の導入口32付近に付着物が付着することを抑制することができる。
原料ガスは、Si系原料ガス、C系原料ガスを用いる。
Si系原料ガスとしては、例えばシラン系ガスとして、シラン(SiH)を用いることができるほか、SiHCl、SiHCl、SiClなどのエッチング作用があるClを含む塩素系Si原料含有ガス(クロライド系原料)を用いることもできる。また、例えばシランに対してHClを添加したガスを用いてもよい。
C系原料ガスとしては、例えばプロパン(C)等を用いることができる。
またこれらのガスと同時に、第3のガスとしてパージガスを供給しても良い。パージガスは、SiやCを含まないガスであり、Hを含むエッチング作用があるガスのほか、Ar,Heなどの不活性ガス(希ガス)を用いることもできる。またSiCウェハW上に積層されるSiCエピタキシャル膜の導電型を制御する場合、不純物ドーピングガスを同時に供給することもできる。例えば、導電型をn型とする場合にはN、p型とする場合にはTMA(トリメチルアルミニウム)を用いることができる。
Si系原料ガス、C系原料ガス、HCl、パージガス、不純物ドーピングガスは、それぞれ分離して供給しても、混合して供給してもよい。
このとき導入口32のテーパーの勾配角θは、ガス導入路31の延長線に対して5°以上45°以下であることが好ましく、10°以上30°以下であることがより好ましい。テーパーの勾配角θが5°以上45°以下であれば、ガスの回り込みを十分防ぐことができ、導入口32に堆積物が付着することを効率的に抑制することができる。
また導入口32の炉体10側の終端部の断面積S32は、ガス導入路31の導入口32直前の断面積S31に対して、1.5倍以上6倍以下であることが好ましく、2倍以上4倍以下であることがより好ましい。ガス導入管30の形状が当該形状であれば、ガス流量の変化を所定の範囲内とすることができ、ガスの回り込みを十分防ぐことができる。すなわち、導入口32に堆積物が付着することを効率的に抑制することができる。
ガス導入管30から炉体10内部に供給されるガスのガス導入路31における平均流速(流量/断面積S31)は、0.001m/s〜100m/sであることが好ましく、0.01m/s〜10m/sであることがより好ましい。ガスの流速を当該範囲とすることで、導入口32付近での乱流の発生を抑制することができる。すなわち、導入口32に堆積物が付着することを効率的に抑制することができる。
またガス導入管30は、複数備えられていることが好ましい。図6は、複数のガス導入管を有する場合のSiC化学気相成長装置100の断面模式図であり、簡単のために炉体10の下部は図示していない。ガス導入管30が複数あれば、原料ガスを炉体10内へ分散導入することができ、ガス導入管30ごと供給する原料ガスの量を少なくすることができる。すなわち、各ガス導入管30に付着する堆積物の量を少なくすることができる。
また図6に示すように、複数のガス導入管30は、その一部がSi系原料ガスを炉体10内へ導入するSi系原料ガス導入管30sであり、別の一部がC系原料ガスを炉体10内へ導入するC系原料ガス導入管30cであり、Si系原料ガス導入管30sとC系原料ガス導入管30cはそれぞれ分離されていることが好ましい。ここで、「一部」とは、Si系原料ガス30s及びC系原料ガス30cがそれぞれ領域ごとに形成されていてもよく、またSi系原料ガス30s及びC系原料ガス30cが領域を形成するように配置されず、一つ一つがランダムで配置されても良い。SiCウェハW上に均一にSiCエピタキシャル膜を成長させるためには、Si系原料ガス30s及びC系原料ガス30cが領域を形成せずに、一つ一つがランダムで配置されていることが好ましい。
図6に示すように、原料ガスを分離して導入することで、不要なSiC生成物がガス導入管30sや炉体10内壁面等に形成されることを抑制することができる。
またSi系原料ガス導入管30sとC系原料ガス導入管30cを分離して設ける場合、少なくともSi系原料ガス導入管30sの導入口32sがテーパー形状を有していることが好ましい。Si系原料ガスとして用いられるシラン、ジシラン、ジクロロシラン、トリクロロシランや四塩化珪素等が分解することによってSiが生成される温度はC系原料の生成物生成温度よりも比較的低いため、Si堆積物を形成しやすい。そのため、少なくともSi系原料ガス導入管がテーパー形状を有することが好ましい。当該構造とすることで、当該Si堆積物の付着を効率的に抑制することができる。
またSi系ガス導入管30sの導入口32sだけでなく、C系原料ガス導入管30cの導入口32cもテーパー形状を有することが好ましい。
