JP6757773B2 - Electrolytic copper foil - Google Patents

Electrolytic copper foil Download PDF

Info

Publication number
JP6757773B2
JP6757773B2 JP2018180832A JP2018180832A JP6757773B2 JP 6757773 B2 JP6757773 B2 JP 6757773B2 JP 2018180832 A JP2018180832 A JP 2018180832A JP 2018180832 A JP2018180832 A JP 2018180832A JP 6757773 B2 JP6757773 B2 JP 6757773B2
Authority
JP
Japan
Prior art keywords
copper foil
content
electrolytic copper
mass ppm
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018180832A
Other languages
Japanese (ja)
Other versions
JP2019014973A (en
JP2019014973A5 (en
Inventor
篠崎 淳
淳 篠崎
政登 胡木
政登 胡木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2018180832A priority Critical patent/JP6757773B2/en
Publication of JP2019014973A publication Critical patent/JP2019014973A/en
Publication of JP2019014973A5 publication Critical patent/JP2019014973A5/ja
Application granted granted Critical
Publication of JP6757773B2 publication Critical patent/JP6757773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、例えばリチウムイオン二次電池負極集電体やプリント配線板等を製造するために好適な電解銅箔に関するものである。 The present invention relates to an electrolytic copper foil suitable for manufacturing, for example, a lithium ion secondary battery negative electrode current collector, a printed wiring board, and the like.

リチウムイオン二次電池(以下、単に「電池」ということがある。)の負極集電体や、電子通信機器に代表される各種電子機器に用いられるプリント配線板(以下、単に「配線板」ということがある。)の導体部には、銅箔が広く用いられる。特に、圧延銅箔に比べて、導電率と強度の両立がし易く、また、薄箔化も低コストにできる電解銅箔が広く用いられている。 A printed wiring board (hereinafter, simply referred to as a "wiring board") used in a negative electrode current collector of a lithium ion secondary battery (hereinafter, may be simply referred to as a "battery") and various electronic devices represented by electronic communication devices. Copper foil is widely used for the conductor portion of). In particular, as compared with rolled copper foil, electrolytic copper foil, which is easy to achieve both conductivity and strength and can be thinned at low cost, is widely used.

ところで、リチウムイオン二次電池の製造時や電池の充放電においては、銅箔に種々の応力が負荷される。それにより銅箔にシワや破断などの破壊が起こり、電池のサイクル特性の低下や短絡、発火といった問題が発生することが有る。このような問題に対し、例えばリチウムイオン二次電池では、銅箔の引張強度を所定値以上とする、加熱後の引張強度を所定値以上とする、あるいは銅箔の伸びを所定値以上とする等、物理特性を向上させる方法が提案されている(特許文献1〜3)。 By the way, various stresses are applied to the copper foil during the manufacture of the lithium ion secondary battery and the charging / discharging of the battery. As a result, the copper foil may be broken such as wrinkles or breaks, and problems such as deterioration of battery cycle characteristics, short circuit, and ignition may occur. In response to such problems, for example, in a lithium ion secondary battery, the tensile strength of the copper foil is set to a predetermined value or more, the tensile strength after heating is set to a predetermined value or more, or the elongation of the copper foil is set to a predetermined value or more. Etc., methods for improving physical properties have been proposed (Patent Documents 1 to 3).

また、近年では、リチウムイオン二次電池の更なる高容量化、軽量化に伴い、リチウムイオン二次電池の構造も従来に比べて変化してきている。例えば、電極をより高密度に電池筐体内に収納するために銅箔にはぜ折り加工が行われることが増えている。 Further, in recent years, the structure of the lithium ion secondary battery has changed as compared with the conventional one with the further increase in capacity and weight reduction of the lithium ion secondary battery. For example, copper foil is increasingly subjected to folding in order to house the electrodes in the battery housing at a higher density.

具体的には、円筒型電池では、最内層や最外層の電極終端部において巻きずれの防止や安全性担保のために、銅箔にセパレータや、場合によっては正極のアルミ箔を挟んで折り返す、はぜ折り加工が行われることがある。
また、角型およびラミネート型電池では、従来から180°に折り返して電極が倦回されているが(特許文献4の図4、湾曲コーナー部12に相当)、近年では高密度化のために、電極により大きな張力をかけてきつく倦回したり、倦回後にプレスして曲げ半径を小さくしたり、また、内層側はより曲げ半径の小さい範囲まで電極を倦回する等、より厳しいはぜ折り加工が行われることがある。
Specifically, in a cylindrical battery, in order to prevent unwinding and ensure safety at the electrode terminations of the innermost layer and the outermost layer, a separator or, in some cases, a positive electrode aluminum foil is sandwiched between copper foils and folded back. Folding may be performed.
Further, in the square type and laminated type batteries, the electrodes are conventionally folded back to 180 ° (corresponding to FIG. 4 of Patent Document 4, the curved corner portion 12), but in recent years, due to the increase in density, Severe folding processing, such as applying greater tension to the electrodes to make them tightly rotate, pressing after the electrodes to reduce the bending radius, and rotating the electrodes to a range with a smaller bending radius on the inner layer side. May be done.

一方、モバイル機器に代表される各種電子機器も、近年、更なる小型化、高密度化が急速に進み、実装される部材に対しても小型、高密度な部品収納が要求されてきている。特にフレキシブルプリント基板においては、より狭い筐体内に導体部を収納するために、銅箔に対しはぜ折り加工が行われるようになってきている。 On the other hand, various electronic devices represented by mobile devices have been rapidly reduced in size and density in recent years, and there is a demand for compact and high-density component storage for mounted members. In particular, in a flexible printed circuit board, the copper foil has been subjected to a folding process in order to house the conductor portion in a narrower housing.

しかし、このようなはぜ折り加工には、銅箔にクラックや破断等の破壊を生じさせる問題があり、このような問題を回避するため、はぜ折り加工に対する耐久性の高い銅箔の開発が求められている。 However, such a fold folding process has a problem of causing breakage such as cracks and breaks in the copper foil, and in order to avoid such a problem, development of a copper foil having high durability against the fold fold process Is required.

ここで、「はぜ折り加工」とは、銅箔のある面に対して180°で折り返す、曲げ加工のことを示す。なお、このようなはぜ折り加工は、必ずしも密着曲げである必要はなく、曲げた部分の内側に他の部材を挟むものであってもよい。また、以下において、このようなはぜ折り加工に対する銅箔の耐久性を、「耐はぜ折り性」と表記する。 Here, the "folding process" refers to a bending process in which the surface of the copper foil is folded back at 180 °. It should be noted that such a folding process does not necessarily have to be a close-contact bending, and another member may be sandwiched inside the bent portion. Further, in the following, the durability of the copper foil against such a fold-folding process will be referred to as "fold-folding resistance".

一般に銅箔の折り曲げ性や耐折性の評価は、JIS P 8115:2001に規定されているMIT耐折性試験や、IPC屈曲試験がよく用いられる。例えば、MIT耐折性試験は、銅箔に荷重をかけた状態で±135°の高速繰り返し曲げを行い、その曲げ回数を評価するものである。この方法では、引張強度の高い銅箔ほど、破断または電気抵抗増に至るまでの曲げ回数が多くなり、良好な耐折性を有しているものとして評価される傾向にある。また、IPC屈曲試験は、180°曲げであるが、曲げ半径が比較的大きく、銅箔の弾性変形域で曲げを付与するものである。この方法では、多くの場合は破断に至らず、ある一定以上の電気抵抗増に至るまでの曲げ回数を評価する。 In general, the MIT folding resistance test and the IPC bending test specified in JIS P 8115: 2001 are often used to evaluate the bending property and folding resistance of copper foil. For example, in the MIT folding resistance test, a copper foil is repeatedly bent at a high speed of ± 135 ° under a load, and the number of times of bending is evaluated. In this method, a copper foil having a higher tensile strength tends to be evaluated as having a good folding resistance because the number of times of bending until breaking or an increase in electrical resistance increases. Further, in the IPC bending test, although the bending is 180 °, the bending radius is relatively large, and the bending is applied in the elastic deformation region of the copper foil. In this method, in many cases, the number of bends is evaluated until the electric resistance increases beyond a certain level without breaking.

一方、はぜ折り試験は、180°曲げによる試験であり、MIT耐折性試験等に比べて曲げ半径が小さく、銅箔の塑性変形域で曲げを付与するものである。そのため、耐はぜ折り性は、MIT耐折性試験やIPC屈曲試験とは、全く異なる荷重モードの測定方法であり、互いの試験結果は必ずしも対応しない。したがって、特許文献5で開示されているようなMIT耐折性試験の耐折性を高めた銅箔や、特許文献6で開示されているようなIPC屈曲試験の屈曲性を高めた銅箔であっても、十分な耐はぜ折り性を有しているとはいえない。 On the other hand, the fold-folding test is a test by bending at 180 °, and the bending radius is smaller than that of the MIT folding resistance test or the like, and bending is applied in the plastic deformation region of the copper foil. Therefore, the fold resistance is a measurement method of a load mode completely different from the MIT fold resistance test and the IPC bending test, and the test results do not necessarily correspond to each other. Therefore, a copper foil having improved fold resistance in the MIT fold resistance test as disclosed in Patent Document 5 or a copper foil having improved flexibility in the IPC bending test as disclosed in Patent Document 6 can be used. Even if it exists, it cannot be said that it has sufficient fold resistance.

また、銅箔のはぜ折り試験は、180°曲げを伴う折り曲げ試験であるが、例えば厚さ50μmを超える銅条や銅板における180°曲げとは、現象が異なる。すなわち、銅箔は、その厚さが非常に薄い(例えば、4〜30μmである)ため、厚さ方向に存在する結晶粒の数が少ないことや、曲げ内側と外側における圧縮応力と引張応力の差も小さいこと等から、比較的厚い伸銅品では見られない特徴を有している。 The copper foil folding test is a bending test involving 180 ° bending, but the phenomenon is different from, for example, 180 ° bending of a copper strip or a copper plate having a thickness of more than 50 μm. That is, since the copper foil is very thin (for example, 4 to 30 μm), the number of crystal grains existing in the thickness direction is small, and the compressive stress and tensile stress inside and outside the bending are large. Since the difference is small, it has features that are not found in relatively thick copper products.

