JP6373764B2 - Electrolytic copper foil and surface-treated copper foil obtained using the electrolytic copper foil - Google Patents

Electrolytic copper foil and surface-treated copper foil obtained using the electrolytic copper foil Download PDF

Info

Publication number
JP6373764B2
JP6373764B2 JP2014559735A JP2014559735A JP6373764B2 JP 6373764 B2 JP6373764 B2 JP 6373764B2 JP 2014559735 A JP2014559735 A JP 2014559735A JP 2014559735 A JP2014559735 A JP 2014559735A JP 6373764 B2 JP6373764 B2 JP 6373764B2
Authority
JP
Japan
Prior art keywords
copper foil
electrolytic copper
mpa
tensile strength
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014559735A
Other languages
Japanese (ja)
Other versions
JPWO2014119656A1 (en
Inventor
咲子 朝長
咲子 朝長
三宅 行一
行一 三宅
和貴 穂積
和貴 穂積
弘明 中原
弘明 中原
柴田 泰宏
泰宏 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2014119656A1 publication Critical patent/JPWO2014119656A1/en
Application granted granted Critical
Publication of JP6373764B2 publication Critical patent/JP6373764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Description

本件出願は、電解銅箔及びその電解銅箔を用いて得られる表面処理銅箔に関する。特に、高温加熱を受けた際の高温耐熱特性に優れた電解銅箔に関する。 The present application relates to an electrolytic copper foil and a surface-treated copper foil obtained using the electrolytic copper foil. In particular, the present invention relates to an electrolytic copper foil having excellent high temperature heat resistance when subjected to high temperature heating.

電解銅箔は、プリント配線板分野、リチウムイオン二次電池の負極集電体等の種々の分野において広く使用されている。そして、プリント配線板において、銅箔と絶縁層構成材とを張り合わせる際の加工温度として250℃を超える非常に高い温度が採用される場合があり、高温負荷を受けた電解銅箔が軟化し物理的強度が低下するため、種々の問題が生じていた。また、リチウムイオン二次電池の負極集電体として電解銅箔を用いる場合には、電解銅箔の表面に負極活物質を含む合剤層を形成する際に300℃前後の高温が負荷されることがある。このとき負極集電体に用いた電解銅箔が軟化すると、充電・放電を行う際の膨張・収縮に対する抵抗力が低下し、リチウムイオン二次電池の短命化を招くことがある。そのため、高温加熱を受けた際の高温耐熱特性に優れた電解銅箔に関する研究が行われてきた。   Electrolytic copper foil is widely used in various fields such as the printed wiring board field and the negative electrode current collector of lithium ion secondary batteries. And in printed wiring boards, a very high temperature exceeding 250 ° C may be adopted as the processing temperature for bonding the copper foil and the insulating layer constituent material, and the electrolytic copper foil subjected to a high temperature load softens. Since the physical strength is reduced, various problems have occurred. Moreover, when using an electrolytic copper foil as a negative electrode current collector of a lithium ion secondary battery, a high temperature of about 300 ° C. is applied when a mixture layer containing a negative electrode active material is formed on the surface of the electrolytic copper foil. Sometimes. If the electrolytic copper foil used for the negative electrode current collector is softened at this time, the resistance to expansion / contraction during charging / discharging is reduced, which may shorten the life of the lithium ion secondary battery. For this reason, research has been conducted on electrolytic copper foils that are excellent in high temperature heat resistance when subjected to high temperature heating.

例えば、特許文献1には、長時間保管後も高強度を維持し、加熱後も高強度で、かつ電気伝導性に優れた電解銅箔の提供を目的として、「(A)ジチオカルバミン酸誘導体又はその塩、(B)チオ尿素、(C)メルカプト基を有する水溶性イオウ化合物又はその誘導体又はそれらの塩、(D)ポリアルキレングリコール及び(E)塩素イオンを添加剤として含有する硫酸酸性銅めっき液を電気分解することにより電解銅箔を製造する。」ことが開示されている。そして、特許文献1の請求項1をみると、「電着終了後120分以内に、240℃で10分間加熱後、20℃において引張り強さ及び電気伝導性を測定したとき、引張り強さが650MPa以上で、電気伝導性が80%IACS以上であり、電着終了から168時間後に測定した20℃における引張り強さが、電着終了後120分以内に測定した20℃における引張り強さの90%以上であり、電着終了後120分以内に測定した20℃における伸び率が3%以上である電解銅箔。」が得られることが開示されている。   For example, in Patent Document 1, for the purpose of providing an electrolytic copper foil that maintains high strength even after storage for a long time, has high strength after heating, and is excellent in electrical conductivity, “(A) a dithiocarbamic acid derivative or A salt thereof, (B) thiourea, (C) a water-soluble sulfur compound having a mercapto group or a derivative thereof, or a salt thereof, (D) polyalkylene glycol and (E) an acidic copper plating containing chlorine ions as additives Electrolytic copper foil is produced by electrolyzing the liquid. " And when claim 1 of patent document 1 is seen, "When tensile strength and electric conductivity are measured at 20 degreeC after heating for 10 minutes at 240 degreeC within 120 minutes after completion | finish of electrodeposition, tensile strength is The tensile strength at 20 ° C. measured at 168 hours after completion of electrodeposition is 90% of the tensile strength at 20 ° C. measured within 120 minutes after completion of electrodeposition. It is disclosed that an electrolytic copper foil having an elongation percentage at 20 ° C. measured within 120 minutes after electrodeposition is 3% or more ”is obtained.

特許文献2には、Tape Automated Bonding工法に用いる電解銅箔材料として好適な低粗面を持ち、且つ、高抗張力を備えており、スズめっき剥がれが発生しない電解銅箔の提供を目的として、「硫酸−硫酸銅水溶液を電解液とし、白金族元素又はその酸化物で被覆したチタンからなる不溶性陽極と該陽極に対向するチタン製陰極ドラムとを用い、当該両極間に直流電流を通じる電解銅箔の製造方法において、前記電解液に非イオン性水溶性高分子、活性有機イオウ化合物のスルホン酸塩、チオ尿素系化合物及び塩素イオンを存在させることによって、粗面粗さが2.0μm以下であって、粗面側のX線回折により測定した220銅回折線相対強度から求められるオリエンテーションインデックスが5.0以上の結晶組織であって、180℃・1時間加熱後の抗張力が500MPaである電解銅箔を得る。」ことが開示されている。   In Patent Document 2, for the purpose of providing an electrolytic copper foil having a low rough surface suitable as an electrolytic copper foil material used in the Tape Automated Bonding method, having a high tensile strength, and tin plating does not peel off. An electrolytic copper foil in which a sulfuric acid-copper sulfate aqueous solution is used as an electrolytic solution, and an insoluble anode made of titanium coated with a platinum group element or an oxide thereof and a titanium cathode drum facing the anode are used to pass a direct current between the two electrodes In the production method of the present invention, a non-ionic water-soluble polymer, a sulfonate of an active organic sulfur compound, a thiourea compound, and a chlorine ion are present in the electrolytic solution, so that the rough surface roughness is 2.0 μm or less. A crystal structure having an orientation index of 5.0 or more determined from the relative intensity of 220 copper diffraction lines measured by X-ray diffraction on the rough surface side There, tensile strength after heating 180 ° C. · 1 hour to obtain an electrolytic copper foil is 500 MPa. "It has been disclosed.

特許文献3には、粗面が低粗度化され、時間経過又は加熱処理に伴う抗張力の低下率が低く、しかも高温における伸び率に優れた低粗面電解銅箔及びその製造方法の提供を目的として、「硫酸−硫酸銅水溶液からなる電解液にヒドロキシエチルセルロース、ポリエチレンイミン、アセチレングリコール、活性有機イオウ化合物のスルホン酸塩及び塩素イオンの五つの添加剤を存在させることより、電解銅箔の粗面粗さRzが2.5 μm 以下であり、電着完了時点から20分以内に測定した25℃における抗張力が500MPa以上であると共に、電着完了時点から300 分経過時に測定した25℃における抗張力の低下率が10%以下であり、又は、電着完了時点から100 ℃にて10分間加熱処理を施した後に測定した25℃における抗張力の低下率が10%以下であり、かつ、180 ℃における伸び率が6%以上である低粗面電解銅箔を得る。」ことが開示されている。   Patent Document 3 provides a low-roughened surface electrolytic copper foil having a low-roughened rough surface, a low rate of decrease in tensile strength with time or heat treatment, and an excellent elongation at high temperature, and a method for producing the same. The purpose of this was to make the electrolytic copper foil coarse by adding five additives of hydroxyethyl cellulose, polyethyleneimine, acetylene glycol, sulfonate of active organic sulfur compound and chloride ion to the electrolyte composed of sulfuric acid-copper sulfate aqueous solution. The surface roughness Rz is 2.5 μm or less, the tensile strength at 25 ° C. measured within 20 minutes from the completion of electrodeposition is 500 MPa or more, and the tensile strength at 25 ° C. measured after 300 minutes from the completion of electrodeposition. The rate of decrease in resistance is 10% or less, or the resistance at 25 ° C. measured after heat treatment at 100 ° C. for 10 minutes from the completion of electrodeposition. And the rate of decrease in force is 10% or less, and elongation at 180 ° C. to obtain a low roughened electrodeposited copper foil is 6% or more. "It has been disclosed.

特許文献4には、銅箔の製箔完了時から次の製造工程に移るまでの常温保管、または次工程における200〜300℃程度の加熱処理によっても銅箔が軟化せず、高い抗張力を維持する電解銅箔、並びにその製造方法の提供を目的として、「銅箔の製箔完了時から該銅箔の特性安定時以降の25℃で測定した抗張力が400N/mm以上である高抗張力電解銅箔。」を採用している。そして、この特許文献4の請求項3に開示されているように、「銅箔の製箔を完了し、該銅箔の特性が安定した後、該銅箔を300℃で1時間加熱処理し、該加熱処理後に25℃で測定した抗張力が400N/mm以上である高抗張力電解銅箔。」が開示されている。 In Patent Document 4, the copper foil does not soften even when stored at room temperature from completion of copper foil production to the next manufacturing process, or by heat treatment at about 200 to 300 ° C. in the next process, and maintains high tensile strength. For the purpose of providing an electrolytic copper foil and a method for producing the same, “a high tensile strength electrolysis having a tensile strength of 400 N / mm 2 or more measured at 25 ° C. after the completion of copper foil production and after the characteristics of the copper foil are stabilized” "Copper foil." And, as disclosed in claim 3 of Patent Document 4, “After completing the copper foil production and stabilizing the characteristics of the copper foil, the copper foil is heated at 300 ° C. for 1 hour. High tensile strength electrolytic copper foil whose tensile strength measured at 25 ° C. after the heat treatment is 400 N / mm 2 or more is disclosed.