Si堆積物と比較すると、C堆積物は堆積し難いが、Si系ガス導入管30sの導入口32s及びC系原料ガス導入管30cの導入口32cをテーパー形状とすることで、より堆積物の付着を抑制し、パーティクルの発生を抑制することができる。
図7は、本発明の一実施形態に係るSiC化学気相成長装置が複数のガス導入管30を有する場合に用いられるヒートシールド40を平面視した図である。ガス導入管30が複数ある場合、それぞれのガス導入管30の周囲に、図2で図示したような円環状のヒートシールド40を設けてもよい。また、図7に示すように、全体として大きな円盤状として、その中に複数のガス導入管30(図6の構成の場合は、Si系ガス導入管30sとC系ガス導入管30c)を通すための穴を設ける構成としてもよい。
また、図8に示すように、ヒートシールドが分割されており、それぞれのヒートシールドが別々のガス導入管を取り囲むような構成としてもよい。図8では2分割の構成としているが、いくつに分割してもよい。
またガス導入管30は、外管33によって覆われ、ガス導入管30と外管33とが二重管構造を構成し、ガス導入管30と外管33との間からガス導入管30の周囲に冷却ガスを供給することができる構成であることが好ましい。
図9は、ガス導入管30が外管33によって覆われ、ガス導入管30と外管33とが二重管構造の断面模式図である。簡単のために一つのガス導入管30を含む二重構造の周囲のみを図示した。図9に示すように、ガス導入管30の内部から原料ガスgが炉体10内に導入され、ガス導入管30と外管33との間からガス導入管30の周囲に冷却ガスを導入する。冷却ガスを通す外管33が内管であるガス導入管30を覆っており、ヒートシールド40が直接ガス導入管30と接触することを避けることができる。すなわち、ヒートシールド40からガス導入管30への熱伝導を阻害することができる。
また、この外管33から供給される冷却ガスを炉体10内に供給できる構成とすることが好ましい。内管であるガス導入管30から炉体10内に導入される原料ガスgが、冷却ガスによってガス導入管に再度回り込むことを防ぐことができる。すなわち、ガス導入管30の導入口に堆積物が付着を効果的に抑制することができる。
外管33から供給される冷却ガスとしては、例えば、H、Ar、He、等を用いることができる。また、HCl等のエッチングガス、N等の不純物ドーピングガスを添加することもできる。これらのガスは分解による堆積物の付着の恐れがなく、冷却ガスに添加しても悪影響がない。
図9に示すように、外管33から冷却ガスを供給する場合、炉体内への導入口は、テーパー形状を有していることが好ましい。ガス導入管30及び外管33がテーパー形状を有することで、より滑らかに冷却ガスを流すことができる。これにより乱流の発生を抑制し、ガス導入管30の導入口に堆積物が生じることをより効果的に抑制することができる。
また外管33のテーパーの勾配角は、ガス導入管30のテーパーの勾配角と同一であることが好ましい。外管33とガス導入管30のテーパーの勾配角が同一であれば、不要な乱流の発生を抑制することができる。
またヒートシールド40を冷やすための冷却ガスが供給される空間は、炉体10の反応空間と完全に分離されている必要はない。例えば、図10に示すように、接続されていてもよい。ここで、反応空間とは、SiCエピタキシャル成長を行うために、原料ガスが供給されている空間を意味する。
冷却ガスが供給される空間と反応空間の仕切り板42に貫通孔を形成することで、貫通孔を通して、冷却ガスを反応空間へ流すことができる。そのため、ガス導入管30の周囲の仕切り板42に、複数の冷却ガス通過用貫通孔34が形成されていることが好ましい。複数の冷却ガス通過用貫通孔34は、小さな穴が多数あいたシャワーヘッド状に形成され、冷却ガスが供給される空間と反応空間に圧力差があることにより各穴からガスを均一に反応空間に流す構造になっていることが、より好ましい。
図10は、ガス導入管30の周囲に複数の冷却ガス通過用貫通孔34が設けられている場合のSiC化学気相成長装置の断面模式図であり、簡単のために炉体10の下部は図示していない。
図10に示すように、ガス導入管30の周囲にシャワーヘッド状の冷却ガス通過用貫通孔34が形成されていると、冷却ガス供給口50から供給された冷却ガスが成膜処理前室(ヒートシールド40を冷やすための冷却ガスが供給される空間)35に供給される。成膜処理前室35は、冷却ガスで充填されているため、ヒートシールド40を効率的に冷却することができる。
また冷却ガスがさらに供給され、成膜処理前室35内部の圧力が高くなると、冷却ガス通過用貫通孔34を介して、冷却ガスが炉体10内部に供給される。すなわち、ガス導入管30の周囲から冷却ガスがシャワー状に供給される。冷却ガス通過用貫通孔34から炉体10内に供給される冷却ガスによって、原料ガスgがガス導入管30に再度回り込むことを防ぐことができる。すなわち、ガス導入管30の導入口32に堆積物が付着することをより効果的に抑制することができる。