また、耐はぜ折り性は、銅箔の伸びとも対応しない。例えば、特許文献7には、伸びが大きくとも耐はぜ折り性が悪い銅箔があるとして、結晶方位と加工硬化指数を制御することにより、引張強度と耐はぜ折り性の両立する技術が開示されている。しかし、この技術は、圧延銅箔に関するものであり、結晶方位と曲げ性の関係等、伸銅品において一般的に知られている関係を単純に電解銅箔に適用できない。すなわち、電解銅箔は、電析組織を有しているため、空孔密度、転位密度、拡散係数等の点で、圧延加工組織とは大きく異なることからである。 In addition, the fold resistance does not correspond to the elongation of the copper foil. For example, in Patent Document 7, assuming that there is a copper foil having a large elongation but poor fold resistance, there is a technique for achieving both tensile strength and fold resistance by controlling the crystal orientation and work hardening index. It is disclosed. However, this technique relates to rolled copper foil, and the relationships generally known in copper products such as the relationship between crystal orientation and bendability cannot be simply applied to electrolytic copper foil. That is, since the electrolytic copper foil has an electrolyzed structure, it is significantly different from the rolled structure in terms of pore density, dislocation density, diffusion coefficient and the like.

また、上記のような問題を解決するため、例えばプリント配線板に関する特許文献8では、金属層(銅箔)と貼り合わせられる樹脂層の弾性率と厚さを一定範囲にし、金属層の表面粗さを所定値以下とする方法が、特許文献9では、ポリイミド層の引張弾性率と厚さ、並びに銅箔の引張弾性率、厚さおよび平均結晶粒径を一定の範囲にする方法が、特許文献10では、ポリイミド層の両面に銅箔を貼り合わせた際の、それぞれの銅箔の厚さ、平均結晶粒径および結晶方位を所定の範囲に制御する方法がそれぞれ提案されている。しかし、これらの対策は、樹脂側の特性や銅張積層板としての構造の寄与が大きく、特に銅箔側の特性の検討が未だ十分になされておらず、銅箔側の特性向上が望まれていた。銅箔側の特性のみで、耐はぜ折り性を改善できれば、樹脂選定や基板設計の自由度が高まるため、より信号伝達性能の高い樹脂の使用や、より効率的な基板設計などが可能となり、フレキシブルプリント基板としての更なる性能向上が期待できるためである。 Further, in order to solve the above problems, for example, in Patent Document 8 relating to a printed wiring board, the elastic modulus and thickness of the resin layer to be bonded to the metal layer (copper foil) are set within a certain range, and the surface roughness of the metal layer is roughened. In Patent Document 9, the method of setting the value to a predetermined value or less is patented, and the method of keeping the tensile elastic modulus and thickness of the polyimide layer and the tensile elastic modulus, thickness and average crystal grain size of the copper foil within a certain range is patented. Document 10 proposes methods for controlling the thickness, average crystal grain size, and crystal orientation of each copper foil when the copper foils are bonded to both sides of the polyimide layer within a predetermined range. However, these measures greatly contribute to the characteristics of the resin side and the structure as a copper-clad laminate, and the characteristics of the copper foil side have not been sufficiently examined, and improvement of the characteristics of the copper foil side is desired. Was there. If the fold resistance can be improved only by the characteristics of the copper foil side, the degree of freedom in resin selection and board design will increase, so it will be possible to use resin with higher signal transmission performance and more efficient board design. This is because further improvement in performance as a flexible printed circuit board can be expected.

一方で、銅箔で、耐はぜ折り性を向上させる手法として、銅箔の引張強度を低くすることが有効であることは一般に知られていたが、引張強度はむやみに低下させることはできなかった。すなわち、リチウムイオン二次電池では、上述のように、耐はぜ折り性以外の面で、銅箔の引張強度や、加熱後の引張強度は一定以上とすることが望まれており、また、フレキシブル基板では、銅箔の引張強度が低いと、薄箔化が進むフレキシブルプリント基板の製造時において、通板時や樹脂をキャストする工程でのハンドリング性が悪くなるためである。 On the other hand, it is generally known that it is effective to reduce the tensile strength of the copper foil as a method for improving the fracture resistance of the copper foil, but the tensile strength can be unnecessarily reduced. There wasn't. That is, in the lithium ion secondary battery, as described above, it is desired that the tensile strength of the copper foil and the tensile strength after heating be constant or higher in terms other than the fracture resistance. This is because, in a flexible substrate, if the tensile strength of the copper foil is low, the handleability in the process of passing the plate or in the process of casting the resin deteriorates in the production of the flexible printed circuit board, which is becoming thinner.

このように、銅箔の耐はぜ折り性の向上と引張強度の向上とは相反する要求であることから、従来の銅箔では、高い引張強度を有しつつ、加熱後においても引張強度を高く維持すると共に良好な耐はぜ折り性を実現することは困難であった。 As described above, since the improvement of the fracture resistance and the improvement of the tensile strength of the copper foil are contradictory requirements, the conventional copper foil has a high tensile strength and a tensile strength even after heating. It was difficult to maintain a high level and achieve good fold resistance.

特許第5588607号公報Japanese Patent No. 5588607 特許第5074611号公報Japanese Patent No. 5074611 特許第4583149号公報Japanese Patent No. 4583149 特許第4863636号公報Japanese Patent No. 4863636 特許第5301886号公報Japanese Patent No. 5301886 特許第5373970号公報Japanese Patent No. 5373970 国際公開第2012/128099号パンフレットInternational Publication No. 2012/1280999 Pamphlet 特開2012―006200号公報Japanese Unexamined Patent Publication No. 2012-006200 特開2014−080021号公報Japanese Unexamined Patent Publication No. 2014-080021 特開2015−127120号公報JP-A-2015-127120

本発明は上記事情に鑑みてなされたものであり、高い引張強度を有しつつ、加熱後においても引張強度を高く維持すると共に良好な耐はぜ折り性を実現し得る電解銅箔を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides an electrolytic copper foil capable of maintaining high tensile strength even after heating and achieving good fold resistance while having high tensile strength. The purpose is.

本発明者らは、銅箔中に含まれる微量成分と、耐はぜ折り性および引張強度との関係について鋭意研究を重ねた結果、銅箔中の硫黄(S)または窒素(N)は、引張強度の向上効果は大きいが、その含有量の増加に伴うはぜ折り性の低下が著しく、一方、銅箔中の炭素(C)および塩素(Cl)は、引張強度の向上効果はそれほど大きくはないが、その含有量が増しても耐はぜ折り性を著しく低下させることはなく、硫黄(S)または窒素(N)に比べて、耐はぜ折り性の低下の度合いが緩やかであることを見出し、かかる知見に基づき、銅箔中に含まれる微量成分である炭素(C)、硫黄(S)、窒素(N)および塩素(Cl)の含有量を、それぞれ所定の範囲に制御することによって、特に優れた耐はぜ折り性および高い引張強度を両立することに成功し、本発明を完成させるに至った。 As a result of intensive studies on the relationship between the trace components contained in the copper foil and the crease resistance and tensile strength, the present inventors have found that sulfur (S) or nitrogen (N) in the copper foil has been determined. Although the effect of improving the tensile strength is large, the foldability is significantly reduced as the content increases, while carbon (C) and chlorine (Cl) in the copper foil have a large effect of improving the tensile strength. However, even if the content is increased, the fracture resistance is not significantly reduced, and the degree of decrease in the fracture resistance is gradual as compared with sulfur (S) or nitrogen (N). Based on this finding, the contents of carbon (C), sulfur (S), nitrogen (N) and chlorine (Cl), which are trace components contained in the copper foil, are controlled within predetermined ranges. As a result, we succeeded in achieving both excellent fold resistance and high tensile strength, and completed the present invention.

すなわち、本発明の要旨構成は、以下のとおりである。
[1] 炭素(C)の含有量が20〜150質量ppm、硫黄(S)の含有量が18質量ppm以下、窒素(N)の含有量が40質量ppm以下および塩素(Cl)の含有量が25〜200質量ppmであることを特徴とする、電解銅箔。
[2] 前記塩素(Cl)の含有量に対する前記炭素(C)の含有量の比[Cの含有量/Clの含有量]が0.70〜1.40の範囲内である、上記[1]に記載の電解銅箔。
[3] 常態で測定した引張強度が380〜600MPaの範囲内である、上記[1]または[2]に記載の電解銅箔。
[4] 300℃、1時間の加熱後の状態で測定した引張強度が300〜550MPaの範囲内である、上記[1]〜[3]のいずれか1項に記載の電解銅箔。
[5] 導電率が85%IACS以上である、上記[1]〜[4]のいずれか1項に記載の電解銅箔。
[6] 上記[1]〜[5]のいずれか1項に記載の電解銅箔を負極集電体として有する、リチウムイオン二次電池。
[7] 上記[1]〜[5]のいずれか1項に記載の電解銅箔を導体部として有する、プリント配線板。
That is, the gist structure of the present invention is as follows.
[1] The content of carbon (C) is 20 to 150 mass ppm, the content of sulfur (S) is 18 mass ppm or less, the content of nitrogen (N) is 40 mass ppm or less, and the content of chlorine (Cl). Is an electrolytic copper foil, characterized in that the amount is 25 to 200 mass ppm.
[2] The ratio of the carbon (C) content to the chlorine (Cl) content [C content / Cl content] is in the range of 0.70 to 1.40, as described in [1]. ] The electrolytic copper foil described in.
[3] The electrolytic copper foil according to the above [1] or [2], wherein the tensile strength measured under normal conditions is in the range of 380 to 600 MPa.
[4] The electrolytic copper foil according to any one of the above [1] to [3], wherein the tensile strength measured in a state after heating at 300 ° C. for 1 hour is in the range of 300 to 550 MPa.
[5] The electrolytic copper foil according to any one of the above [1] to [4], which has a conductivity of 85% IACS or more.
[6] A lithium ion secondary battery having the electrolytic copper foil according to any one of the above [1] to [5] as a negative electrode current collector.
[7] A printed wiring board having the electrolytic copper foil according to any one of the above [1] to [5] as a conductor portion.

本発明によれば、高い引張強度を有しつつ、加熱後においても引張強度を高く維持すると共に良好な耐はぜ折り性を実現し得る電解銅箔を提供することができる。本発明の電解銅箔は、例えばリチウムイオン二次電池負極集電体を製造する場合に好適に用いられ、電池の容量、サイクル特性および安全性を向上できる電解銅箔である。また、例えばプリント配線板を製造する場合にも好適に用いられ、配線板製造時のハンドリング性、フレキシブルプリント基板のはぜ折り加工時の耐久性を向上できる電解銅箔である。 According to the present invention, it is possible to provide an electrolytic copper foil which has high tensile strength, maintains high tensile strength even after heating, and can realize good fold resistance. The electrolytic copper foil of the present invention is an electrolytic copper foil that is suitably used, for example, when manufacturing a negative electrode current collector for a lithium ion secondary battery, and can improve the capacity, cycle characteristics, and safety of the battery. Further, for example, it is an electrolytic copper foil that is suitably used when manufacturing a printed wiring board, and can improve the handling property at the time of manufacturing the wiring board and the durability at the time of folding the flexible printed circuit board.