特許文献5には、充放電サイクルを繰り返しても容量保持率の低下が起こらず高寿命で、負極集電体が変形しないリチウムイオン二次電池を作製可能なリチウムイオン二次電池負極用電解銅箔を供給することを目的として、「200〜400℃で加熱処理後の0.2%耐力が250N/mm以上、伸びが2.5%以上であり、該電解銅箔の活物質層を設ける表面は防錆処理が施され、或いは粗化処理され防錆処理が施されている。また本発明は前記電解銅箔を集電体とするリチウムイオン二次電池用電極」が開示されている。即ち、リチウムイオン二次電池の負極集電体として電解銅箔を用い、このときの電解銅箔の240℃×10分の加熱後の「0.2%耐力」を規定している。 Patent Document 5 discloses an electrolytic copper for a negative electrode of a lithium ion secondary battery that can produce a lithium ion secondary battery that has a long life without deterioration in capacity retention even when a charge / discharge cycle is repeated, and whose negative electrode current collector is not deformed. For the purpose of supplying the foil, “the 0.2% proof stress after the heat treatment at 200 to 400 ° C. is 250 N / mm 2 or more, the elongation is 2.5% or more, and the active material layer of the electrolytic copper foil is The surface to be provided is subjected to rust prevention treatment or roughening treatment and rust prevention treatment, and the present invention discloses an electrode for a lithium ion secondary battery using the electrolytic copper foil as a current collector. Yes. That is, an electrolytic copper foil is used as the negative electrode current collector of the lithium ion secondary battery, and “0.2% proof stress” after heating the electrolytic copper foil at 240 ° C. for 10 minutes is defined.

特許文献6には、ファインピッチ回路の形成用の電解銅箔であり、且つ、コルソン合金箔の代替え使用が可能な高強度電解銅箔の提供を目的として、「銅電解液を電解して得られる電解銅箔において、当該電解銅箔は、硫黄を110ppm〜400ppm、塩素を150ppm〜650ppm含有し、導電率が48%IACS以上、常態引張り強さの値が70kgf/mm以上であることを特徴とする電解銅箔」が開示されている。 In Patent Document 6, for the purpose of providing a high-strength electrolytic copper foil that is an electrolytic copper foil for forming a fine pitch circuit and that can be used in place of a Corson alloy foil, “obtained by electrolyzing a copper electrolyte” In the electrolytic copper foil to be obtained, the electrolytic copper foil contains 110 ppm to 400 ppm of sulfur, 150 ppm to 650 ppm of chlorine, the electrical conductivity is 48% IACS or more, and the value of normal tensile strength is 70 kgf / mm 2 or more. A featured electrolytic copper foil "is disclosed.

特許文献7には、従来の低プロファイル電解銅箔と同等の低プロファイルの表面を備え、且つ、極めて大きな機械的強度を備える電解銅箔及びその製造方法を提供することを目的として、「銅の析出結晶粒子が微細で、その粒子径のバラツキを従来に無い程に小さくした電解銅箔であって、低プロファイルで光沢を有する表面を備え、且つ、常態引張り強さの値が70kgf/mm〜100kgf/mmと極めて大きな機械的強度を有し、加熱(180℃×60分間)後でも、常態引張り強さの値の85%以上の引張り強さの値を備える電解銅箔。」が開示されている。 In Patent Document 7, for the purpose of providing an electrolytic copper foil having a low profile surface equivalent to that of a conventional low profile electrolytic copper foil and having extremely high mechanical strength, and a method for producing the same, “copper An electrolytic copper foil in which the precipitated crystal particles are fine and the variation in particle diameter is as small as ever, having a low profile, glossy surface, and a normal tensile strength value of 70 kgf / mm 2 An electrolytic copper foil having an extremely large mechanical strength of ˜100 kgf / mm 2 and having a tensile strength value of 85% or more of the normal tensile strength value even after heating (180 ° C. × 60 minutes) ”. It is disclosed.

特許文献8には、塩素含有量が変動しても、安定した諸特性を示す電解銅箔の提供を目的として、「銅電解液を電解することにより得られる電解銅箔であって、電解銅箔中のヨウ素含有量が0.003質量%以上であり、より好ましくは当該ヨウ素含有量が0.003質量%〜0.03質量%の範囲であることを特徴とする電解銅箔」を採用している。なお、この電解銅箔は、常態引張強さが48kgf/mm〜72kgf/mm、350℃×60分の加熱後の引張強さが27.5kgf/mm〜46.3kgf/mmという物理的特性を発揮しており、リチウムイオン二次電池の負極集電体用途に好適であることが開示されている。 Patent Document 8 discloses that for the purpose of providing an electrolytic copper foil that exhibits stable characteristics even when the chlorine content fluctuates, “an electrolytic copper foil obtained by electrolyzing a copper electrolyte, Adopting an electrolytic copper foil characterized in that the iodine content in the foil is 0.003% by mass or more, more preferably the iodine content is in the range of 0.003% to 0.03% by mass. doing. Incidentally, the electrolytic copper foil, normally tensile strength of 48kgf / mm 2 ~72kgf / mm 2 , 350 tensile strength after heating of ° C. × 60 minutes is referred to 27.5kgf / mm 2 ~46.3kgf / mm 2 It is disclosed that it exhibits physical characteristics and is suitable for use as a negative electrode current collector of a lithium ion secondary battery.

特開2012−140660号公報JP 2012-140660 A 特開2011−174146号公報JP 2011-174146 A 特開2004−339558号公報JP 2004-339558 A 特開2008−285727号公報JP 2008-285727 A 特開2012−151106号公報JP 2012-151106 A 特開2009−221592号公報JP 2009-221592 A 特開2008−101267号公報JP 2008-101267 A WO2012/002526号公報WO2012 / 002526

しかしながら、リチウムイオン二次電池の負極集電体に用いる電解銅箔に対し、充放電時に発生する負極集電体の変形を防止できる性能要求が高くなっている。特に、近年のリチウムイオン二次電池の負極の場合、充放電に伴う体積変化が大きい合金系負極活物質を用いることがある。当該合金系負極活物質を負極集電体に坦持させるためには、強固なバインダーを用いて合剤層を形成することにより、充放電時の大きな体積変化による活物質の崩落を防止する。そして、このバインダーの重合反応を起こさせる際に、300℃以上の高温が負荷される。従って、負極集電体に用いる電解銅箔は、300℃以上の加熱を受けた後も高強度を維持できる高温耐熱特性を備えなければ、リチウムイオン二次電池の長寿命化が図れなくなる。   However, there is a high performance requirement for the electrolytic copper foil used for the negative electrode current collector of the lithium ion secondary battery to prevent deformation of the negative electrode current collector that occurs during charging and discharging. In particular, in the case of a negative electrode of a recent lithium ion secondary battery, an alloy-based negative electrode active material having a large volume change accompanying charge / discharge may be used. In order to carry the alloy-based negative electrode active material on the negative electrode current collector, a mixture layer is formed using a strong binder to prevent the active material from collapsing due to a large volume change during charge and discharge. And when raising the polymerization reaction of this binder, high temperature of 300 degreeC or more is loaded. Therefore, the electrolytic copper foil used for the negative electrode current collector cannot extend the life of the lithium ion secondary battery unless it has high-temperature heat resistance characteristics that can maintain high strength even after being heated to 300 ° C. or higher.

上述の特許文献4に開示の電解銅箔であれば、十分な高温耐熱特性を備える可能性がある。ところが、同文献における電解銅箔は、高温耐熱特性を「300℃で1時間加熱処理した後の抗張力が400N/mm以上」としているが、その実施例の記載内容を詳細に確認すると、製箔完了時から72時間後の300℃×1時間加熱後の抗張力(引張強さ)は、430MPa〜500MPaの範囲であり、当該抗張力が500MPaを超えるものは得られていない。 If it is the electrolytic copper foil of the above-mentioned patent document 4, there is a possibility of having sufficient high temperature heat resistance. However, the electrolytic copper foil in the same document has a high-temperature heat resistance characteristic of “the tensile strength after heat treatment at 300 ° C. for 1 hour is 400 N / mm 2 or more”. The tensile strength (tensile strength) after heating at 300 ° C. for 1 hour 72 hours after the completion of the foil is in the range of 430 MPa to 500 MPa, and no tensile strength exceeding 500 MPa is obtained.

また、近年の電解銅箔は、プリント配線板分野に限らず、薄層化が顕著である。電解銅箔は、薄くなるほど、取扱い時にシワが発生しやすくなる。このような取扱い時のシワの発生を防止するという観点から、電解銅箔の高温加熱後のみならず、常態においても高い物理的特性を備えることが好ましい。   Further, recent electrolytic copper foils are not limited to the field of printed wiring boards, but are significantly thinned. As the electrolytic copper foil becomes thinner, wrinkles are more likely to occur during handling. From the viewpoint of preventing the occurrence of wrinkles during handling, it is preferable to have high physical properties not only after high-temperature heating of the electrolytic copper foil but also in a normal state.

従って、本件出願では、良好な高温耐熱特性を備え、プリント配線板及びリチウムイオン二次電池の負極集電体に使用可能な電解銅箔の提供を目的とする。   Therefore, it is an object of the present application to provide an electrolytic copper foil that has good high-temperature heat resistance characteristics and can be used for a negative electrode current collector of a printed wiring board and a lithium ion secondary battery.

そこで、本件発明者等の鋭意研究の結果、従来の電解銅箔に比べ、「常態の物理的特性」と「高温加熱後の物理的特性」との双方に優れた電解銅箔に想到した。そして、この本件出願に係る電解銅箔は、リチウムイオン二次電池の負極集電体用途に適したものであることが分かった。以下、本件出願に係る発明の概要に関して述べる。   Thus, as a result of intensive studies by the present inventors, the inventors have come up with an electrolytic copper foil that is superior in both “normal physical properties” and “physical properties after high-temperature heating” as compared with conventional electrolytic copper foils. And it turned out that the electrolytic copper foil which concerns on this application is suitable for the negative electrode collector use of a lithium ion secondary battery. The outline of the invention related to the present application will be described below.

電解銅箔: 本件出願に係る電解銅箔は、微量成分として、C含有量が100μg/g〜450μg/g、N含有量が50μg/g〜620μg/g、O含有量が400μg/g〜3200μg/g、S含有量が110μg/g〜720μg/g、Cl含有量が20μg/g〜115μg/gの範囲にあり、且つ、{Cl/(C+N+O+S+Cl)}×100≦5質量%の関係を満たすことを特徴とする。 Electrolytic copper foil: The electrolytic copper foil according to the present application has a C content of 100 μg / g to 450 μg / g, an N content of 50 μg / g to 620 μg / g, and an O content of 400 μg / g to 3200 μg as trace components. / G, S content is 110 μg / g to 720 μg / g, Cl content is in the range of 20 μg / g to 115 μg / g, and satisfies the relationship of {Cl / (C + N + O + S + Cl)} × 100 ≦ 5 mass% It is characterized by that.

また、本件出願に係る電解銅箔は、N含有量が{N/(N+S+Cl)}×100≧20質量%の関係を満たすことが好ましい。 In the electrolytic copper foil according to the present application, the N content preferably satisfies the relationship {N / (N + S + Cl)} × 100 ≧ 20 mass%.

さらに、本件出願に係る電解銅箔は、前記Cl含有量が{Cl/(N+S+Cl)}×100≦20質量%の関係を満たすことが好ましい。Furthermore, in the electrolytic copper foil according to the present application, the Cl content preferably satisfies the relationship of {Cl / (N + S + Cl)} × 100 ≦ 20 mass%.