なお、図10では、ガス導入管30が3つの場合を例示したが、当該数には限られず一つでも、より複数でもよい。
冷却ガス供給口50は、ヒートシールド40の貫通孔に冷却ガスを供給することができれば特に形状は問わない。図1及び図10に示すように一つでもよく、複数でもよい。また冷却ガスが、上流から下流に向けて全てのヒートシールド40を通るように、冷却ガス供給口50は全てのヒートシールド40より載置台20の反対側(図1のY方向)に設けることが好ましい。
冷却ガスは、ヒートシールド40を冷却する事が出来れば、そのガス種は問わないが、H、Ar、Heからなる群から選ばれる1種以上のガスであることが好ましい。これらのガスは、SiCエピタキシャル成長において、エッチングガスやキャリアガスとして機能することができ、ヒートシールド40を冷やすための冷却ガスが供給される空間と反応空間が接続されている時でも、好適に用いることができる。
また、HCl等のエッチングガス、N等の不純物ドーピングガスを添加することもできる。これらのガスは分解による堆積物の付着の恐れがなく、冷却ガスに添加しても悪影響がない。
炉体10は、成長室を構成する中空部を有する。原料ガスは、炉体10にガス導入管30から導入され、ガス排出口60から排出される。また中空部内に、載置台20が設置され、その載置台20上にSiCウェハWを載置し、SiCエピタキシャル膜を成膜することができる。炉体10は特に限定されるものではないが、SUS等の金属によって構成されていることが一般的である。
載置台20は、SiCウェハWを載置するサセプタ21と、サセプタ21上に載置されたSiCウェハWを加熱する加熱機構22とを有する構成とされている。サセプタ21は、上面がSiCウェハWの載置面となっており、内部に加熱機構22が配置される空間が形成されている。サセプタ21には下方に延びる管状の支持軸が備えられ、この支持軸が図示しない回転機構に連結されることで回転可能とされている。加熱機構22は、SiCウェハWの載置面と対向するヒーターなどによって構成されており、サセプタ21内に設置されている。加熱機構22には、サセプタ21の支持軸内部を通して外部から通電されている。
ガス排出口60は、炉体10のうち載置台20におけるSiCウェハWの載置面よりも下方に配置されており、SiCウェハWを通過した後の未反応ガスを排出する。またこのガス排出口60からは真空吸引が行えるようになっており、炉体10内部の雰囲気圧力を適宜調整することができる。
またこれらの他、炉体10の載置台20からガス導入管30の間を加熱するヒーター(図視略)等を適宜設けてもよい。ヒーターを設けることにより、炉体10内の温度分布を適切に調整することが可能となり、ガスの対流や拡散をより抑制することができる。
また上述の実施形態では、縦型の炉体構造を有するSiC化学気相成長装置を図示した。しかし、本発明は当該縦型に限らず、図11に示すように横型の炉体構造を有するSiC化学気相成長装置においても適用することができる。また、図示していないが縦型でガス導入管を下側に配置した上下逆の配置の場合にも適用することができる。いずれも本発明により原料ガスの過分解や対流、拡散を防ぐことができる。ただし、温度勾配による対流は、上下の温度差によって生じることが多い。従って対流はガス導入管と載置台に温度差が生じやすい縦型の炉体構造において発生しやすいため、本発明は縦型の炉体構造において特に有用である。またガス導入管の導入口等に堆積した付着物は、重力により下部にパーティクルとして落下することが考えられるため、この点においても縦型の炉体構造において特に有用である。
以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
本発明のSiC化学気相成長装置は、ガス導入管内での反応ガスの分解、温度分布によるガスの対流や拡散を抑制することができ、均質かつ欠陥の少ないSiCエピタキシャルウェハを製造することができる。これらのSiCエピタキシャルウェハは、例えば、パワーデバイス、高周波デバイス、高温動作デバイス等に用いることができる。
100:SiC化学気相成長装置、10:炉体、20:載置台、21:サセプタ、22:加熱機構、30:ガス導入管、31:ガス導入路、32:ガス導入口、32a:ガス導入端、30s:Si系原料ガス導入管、32s:導入口、30c:C系原料ガス導入管、32c:導入口、33:外管、34:冷却ガス通過用貫通孔、35:成膜処理前室、40:ヒートシールド、41:貫通孔、50:冷却ガス供給口、60:ガス排出口、g:原料ガス、Si:Si系原料ガス、C:C系原料ガス、W:SiCウェハ