図1は、実施例において、はぜ折り試験を行った際の様子を模式的に示す、断面概略図である。FIG. 1 is a schematic cross-sectional view schematically showing a state when a folding test is performed in an example.

以下、本発明の電解銅箔の好ましい実施形態について、詳細に説明する。
本発明に従う電解銅箔は、炭素(C)の含有量が20〜150質量ppm、硫黄(S)の含有量が18質量ppm以下、窒素(N)の含有量が40質量ppm以下および塩素(Cl)の含有量が25〜200質量ppmであることを特徴とする。
Hereinafter, preferred embodiments of the electrolytic copper foil of the present invention will be described in detail.
The electrolytic copper foil according to the present invention has a carbon (C) content of 20 to 150 mass ppm, a sulfur (S) content of 18 mass ppm or less, a nitrogen (N) content of 40 mass ppm or less, and chlorine ( The content of Cl) is 25 to 200 mass ppm.

なお、本明細書において、電解銅箔は、電解処理によって作製された銅箔を指し、製箔後に表面処理を施していない未処理の銅箔と、必要に応じて表面処理を施した銅箔(表面処理電解銅箔)のいずれをも含む意味である。また、電解銅箔の箔厚は、好ましくは30μm以下であり、より好ましくは4〜15μmである。なお、以下において、特記しない限り、「銅箔」は「電解銅箔」を意味する。また、質量ppmは質量分率であり、mg/kgを指す。 In the present specification, the electrolytic copper foil refers to a copper foil produced by electrolytic treatment, and includes untreated copper foil which has not been surface-treated after foil formation and copper foil which has been surface-treated as necessary. It means to include any of (surface-treated electrolytic copper foil). The thickness of the electrolytic copper foil is preferably 30 μm or less, more preferably 4 to 15 μm. In the following, unless otherwise specified, "copper foil" means "electrolytic copper foil". Further, mass ppm is a mass fraction and refers to mg / kg.

<成分組成>
本発明の電解銅箔の成分組成とその作用について示す。
本発明の電解銅箔では、炭素(C)、硫黄(S)、窒素(N)および塩素(Cl)の含有量が、全て以下に示す所定の範囲に制御されている。
<Ingredient composition>
The component composition of the electrolytic copper foil of the present invention and its action are shown.
In the electrolytic copper foil of the present invention, the contents of carbon (C), sulfur (S), nitrogen (N) and chlorine (Cl) are all controlled within the predetermined ranges shown below.

[S含有量:18質量ppm以下]および[N含有量:40質量ppm以下]
SおよびNは、引張強度を向上させる作用を有する元素であるが、一方で、これらの元素は銅箔の粒界を脆くする傾向にあり、これにより耐はぜ折り性が著しく低下する。
[S content: 18 mass ppm or less] and [N content: 40 mass ppm or less]
S and N are elements having an action of improving tensile strength, but on the other hand, these elements tend to make the grain boundaries of the copper foil brittle, which significantly reduces the crease resistance.

S含有量は18質量ppmを超えると、耐はぜ折り性が極端に悪化する。そのため、S含有量は18質量ppm以下とし、好ましくは、13質量ppm以下とする。また、S含有量は、少ないほど好ましく、下限値は0質量ppmであるが、実用性の観点からは1質量ppm以上としてもよい。 When the S content exceeds 18 parts by mass ppm, the crease resistance is extremely deteriorated. Therefore, the S content is 18 mass ppm or less, preferably 13 mass ppm or less. The smaller the S content, the more preferable, and the lower limit is 0 mass ppm, but from the viewpoint of practicality, it may be 1 mass ppm or more.

N含有量は40質量ppmを超えると、耐はぜ折り性が極端に悪化する。そのため、N含有量は40質量ppm以下とし、好ましくは、30質量ppm以下とする。また、N含有量は、少ないほど好ましく、下限値は0質量ppmである、実用性の観点からは1質量ppm以上としてもよい。 When the N content exceeds 40 mass ppm, the fold resistance is extremely deteriorated. Therefore, the N content is 40 mass ppm or less, preferably 30 mass ppm or less. Further, the smaller the N content is, the more preferable it is, and the lower limit value is 0 mass ppm. From the viewpoint of practicality, it may be 1 mass ppm or more.

[C含有量:20〜150質量ppm]および[Cl含有量:25〜200質量ppm]
CおよびClは、引張強度を向上させる作用を有する元素であるが、上記SやNの場合とは異なり、銅箔の粒界を脆くする作用は小さく、耐はぜ折り性を著しく低下させることはない。
[C content: 20 to 150 mass ppm] and [Cl content: 25 to 200 mass ppm]
C and Cl are elements having an action of improving the tensile strength, but unlike the cases of S and N described above, the action of brittle the grain boundaries of the copper foil is small, and the fracture resistance is remarkably lowered. There is no.

C含有量は20質量ppm未満であると、引張強度を向上させる効果が十分に発揮されず、150質量ppmを超えると、耐はぜ折り性が低下する傾向にある。そのため、引張強度と耐はぜ折り性とを両立する観点から、C含有量は20〜150質量ppmとし、好ましくは30〜140質量ppm、より好ましくは60〜140質量ppmとする。 If the C content is less than 20 mass ppm, the effect of improving the tensile strength is not sufficiently exhibited, and if it exceeds 150 mass ppm, the fold resistance tends to decrease. Therefore, from the viewpoint of achieving both tensile strength and fracture resistance, the C content is set to 20 to 150 mass ppm, preferably 30 to 140 mass ppm, and more preferably 60 to 140 mass ppm.

Cl含有量は25質量ppm未満であると、引張強度を向上させる効果が十分に発揮されず、200質量ppmを超えると、耐はぜ折り性が低下する傾向にある。そのため、引張強度と耐はぜ折り性とを両立する観点から、Cl含有量は25〜200質量ppmとし、好ましくは30〜180質量ppm、より好ましくは50〜150質量ppmとする。 If the Cl content is less than 25 mass ppm, the effect of improving the tensile strength is not sufficiently exhibited, and if it exceeds 200 mass ppm, the fold resistance tends to decrease. Therefore, from the viewpoint of achieving both tensile strength and fracture resistance, the Cl content is set to 25 to 200 mass ppm, preferably 30 to 180 mass ppm, and more preferably 50 to 150 mass ppm.

また、Clの含有量に対するCの含有量の比[Cの含有量/Clの含有量]は、0.70〜1.40の範囲内であることが好ましく、上記範囲とすることにより銅箔の耐はぜ折り性の向上効果をさらに高めることができる。有機添加剤を銅箔に効果的に吸着させる際にはClが必要であることが知られている。その仕組みは必ずしも明らかではないが、Cu−有機添加剤の錯体が、銅基材表面に特異吸着しているClに静電的に吸着し、その結果、Clを介してCu−有機添加剤の錯体が銅基材上に吸着されると言われている。そして、銅基材上に間接的に吸着したCuがCu原子に還元され、銅基材上に析出する際に、共に吸着していた有機添加剤(C)およびClも、同時に銅箔に取り込まれると考えられる。そのためCとClの存在比のバランスが崩れると、銅箔中でのCとClの存在状態が変化し、銅箔の耐はぜ折り性の向上効果が十分に得られないと考えられる。 Further, the ratio of the C content to the Cl content [C content / Cl content] is preferably in the range of 0.70 to 1.40, and by setting the above range, the copper foil The effect of improving the folding resistance can be further enhanced. It is known that Cl is required to effectively adsorb the organic additive to the copper foil. Although the mechanism is not necessarily clear, Cu + - complex organic additives, Cl are specifically adsorbed to the copper base surface - electrostatically adsorbed on, as a result, Cl - through the Cu + - It is said that the complex of the organic additive is adsorbed on the copper substrate. Then, when Cu + indirectly adsorbed on the copper substrate is reduced to Cu atoms and precipitated on the copper substrate, the organic additives (C) and Cl adsorbed together are also simultaneously adsorbed on the copper foil. It is considered to be taken in. Therefore, if the balance of the abundance ratios of C and Cl is lost, the abundance state of C and Cl in the copper foil changes, and it is considered that the effect of improving the crease resistance of the copper foil cannot be sufficiently obtained.

[その他の微量成分]
本発明の電解銅箔は、本発明の効果を妨げない範囲で、上述した成分以外に、各種添加剤に由来する成分および不可避不純物を含んでもよい。
なお、ここでいう各種添加剤に由来する成分は、電解銅箔の製造時に用いられる有機添加剤や無機添加剤に由来する成分のうち、上述した成分以外の成分を意味する。このような各種添加剤に由来する成分の含有量の上限は、好ましくは100質量ppm以下である。
また、ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物として挙げられる成分としては、例えば、鉄(Fe)、酸素(O)等が挙げられる。また、不可避不純物の含有量の上限は、好ましくは100質量ppm以下である。なお、不可避不純物の成分と含有量によっては、銅箔の特性を低下させる要因にもなりうるため、その含有量はさらに抑制することが好ましい。
[Other trace components]
The electrolytic copper foil of the present invention may contain components derived from various additives and unavoidable impurities in addition to the above-mentioned components as long as the effects of the present invention are not impaired.
The components derived from the various additives referred to here mean components other than the above-mentioned components among the components derived from the organic additives and inorganic additives used in the production of the electrolytic copper foil. The upper limit of the content of the components derived from such various additives is preferably 100 mass ppm or less.
Further, the unavoidable impurities referred to here mean impurities at a content level that can be unavoidably contained in the manufacturing process. Examples of the components listed as unavoidable impurities include iron (Fe) and oxygen (O). The upper limit of the content of unavoidable impurities is preferably 100 mass ppm or less. Depending on the component and content of unavoidable impurities, it may be a factor that deteriorates the characteristics of the copper foil, so it is preferable to further suppress the content.