本件出願に係る電解銅箔は、常態引張強さが600MPa以上774MPa以下、350℃×1時間加熱後の引張強さが470MPa以上583MPa以下であることが好ましい。The electrolytic copper foil according to the present application preferably has a normal tensile strength of 600 MPa to 774 MPa and a tensile strength after heating at 350 ° C. for 1 hour of 470 MPa to 583 MPa.

また、本件出願に係る電解銅箔は、350℃×1時間加熱後の0.2%耐力が370MPa以上446MPa以下という高い物理的特性を備える。Moreover, the electrolytic copper foil which concerns on this application is equipped with the high physical characteristic that 0.2% yield strength after a 350 degreeC x 1 hour heating is 370 Mpa or more and 446 Mpa or less.

表面処理銅箔: 本件出願に係る表面処理銅箔は、上述の電解銅箔を用いて得られることを特徴とする。 Surface-treated copper foil: The surface-treated copper foil according to the present application is obtained using the above-described electrolytic copper foil.

本件出願に係る電解銅箔は、「常態引張強さが600MPa以上」であり、且つ、「350℃×1時間加熱後の引張強さが470MPa以上」という物理的特性を同時に備える。即ち、本件出願に係る電解銅箔は、「常態の物理的特性」及び「高温加熱後の物理的特性」共に優れている。従って、薄い電解銅箔であっても、シワの発生が少なく、良好なハンドリング特性を備えるようになる。また、このような電解銅箔は、リチウムイオン二次電池の負極集電体として使用しても、負極活物質を坦持させる際の引張強さの低下が少ないため、充電・放電を行う際の膨張・収縮に対する抵抗力が高く、電池寿命を長くすることが可能になる。   The electrolytic copper foil according to the present application has physical properties of “normal tensile strength is 600 MPa or more” and “tensile strength after heating at 350 ° C. × 1 hour is 470 MPa or more”. That is, the electrolytic copper foil according to the present application is excellent in both “normal physical characteristics” and “physical characteristics after high-temperature heating”. Therefore, even with a thin electrolytic copper foil, the generation of wrinkles is small, and good handling characteristics are provided. In addition, even when such an electrolytic copper foil is used as a negative electrode current collector of a lithium ion secondary battery, there is little decrease in tensile strength when the negative electrode active material is carried, so when performing charging / discharging. The resistance to expansion / contraction of the battery is high, and the battery life can be extended.

そして、この電解銅箔は、粗化処理、防錆処理等を用途に応じて施した表面処理銅箔とすることが可能であり、プリント配線板、リチウムイオン二次電池等の分野において広く使用することが可能である。   And this electrolytic copper foil can be made into surface-treated copper foil that has been subjected to roughening treatment, rust prevention treatment, etc. according to applications, and is widely used in the fields of printed wiring boards, lithium ion secondary batteries, etc. Is possible.

以下、本件出願に係る「電解銅箔の形態」、「電解銅箔の製造形態」、「電解銅箔を用いて得られる表面処理銅箔の形態」に関して、順に述べる。   Hereinafter, the “form of electrolytic copper foil”, “production form of electrolytic copper foil”, and “form of surface-treated copper foil obtained using electrolytic copper foil” according to the present application will be described in order.

電解銅箔の形態: 本件出願に係る電解銅箔は、防錆処理、粗化処理等の表面処理を施していない銅箔であり、その厚さに関して、特段の限定は無い。なお、ここで明記しておくが、以下において述べる本件出願に係る電解銅箔は、物理的特性によって特定している。この物理的特性の値は、「電解銅箔」と、後述する表面処理を施した「表面処理銅箔」との間で、ほぼ同一の値を示す。 Form of electrolytic copper foil: The electrolytic copper foil according to the present application is a copper foil that has not been subjected to a surface treatment such as a rust prevention treatment or a roughening treatment, and the thickness thereof is not particularly limited. In addition, although it specifies clearly here, the electrolytic copper foil which concerns on this application described below is specified by the physical characteristic. The value of this physical property shows substantially the same value between “electrolytic copper foil” and “surface-treated copper foil” subjected to the surface treatment described later.

本件出願に係る電解銅箔は、「常態引張強さが600MPa以上」であり、「350℃×1時間加熱後の引張強さが470MPa以上」という物理的特性を同時に備えることを特徴とする。このように「常態引張強さが600MPa以上」という電解銅箔は、従来においても存在する。しかし、同時に「350℃×1時間加熱後の引張強さが470MPa以上」という物理的特性を示す電解銅箔は存在しない。この「350℃×1時間加熱後の引張強さが470MPa以上」という物理的特性を備える電解銅箔を得るためには、「常態引張強さが600MPa以上」という物理的特性を備える電解銅箔を用いる。   The electrolytic copper foil according to the present application has a physical property of “normal tensile strength of 600 MPa or more” and “physical strength of 350 MPa or more after heating at 350 ° C. for 1 hour” at the same time. Thus, an electrolytic copper foil having “normal tensile strength of 600 MPa or more” also exists in the past. However, there is no electrolytic copper foil that simultaneously exhibits the physical property that “the tensile strength after heating at 350 ° C. × 1 hour is 470 MPa or more”. In order to obtain the electrolytic copper foil having the physical property of “tensile strength after heating at 350 ° C. × 1 hour of 470 MPa or more”, the electrolytic copper foil having the physical property of “normal tensile strength of 600 MPa or more” Is used.

電解銅箔が、「常態引張強さが600MPa以上」であれば、厚さが9μm以下の電解銅箔においても、取扱い時にシワが発生しにくくなり、作業性が向上するため好ましい。そして、同時に「350℃×1時間加熱後の引張強さが470MPa以上」という物理的特性を備える電解銅箔を、リチウムイオン二次電池の負極集電体として用いると、電池寿命の長い高品質のリチウムイオン二次電池の提供が可能となるため好ましい。このような物理的特性を備える電解銅箔を負極集電体に用いると、合金系負極活物質を坦持するため、300℃以上の温度でバインダーの重合反応を行っても、当該電解銅箔の強度低下が少なくなるからである。更に、「350℃×1時間加熱後の引張強さ」に関していえば、「350℃×1時間加熱後の引張強さが500MPaを超えること」が、より好ましい。熱処理時間が更に長時間になっても、安定して高い引張強さを備えることができるからである。また、このような高温耐熱特性を備える電解銅箔であれば、厚さの薄い負極集電体とする設計も可能となる。   If the electrolytic copper foil has a “normal tensile strength of 600 MPa or more”, even an electrolytic copper foil having a thickness of 9 μm or less is less likely to be wrinkled during handling, and workability is improved. At the same time, when an electrolytic copper foil having a physical property of “tensile strength after heating at 350 ° C. × 1 hour is 470 MPa or more” is used as a negative electrode current collector of a lithium ion secondary battery, high quality with a long battery life is obtained. It is preferable because a lithium ion secondary battery can be provided. When an electrolytic copper foil having such physical properties is used for the negative electrode current collector, the electrolytic copper foil is supported even when the polymerization reaction of the binder is performed at a temperature of 300 ° C. or higher in order to carry the alloy-based negative electrode active material. This is because a decrease in the strength of the sheet is reduced. Furthermore, regarding “tensile strength after heating at 350 ° C. × 1 hour”, “the tensile strength after heating at 350 ° C. × 1 hour exceeds 500 MPa” is more preferable. This is because even if the heat treatment time is further prolonged, a high tensile strength can be stably provided. Moreover, if it is an electrolytic copper foil provided with such a high temperature heat-resistant characteristic, the design which makes a thin negative electrode current collector is also possible.

また、本件出願に係る電解銅箔は、「350℃×1時間加熱後の0.2%耐力が370MPa以上」であることが好ましい。非鉄材料である銅を主成分とする銅箔の場合、応力−歪み曲線の中に、鉄材に見られるような降伏点が存在しない。よって、非鉄材料としての客観的評価を行う際に、降伏点に代わるものとして「0.2%耐力」が用いられる。なお、この「0.2%耐力」と、上述の「引張強さ」とは、完全な相関を示すものではないが、0.2%耐力の値が高いと、引張強さも高くなる傾向がある。「350℃×1時間加熱後の0.2%耐力が370MPa以上」であると、加熱後の電解銅箔の引張強さのバラツキが小さくなる傾向があり、上述の「350℃×1時間加熱後の引張強さが470MPa以上」という物理的特性が安定して得られる。従って、本件出願に係る電解銅箔の場合、「加熱後の0.2%耐力」と「加熱後の引張強さ」とを、別個の指標として分離して評価することで、加熱に対する高温耐熱特性の評価を確実なものとすることができる。以下に、更に厳しい高温負荷を加えたときの、本件出願に係る電解銅箔が示す高温耐熱特性に関して述べる。なお、本件出願に係る電解銅箔は、「350℃×1時間加熱後の0.2%耐力が410MPa以上」であることがより好ましい。上述の350℃×1時間加熱後の引張強さが、500MPaを超えるものが安定して得られるからである。   Moreover, it is preferable that the electrolytic copper foil which concerns on this application is "the 0.2% yield strength after a 350 degreeC x 1 hour heating is 370 Mpa or more." In the case of a copper foil whose main component is copper, which is a non-ferrous material, there is no yield point as found in iron materials in the stress-strain curve. Therefore, when performing an objective evaluation as a non-ferrous material, “0.2% yield strength” is used as an alternative to the yield point. The "0.2% yield strength" and the above-mentioned "tensile strength" do not show a complete correlation, but if the 0.2% yield strength value is high, the tensile strength tends to increase. is there. If the “0.2% proof stress after heating at 350 ° C. for 1 hour is 370 MPa or more”, the variation in tensile strength of the electrolytic copper foil after heating tends to be small. The physical property that the subsequent tensile strength is 470 MPa or more is stably obtained. Therefore, in the case of the electrolytic copper foil according to the present application, the “0.2% proof stress after heating” and the “tensile strength after heating” are separately evaluated as separate indicators, and thus the high temperature heat resistance against heating. Evaluation of characteristics can be ensured. Below, the high temperature heat resistance characteristic which the electrolytic copper foil which concerns on this application shows when a severer high temperature load is added is described. In addition, as for the electrolytic copper foil which concerns on this application, it is more preferable that the 0.2% yield strength after a 350 degreeC x 1 hour heating is 410 Mpa or more. This is because the above-described tensile strength after heating at 350 ° C. for 1 hour exceeds 500 MPa.

更に、350℃×4時間という高温負荷を加えても、本件出願に係る電解銅箔は、「350℃×4時間加熱後の引張強さが470MPa以上」という高い引張強さを備えることが好ましい。そして、本件出願に係る電解銅箔の場合、「350℃×4時間加熱後の引張強さが500MPa以上」という高い引張強さを備えることがより好ましい。また、本件出願に係る電解銅箔は、「350℃×4時間加熱後の0.2%耐力が370MPa以上」という高い0.2%耐力を備えることが好ましい。そして、本件出願に係る電解銅箔の場合、「350℃×4時間加熱後の0.2%耐力が410MPa以上」という高い0.2%耐力を備えることがより好ましい。   Furthermore, even when a high temperature load of 350 ° C. × 4 hours is applied, the electrolytic copper foil according to the present application preferably has a high tensile strength of “the tensile strength after heating at 350 ° C. × 4 hours is 470 MPa or more”. . And in the case of the electrolytic copper foil which concerns on this application, it is more preferable to provide the high tensile strength of "the tensile strength after 350 degreeC x 4 hours heating is 500 Mpa or more." Moreover, it is preferable that the electrolytic copper foil which concerns on this application is provided with the high 0.2% yield strength of "the 0.2% yield strength after a 350 degreeC x 4 hour heating is 370 Mpa or more." And in the case of the electrolytic copper foil which concerns on this application, it is more preferable to provide the high 0.2% yield strength of "the 0.2% yield strength after heating at 350 degreeC x 4 hours is 410 Mpa or more."