Claims (11)

  1. 成長空間を構成する炉体と、
    前記炉体内に備えられ、SiCウェハを載置する載置台と、
    前記炉体内へ原料ガスを導入するガス導入管と、
    前記ガス導入管の周囲に配置され、貫通孔を有するヒートシールドと、
    前記ヒートシールドの貫通孔に冷却ガスを供給できる冷却ガス供給口とを備え、
    前記ガス導入管は、ガス導入路とガス導入口とを備え、
    前記ヒートシールドは複数あり、ガス導入口の周囲を囲んでいることを特徴とする、
    SiC化学気相成長装置。
  2. 前記貫通孔のガスの流れ方向に対して垂直な方向の断面積が、貫通孔1個あたり100mm以下であることを特徴とする請求項1に記載のSiC化学気相成長装置。
  3. 前記貫通孔が、前記ヒートシールドの厚さ方向に対して傾きを有することを特徴とする請求項1または2のいずれかに記載のSiC化学気相成長装置。
  4. 前記ヒートシールドが複数あり、隣り合うヒートシールドの貫通孔が平面視で重ならないことを特徴とする請求項1に記載のSiC化学気相成長装置。
  5. 前記ヒートシールドが平面視円形であり、前記円形のヒートシールドの中央部から外周部にわたってスリットが設けられていることを特徴とする請求項1〜4のいずれか一項に記載のSiC化学気相成長装置。
  6. 前記冷却ガスとして、H、Ar、Heからなる群から選ばれる1種以上のガスを用いることを特徴とする請求項1〜5のいずれか一項に記載のSiC化学気相成長装置。
  7. 前記ガス導入管が複数備えられていることを特徴とする請求項1〜6のいずれか一項に記載のSiC化学気相成長装置。
  8. 複数の前記ガス導入管は、その一部がSi系原料ガスを前記炉体内へ導入するSi系原料ガス導入管であり、別の一部がC系原料ガスを前記炉体内へ導入するC系原料ガス導入管であり、
    前記Si系原料ガス導入管と前記C系原料ガス導入管はそれぞれ分離されていることを特徴とする請求項1〜7のいずれか一項に記載のSiC化学気相成長装置。
  9. 前記ガス導入管を覆う外管を備え、
    前記ガス導入管と外管が二重構造を構成し、
    前記ガス導入管と外管の間から前記ガス導入管の周囲に冷却ガスを供給できることを特徴とする請求項1〜8のいずれか一項に記載のSiC化学気相成長装置。
  10. 前記ガス導入管が前記載置台の上部に配置された縦型の炉体構造を備える請求項1〜9のいずれか一項に記載のSiC化学気相成長装置。
  11. 冷却ガスが供給される空間と反応空間を仕切る仕切り板を備え、前記ヒートシールドが、前記冷却ガスが供給される空間内の前記ガス導入管の周囲に配置されることを特徴とする請求項1〜10のいずれか一項に記載のSiC化学気相成長装置。
JP2015041306A 2015-03-03 2015-03-03 SiC化学気相成長装置 Active JP6376700B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041306A JP6376700B2 (ja) 2015-03-03 2015-03-03 SiC化学気相成長装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041306A JP6376700B2 (ja) 2015-03-03 2015-03-03 SiC化学気相成長装置