<電解銅箔の製造方法>
次に、本発明の電解銅箔(または表面処理電解銅箔)の好ましい製造方法について説明する。
本発明の電解銅箔は、例えば、硫酸−硫酸銅水溶液を電解液とし、白金族元素又はその酸化物元素で被覆したチタンからなる不溶性陽極と、該陽極に対向させて設けられたチタン製陰極ドラムとの間に該電解液を供給し、陰極ドラムを一定速度で回転させながら、両極間に直流電流を通電することにより陰極ドラム表面上に銅を析出させ、析出した銅を陰極ドラム表面から引き剥がし、連続的に巻き取る方法により製造される。なお、この装置の例は一例である。
<Manufacturing method of electrolytic copper foil>
Next, a preferable manufacturing method of the electrolytic copper foil (or surface-treated electrolytic copper foil) of the present invention will be described.
The electrolytic copper foil of the present invention has, for example, an insoluble anode made of titanium coated with a platinum group element or an oxide element thereof using a sulfuric acid-copper sulfate aqueous solution as an electrolytic solution, and a titanium cathode provided so as to face the anode. The electrolytic solution is supplied between the drum and the cathode drum, and while rotating the cathode drum at a constant speed, copper is deposited on the surface of the cathode drum by applying a DC current between the two electrodes, and the precipitated copper is deposited from the surface of the cathode drum. Manufactured by a method of peeling and continuously winding. The example of this device is an example.

特に、本発明の電解銅箔は、製箔された銅箔中にSやNを極力持ち込まない条件にて製造することで、銅箔中の硫黄(S)の含有量が18質量ppm以下であり、かつ窒素(N)の含有量が40質量ppm以下である状態を実現できる。 In particular, the electrolytic copper foil of the present invention is produced under the condition that S and N are not brought into the produced copper foil as much as possible, so that the content of nitrogen (S) in the copper foil is 18 mass ppm or less. It is possible to realize a state in which the nitrogen (N) content is 40 mass ppm or less.

通常、銅箔の高強度化、高耐熱化のために、電解液中に添加剤を添加することが一般的である。このような添加剤としては、有機添加剤や無機添加剤が挙げられ、特に有機添加剤が好適に用いられている。このような一般的に用いられる有機添加剤には、その分子構造中にSやNを含むものが多い。SやNを分子構造中に含む有機添加剤は、銅箔への吸着性が強いために、銅箔中に非常によく取り込まれる。これはSおよびNが持つ非共有電子対に起因すると考えられている。 Usually, in order to increase the strength and heat resistance of the copper foil, it is common to add an additive to the electrolytic solution. Examples of such additives include organic additives and inorganic additives, and organic additives are particularly preferably used. Many of these commonly used organic additives contain S or N in their molecular structure. Organic additives containing S or N in their molecular structures are very well incorporated into the copper foil due to their strong adsorptivity to the copper foil. This is believed to be due to the unshared electron pair of S and N.

そのため、上記のように銅箔中のSおよびNの含有量を所定の範囲に制御した銅箔を得る観点からは、分子構造中にSおよびNを含まない有機添加剤を用いることが好ましい。このような有機添加剤を用いることにより、有機添加剤に由来するSおよびNが、銅箔中に取り込まれることを有効に防止することができる。 Therefore, from the viewpoint of obtaining a copper foil in which the contents of S and N in the copper foil are controlled within a predetermined range as described above, it is preferable to use an organic additive that does not contain S and N in the molecular structure. By using such an organic additive, it is possible to effectively prevent S and N derived from the organic additive from being incorporated into the copper foil.

分子構造中にSおよびNを含まない有機添加剤としては、例えば、ポリエーテル(ポリエチレングリコール、ポリプロピレングリコール等)や、水溶性多糖類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)等が挙げられる。特に、電解銅箔の量産性を考慮すると、単分子の化合物よりも、電解液中での安定性が高い傾向にある、高分子化合物の方が望ましい。 Examples of organic additives that do not contain S and N in their molecular structure include polyethers (polyethylene glycol, polypropylene glycol, etc.), water-soluble polysaccharides (hydroxyethyl cellulose, carboxymethyl cellulose, etc.) and the like. In particular, considering the mass productivity of the electrolytic copper foil, a polymer compound which tends to have higher stability in an electrolytic solution is preferable to a single molecule compound.

なお、上記のように銅箔中のSおよびNの含有量を所定の範囲に制御した銅箔を得る観点からは、分子構造中にSおよびNを含まない無機添加剤を用いる方法も考えられるが、無機添加剤を用いる場合には、電解液中で無機添加剤が沈殿することがあり量産性を悪化させる他、導電率も低下し、また耐はぜ折り性も良好に保てない。そのため、添加剤としては、上記のような有機添加剤を用いることが好ましい。 From the viewpoint of obtaining a copper foil in which the contents of S and N in the copper foil are controlled within a predetermined range as described above, a method of using an inorganic additive that does not contain S and N in the molecular structure can be considered. However, when an inorganic additive is used, the inorganic additive may precipitate in the electrolytic solution, which deteriorates mass productivity, lowers the conductivity, and does not maintain good fold resistance. Therefore, it is preferable to use the above-mentioned organic additive as the additive.

さらに、上記のように分子構造中にSおよびNを含まない有機添加剤を用いることにより、得られる銅箔中のSおよびNの含有量を上記範囲に制御できるが、さらに、銅箔中のSおよびNの含有量を低減する観点からは、例えば、高純度な試薬、活性炭種類の選定や、銅原料を投入前に酸洗いするなど、電解液中のSおよびN濃度を可能な限り低減する手法を用いることが好ましい。 Furthermore, by using an organic additive that does not contain S and N in the molecular structure as described above, the content of S and N in the obtained copper foil can be controlled within the above range, but further, in the copper foil. From the viewpoint of reducing the S and N contents, the S and N concentrations in the electrolytic solution are reduced as much as possible, for example, by selecting a high-purity reagent and activated carbon type, and pickling the copper raw material before charging. It is preferable to use the method of

電解液の調製に用いられる硫酸および硫酸銅の試薬や、添加剤の試薬には、不純物としてSやNが含まれる場合がある。また、銅原料や活性炭(電解銅箔の製造時に行う活性炭処理で用いられる)の付着物または不純物にも、SやNを含むものがある。これらのうち、反応性、吸着性の高い化合物は、適宜、活性炭処理による除去や、電解反応による分解を受けるため、電解液中で濃化していくことは考え難いが、比較的反応性の低い化合物は、電解液中に緩慢に蓄積されていくことも考えられる。そのため、意図して添加する有機添加剤に由来するSおよびNと比較して、影響度は小さいと考えられるが、試薬や活性炭等に由来するSおよびNについても、可能な限り除去しておくことが望ましい。 Sulfuric acid and copper sulfate reagents used in the preparation of electrolytic solutions and reagent for additives may contain S and N as impurities. In addition, some deposits or impurities of copper raw materials and activated carbon (used in the activated carbon treatment performed during the production of electrolytic copper foil) also contain S and N. Of these, compounds with high reactivity and adsorptivity are appropriately removed by activated carbon treatment and decomposed by electrolytic reaction, so it is unlikely that they will be concentrated in the electrolytic solution, but they are relatively low in reactivity. It is also conceivable that the compound slowly accumulates in the electrolytic solution. Therefore, it is considered that the degree of influence is smaller than that of S and N derived from organic additives that are intentionally added, but S and N derived from reagents, activated carbon, etc. are also removed as much as possible. Is desirable.

なお、これらの処理を行っても、SやNを含む不純物を電解液中から完全に取り除くことは困難で、電解液中のSやNの濃度をゼロに保つにあたっては作業負担が大きくなる。したがって、実際の製造を考慮した場合には、実用性の観点から、銅箔中のSおよびNの含有量は、それぞれ1質量ppm以上としてもよい。すなわち、Sの含有量が18質量ppm以下、Nの含有量が40質量ppm以下であれば、はぜ折り性を大きく阻害することは無い。 Even if these treatments are performed, it is difficult to completely remove impurities containing S and N from the electrolytic solution, and the work load becomes large in keeping the concentration of S and N in the electrolytic solution at zero. Therefore, when considering the actual production, the contents of S and N in the copper foil may be 1 mass ppm or more, respectively, from the viewpoint of practicality. That is, if the S content is 18 mass ppm or less and the N content is 40 mass ppm or less, the foldability is not significantly impaired.

また、本発明の電解銅箔は、製箔された銅箔中にCおよびClを適量含有させる条件にて製造することで、銅箔中の炭素(C)の含有量が20〜150質量ppmの範囲内であり、かつ塩素(Cl)の含有量が25〜200質量ppmの範囲内である状態を実現できる。 Further, the electrolytic copper foil of the present invention is produced under the condition that the produced copper foil contains appropriate amounts of C and Cl, so that the content of carbon (C) in the copper foil is 20 to 150 mass ppm. It is possible to realize a state in which the chlorine (Cl) content is in the range of 25 to 200 mass ppm.

一般に、銅箔の高強度化、高耐熱化のためには、有機添加剤が銅箔に多く取り込まれる(例えばC含有量が多い)ことが望ましい。しかし、SおよびNを含まない有機添加剤は、SまたはNを含む有機添加剤に比較して、銅への吸着性が低いため、銅箔中へ取り込まれる量が少なくなる傾向にある。そのため、SおよびNを含まない有機添加剤を用いて、銅箔を高強度化、高耐熱化できる程度に、銅箔中のCおよびClの含有量を高めるためには、例えば電解液中の塩化物イオン(Cl)濃度を調整することが有効である。電解液中の塩化物イオンは、有機添加剤と相互作用して、有機添加剤を銅箔中に取り込まれ易くすることが知られているためである。一方で、銅箔中に取り込まれるCおよびCl量が多くなりすぎると、耐はぜ折り性が悪化する傾向がある。 In general, in order to increase the strength and heat resistance of a copper foil, it is desirable that a large amount of organic additives are incorporated into the copper foil (for example, a large C content). However, the organic additive containing S and N has a lower adsorptivity to copper than the organic additive containing S or N, so that the amount incorporated into the copper foil tends to be smaller. Therefore, in order to increase the content of C and Cl in the copper foil to the extent that the copper foil can be made stronger and more heat resistant by using an organic additive containing no S and N, for example, in an electrolytic solution. It is effective to adjust the chloride ion (Cl ) concentration. This is because it is known that chloride ions in the electrolytic solution interact with the organic additive to facilitate the incorporation of the organic additive into the copper foil. On the other hand, if the amount of C and Cl incorporated into the copper foil is too large, the crease resistance tends to deteriorate.