また、本件出願に係る電解銅箔は、常態伸び率が2.5%以上であることが好ましい。当該常態伸び率が2.5%未満の場合、負極活物質を含む合剤層を電解銅箔表面に形成する際に電解銅箔が破断する場合がある。   The electrolytic copper foil according to the present application preferably has a normal elongation of 2.5% or more. When the normal state elongation is less than 2.5%, the electrolytic copper foil may be broken when the mixture layer containing the negative electrode active material is formed on the surface of the electrolytic copper foil.

以上に述べてきた本件出願に係る電解銅箔の物理的性質は、電解銅箔に含まれる微量成分によって得られていると考えられる。そして、本件出願に係る電解銅箔の微量成分は、電解銅箔の質量あたりの含有量として、以下に示す条件を満たす。即ち、C含有量が100μg/g〜450μg/g(「100μg/g以上450μg/g以下」を意味する。以下、同様である。)、N含有量が50μg/g〜620μg/g、O含有量が400μg/g〜3200μg/g、S含有量が110μg/g〜720μg/g、Cl含有量が20μg/g〜115μg/gの範囲にあり、且つ、{Cl/(C+N+O+S+Cl)}×100≦5質量%の関係を満たす。この微量成分含有量の条件を満たしていないと、高温負荷により電解銅箔の結晶組織の再結晶化が著しく進行し、当該結晶組織内にボイドが発生しやすくなる。なお、本件発明における微量成分含有量は、銅箔1gあたりの含有量として表示しているため、「μg/g」の単位を使用している。そして、{Cl/(C+N+O+S+Cl)}×100は、電解銅箔に含まれるCl含有量(μg/g)の値を、電解銅箔に含まれるC(炭素)含有量、N(窒素)含有量、O(酸素)含有量、S(硫黄)含有量、Cl(塩素)含有量の総量(μg/g)の値で割り、100をかけて得られる100分率換算値(質量%)である。 It is considered that the physical properties of the electrolytic copper foil according to the present application described above are obtained by the trace components contained in the electrolytic copper foil. The minor component of the electrodeposited copper foil according to the present application, as the content per mass of the electrolytic copper foil satisfies the conditions shown below. That is, the C content is 100 μg / g to 450 μg / g (meaning “100 μg / g or more and 450 μg / g or less”, the same applies hereinafter), the N content is 50 μg / g to 620 μg / g, and the O content is included. The amount is 400 μg / g to 3200 μg / g, the S content is in the range of 110 μg / g to 720 μg / g, the Cl content is in the range of 20 μg / g to 115 μg / g, and {Cl / (C + N + O + S + Cl)} × 100 ≦ The relationship of 5% by mass is satisfied . If this trace component content condition is not satisfied, recrystallization of the crystal structure of the electrolytic copper foil proceeds remarkably due to high temperature load, and voids are likely to be generated in the crystal structure. In addition, since the trace component content in this invention is displayed as content per 1 g of copper foil, the unit of "microgram / g" is used. And {Cl / (C + N + O + S + Cl)} × 100 is the value of Cl content (μg / g) contained in the electrolytic copper foil, C (carbon) content, N (nitrogen) content contained in the electrolytic copper foil. , O (oxygen) content, S (sulfur) content, Cl (chlorine) content divided by the total amount (μg / g), and multiplied by 100, is a 100-percent conversion value (mass%). .

そして、本件出願に係る電解銅箔に含まれるN(窒素)の微量成分比率が、{N/(N+S+Cl)}×100≧20質量%の関係を満たすことが、より好ましい。この関係を満たさない場合、高温負荷により電解銅箔の結晶組織の再結晶化が著しく進行し、当該結晶組織内にボイドが発生しやすくなる。350℃×1時間以上の加熱で、引張強さ及び0.2%耐力のバラツキが大きくなる傾向がある。なお、{N/(N+S+Cl)}×100は、電解銅箔に含まれるN含有量(μg/g)の値を、電解銅箔に含まれるC含有量、S含有量、Cl含有量の総量(μg/g)の値で割り、100をかけて得られる100分率換算値(質量%)である。   And it is more preferable that the trace component ratio of N (nitrogen) contained in the electrolytic copper foil according to the present application satisfies the relationship of {N / (N + S + Cl)} × 100 ≧ 20 mass%. When this relationship is not satisfied, the recrystallization of the crystal structure of the electrolytic copper foil proceeds remarkably due to a high temperature load, and voids are likely to be generated in the crystal structure. When heating at 350 ° C. for 1 hour or more, there is a tendency that variations in tensile strength and 0.2% proof stress increase. In addition, {N / (N + S + Cl)} × 100 is the value of N content (μg / g) contained in the electrolytic copper foil, and is the total amount of C content, S content, and Cl content contained in the electrolytic copper foil. Dividing by the value of (μg / g) and multiplying by 100, it is a 100-percent fraction conversion value (mass%).

また、本件出願に係る電解銅箔に含まれるCl(塩素)の微量成分比率が、{Cl/(N+S+Cl)}×100≦20質量%の関係を満たすことが、より好ましい。この値が20質量%を超えると、高温負荷により電解銅箔の結晶組織の再結晶化が著しく進行し、当該結晶組織内にボイドが発生しやすくなる。この値に関して、特に下限値を設けていないが、3.0質量%と考えられる。3.0質量%未満の場合には、引張強さ及び0.2%耐力のバラツキが大きくなる傾向がある。なお、{Cl/(N+S+Cl)}×100は、電解銅箔に含まれるCl含有量(μg/g)の値を、電解銅箔に含まれるN含有量、S含有量、Cl含有量の総量(μg/g)の値で割り、100をかけて得られる100分率換算値(質量%)のことである。   Moreover, it is more preferable that the minor component ratio of Cl (chlorine) contained in the electrolytic copper foil according to the present application satisfies the relationship of {Cl / (N + S + Cl)} × 100 ≦ 20 mass%. When this value exceeds 20% by mass, recrystallization of the crystal structure of the electrolytic copper foil proceeds remarkably due to a high temperature load, and voids are likely to be generated in the crystal structure. With respect to this value, there is no particular lower limit, but it is considered to be 3.0% by mass. When the amount is less than 3.0% by mass, the variation in tensile strength and 0.2% proof stress tends to increase. In addition, {Cl / (N + S + Cl)} × 100 is the value of the Cl content (μg / g) contained in the electrolytic copper foil, the total amount of N content, S content, and Cl content contained in the electrolytic copper foil. Divided by the value of (μg / g) and multiplied by 100, it is a 100% converted value (mass%).

電解銅箔の製造形態: 本件出願に係る電解銅箔の製造方法は、上述の電解銅箔の製造方法であって、銅電解液として、「20mg/L〜100mg/Lの濃度で分子量10000〜70000のポリエチレンイミンを含み、且つ、塩素濃度が0.5mg/L〜2.5mg/Lの硫酸酸性銅電解液」を用いることを特徴とする。なお、「硫酸酸性銅電解液」の銅濃度及びフリー硫酸濃度に関しては、特段の限定は無いが、銅濃度が70g/L〜90g/L、フリー硫酸濃度が100g/L〜200g/Lの範囲であることが一般的である。 Manufacturing method of electrolytic copper foil: The manufacturing method of the electrolytic copper foil according to the present application is a manufacturing method of the above-mentioned electrolytic copper foil, and as a copper electrolyte, a molecular weight of 10,000 to 100 mg at a concentration of 20 mg / L to 100 mg / L. It is characterized by using an acidic copper electrolyte containing 70000 polyethyleneimine and having a chlorine concentration of 0.5 mg / L to 2.5 mg / L. The copper concentration and free sulfuric acid concentration of the “sulfuric acid copper electrolyte” are not particularly limited, but the copper concentration ranges from 70 g / L to 90 g / L and the free sulfuric acid concentration ranges from 100 g / L to 200 g / L. It is general that it is.

本件出願に係る電解銅箔の製造方法で用いるポリエチレンイミンは、第一級アミン、第二級アミン、第三級アミンを含む分子量10000〜70000(株式会社日本触媒製の商品名エポミン(品番SP−200,P−1000)等)のものである。そして、このポリエチレンイミンを、電解銅箔の製造に使用する硫酸酸性銅電解液に添加して用いる。このようにポリエチレンイミンを添加した硫酸酸性銅電解液は、溶液寿命が長く、電解時の溶液安定性に優れるため、長時間の連続電解を必要とする電解銅箔の製造に適している。しかも、ポリエチレンイミンを添加した硫酸酸性銅電解液を用いて得られる電解銅箔は、高温耐熱特性が安定化する傾向があるため好ましい。このポリエチレンイミンの分子量が10000未満の場合には、ポリエチレンイミンの添加量を増加させても、得られる電解銅箔に十分な高温耐熱特性を付与できないため好ましくない。一方、ポリエチレンイミンの分子量が70000を超えるものを用いても、得られる電解銅箔の高温耐熱特性のバラツキが大きくなる傾向があり好ましくない。このポリエチレンイミンの構造式を、以下の化1に示す。   The polyethyleneimine used in the method for producing an electrolytic copper foil according to the present application has a molecular weight of 10,000 to 70000 (trade name Epomin (product number SP- manufactured by Nippon Shokubai Co., Ltd.), which contains primary amine, secondary amine, and tertiary amine. 200, P-1000)). And this polyethyleneimine is added and used for the sulfuric acid acidic copper electrolyte solution used for manufacture of electrolytic copper foil. Thus, the sulfuric acid acidic copper electrolyte to which polyethyleneimine is added has a long solution life and is excellent in solution stability during electrolysis, and is therefore suitable for the production of an electrolytic copper foil that requires long-term continuous electrolysis. Moreover, an electrolytic copper foil obtained by using a sulfuric acid acidic copper electrolytic solution to which polyethyleneimine has been added is preferable because high temperature heat resistance tends to be stabilized. When the molecular weight of this polyethyleneimine is less than 10,000, even if it increases the addition amount of a polyethyleneimine, it is unpreferable because sufficient high-temperature heat-resistant characteristics cannot be provided to the obtained electrolytic copper foil. On the other hand, even when polyethyleneimine having a molecular weight of more than 70000 is used, there is a tendency that variations in the high-temperature heat resistance characteristics of the obtained electrolytic copper foil tend to increase, which is not preferable. The structural formula of this polyethyleneimine is shown in the following chemical formula 1.