Publications (2)

Publication Number Publication Date
JP2016162921A JP2016162921A (ja) 2016-09-05
JP6376700B2 true JP6376700B2 (ja) 2018-08-22

Family

ID=56845432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041306A Active JP6376700B2 (ja) 2015-03-03 2015-03-03 SiC化学気相成長装置

Country Status (1)

Country Link
JP (1) JP6376700B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699865B (zh) * 2017-11-10 2024-04-19 西安鑫垚陶瓷复合材料股份有限公司 一种气相沉积炉用均匀进气的装置
WO2020105212A1 (ja) * 2018-11-20 2020-05-28 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造装置
JP7190894B2 (ja) * 2018-12-21 2022-12-16 昭和電工株式会社 SiC化学気相成長装置
EP4261870A1 (en) 2020-12-14 2023-10-18 NuFlare Technology, Inc. Vapor-phase growth apparatus and vapor-phase growth method
WO2022130926A1 (ja) 2020-12-14 2022-06-23 株式会社ニューフレアテクノロジー 気相成長装置及び気相成長方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345617B2 (ja) * 2004-09-01 2009-10-14 トヨタ自動車株式会社 Cvd装置
JP4004510B2 (ja) * 2005-03-23 2007-11-07 有限会社マテリアルデザインファクトリ− 触媒cvd装置
JP2011077502A (ja) * 2009-09-04 2011-04-14 Hitachi Kokusai Electric Inc 熱処理装置
JP2011082326A (ja) * 2009-10-07 2011-04-21 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板の製造方法及び基板処理装置。
JP6065762B2 (ja) * 2013-06-21 2017-01-25 株式会社デンソー 炭化珪素半導体成膜装置およびそれを用いた成膜方法

Also Published As

Publication number Publication date
JP2016162921A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6376700B2 (ja) SiC化学気相成長装置
JP6065762B2 (ja) 炭化珪素半導体成膜装置およびそれを用いた成膜方法
JP6101591B2 (ja) エピタキシャルウェハの製造装置および製造方法
WO2017150400A1 (ja) 成膜装置
JP6362266B2 (ja) SiCエピタキシャルウェハの製造方法及びSiCエピタキシャル成長装置
JP2010232624A (ja) Iii族窒化物半導体の気相成長装置
JP7419779B2 (ja) サセプタ及び化学気相成長装置
US11692266B2 (en) SiC chemical vapor deposition apparatus
JP2016050164A (ja) SiC化学気相成長装置
JP6562546B2 (ja) ウェハ支持台、ウェハ支持体、化学気相成長装置
JP6601956B2 (ja) ウェハ支持台とそれを備えたSiCエピタキシャルウェハの製造装置および製造方法
US11390949B2 (en) SiC chemical vapor deposition apparatus and method of manufacturing SiC epitaxial wafer
JP2012216744A (ja) 気相成長装置及び気相成長方法
JP6836965B2 (ja) 成膜装置
JP2013026358A (ja) シャワープレート及び気相成長装置
US11326275B2 (en) SiC epitaxial growth apparatus having purge gas supply ports which surround a vicinity of a raw material gas supply port
JP6335683B2 (ja) SiCエピタキシャルウェハの製造装置
JP2021031336A (ja) SiC化学気相成長装置
JP6540270B2 (ja) 炭化珪素半導体のエピタキシャル成長装置
JP5251720B2 (ja) 化学気相成長半導体膜形成装置および化学気相成長半導体膜形成方法
JP4758385B2 (ja) 気相成長装置及び気相成長方法
JP2013171972A (ja) 気相成長装置および気相成長方法
JP5482669B2 (ja) 炭化珪素単結晶の製造装置
JP2017011184A (ja) 炭化珪素半導体のエピタキシャル成長装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6376700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250