そのため、上記のように、銅箔中のCおよびClの含有量を所定の範囲に制御した銅箔を得る観点からは、電解液中の塩化物イオンの濃度を制御することが好ましい。具体的には、電解液中における塩化物イオン濃度は150〜250mg/Lとすることが好ましく、150〜200mg/Lとすることがより好ましい。上記範囲とすることにより、銅箔中のCおよびClの含有量を効率よく制御できる。一方、塩化物イオンが150mg/L未満である場合、銅箔中に含まれるCおよびCl量が小さくなり、高強度、高耐熱の効果が得られ難い。また、塩化物イオンが250mg/Lを超える場合、銅箔中に取り込まれるCおよびCl量が多くなり、耐はぜ折り性が悪化する。 Therefore, as described above, from the viewpoint of obtaining a copper foil in which the contents of C and Cl in the copper foil are controlled within a predetermined range, it is preferable to control the concentration of chloride ions in the electrolytic solution. Specifically, the chloride ion concentration in the electrolytic solution is preferably 150 to 250 mg / L, more preferably 150 to 200 mg / L. Within the above range, the contents of C and Cl in the copper foil can be efficiently controlled. On the other hand, when the chloride ion is less than 150 mg / L, the amount of C and Cl contained in the copper foil becomes small, and it is difficult to obtain the effects of high strength and high heat resistance. Further, when the chloride ion exceeds 250 mg / L, the amount of C and Cl taken into the copper foil increases, and the fracture resistance deteriorates.

また、銅箔中の[Cの含有量/Clの含有量]は、基本的には、電解液中の有機添加剤濃度と塩化物イオン濃度の比によって管理できるが、好適な濃度比の範囲は有機添加剤種類など、他の影響によって適宜調整することができる。 Further, the [C content / Cl content] in the copper foil can be basically controlled by the ratio of the organic additive concentration and the chloride ion concentration in the electrolytic solution, but is in a suitable concentration ratio range. Can be adjusted as appropriate according to other influences such as the type of organic additive.

以下に、電解銅箔製造用電解液の好ましい組成の一例を挙げる。
銅濃度 50〜100g/L
硫酸濃度 40〜120g/L
有機添加剤 0.1〜100mg/L
塩化物イオン 150〜250mg/L
The following is an example of a preferable composition of the electrolytic solution for producing an electrolytic copper foil.
Copper concentration 50-100g / L
Sulfuric acid concentration 40-120 g / L
Organic additive 0.1 to 100 mg / L
Chloride ion 150-250 mg / L

以上のように、製箔された銅箔中にSやNを極力取り込まない条件、およびCやClを適量取り込める条件にて製造することが肝要であるが、そのためには、有機添加剤が意図した状態で取り込まれるように、電解条件を適宜制御することが好ましく、効果的である。 As described above, it is important to manufacture the foil under the conditions that S and N are not incorporated into the foil as much as possible and that C and Cl can be incorporated in an appropriate amount. For that purpose, organic additives are intended. It is preferable and effective to appropriately control the electrolytic conditions so that the electrolytic conditions are taken in in a state of being taken in.

通常、銅箔の製造には、サイリスタ式直流電源が用いられるのが一般的である。原理上、サイリスタ式直流電源は、出力電圧が50または60Hzで振動(リップル)している。例えば、リップル率10%のサイリスタ式直流電源の場合、秒間100回または120回で、最大高低差10%の電圧振動が発生することになる。 Usually, a thyristor type DC power supply is generally used for manufacturing copper foil. In principle, the thyristor type DC power supply vibrates (ripples) at an output voltage of 50 or 60 Hz. For example, in the case of a thyristor type DC power supply having a ripple rate of 10%, voltage vibration with a maximum height difference of 10% occurs at 100 or 120 times per second.

このようなリップルは、有機添加剤の吸着や取り込まれの挙動、および銅の析出挙動など、電位応答する反応に対して、非常に大きな影響を及ぼすことが知られているが、その詳細な調査、解明は極めて難しく、一般的にはリップルの影響を考慮した銅箔の製造は行われていないのが現状である。その結果、リップルの影響により、有機添加剤が効率的に取り込まれなかったり、粒界に異常偏析を引き起こしたり、あるいは、有機添加剤によっては、逆に過剰に取り込まれてしまう場合がある。 Such ripples are known to have a very large effect on potential-responsive reactions such as the adsorption and uptake behavior of organic additives and the precipitation behavior of copper. However, it is extremely difficult to clarify, and in general, copper foil is not manufactured in consideration of the influence of ripple. As a result, due to the influence of ripple, the organic additive may not be taken in efficiently, abnormal segregation may be caused at the grain boundary, or depending on the organic additive, it may be taken in excessively.

そのため、本発明の電解銅箔の製造においては、外乱の少ない状況下で、有機添加剤本来の吸着挙動が表れるよう、電解条件を調整することが好ましい。具体的には、上記のような電源電圧によるリップルを極力生じない電解条件で、電解銅箔を製造することが望ましく、例えば、インバータ式直流電源を用いて製造することが好ましい。 Therefore, in the production of the electrolytic copper foil of the present invention, it is preferable to adjust the electrolytic conditions so that the original adsorption behavior of the organic additive appears under the condition of little disturbance. Specifically, it is desirable to manufacture the electrolytic copper foil under electrolytic conditions that do not generate ripples due to the power supply voltage as much as possible, and for example, it is preferable to manufacture the electrolytic copper foil using an inverter type DC power supply.

インバータ式直流電源は、原理上、より高周波領域で制御されるため、実質的にはリップルの影響が無いとみなせる。したがって、インバータ式直流電源を用いることにより、有機添加剤に対して、外乱の少ない状況を容易に調整できる。 Since the inverter type DC power supply is controlled in a higher frequency region in principle, it can be considered that there is substantially no influence of ripple. Therefore, by using the inverter type DC power supply, it is possible to easily adjust the situation where there is little disturbance with respect to the organic additive.

また、サイリスタ式直流電源を用いた場合も、可能な限りリップルの少ない条件で電解を行うことや、リップルに影響を受けにくい添加剤や電解条件を選定することで、リップルの影響が少ない電解条件とすることができる。 Also, even when using a thyristor type DC power supply, electrolysis is performed under conditions with as little ripple as possible, and by selecting additives and electrolysis conditions that are not easily affected by ripple, electrolytic conditions that are less affected by ripple are used. Can be.

本発明では、上述のように製箔された銅箔中にSやNが極力取り込まれないよう、SおよびNを含まない有機添加剤を用いることが推奨されるが、このような有機添加剤は、比較的銅への吸着性が弱い。そのため、上記のようなリップルの影響下では、有機添加剤が銅箔中により取り込まれにくくなるため、銅箔の高強度化、高耐熱化の観点から望ましくない。しかし、上記のように、リップルが極力生じないような方法で電解を行うことで、SおよびNを含まない有機添加剤を用いた場合であっても、有機添加剤が効率的に銅箔中へ取り込まれ、また比較的均一な組織が得られる。 In the present invention, it is recommended to use an organic additive that does not contain S and N so that S and N are not incorporated into the copper foil formed as described above as much as possible. Such an organic additive Has a relatively weak adsorption to copper. Therefore, under the influence of ripple as described above, the organic additive is less likely to be incorporated into the copper foil, which is not desirable from the viewpoint of increasing the strength and heat resistance of the copper foil. However, as described above, by performing electrolysis in a manner that minimizes ripple, the organic additive can be efficiently contained in the copper foil even when an organic additive that does not contain S and N is used. And a relatively uniform structure is obtained.

その他、電解液の液温は40〜60℃とすることが好ましく、カソード電極面での平均電流密度は45〜60A/dmとすることが好ましい。 In addition, the temperature of the electrolytic solution is preferably 40 to 60 ° C., and the average current density on the cathode electrode surface is preferably 45 to 60 A / dm 2 .

また、本発明の電解銅箔は、必要に応じて、その表面の少なくとも一方に、表面処理を行うことが好ましい。
銅箔の表面処理としては、例えば、クロメート処理、あるいはNi又はNi合金めっき、Co又はCo合金めっき、Zn又はZn合金めっき、Sn又はSn合金めっき、上記各種めっき層上にさらにクロメート処理を施したもの等の無機防錆処理、あるいは、ベンゾトリアゾール等の有機防錆処理、シランカップリング剤処理等が挙げられる。これらの表面処理は、防錆に加えて、例えばリチウムイオン二次電池の負極集電体として用いる場合には活物質との密着強度を高め、さらに電池の充放電サイクル効率の低下を防ぐ役割を果たす。これらの防錆処理は一般的に銅箔厚さに対してごく薄い厚さで処理される。そのため、耐はぜ折り性や引張強度には影響がほぼ無い。
Further, it is preferable that the electrolytic copper foil of the present invention is surface-treated on at least one of its surfaces, if necessary.
The surface treatment of the copper foil includes, for example, chromate treatment, Ni or Ni alloy plating, Co or Co alloy plating, Zn or Zn alloy plating, Sn or Sn alloy plating, and further chromate treatment on the above-mentioned various plating layers. Examples thereof include inorganic rust preventive treatment for things, organic rust preventive treatment such as benzotriazole, and silane coupling agent treatment. In addition to rust prevention, these surface treatments have the role of increasing the adhesion strength with the active material when used as the negative electrode current collector of a lithium ion secondary battery, and further preventing the battery charge / discharge cycle efficiency from decreasing. Fulfill. These rust preventive treatments are generally treated with a thickness very thin with respect to the thickness of the copper foil. Therefore, there is almost no effect on the crease resistance and tensile strength.

上記の表面処理を銅箔に施す前に、必要に応じて銅箔表面に粗化処理を行うことも可能である。粗化処理としては、例えば、めっき法、エッチング法等が好適に採用できる。これらの粗化処理は、プリント配線板の導体部として用いた場合の配線板樹脂との密着性や、リチウムイオン二次電池の負極集電体として用いた場合の活物質との密着性等を、さらに向上させる役割を果たす。 It is also possible to roughen the surface of the copper foil, if necessary, before applying the above surface treatment to the copper foil. As the roughening treatment, for example, a plating method, an etching method, or the like can be preferably adopted. These roughening treatments improve the adhesion with the wiring board resin when used as the conductor part of the printed wiring board, and the adhesion with the active material when used as the negative electrode current collector of the lithium ion secondary battery. , Play a role in further improvement.

めっき法による粗化としては、電解めっき法及び無電解めっき法を採用することができる。Cu、CoおよびNiのうち1種の金属からなる金属めっき、またはこれらのうち2種類以上の金属を含む合金めっきにより、粗化粒子を形成することができる。 As the roughening by the plating method, an electrolytic plating method and an electroless plating method can be adopted. Roughened particles can be formed by metal plating consisting of one metal of Cu, Co and Ni, or alloy plating containing two or more of these metals.