Figure 0006373764
Figure 0006373764

そして、このポリエチレンイミンは、硫酸酸性銅電解液中で20mg/L〜100mg/Lの濃度であることが好ましい。当該ポリエチレンイミン濃度が20mg/L未満の場合には、得られる電解銅箔に十分な高温耐熱特性を付与することができないため好ましくない。一方、当該ポリエチレンイミン濃度が100mg/Lを超える場合には、電解銅箔に含まれる上述の微量成分含有量が過剰になる傾向があり、電解銅箔としての引張強さ及び0.2%耐力は向上しても、硬化して伸び率が低下するため好ましくない。   And it is preferable that this polyethyleneimine is the density | concentration of 20 mg / L-100 mg / L in a sulfuric acid acidic copper electrolyte. When the polyethyleneimine concentration is less than 20 mg / L, it is not preferable because sufficient high temperature heat resistance characteristics cannot be imparted to the obtained electrolytic copper foil. On the other hand, when the polyethyleneimine concentration exceeds 100 mg / L, the above-mentioned trace component content contained in the electrolytic copper foil tends to be excessive, and the tensile strength and 0.2% yield strength as the electrolytic copper foil are likely to be excessive. Even if improved, it is not preferred because it cures and the elongation decreases.

また、本件出願に係る電解銅箔の製造方法において使用する硫酸酸性銅電解液は、塩素濃度が0.5mg/L〜2.5mg/Lであることが好ましい。塩素濃度が0.5mg/L未満の場合には、常態引張強さは高いが、高温耐熱特性が顕著に低下するため好ましくない。一方、塩素濃度が2.5mg/Lを超えると、常態引張強さ及び高温耐熱特性共に低下するため好ましくない。   Moreover, it is preferable that the sulfuric acid acidic copper electrolyte solution used in the manufacturing method of the electrolytic copper foil according to the present application has a chlorine concentration of 0.5 mg / L to 2.5 mg / L. When the chlorine concentration is less than 0.5 mg / L, the normal tensile strength is high, but the high temperature heat resistance is remarkably deteriorated. On the other hand, if the chlorine concentration exceeds 2.5 mg / L, both the normal tensile strength and the high temperature heat resistance are deteriorated.

その他の製造条件としては、電解銅箔の製造時の電流密度40A/dm〜90A/dm、液温40℃〜55℃の範囲での電解が好適である。この電解条件の範囲内であれば、安定した電解が可能であり、高品質の電解銅箔の製造が可能である。 As other production conditions, electrolysis in a range of current density of 40 A / dm 2 to 90 A / dm 2 and liquid temperature of 40 ° C. to 55 ° C. during production of the electrolytic copper foil is suitable. If it is in the range of this electrolysis condition, stable electrolysis is possible and manufacture of high quality electrolytic copper foil is possible.

表面処理銅箔の形態: 本件出願に係る表面処理銅箔は、上述の本件出願に係る電解銅箔を用いて得られることを特徴とする。ここでいう表面処理とは、粗化処理、防錆処理、シランカップリング剤処理等の化学的密着性向上処理等をいう。このときの粗化処理の方法及び種類に関しては、特段の限定は無い。例えば、銅、銅合金、ニッケル、ニッケル合金等の微細粒子を銅箔の表面に付着させる方法、銅箔の表面をエッチング加工して微細な凹凸形状を形成する方法等の採用が可能である。 Form of surface-treated copper foil: The surface-treated copper foil according to the present application is obtained by using the electrolytic copper foil according to the present application described above. The surface treatment here means chemical adhesion improving treatment such as roughening treatment, rust prevention treatment, silane coupling agent treatment, and the like. There is no particular limitation on the method and type of roughening treatment at this time. For example, it is possible to employ a method of attaching fine particles such as copper, copper alloy, nickel, nickel alloy or the like to the surface of the copper foil, a method of etching the surface of the copper foil to form a fine uneven shape, and the like.

そして、防錆処理としては、電解銅箔の表面に塗布、付着、析出させる等により防錆処理効果が得られるものであれば、どのような防錆処理を用いても構わない。例えば、有機防錆処理(ベンゾトリアゾール、イミダゾール等を用いた処理)、無機防錆処理(亜鉛、亜鉛合金、ニッケル合金等を用いた処理)の使用が可能である。この無機防錆処理の場合、本件出願の出願人等が出願した国際出願(国際公開番号WO2012/070589、国際公開番号WO2012/070591)の明細書内に記載した防錆処理を施すことも好ましい。これらに記載の防錆処理を採用した場合には、電解銅箔のときに示す高温耐熱特性を、更に向上させることが可能だからである。そして、シランカップリング剤処理等の化学的密着性向上処理に関しても、特段の限定は無く、本件出願に係る表面処理銅箔を張り合わせる基材の構成樹脂の性質や、リチウムイオン二次電池の負極活物質及びバインダーの性質に応じて、公知のシランカップリング剤の中から選択して使用すればよい。   As the rust-proofing treatment, any rust-proofing treatment may be used as long as the rust-proofing effect can be obtained by applying, adhering, or depositing on the surface of the electrolytic copper foil. For example, organic rust prevention treatment (treatment using benzotriazole, imidazole, etc.) and inorganic rust prevention treatment (treatment using zinc, zinc alloy, nickel alloy, etc.) can be used. In the case of this inorganic rust prevention treatment, it is also preferable to carry out the rust prevention treatment described in the specification of the international application (international publication number WO2012 / 070589, international publication number WO2012 / 070591) filed by the applicant of the present application. This is because when the rust prevention treatment described in these is employed, the high-temperature heat-resistant characteristics shown for the electrolytic copper foil can be further improved. And there is no particular limitation regarding chemical adhesion improvement treatment such as silane coupling agent treatment, the properties of the constituent resin of the base material on which the surface-treated copper foil according to the present application is bonded, and the lithium ion secondary battery What is necessary is just to select and use from well-known silane coupling agents according to the property of a negative electrode active material and a binder.

以下、実施例と比較例とを示して、これらを対比しつつ、本件出願に係る電解銅箔の備える良好な高温耐熱特性に関して述べる。   Hereinafter, an example and a comparative example are shown, and the good high temperature heat resistance characteristic with which the electrolytic copper foil which concerns on this application is equipped is described, comparing these.

[実施例1]
実施例1では、銅濃度が80g/L、フリー硫酸濃度が140g/L、分子量が70000のポリエチレンイミン濃度が55mg/L、塩素濃度が2.2mg/Lの硫酸酸性銅電解液を用いて、電流密度70A/dm、液温50℃の条件で電解して、15μm厚さの電解銅箔を得た。この電解銅箔の評価結果は、後の表2〜表4に比較例との対比が可能なように示す。
[Example 1]
In Example 1, an acidic copper electrolyte having a copper concentration of 80 g / L, a free sulfuric acid concentration of 140 g / L, a molecular weight of 70000, a polyethyleneimine concentration of 55 mg / L, and a chlorine concentration of 2.2 mg / L, Electrolysis was performed under the conditions of a current density of 70 A / dm 2 and a liquid temperature of 50 ° C. to obtain an electrolytic copper foil having a thickness of 15 μm. The evaluation results of this electrolytic copper foil are shown in Tables 2 to 4 later so that the comparison with Comparative Examples is possible.

[実施例2〜実施例10]
実施例2〜実施例10に関しては、実施例1と硫酸酸性銅電解液の組成が異なるのみであるため、それぞれの硫酸酸性銅電解液の組成を表1の中に纏めて示す。そして、各実施例で得られた電解銅箔の評価結果は、後の表2〜表4に比較例との対比が可能なように示す。
[Examples 2 to 10]
About Example 2-Example 10, since the composition of Example 1 and a sulfuric acid copper electrolyte is only different, the composition of each sulfuric acid copper electrolyte is shown together in Table 1. And the evaluation result of the electrolytic copper foil obtained by each Example is shown so that a comparison with a comparative example is possible in later Table 2-Table 4. FIG.

比較例Comparative example

[比較例1〜比較例7]
比較例1〜比較例7では、実施例1と同一の銅濃度とフリー硫酸濃度を採用し、表1に示す組成の硫酸酸性銅電解液を用いて、実施例1と同一の条件で電解して、15μm厚さの電解銅箔を得た。
[Comparative Examples 1 to 7]
In Comparative Example 1 to Comparative Example 7, the same copper concentration and free sulfuric acid concentration as in Example 1 were adopted, and electrolysis was performed under the same conditions as in Example 1 using a sulfuric acid copper electrolyte having the composition shown in Table 1. Thus, an electrolytic copper foil having a thickness of 15 μm was obtained.

[比較例8]
比較例8では、上述の特許文献1の実施例6に記載の硫酸酸性銅電解液を用い、電流密度40A/dm、液温50℃の条件で電解して、15μm厚さの電解銅箔を得た。
[Comparative Example 8]
In Comparative Example 8, an electrolytic copper foil having a thickness of 15 μm was obtained by electrolysis under the conditions of a current density of 40 A / dm 2 and a liquid temperature of 50 ° C. using the acidic copper sulfate electrolytic solution described in Example 6 of Patent Document 1 described above. Got.

[比較例9]
比較例9では、上述の特許文献3の実施例5に記載の硫酸酸性銅電解液を用い、電流密度40A/dm、液温40℃の条件で電解して、15μm厚さの電解銅箔を得た。
[Comparative Example 9]
In Comparative Example 9, an electrolytic copper foil having a thickness of 15 μm was obtained by electrolysis under the conditions of a current density of 40 A / dm 2 and a liquid temperature of 40 ° C. using the acidic copper sulfate electrolyte described in Example 5 of Patent Document 3 above. Got.

[比較例10]
比較例10では、上述の特許文献6の実施例に記載の試料8を得るための硫酸酸性銅電解液を用い、電流密度60A/dm、液温50℃の条件で電解して、15μm厚さの電解銅箔を得た。
[Comparative Example 10]
In Comparative Example 10, an acidic copper sulfate electrolytic solution for obtaining Sample 8 described in the example of Patent Document 6 described above was used, and electrolysis was performed under the conditions of a current density of 60 A / dm 2 and a liquid temperature of 50 ° C. to obtain a thickness of 15 μm. The obtained electrolytic copper foil was obtained.

[比較例11]
比較例11では、上述の特許文献8の実施例に記載の試料1を得るための硫酸酸性銅電解液を用い、溶液温度50℃、電流密度75A/dmの条件で電解し、厚さ15μmの電解銅箔を得た。
[Comparative Example 11]
In Comparative Example 11, an acidic copper sulfate electrolytic solution for obtaining Sample 1 described in the example of Patent Document 8 described above was used, and electrolysis was performed under the conditions of a solution temperature of 50 ° C. and a current density of 75 A / dm 2 , and a thickness of 15 μm. An electrolytic copper foil was obtained.

[比較例12]
比較例12では、上述の特許文献8の実施例に記載の試料4を得るための硫酸酸性銅電解液を用い、溶液温度50℃、電流密度75A/dmの条件で電解し、厚さ15μmの電解銅箔を得た。
[Comparative Example 12]
In Comparative Example 12, an acidic copper sulfate electrolytic solution for obtaining Sample 4 described in the example of Patent Document 8 described above was used, and electrolysis was performed under the conditions of a solution temperature of 50 ° C. and a current density of 75 A / dm 2 , and a thickness of 15 μm. An electrolytic copper foil was obtained.