また、エッチング法による粗化としては、例えば、物理エッチングや化学エッチングによる方法が好ましい。例えば、物理エッチングとしては、サンドブラスト等でエッチングする方法が挙げられる。また、化学エッチングとしては、処理液等でエッチングする方法が挙げられる。特に化学エッチングの場合には、処理液として、無機または有機酸と、酸化剤と、添加剤とを含有する、公知の処理液を用いることができる。 Further, as the roughening by the etching method, for example, a method by physical etching or chemical etching is preferable. For example, as the physical etching, a method of etching by sandblasting or the like can be mentioned. Further, as the chemical etching, a method of etching with a treatment liquid or the like can be mentioned. In particular, in the case of chemical etching, a known treatment liquid containing an inorganic or organic acid, an oxidizing agent, and an additive can be used as the treatment liquid.

<電解銅箔の特性>
本発明に係る電解銅箔は、常態において、引張強度が380MPa以上であることが好ましく、より好ましくは380〜600MPa、更に好ましくは400〜600MPaの範囲内である。上記範囲とすることにより、電池や配線板の製造時におけるハンドリング性および耐久性が更に向上する。なお、本明細書において「常態」とは、銅箔が、製造されたままの未加熱の状態にある他、60℃以下の熱履歴を経た状態にある場合も含む意味である。
<Characteristics of electrolytic copper foil>
Under normal conditions, the electrolytic copper foil according to the present invention preferably has a tensile strength of 380 MPa or more, more preferably 380 to 600 MPa, and even more preferably 400 to 600 MPa. Within the above range, handleability and durability during manufacturing of batteries and wiring boards are further improved. In addition, in the present specification, the "normal state" means that the copper foil is in an unheated state as it is manufactured and also in a state where it has undergone a heat history of 60 ° C. or lower.

また、本発明に係る電解銅箔は、300℃、1時間の加熱後の状態において、引張強度が300MPa以上であることが好ましく、より好ましくは300〜550MPa、更に好ましくは350〜550MPaの範囲内である。上記範囲とすることにより、電池や配線板の製造時におけるハンドリング性および耐久性が更に向上する。 Further, the electrolytic copper foil according to the present invention preferably has a tensile strength of 300 MPa or more, more preferably 300 to 550 MPa, still more preferably 350 to 550 MPa in a state after heating at 300 ° C. for 1 hour. Is. Within the above range, handleability and durability during manufacturing of batteries and wiring boards are further improved.

なお、上記引張強度は、IPC−TM−650に準拠して測定した値とする。 The tensile strength is a value measured in accordance with IPC-TM-650.

また、本発明に係る電解銅箔は、導電率が85%IACS以上であることが好ましく、より好ましくは90%IACS以上である。一般に電解銅箔の高強度化は導電率を下げる傾向にあるが、本発明の電解銅箔では、CおよびClを多く取り込ませて高強度化を図ることにより、導電率の低下を小さくできる。本発明の電解銅箔は、導電部材として用いられるため、導電率は高い方が望ましい。なお上記導電率は、JIS H 0505:1975に準拠して測定した値とする。 Further, the electrolytic copper foil according to the present invention preferably has a conductivity of 85% IACS or more, and more preferably 90% IACS or more. In general, increasing the strength of the electrolytic copper foil tends to lower the conductivity, but in the electrolytic copper foil of the present invention, the decrease in conductivity can be reduced by incorporating a large amount of C and Cl to increase the strength. Since the electrolytic copper foil of the present invention is used as a conductive member, it is desirable that the electrolytic copper foil has a high conductivity. The above conductivity shall be a value measured in accordance with JIS H 0505: 1975.

本発明に係る電解銅箔は、リチウムイオン二次電池の負極集電体およびプリント配線板の導体部の少なくとも一方を製造するために用いられることが好ましい。特に、リチウムイオン二次電池の負極集電体として用いた場合には、高強度、高耐熱であるために電池製造時、および充放電時の耐久性に優れ、耐はぜ折り性に優れるためにより高密度な電極収納が可能になる、という利点がある。また、プリント配線板の導体部として用いた場合には、高強度、高耐熱であるためにプリント配線板製造時のハンドリング性に優れ、耐はぜ折り性に優れるためにより高密度な実装が可能になるという利点がある。また、本発明に係る電解銅箔は、より好ましくは、リチウムイオン二次電池の負極集電体およびプリント配線板の導体部の両方に用いることができ、こうした汎用性の高い銅箔は、銅箔の製造上、製造条件の切り替えや別の製造ラインを必要としないため、非常に経済的であるという利点もある。 The electrolytic copper foil according to the present invention is preferably used for manufacturing at least one of a negative electrode current collector of a lithium ion secondary battery and a conductor portion of a printed wiring board. In particular, when used as a negative electrode current collector for a lithium ion secondary battery, it has high strength and high heat resistance, so it has excellent durability during battery manufacturing and charging / discharging, and has excellent fold resistance. This has the advantage of enabling high-density electrode storage. In addition, when used as a conductor part of a printed wiring board, it has high strength and high heat resistance, so it has excellent handleability when manufacturing a printed wiring board, and it has excellent fold resistance, so it can be mounted at a higher density. There is an advantage of becoming. Further, the electrolytic copper foil according to the present invention can be more preferably used for both the negative electrode current collector of the lithium ion secondary battery and the conductor portion of the printed wiring board, and such a highly versatile copper foil is copper. Foil production also has the advantage of being extremely economical because it does not require switching of production conditions or a separate production line.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の一例を示したものであって、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the above-described embodiments show an example of the present invention, and include all aspects included in the concept of the present invention and the scope of claims, and are within the scope of the present invention. Can be modified in various ways.

次に、本発明の効果をさらに明確にするために、実施例、参考例および比較例について説明する。 Next, in order to further clarify the effect of the present invention, Examples , Reference Examples and Comparative Examples will be described.

(実施例1)
白金族元素又はその酸化物元素で被覆したチタンからなる不溶性アノードと該アノードに対向させて設けられたチタン製カソードドラムとの間に電解液を供給し、カソードドラムを一定速度で回転させながら、両極間に直流電流を通電することによりカソードドラム表面上に銅を析出させることで、厚さ8μmの未処理銅箔を作製した。
(Example 1)
An electrolytic solution is supplied between an insoluble anode made of titanium coated with a platinum group element or an oxide element thereof and a titanium cathode drum provided so as to face the anode, and the cathode drum is rotated at a constant speed while rotating. An untreated copper foil having a thickness of 8 μm was produced by depositing copper on the surface of the cathode drum by applying a DC current between the two electrodes.

電解液は、銅濃度が80g/L、硫酸濃度が80g/Lに調整された硫酸-硫酸銅系電解液を用いた。また、該電解液において、添加剤およびその濃度、並びに塩化物イオン(Cl)濃度は表1に示すように調整し、整流器としては表1に示す直流電源を用い、電解液の温度は50℃、電流密度は40A/dm、液流速は1.0m/sにそれぞれ調整した。 As the electrolytic solution, a sulfuric acid-copper sulfate-based electrolytic solution having an adjusted copper concentration of 80 g / L and a sulfuric acid concentration of 80 g / L was used. Further, in the electrolytic solution, the additives and their concentrations and the chloride ion (Cl ) concentration are adjusted as shown in Table 1, and the DC power supply shown in Table 1 is used as the rectifier, and the temperature of the electrolytic solution is 50. The temperature and current density were adjusted to 40 A / dm 2 , and the liquid flow velocity was adjusted to 1.0 m / s.

さらに、上記の条件で作製した未処理銅箔について、製箔直後にクロメート処理を行った。具体的には、45℃の7g/L無水クロム酸水溶液に、上記未処理銅箔を5秒間浸漬した後に、液切りおよび空気乾燥を行った。 Further, the untreated copper foil produced under the above conditions was subjected to chromate treatment immediately after the foil formation. Specifically, the untreated copper foil was immersed in a 7 g / L chromic anhydride aqueous solution at 45 ° C. for 5 seconds, and then drained and air-dried.

(実施例2〜6および8、参考例1
実施例2〜6および8、参考例1では、添加剤および塩化物イオンの条件、並びに整流器として用いる直流電源の条件のいずれか1つ以上を表1に示すように変化させた以外は、実施例1と同様の方法で銅箔を作製した。
(Examples 2 to 6 and 8, Reference Example 1 )
In Examples 2 to 6 and 8, in Reference Example 1 , one or more of the conditions of the additive and the chloride ion and the condition of the DC power supply used as the rectifier were changed as shown in Table 1. A copper foil was prepared in the same manner as in Example 1.

(実施例および
実施例およびでは、添加剤および塩化物イオンの条件を表1に示すように変化させると共に、さらに以下に示す条件の粗化処理を施した以外は、実施例1と同様の方法で銅箔を作製した。粗化処理は、銅濃度を30g/L、硫酸濃度を180g/L、浴温を25℃、電流密度を40A/dm、処理時間を4秒として行った。
(Examples 6 and 7 )
In Examples 6 and 7 , copper was subjected to the same method as in Example 1 except that the conditions of the additive and chloride ion were changed as shown in Table 1 and further roughened under the conditions shown below. A foil was made. The roughening treatment was carried out with a copper concentration of 30 g / L, a sulfuric acid concentration of 180 g / L, a bath temperature of 25 ° C., a current density of 40 A / dm 2 , and a treatment time of 4 seconds.

(比較例1〜9)
比較例1〜9では、添加剤および塩化物イオンの条件、並びに整流器として用いる直流電源のいずれか1つ以上を表1に示すように変化させた以外は、実施例1と同様の方法で銅箔を作製した。
(Comparative Examples 1 to 9)
In Comparative Examples 1 to 9, copper was used in the same manner as in Example 1 except that the conditions of additives and chloride ions and one or more of the DC power supplies used as the rectifier were changed as shown in Table 1. A foil was made.

(比較例10)
比較例10では、銅濃度が80g/L、硫酸濃度が140g/Lに調整された硫酸-硫酸銅系電解液を用い、電解液において、添加剤およびその濃度、並びに塩化物イオン濃度は表1に示すように調整し、整流器としては表1に示す直流電源を用い、電解液の温度は50℃、電流密度は52A/dm、液流速は0.4m/sにそれぞれ調整して未処理銅箔を作製した以外は、実施例1と同様の方法で銅箔を作製した。なお、本比較例は、特許文献5に記載の実施例1に対応するものである。
(Comparative Example 10)
In Comparative Example 10, a sulfuric acid-copper sulfate-based electrolytic solution in which the copper concentration was adjusted to 80 g / L and the sulfuric acid concentration was adjusted to 140 g / L was used, and the additives, their concentrations, and the chloride ion concentration were shown in Table 1 Adjust as shown in, and use the DC power supply shown in Table 1 as the rectifier, adjust the temperature of the electrolytic solution to 50 ° C, the current density to 52 A / dm 2 , and the liquid flow velocity to 0.4 m / s, and untreated. A copper foil was prepared in the same manner as in Example 1 except that the copper foil was produced. In addition, this comparative example corresponds to Example 1 described in Patent Document 5.