[比較例13]
比較例13は、三井金属鉱業株式会社製のVLP銅箔の製造に使用する厚さ15μmの電解銅箔を用いた。
[Comparative Example 13]
In Comparative Example 13, an electrolytic copper foil having a thickness of 15 μm used for manufacturing a VLP copper foil manufactured by Mitsui Mining & Smelting Co., Ltd. was used.

[評価方法等]
電解銅箔中の微量成分含有量: 電解銅箔中のO含有量及びN含有量は、希硝酸で銅箔表面の酸化物除去を行った後、株式会社 堀場製作所のEMGA−620を用いて測定した。このとき、O含有量は「不活性ガス融解−被分散型赤外線吸収法(NDIR)」で測定し、N含有量は「不活性ガス融解−熱伝導法(TCD)」で測定した。そして、電解銅箔中のC含有量及びS含有量は、希硝酸で銅箔表面の酸化物除去を行った後、株式会社 堀場製作所のEMIA−920Vを用いて、「酸素気流中高周波加熱−赤外線吸収法」で測定した。
[Evaluation methods, etc.]
Trace component content in electrolytic copper foil: O content and N content in electrolytic copper foil are obtained by removing oxide on the copper foil surface with dilute nitric acid, and then using EMGA-620 from Horiba, Ltd. It was measured. At this time, the O content was measured by “inert gas melting-dispersed infrared absorption method (NDIR)”, and the N content was measured by “inert gas melting-heat conduction method (TCD)”. The C content and S content in the electrolytic copper foil were obtained by removing oxides on the surface of the copper foil with dilute nitric acid, and then using EMIA-920V manufactured by HORIBA, Ltd. It was measured by “infrared absorption method”.

そして、電解銅箔中のCl含有量は、臭化銀共沈−イオンクロマト法で測定した。具体的測定方法は、以下のとおりである。電解銅箔を、硝酸で加温溶解し、硝酸銀を一定量加える。次に、KBr溶液を一定量加えて、臭化銀と一緒に塩化物イオンを共沈させる。その後、暗所で15分間静置後、沈殿物を濾別して、その沈殿物を洗浄する。その後、当該沈殿物をビーカーに入れ、チオ尿素溶液で沈殿物を溶解し、暗所にて一晩放置した。その後、この溶液を希釈、定容し、Dionex社製 ICS−2000 電気伝導度検出器、溶離液KOH、カラムAS−20)を用いて、イオンクロマト分析法で塩化物イオン濃度を測定し、Cl含有量を算出した。   The Cl content in the electrolytic copper foil was measured by silver bromide coprecipitation-ion chromatography. The specific measurement method is as follows. The electrolytic copper foil is heated and dissolved with nitric acid, and a certain amount of silver nitrate is added. Next, a certain amount of KBr solution is added to coprecipitate chloride ions together with silver bromide. Then, after leaving still for 15 minutes in a dark place, a precipitate is separated by filtration and the precipitate is washed. Thereafter, the precipitate was put in a beaker, dissolved with a thiourea solution, and left overnight in a dark place. Thereafter, this solution was diluted and measured, and the chloride ion concentration was measured by ion chromatography using a Dionex ICS-2000 conductivity detector, eluent KOH, column AS-20). The content was calculated.

引張強さ、0.2%耐力及び伸び率: 実施例及び比較例で得られた電解銅箔を、長さ10cm、幅1cmの短冊状に切り出し、これを引張強さ等測定用試料として用いた。そして、インストロン型の引張試験装置を用いて、引張強さ、0.2%耐力及び伸び率を測定した。 Tensile strength, 0.2% proof stress and elongation rate: The electrolytic copper foils obtained in Examples and Comparative Examples were cut into strips having a length of 10 cm and a width of 1 cm, and this was used as a sample for measuring tensile strength and the like. It was. And the tensile strength, 0.2% yield strength, and elongation rate were measured using the Instron type | mold tensile testing apparatus.

試料の加熱条件: 引張強さ等の測定に用いる短冊状の試料を、不活性ガス雰囲気の加熱オーブン内で、300℃×1時間、350℃×1時間、350℃×4時間の各温度で加熱し、炉内で室温近傍まで炉冷して加熱後の試料を得た。この加熱後の当該短冊状の試料を用いて、上述と同様に引張強さ、0.2%耐力及び伸び率を測定した。 Sample heating conditions: A strip-shaped sample used for measurement of tensile strength or the like is heated in an inert gas atmosphere at 300 ° C. × 1 hour, 350 ° C. × 1 hour, 350 ° C. × 4 hours. The sample was heated and cooled to near room temperature in the furnace to obtain a heated sample. Using this strip-shaped sample after heating, the tensile strength, 0.2% proof stress and elongation rate were measured in the same manner as described above.

[実施例と比較例との対比]
実施例と比較例との対比を行うにあたり、実施例と比較例との硫酸酸性銅電解液に含まれる添加剤の配合の対比が容易なように、表1に示す。
[Contrast between Example and Comparative Example]
Table 1 shows the comparison between the examples and comparative examples so that the composition of the additive contained in the sulfuric acid acidic copper electrolyte of the examples and comparative examples can be easily compared.

Figure 0006373764
Figure 0006373764

この表1から分かるように、実施例に関しては、本件出願に係る電解銅箔の製造方法において適正とする硫酸酸性銅電解液が「20mg/L〜100mg/Lの濃度で分子量10000〜70000のポリエチレンイミンを含むこと」及び「塩素濃度が0.5mg/L〜2.5mg/Lであること」の2点の要件を満足している。これに対し、比較例では、本件出願に係る電解銅箔の製造方法において適正とする硫酸酸性銅電解液の添加剤要件を満たしていないか、又は、全く異なる添加剤を含んだ硫酸酸性銅電解液を用いていることが明らかである。そして、実施例及び比較例で得られた各電解銅箔に含まれる微量成分含有量を、以下の表2に示す。   As can be seen from Table 1, regarding the examples, the sulfuric acid copper electrolyte suitable for the electrolytic copper foil manufacturing method according to the present application is “polyethylene having a concentration of 20 mg / L to 100 mg / L and a molecular weight of 10,000 to 70000. It satisfies the requirements of two points of “contains imine” and “concentration of chlorine is 0.5 mg / L to 2.5 mg / L”. On the other hand, in the comparative example, the sulfuric acid copper electrolysis that does not satisfy the additive requirements of the acidic sulfuric acid copper electrolyte that is appropriate in the method for producing an electrolytic copper foil according to the present application or that contains a completely different additive It is clear that the liquid is used. And the trace amount content contained in each electrolytic copper foil obtained by the Example and the comparative example is shown in the following Table 2.

Figure 0006373764
Figure 0006373764

この表2から、実施例と比較例とに係る電解銅箔が含有する微量成分含有量の観点から対比してみると、以下のことが理解できる。表2から、実施例に係る全ての電解銅箔は、微量成分含有量(C含有量、N含有量、O含有量、S含有量、Cl含有量)の条件、及び微量成分構成比率の条件を満たしていることが理解できる。これに対して、比較例に係る電解銅箔は、この微量成分含有量の条件又は微量成分構成比率の条件のいずれかを満たしていないことが分かる。   From Table 2, the following can be understood from the viewpoint of the content of trace components contained in the electrolytic copper foils according to Examples and Comparative Examples. From Table 2, all the electrolytic copper foils according to the examples are trace component content (C content, N content, O content, S content, Cl content) conditions and trace component composition ratio conditions. Can be understood. On the other hand, it turns out that the electrolytic copper foil which concerns on a comparative example does not satisfy | fill either the conditions of this trace component content, or the conditions of trace component composition ratio.

また、表2の比較例1は、微量成分含有量の条件を満たさず、塩素構成比率の条件は満たしている。そして、比較例3及び比較例6を見ると、微量成分含有量の条件は満たしているが、塩素構成比率の条件を満たしていないことが分かる。これらの比較例で得られた電解銅箔は、後述するように、良好な高温耐熱特性を備えないものになっている。このことから理解できるように、電解銅箔に含まれる塩素を除く微量成分構成比率、及び、塩素構成比率の条件の双方を満たさなければ、良好な高温耐熱特性を備える電解銅箔にはならないことが分かる。   Moreover, the comparative example 1 of Table 2 does not satisfy | fill the conditions of trace component content, but the conditions of a chlorine component ratio are satisfy | filled. And when the comparative example 3 and the comparative example 6 are seen, although the conditions of trace component content are satisfy | filled, it turns out that the conditions of a chlorine component ratio are not satisfy | filled. As described later, the electrolytic copper foils obtained in these comparative examples do not have good high temperature heat resistance. As can be understood from this, the electrolytic copper foil with good high-temperature heat resistance characteristics must be satisfied unless both the trace component composition ratio excluding chlorine contained in the electrolytic copper foil and the chlorine composition ratio conditions are satisfied. I understand.

更に、窒素と硫黄と塩素との合計含有量を基準として、微量成分としての窒素及び塩素の微量成分比率に着目すると、実施例と比較例とに係る電解銅箔の差異が、より明確となることが分かる。このときの窒素の微量成分比率は{N/(N+S+Cl)}×100の値であり、塩素の微量成分比率は{Cl/(N+S+Cl)}×100の値である。実施例及び比較例で得られた各電解銅箔に含まれる窒素及び塩素の微量成分比率を、以下の表3に示す。   Furthermore, when the total content of nitrogen, sulfur, and chlorine is used as a reference, and paying attention to the trace component ratio of nitrogen and chlorine as trace components, the difference between the electrolytic copper foils according to Examples and Comparative Examples becomes clearer. I understand that. At this time, the minor component ratio of nitrogen is {N / (N + S + Cl)} × 100, and the minor component ratio of chlorine is {Cl / (N + S + Cl)} × 100. The ratios of trace components of nitrogen and chlorine contained in each electrolytic copper foil obtained in Examples and Comparative Examples are shown in Table 3 below.

Figure 0006373764
Figure 0006373764

この表3に示した電解銅箔中の微量成分比率から、以下のことが理解できる。最初に、{N/(N+S+Cl)}×100の値をみると、実施例は20.3質量%〜45.8質量%、比較例は6.2質量%〜27.3質量%であり、一部重複した範囲はあるものの、実施例の方が大きな値を示す傾向があると理解できる。そして、全ての実施例は、{N/(N+S+Cl)}×100≧20質量%の関係を満たしているが、比較例の場合には、この関係を満たさないものが多く見受けられる。従って、良好な高温耐熱特性を備える電解銅箔である場合には、微量成分が{N/(N+S+Cl)}×100≧20質量%の関係を満たすことが好ましいといえる。   From the trace component ratio in the electrolytic copper foil shown in Table 3, the following can be understood. First, looking at the value of {N / (N + S + Cl)} × 100, the example is 20.3% by mass to 45.8% by mass, the comparative example is 6.2% by mass to 27.3% by mass, Although there are some overlapping ranges, it can be understood that the example tends to show a larger value. All of the examples satisfy the relationship {N / (N + S + Cl)} × 100 ≧ 20% by mass. In the case of the comparative example, many of the examples do not satisfy this relationship. Therefore, in the case of an electrolytic copper foil having good high temperature heat resistance characteristics, it can be said that the trace component preferably satisfies the relationship {N / (N + S + Cl)} × 100 ≧ 20 mass%.