(比較例11)
比較例11では、整流器として用いる直流電源を表1に示すように変更した以外は、比較例10と同様の方法で銅箔を作製した。
(Comparative Example 11)
In Comparative Example 11, a copper foil was produced in the same manner as in Comparative Example 10 except that the DC power supply used as the rectifier was changed as shown in Table 1.

(比較例12)
比較例12では、銅濃度が70g/L、硫酸濃度が100g/Lに調整された硫酸-硫酸銅系電解液を用い、電解液において、添加剤およびその濃度、並びに塩化物イオン濃度は表1に示すように調整し、整流器としては表1に示す直流電源を用い、電解液の温度は40℃、電流密度は50A/dm、液流速は0.4m/sにそれぞれ調整して未処理銅箔を作製した以外は、実施例1と同様の方法で銅箔を作製した。なお、本比較例は、特許第4796351号に記載の実施例5に対応するものである。
(Comparative Example 12)
In Comparative Example 12, a sulfuric acid-copper sulfate-based electrolytic solution in which the copper concentration was adjusted to 70 g / L and the sulfuric acid concentration was adjusted to 100 g / L was used, and the additives, their concentrations, and the chloride ion concentration were shown in Table 1 Adjust as shown in, and use the DC power supply shown in Table 1 as the rectifier, adjust the temperature of the electrolytic solution to 40 ° C, the current density to 50 A / dm 2 , and the liquid flow velocity to 0.4 m / s, and untreated. A copper foil was prepared in the same manner as in Example 1 except that the copper foil was produced. In addition, this comparative example corresponds to Example 5 described in Japanese Patent No. 4796351.

(比較例13)
比較例13は、整流器として用いる直流電源を表1に示すように変更した以外は、比較例12と同様の方法で銅箔を作製した。
(Comparative Example 13)
In Comparative Example 13, a copper foil was produced in the same manner as in Comparative Example 12, except that the DC power supply used as the rectifier was changed as shown in Table 1.

なお、表1に記載された添加剤の種類のうち、「HEC1」は重量平均分子量が約30000のヒドロキシエチルセルロース、「HEC2」は重量平均分子量が約24500の加水分解ヒドロキシエチルセルロース、「PPG」は重量平均分子量が約6000のポリプロピレングリコール、「2M5S」は2−メルカプトベンズイミダゾール−5−スルホン酸ナトリウム、「PEI」は重量平均分子量が約30000のポリエチレンイミン、「混合剤」はジアリルジメチルアンモニウムクロライド重合体と、ビス(3−スルホプロピル)ジスルフィドのNa塩と、N,N‘−ジエチルチオ尿素とを重量比70:60:1で混合した混合添加剤を用いたことをそれぞれ意味している。
また、表1に記載された直流電源のうち、「インバータ」はインバータ式直流電源(20kHzの高周波インバータを搭載した電源)、「サイリスタ」はサイリスタ式直流電源(リップル率10%の電源)をそれぞれ用いたことを意味している。
Among the types of additives listed in Table 1, "HEC1" is hydroxyethyl cellulose having a weight average molecular weight of about 30,000, "HEC2" is hydrolyzed hydroxyethyl cellulose having a weight average molecular weight of about 24500, and "PPG" is weight. Polypropylene glycol with an average molecular weight of about 6000, "2M5S" is 2-mercaptobenzimidazole-5-sulfonate sodium, "PEI" is polyethyleneimine with a weight average molecular weight of about 30,000, and "mixture" is a diallyldimethylammonium chloride polymer. It means that a mixed additive was used in which Na salt of bis (3-sulfopropyl) disulfide and N, N'-diethylthiourea were mixed at a weight ratio of 70:60: 1.
Of the DC power supplies listed in Table 1, the "inverter" is an inverter type DC power supply (power supply equipped with a 20 kHz high frequency inverter), and the "thyristor" is a thyristor type DC power supply (power supply with a ripple rate of 10%). It means that it was used.

[評価]
上記実施例および比較例に係る電解銅箔を用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。結果を表1に示す。
[Evaluation]
The following characteristic evaluations were carried out using the electrolytic copper foils according to the above Examples and Comparative Examples. The evaluation conditions for each characteristic are as follows. The results are shown in Table 1.

[1]C含有量およびS含有量の分析
炭素・硫黄分析装置(EMIA−810W、株式会社堀場製作所製)を用いて、酸素気流中燃焼(管状電気炉方式)―赤外線吸収法で測定を行った。0.5gのサンプルを燃焼させ、不純物量の分析を行った。銅箔は表面が汚染されないよう十分に注意して取扱い、必要に応じてアセトン脱脂等の前処理を行った。
[1] Analysis of C content and S content Using a carbon / sulfur analyzer (EMIA-810W, manufactured by Horiba Seisakusho Co., Ltd.), measurement is performed by combustion in oxygen stream (tubular electric furnace method) -infrared absorption method. It was. A 0.5 g sample was burned and the amount of impurities was analyzed. The copper foil was handled with great care so that the surface would not be contaminated, and if necessary, pretreatment such as acetone degreasing was performed.

[2]N含有量の分析
酸素・窒素・水素分析装置(EMGA−930、株式会社堀場製作所製)を用いて、不活性ガス融解―熱伝導度法(TCD)で測定を行った。0.5gのサンプルを燃焼させ、不純物量の分析を行った。銅箔は表面が汚染されないよう十分に注意して取扱い、必要に応じてアセトン脱脂等の前処理を行った。
[2] Analysis of N content Measurement was performed by an inert gas melting-thermal conductivity method (TCD) using an oxygen / nitrogen / hydrogen analyzer (EMGA-930, manufactured by Horiba Seisakusho Co., Ltd.). A 0.5 g sample was burned and the amount of impurities was analyzed. The copper foil was handled with great care so that the surface would not be contaminated, and if necessary, pretreatment such as acetone degreasing was performed.

[3]Cl含有量の分析
一定重量の銅箔を一定体積の酸(硫酸1mol/L、35質量%の過酸化水素溶液20ml/Lの混合溶液)で溶解し、その溶液に対して硝酸銀水溶液(0.01mol/L)を基準溶液とし、自動滴定装置COM−1600(平沼産業株式会社製)を用いて電位差滴定を行い、銅箔中のCl含有量を測定した。
[3] Analysis of Cl content A constant weight of copper foil is dissolved in a constant volume of acid (a mixed solution of 1 mol / L sulfuric acid and 20 ml / L of 35% by mass hydrogen peroxide solution), and the silver nitrate aqueous solution is dissolved in the solution. Using (0.01 mol / L) as a reference solution, potential difference titration was performed using an automatic titrator COM-1600 (manufactured by Hiranuma Sangyo Co., Ltd.), and the Cl content in the copper foil was measured.

[4]引張試験
引張試験は、IPC−TM−650の規定に従って行った。また、測定は、引張試験機(1122型、インストロン社製)を使用し、室温(25℃±10℃)で、チャック間距離70mmの条件で行った。なお、測定用サンプルは、それぞれの銅箔について、常態で0.5inch×6inchのサイズに切断したものと、イナートガスオーブン(INH−21CD−S、光洋サーモシステム株式会社製)で、300℃、1時間加熱した後に0.5inch×6inchのサイズに切断したものの2種類を準備した。
本実施例では、常態における引張強度は380MPa以上を合格レベルとし、上記加熱後の状態における引張強度は300MPa以上を合格レベルとした。
[4] Tensile test The tensile test was carried out in accordance with the provisions of IPC-TM-650. Further, the measurement was carried out using a tensile tester (Type 1122, manufactured by Instron) at room temperature (25 ° C. ± 10 ° C.) under the condition of a distance between chucks of 70 mm. The measurement samples were obtained by cutting each copper foil to a size of 0.5 inch × 6 inch under normal conditions, and using an inert gas oven (INH-21CD-S, manufactured by Koyo Thermo System Co., Ltd.) at 300 ° C., 1 After heating for an hour, two types of those cut into a size of 0.5 inch × 6 inch were prepared.
In this example, the tensile strength in the normal state was set to 380 MPa or more as the pass level, and the tensile strength in the state after heating was set to the pass level of 300 MPa or more.

[5]導電率
導電率は、JIS H 0505:1975の規定に従い、4端子法で測定を行った。
本実施例では、導電率が85%IACS以上を良好と評価した。
[5] Conductivity The conductivity was measured by the 4-terminal method in accordance with the provisions of JIS H 0505: 1975.
In this example, a conductivity of 85% IACS or higher was evaluated as good.

[6]MIT耐折性試験
MIT耐折性試験は、JIS P 8115:2001の規定に従い、室温(25℃±10℃)で、屈曲半径Rが0.08mm、屈曲角度が±135°、屈曲速度が175回/分、負荷荷重が500gの条件で行った。なお、測定用サンプルは、上記銅箔を、イナートガスオーブン(同上)で、300℃、1時間加熱して、この加熱後の銅箔を長さ130mm×幅15mmのサイズに切断して作製したものを用いた。
本試験では、測定用サンプルが切断されるまでの屈曲回数をカウントし、サンプルが切断されたときの屈曲回数を評価した。
本実施例では、屈曲回数が800回以上を良好と評価した。
[6] MIT fold resistance test The MIT fold resistance test is performed at room temperature (25 ° C ± 10 ° C) with a bending radius R of 0.08 mm, a bending angle of ± 135 °, and bending in accordance with JIS P 8115: 2001. The test was performed under the conditions of a speed of 175 times / minute and a load of 500 g. The measurement sample was prepared by heating the above copper foil in an inert gas oven (same as above) at 300 ° C. for 1 hour, and cutting the heated copper foil into a size of 130 mm in length × 15 mm in width. Was used.
In this test, the number of bends until the sample for measurement was cut was counted, and the number of bends when the sample was cut was evaluated.
In this example, a bending frequency of 800 or more was evaluated as good.