次に、表3に示す{Cl/(N+S+Cl)}×100の値をみると、実施例は3.0質量%〜15.9質量%、比較例は7.1質量%〜86.2質量%であり、一部重複した範囲はあるものの、比較例の方が大きな値を示す傾向があると理解できる。そして、全ての実施例は、{Cl/(N+S+Cl)}×100≦20質量%の関係を満たしているが、比較例の場合は、この関係を満たさないものが多く見受けられる。ここで、塩素濃度が、本件出願において好適とする硫酸酸性銅電解液の組成範囲の下限値未満又は上限値を超えたものである比較例1、比較例2、比較例7の電解銅箔は、後述するように、良好な高温耐熱特性を備えないものになっている。従って、電解銅箔が、上述の「{Cl/(C+N+O+S+Cl)}×100の値」及び「{N/(N+S+Cl)}×100」の値を満たし、更に、「{Cl/(N+S+Cl)}×100」の値が適正な範囲にあることが、最も安定して、良好な高温耐熱特性を備える条件と理解できる。   Next, looking at the value of {Cl / (N + S + Cl)} × 100 shown in Table 3, the examples are 3.0% by mass to 15.9% by mass, and the comparative examples are 7.1% by mass to 86.2% by mass. It can be understood that the comparative example tends to show a larger value although there are some overlapping ranges. All examples satisfy the relationship {Cl / (N + S + Cl)} × 100 ≦ 20% by mass. In the case of the comparative example, many of the examples do not satisfy this relationship. Here, the electrolytic copper foils of Comparative Example 1, Comparative Example 2, and Comparative Example 7 in which the chlorine concentration is less than the lower limit value or exceeds the upper limit value of the composition range of the acidic sulfuric acid copper electrolyte suitable in the present application are as follows. As described later, it does not have good high temperature heat resistance. Accordingly, the electrolytic copper foil satisfies the above-mentioned values of “{Cl / (C + N + O + S + Cl)} × 100” and “{N / (N + S + Cl)} × 100”, and further, “{Cl / (N + S + Cl)} × It can be understood that the value of “100” being in an appropriate range is the most stable condition with good high temperature heat resistance.

以下、実施例に係る電解銅箔と比較例に係る電解銅箔との物理的特性に関して述べる。この物理的特性を、実施例と比較例とで対比が容易となるよう表4に示す。   Hereinafter, physical characteristics of the electrolytic copper foil according to the example and the electrolytic copper foil according to the comparative example will be described. The physical characteristics are shown in Table 4 so that the comparison between the example and the comparative example is easy.

Figure 0006373764
Figure 0006373764

表4に示した常態引張強さ及び0.2%耐力に関して述べる。実施例に係る電解銅箔の場合、常態引張強さが610MPa〜774MPa、常態0.2%耐力が442MPa〜574MPaの値を示している。これに対し、比較例の場合、常態引張強さが395MPa〜791MPa、常態0.2%耐力が358MPa〜501MPaの値を示している。従って、実施例に係る電解銅箔は、「常態引張強さが600MPa以上」という条件を満たすことが理解できる。   The normal tensile strength and 0.2% proof stress shown in Table 4 will be described. In the case of the electrolytic copper foil which concerns on an Example, normal state tensile strength shows the value of 610 MPa-774 MPa, and normal state 0.2% yield strength shows the value of 442 MPa-574 MPa. On the other hand, in the case of the comparative example, the normal tensile strength is 395 MPa to 791 MPa, and the normal 0.2% proof stress is 358 MPa to 501 MPa. Therefore, it can be understood that the electrolytic copper foil according to the example satisfies the condition that “normal tensile strength is 600 MPa or more”.

次に、表4に示した300℃×1時間加熱後の引張強さ及び0.2%耐力に関して述べる。実施例に係る電解銅箔の場合、300℃×1時間加熱後の引張強さが502MPa〜613MPa、300℃×1時間加熱後の0.2%耐力が384MPa〜460MPaの値を示している。これに対し、比較例の場合、300℃×1時間加熱後の引張強さが162MPa〜538MPa、300℃×1時間加熱後の0.2%耐力が118MPa〜396MPaの値を示している。従って、300℃×1時間加熱後においても、比較例に比べ、実施例の方が高い値を示していることが分かる。例えば、比較例の中で、常態で最も高い物理的特性を示していた比較例10は、300℃×1時間加熱後の引張強さが199MPaと急激に低下し、300℃×1時間加熱後の0.2%耐力をみても179MPaと急激に低下しているため、良好な高温耐熱特性を示す電解銅箔とはいえないことが理解できる。ところが、より詳細に見ると、比較例12の場合には、「300℃×1時間加熱後の引張強さが500MPa以上」及び「300℃×1時間加熱後の0.2%耐力が380MPa以上」の実施例と同等の高温耐熱特性を示している。   Next, the tensile strength and 0.2% yield strength after heating at 300 ° C. for 1 hour shown in Table 4 will be described. In the case of the electrolytic copper foil according to the example, the tensile strength after heating at 300 ° C. × 1 hour is 502 MPa to 613 MPa, and the 0.2% proof stress after heating at 300 ° C. × 1 hour is 384 MPa to 460 MPa. On the other hand, in the case of the comparative example, the tensile strength after heating at 300 ° C. × 1 hour is 162 MPa to 538 MPa, and the 0.2% proof stress after heating at 300 ° C. × 1 hour is 118 MPa to 396 MPa. Therefore, even after heating at 300 ° C. for 1 hour, it can be seen that the example shows a higher value than the comparative example. For example, among Comparative Examples, Comparative Example 10, which showed the highest physical characteristics in the normal state, had a tensile strength after heating at 300 ° C. × 1 hour rapidly decreased to 199 MPa, and after heating at 300 ° C. × 1 hour. It can be understood that it cannot be said to be an electrolytic copper foil exhibiting good high-temperature heat-resistant characteristics because it is abruptly decreased to 179 MPa even when the 0.2% proof stress is observed. However, in more detail, in the case of Comparative Example 12, “the tensile strength after heating at 300 ° C. × 1 hour is 500 MPa or more” and “the 0.2% proof stress after heating at 300 ° C. × 1 hour is 380 MPa or more. The high temperature heat resistance characteristics equivalent to those of the example of FIG.

しかしながら、表4に示した350℃×1時間加熱後の引張強さ及び0.2%耐力に関してみると、比較例に比べて実施例の電解銅箔の高温耐熱特性が大きく勝ることが理解できる。実施例に係る電解銅箔の場合、350℃×1時間加熱後の引張強さが473MPa〜583MPa、350℃×1時間加熱後の0.2%耐力が371MPa〜446MPaの値を示している。これに対し、比較例の場合、350℃×1時間加熱後の引張強さが71MPa〜455MPa、350℃×1時間加熱後の0.2%耐力が64MPa〜359MPaの値を示している。従って、350℃×1時間加熱後においては、引張強さ及び0.2%耐力共に、比較例に比べ、実施例の方が明らかに高い値を示していることが分かる。即ち、実施例に係る電解銅箔は、比較例と比べて、より高い温度での加熱を受けたときに、従来の電解銅箔に対する優位性が顕著となることが理解できる。300℃×1時間加熱後の引張強さ及び0.2%耐力が、実施例と同等の特性を備える比較例4、比較例5、比較例11及び比較例12をみても、350℃×1時間加熱後においては、引張強さが455MPa以下、0.2%耐力が359Pa以下にまで低下している。即ち、比較例の場合、「350℃×1時間加熱後の引張強さが470MPa以上」の条件を満たさないことが明らかである。   However, with regard to the tensile strength and 0.2% proof stress after heating at 350 ° C. for 1 hour shown in Table 4, it can be understood that the high-temperature heat resistance characteristics of the electrolytic copper foils of the examples are significantly superior to those of the comparative examples. . In the case of the electrolytic copper foil according to the example, the tensile strength after heating at 350 ° C. × 1 hour is 473 MPa to 583 MPa, and the 0.2% proof stress after heating at 350 ° C. × 1 hour is 371 MPa to 446 MPa. On the other hand, in the case of the comparative example, the tensile strength after heating at 350 ° C. for 1 hour is 71 MPa to 455 MPa, and the 0.2% proof stress after heating at 350 ° C. for 1 hour is 64 MPa to 359 MPa. Therefore, after heating at 350 ° C. for 1 hour, it can be seen that both the tensile strength and the 0.2% proof stress are clearly higher in the example than in the comparative example. That is, it can be understood that the electrolytic copper foil according to the example has a significant advantage over the conventional electrolytic copper foil when heated at a higher temperature than the comparative example. Even if it sees Comparative Example 4, Comparative Example 5, Comparative Example 11 and Comparative Example 12 in which the tensile strength and 0.2% proof stress after heating at 300 ° C. for 1 hour have the same characteristics as the Examples, 350 ° C. × 1 After the time heating, the tensile strength is reduced to 455 MPa or less and the 0.2% proof stress is reduced to 359 Pa or less. That is, in the case of the comparative example, it is clear that the condition that “the tensile strength after heating at 350 ° C. × 1 hour is 470 MPa or more” is not satisfied.

以下、更に大きな熱量を負荷したケースとして、350℃×4時間加熱後の引張強さ及び0.2%耐力に関して、簡単に述べる。この加熱試験には、実施例8と実施例10の電解銅箔を用いた。その結果、実施例8に係る電解銅箔の場合、350℃×4時間加熱後の引張強さが533MPa、350℃×4時間加熱後の0.2%耐力が416MPa、350℃×4時間加熱後の伸び率2.2%の値を示した。そして、実施例10に係る電解銅箔の場合、350℃×4時間加熱後の引張強さが520MPa、350℃×4時間加熱後の0.2%耐力が423MPa、350℃×4時間加熱後の伸び率1.7%の値を示した。これらの値は、極めて過酷な加熱を受けた後の値であることを考えると、非常に良好な値である。従って、本件出願に係る電解銅箔であれば、「350℃×4時間加熱後の引張強さが470MPa以上」、「350℃×4時間加熱後の0.2%耐力が370MPa以上」の2条件を満足することもできるようになる。   Hereinafter, as a case where a larger amount of heat is loaded, the tensile strength and 0.2% proof stress after heating at 350 ° C. for 4 hours will be briefly described. In this heating test, the electrolytic copper foils of Example 8 and Example 10 were used. As a result, in the case of the electrolytic copper foil according to Example 8, the tensile strength after heating at 350 ° C. for 4 hours is 533 MPa, the 0.2% proof stress after heating at 350 ° C. for 4 hours is 416 MPa, and heating at 350 ° C. for 4 hours. The subsequent elongation value of 2.2% was indicated. In the case of the electrolytic copper foil according to Example 10, the tensile strength after heating at 350 ° C. for 4 hours is 520 MPa, the 0.2% proof stress after heating at 350 ° C. for 4 hours is 423 MPa, after heating at 350 ° C. for 4 hours. The elongation percentage of 1.7% was shown. Considering that these values are values after being subjected to extremely severe heating, they are very good values. Therefore, in the case of the electrolytic copper foil according to the present application, 2 of “tensile strength after heating at 350 ° C. × 4 hours is 470 MPa or more” and “0.2% proof stress after heating at 350 ° C. × 4 hours is 370 MPa or more” It will also be possible to satisfy the conditions.

以上に述べた本件出願に係る電解銅箔は、「常態引張強さが600MPa以上」、「350℃×1時間加熱後の引張強さが470MPa以上」という物理的特性を同時に備える。従って、薄い電解銅箔であっても、シワの発生が少なく、良好なハンドリング特性を備える。そして、このような電解銅箔は、高温負荷を受けても良好な高温耐熱特性を備え、必要に応じて各種表面処理を施した表面処理銅箔として、プリント配線板、リチウムイオン二次電池等の分野において好適に使用できる。また、本件出願に係る電解銅箔の製造方法は、電解銅箔の硫酸酸性銅電解液を変更するのみであり、従来の電解銅箔の製造設備をそのまま使用できるため、新たな設備投資を不要とする点で好ましい。   The electrolytic copper foil according to the present application described above simultaneously has physical properties of “normal tensile strength is 600 MPa or more” and “tensile strength after heating at 350 ° C. × 1 hour is 470 MPa or more”. Therefore, even with a thin electrolytic copper foil, there are few wrinkles and good handling characteristics are provided. Such an electrolytic copper foil has good high temperature heat resistance even when subjected to a high temperature load, and as a surface-treated copper foil subjected to various surface treatments as necessary, a printed wiring board, a lithium ion secondary battery, etc. It can be suitably used in the field. Moreover, the manufacturing method of the electrolytic copper foil according to the present application is only to change the sulfuric acid copper electrolytic solution of the electrolytic copper foil, and the conventional electrolytic copper foil manufacturing equipment can be used as it is, so that no new capital investment is required. This is preferable.

Claims (6)

電解銅箔に含まれる微量成分として、C含有量が100μg/g〜450μg/g、N含有量が50μg/g〜620μg/g、O含有量が400μg/g〜3200μg/g、S含有量が110μg/g〜720μg/g、Cl含有量が20μg/g〜115μg/gであり、
且つ、{Cl/(C+N+O+S+Cl)}×100≦5質量%の関係を満た電解銅箔。
As trace components contained in the electrolytic copper foil, the C content is 100 μg / g to 450 μg / g, the N content is 50 μg / g to 620 μg / g, the O content is 400 μg / g to 3200 μg / g, and the S content is 110 μg / g to 720 μg / g, Cl content is 20 μg / g to 115 μg / g,
And, {Cl / (C + N + O + S + Cl)} electrolytic copper foil satisfying the × 100 ≦ 5% by weight of the relationship.
前記N含有量が{N/(N+S+Cl)}×100≧20質量%の関係を満たす請求項1に記載の電解銅箔。 The electrolytic copper foil according to claim 1, wherein the N content satisfies a relationship of {N / (N + S + Cl)} × 100 ≧ 20 mass% . 前記Cl含有量が{Cl/(N+S+Cl)}×100≦20質量%の関係を満たす請求項1又は請求項2に記載の電解銅箔。 The electrolytic copper foil according to claim 1, wherein the Cl content satisfies a relationship of {Cl / (N + S + Cl)} × 100 ≦ 20 mass% . 常態引張強さが600MPa以上774MPa以下、350℃×1時間加熱後の引張強さが470MPa以上583MPa以下である請求項1〜請求項3のいずれか一項に記載の電解銅箔。 Normal tensile strength of more than 600 MPa 774MPa or less, the electrolytic copper foil according to any one of claims 1 to 3 tensile strength after heating 350 ° C. × 1 hour is less than or equal to 583MPa or more 470 MPa. 350℃×1時間加熱後の0.2%耐力が370MPa以上446MPa以下である請求項1〜請求項4のいずれか一項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 4, wherein a 0.2% yield strength after heating at 350 ° C for 1 hour is 370 MPa or more and 446 MPa or less . 請求項1〜請求項5のいずれかに記載の電解銅箔を用いて得られることを特徴とする表面処理銅箔。 A surface-treated copper foil obtained by using the electrolytic copper foil according to any one of claims 1 to 5.
JP2014559735A 2013-01-31 2014-01-30 Electrolytic copper foil and surface-treated copper foil obtained using the electrolytic copper foil Active JP6373764B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013017620 2013-01-31
JP2013017620 2013-01-31
PCT/JP2014/052069 WO2014119656A1 (en) 2013-01-31 2014-01-30 Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018134910A Division JP6529646B2 (en) 2013-01-31 2018-07-18 Electrodeposited copper foil and surface treated copper foil obtained using the electrodeposited copper foil

Publications (2)

Publication Number Publication Date
JPWO2014119656A1 JPWO2014119656A1 (en) 2017-01-26
JP6373764B2 true JP6373764B2 (en) 2018-08-15

Family

ID=51262367

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014559735A Active JP6373764B2 (en) 2013-01-31 2014-01-30 Electrolytic copper foil and surface-treated copper foil obtained using the electrolytic copper foil
JP2018134910A Active JP6529646B2 (en) 2013-01-31 2018-07-18 Electrodeposited copper foil and surface treated copper foil obtained using the electrodeposited copper foil

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018134910A Active JP6529646B2 (en) 2013-01-31 2018-07-18 Electrodeposited copper foil and surface treated copper foil obtained using the electrodeposited copper foil

Country Status (7)

Country Link
JP (2) JP6373764B2 (en)
KR (2) KR102227681B1 (en)
CN (1) CN104955988B (en)
MY (2) MY174169A (en)
PH (1) PH12015501706A1 (en)
TW (1) TWI518210B (en)
WO (1) WO2014119656A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122425B1 (en) * 2015-06-18 2020-06-12 케이씨에프테크놀로지스 주식회사 Electrolytic copper foil for lithium secondary battery and Lithium secondary battery comprising the same
KR101897474B1 (en) * 2015-06-26 2018-09-12 케이씨에프테크놀로지스 주식회사 Electrolytic copper foil for lithium secondary battery and Lithium secondary battery comprising the same
JP6067910B1 (en) * 2015-11-04 2017-01-25 古河電気工業株式会社 Electrolytic copper foil and lithium ion secondary battery using the electrolytic copper foil
JP6440656B2 (en) * 2016-07-12 2018-12-19 古河電気工業株式会社 Electrolytic copper foil
KR102646185B1 (en) 2017-02-27 2024-03-08 에스케이넥실리스 주식회사 Copper foil having improved adhesion, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same
JP6757773B2 (en) * 2018-09-26 2020-09-23 古河電気工業株式会社 Electrolytic copper foil
JP6827022B2 (en) * 2018-10-03 2021-02-10 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
US10581081B1 (en) 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
CN111455414A (en) * 2020-03-09 2020-07-28 深圳市惟华电子科技有限公司 Additive for producing gradual change type electrolytic copper foil
KR20220043617A (en) * 2020-09-29 2022-04-05 에스케이넥실리스 주식회사 Electrolytic Copper Foil of High Strength, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011685A (en) * 1999-06-30 2001-01-16 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and its production
KR100454270B1 (en) * 2002-11-29 2004-10-26 엘지전선 주식회사 Low Roughness Electrodeposited Copper Foil Manufacturing Method And Electrodeposited Copper Foil Thereby
US20060191798A1 (en) * 2003-04-03 2006-08-31 Fukuda Metal Foil & Powder Co., Ltd. Electrolytic copper foil with low roughness surface and process for producing the same
JP4273309B2 (en) 2003-05-14 2009-06-03 福田金属箔粉工業株式会社 Low rough surface electrolytic copper foil and method for producing the same
CN101426959B (en) * 2006-04-28 2010-11-17 三井金属矿业株式会社 Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolyt
JP5255229B2 (en) 2006-04-28 2013-08-07 三井金属鉱業株式会社 Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
JP2008285727A (en) 2007-05-18 2008-11-27 Furukawa Circuit Foil Kk Electrolytic copper foil with high tensile-strength, and manufacturing method therefor
JP5588607B2 (en) 2007-10-31 2014-09-10 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the electrolytic copper foil
CN102124148B (en) * 2008-07-07 2013-11-06 古河电气工业株式会社 Electrolytic copper foil and copper-clad laminate
JP5598700B2 (en) 2010-02-25 2014-10-01 福田金属箔粉工業株式会社 Electrolytic copper foil and method for producing the same
KR101385761B1 (en) 2010-07-01 2014-04-17 미쓰이금속광업주식회사 Electrodeposited copper foil and process for production thereof
KR101593282B1 (en) * 2010-11-22 2016-02-11 미쓰이금속광업주식회사 Surface-treated copper foil
KR101823187B1 (en) 2010-12-27 2018-01-29 후루카와 덴키 고교 가부시키가이샤 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
JP5771392B2 (en) 2010-12-28 2015-08-26 日本電解株式会社 Electrolytic copper foil and method for producing the same
JP5379928B2 (en) * 2011-06-30 2013-12-25 古河電気工業株式会社 Electrolytic copper foil, method for producing the electrolytic copper foil, and lithium ion secondary battery using the electrolytic copper foil as a current collector
KR102101046B1 (en) * 2012-05-22 2020-04-14 미쓰이금속광업주식회사 Copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery

Also Published As

Publication number Publication date
TWI518210B (en) 2016-01-21
WO2014119656A1 (en) 2014-08-07
CN104955988A (en) 2015-09-30
JP2018165411A (en) 2018-10-25
KR20150114484A (en) 2015-10-12
JP6529646B2 (en) 2019-06-12
PH12015501706A1 (en) 2015-10-12
KR102272695B1 (en) 2021-07-05
KR20190006075A (en) 2019-01-16
KR102227681B1 (en) 2021-03-15
CN104955988B (en) 2018-01-30
MY174169A (en) 2020-03-12
MY173524A (en) 2020-01-31
TW201437435A (en) 2014-10-01
JPWO2014119656A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6373764B2 (en) Electrolytic copper foil and surface-treated copper foil obtained using the electrolytic copper foil
JP5373970B2 (en) Electrolytic copper foil and method for producing the same
KR102473557B1 (en) Electrolytic Copper Foil, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
JP6975782B2 (en) Electrolytic copper foil for secondary batteries and its manufacturing method
JP6122847B2 (en) Copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery
US20210257603A1 (en) Electrolytic copper foil for secondary battery and method for producing the same
JP2023099618A (en) Electrolytic copper foil and secondary battery using the same
KR101851515B1 (en) Electrolytic copper foil, lithium ion secondary battery using the electrolytic copper foil
JP6818141B2 (en) Electrolytic copper foil for secondary batteries and its manufacturing method
CN109937501B (en) Electrolytic copper foil for secondary battery having excellent physical properties at low temperature, and method for producing same
JP2022050471A (en) Electrolytic copper foil for secondary battery, having excellent flexural resistance, and method for producing the same
JP2013185228A (en) Electrolytic copper foil and negative electrode collector for secondary battery
JP5503814B1 (en) Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2014101581A (en) Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode
JP5697051B2 (en) Electrolytic copper alloy foil, method for producing the same, electrolyte used for the production, negative electrode current collector for secondary battery, secondary battery and electrode thereof
JP6757773B2 (en) Electrolytic copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180718

R150 Certificate of patent or registration of utility model

Ref document number: 6373764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250