[7]はぜ折り試験
はぜ折り試験は、以下の<S1>〜<S5>の手順に従い、室温(25℃±10℃)で行った。なお、図1の<S1>〜<S4>は、下記<S1>〜<S4>に対応する。
<S1> まず、上記銅箔を、イナートガスオーブン(同上)で、300℃、1時間加熱して、この加熱後の銅箔を0.5inch×6inchのサイズに切断して、測定用サンプルを作製した。
次に、曲げ半径が0.2mmとなるスペーサーとして、厚さ100μmのポリイミドフィルムを用い、図1に示すように、スペーサー20上に測定用サンプル10を載せて、その長手側両端部を該スペーサー20に固定し、スペーサー20と銅箔10の積層体を作製した。
<S2> 次に、図1に示すように、スペーサー20を内側にして、スペーサー20と銅箔10の積層体を180°に折り曲げ、ゴム製ローラー(直径95mm×幅45mm、重量2kg、ゴム硬度80Hs、太佑機材株式会社製)30を用いて荷重をかけた。
<S3> その後、図1に示す銅箔の折り曲げ部近傍(点線領域X)において、光学式マイクロスコープ(VHX−1000、株式会社キーエンス製)を用いて破断(ひび割れ)の有無を観察した。
<S4> そして、<S3>で破断がなかったものについては、折り曲げ後の積層体を図1のように再度開き、上記ローラー30を用いて平らに伸ばした。
<S5> その後、上記<S3>で破断が観察されるまで<S2>〜<S4>の工程を繰り返し、その繰り返し回数をカウントし、破断が観察されたときの観察回数を評価した。
本実施例では、観察回数が40回以上を合格レベルと評価し、50回以上をさらに良好と評価した。
[7] Folding test The flicking test was performed at room temperature (25 ° C. ± 10 ° C.) according to the following procedures <S1> to <S5>. In addition, <S1> to <S4> of FIG. 1 correspond to the following <S1> to <S4>.
<S1> First, the copper foil is heated in an inert gas oven (same as above) at 300 ° C. for 1 hour, and the heated copper foil is cut into a size of 0.5 inch × 6 inch to prepare a sample for measurement. did.
Next, a polyimide film having a thickness of 100 μm was used as a spacer having a bending radius of 0.2 mm, and as shown in FIG. 1, a measurement sample 10 was placed on the spacer 20, and both ends on the longitudinal side of the spacer 20 were placed on the spacer 20. It was fixed to 20 to prepare a laminate of the spacer 20 and the copper foil 10.
<S2> Next, as shown in FIG. 1, with the spacer 20 inside, the laminate of the spacer 20 and the copper foil 10 is bent at 180 °, and a rubber roller (diameter 95 mm × width 45 mm, weight 2 kg, rubber hardness) is bent. A load was applied using 80 Hs (manufactured by Tayu Equipment Co., Ltd.) 30.
<S3> After that, the presence or absence of breakage (cracking) was observed using an optical microscope (VHX-1000, manufactured by KEYENCE CORPORATION) in the vicinity of the bent portion (dotted line region X) of the copper foil shown in FIG.
<S4> Then, for those that did not break in <S3>, the laminated body after bending was reopened as shown in FIG. 1 and stretched flat using the roller 30.
<S5> After that, the steps <S2> to <S4> were repeated until the fracture was observed in <S3>, the number of repetitions was counted, and the number of observations when the fracture was observed was evaluated.
In this example, 40 or more observations were evaluated as a passing level, and 50 or more observations were evaluated as even better.

Figure 0006757773
Figure 0006757773

表1に示されるように、本発明の実施例1〜8及び参考例1に係る電解銅箔は、炭素(C)、硫黄(S)、窒素(N)および塩素(Cl)の含有量が所定の範囲内に制御されているため、加熱の前後においてそれぞれ高い引張強度を有し、耐はぜ折り性にも優れていることが確認された。 As shown in Table 1, the electrolytic copper foils according to Examples 1 to 8 and Reference Example 1 of the present invention have carbon (C), sulfur (S), nitrogen (N) and chlorine (Cl) contents. Since it was controlled within a predetermined range, it was confirmed that it had high tensile strength before and after heating and was also excellent in fracture resistance.

これに対し、比較例1〜13に係る電解銅箔は、炭素(C)、硫黄(S)、窒素(N)および塩素(Cl)の含有量のいずれか1つ以上が所定の範囲内に制御されていないため、実施例1〜9に係る電解銅箔に比べて、加熱前後の引張強度および耐はぜ折り性のいずれか1つ以上の特性が劣っていることが確認された。特に、比較例2〜4、10および11に係る電解銅箔は、従来一般的であるMIT耐折性試験においては優れた耐折曲性を発揮できるものの、より厳しい折り曲げ試験であるはぜ折り試験では十分な耐折曲性を発揮できないことが確認された。 On the other hand, the electrolytic copper foils according to Comparative Examples 1 to 13 have a content of any one or more of carbon (C), sulfur (S), nitrogen (N) and chlorine (Cl) within a predetermined range. Since it was not controlled, it was confirmed that any one or more of the tensile strength and the crease resistance before and after heating were inferior to those of the electrolytic copper foils according to Examples 1 to 9. In particular, the electrolytic copper foils according to Comparative Examples 2 to 4, 10 and 11 can exhibit excellent bending resistance in the conventional MIT folding resistance test, but are more severe bending tests. In the test, it was confirmed that sufficient bending resistance could not be exhibited.

このように本発明に係る電解銅箔は、高い引張強度を有しつつ、加熱後においても引張強度を高く維持すると共に良好な耐はぜ折り性を実現できるため、リチウムイオン二次電池負極集電体や配線板を製造するための電解銅箔として、好適に用いることができる。 As described above, the electrolytic copper foil according to the present invention has high tensile strength, maintains high tensile strength even after heating, and can realize good fold resistance, so that it is a collection of negative electrodes of lithium ion secondary batteries. It can be suitably used as an electrolytic copper foil for manufacturing an electric body or a wiring board.

Claims (10)

炭素(C)の含有量が60〜150質量ppm、硫黄(S)の含有量が18質量ppm以下、窒素(N)の含有量が40質量ppm以下および塩素(Cl)の含有量が25〜200質量ppmであることを特徴とする、電解銅箔。 The carbon (C) content is 60 to 150 mass ppm, the sulfur (S) content is 18 mass ppm or less, the nitrogen (N) content is 40 mass ppm or less, and the chlorine (Cl) content is 25 to mass ppm. An electrolytic copper foil characterized by a weight of 200 mass ppm. 前記塩素(Cl)の含有量に対する前記炭素(C)の含有量の比[Cの含有量/Clの含有量]が0.70〜1.40の範囲内である、請求項1に記載の電解銅箔。 The first aspect of the present invention, wherein the ratio of the carbon (C) content to the chlorine (Cl) content [C content / Cl content] is in the range of 0.70 to 1.40. Electrolytic copper foil. 常態で測定した引張強度が380〜600MPaの範囲内である、請求項1または2に記載の電解銅箔。 The electrolytic copper foil according to claim 1 or 2, wherein the tensile strength measured in a normal state is in the range of 380 to 600 MPa. 300℃、1時間の加熱後の状態で測定した引張強度が300〜550MPaの範囲内である、請求項1〜3のいずれか1項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 3, wherein the tensile strength measured in a state after heating at 300 ° C. for 1 hour is in the range of 300 to 550 MPa. 導電率が85%IACS以上である、請求項1〜4のいずれか1項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 4, which has a conductivity of 85% IACS or more. 300℃で1時間加熱した後、室温(25℃±10℃)条件下にて、曲げ半径が0.2mmとなるように180°折り曲げるはぜ折り試験による、破断までの折り曲げ繰り返し回数が40回以上である、請求項1〜5のいずれか1項に記載の電解銅箔。 After heating at 300 ° C for 1 hour, it is bent 180 ° so that the bending radius is 0.2 mm under room temperature (25 ° C ± 10 ° C) conditions. The number of repeated bendings until breaking is 40 times by the foil folding test. The electrolytic copper foil according to any one of claims 1 to 5, which is the above. リチウムイオン二次電池の負極集電体を製造するために用いられる、請求項1〜6のいずれか1項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 6, which is used for manufacturing a negative electrode current collector of a lithium ion secondary battery. プリント配線板の導体部を製造するために用いられる、請求項1〜6のいずれか1項に記載の電解銅箔。 The electrolytic copper foil according to any one of claims 1 to 6, which is used for manufacturing a conductor portion of a printed wiring board. 請求項1〜7のいずれか1項に記載の電解銅箔を負極集電体として有する、リチウムイオン二次電池。 A lithium ion secondary battery having the electrolytic copper foil according to any one of claims 1 to 7 as a negative electrode current collector. 請求項1〜6および8のいずれか1項に記載の電解銅箔を導体部として有する、プリント配線板。 A printed wiring board having the electrolytic copper foil according to any one of claims 1 to 6 and 8 as a conductor portion.
JP2018180832A 2018-09-26 2018-09-26 Electrolytic copper foil Active JP6757773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018180832A JP6757773B2 (en) 2018-09-26 2018-09-26 Electrolytic copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018180832A JP6757773B2 (en) 2018-09-26 2018-09-26 Electrolytic copper foil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016137618A Division JP6440656B2 (en) 2016-07-12 2016-07-12 Electrolytic copper foil

Publications (3)

Publication Number Publication Date
JP2019014973A JP2019014973A (en) 2019-01-31
JP2019014973A5 JP2019014973A5 (en) 2019-03-14
JP6757773B2 true JP6757773B2 (en) 2020-09-23

Family

ID=65357355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018180832A Active JP6757773B2 (en) 2018-09-26 2018-09-26 Electrolytic copper foil

Country Status (1)

Country Link
JP (1) JP6757773B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289312A (en) * 2008-05-28 2009-12-10 Nippon Steel Chem Co Ltd Metal-clad laminate and wiring integration type suspension
JP5301886B2 (en) * 2008-06-10 2013-09-25 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the electrolytic copper foil
TWI432610B (en) * 2010-11-22 2014-04-01 Mitsui Mining & Smelting Co Surface treated copper foil
JP6030401B2 (en) * 2012-10-12 2016-11-24 三井金属鉱業株式会社 Method for producing surface-treated copper foil
TWI518210B (en) * 2013-01-31 2016-01-21 三井金屬鑛業股份有限公司 Electrolytic copper foil and method for manufacturing the same and surface-treated copper foil using the electrolytic copper foil
JP6553558B2 (en) * 2016-08-23 2019-07-31 三井金属鉱業株式会社 Surface treated copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2019014973A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
KR101482898B1 (en) Surface treated copper foil
KR101669087B1 (en) Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
KR102227681B1 (en) Electrolytic copper foil, processes for producing said electrolytic copper foil, and surface-treated copper foil obtained using said electrolytic copper foil
CN107604197B (en) Electrolytic copper foil
JP2016125120A (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, rigid printed circuit board, and flexible printed circuit board
KR20140084216A (en) High strength, high heat-resistance electrolytic copper foil, and manufacturing method for same
JP4324503B2 (en) Folding resistant copper foil and method for producing the same
TWI602953B (en) Electrolytic copper foil, battery collector using the same, battery for secondary battery using the same, and secondary battery using the same
TWI468284B (en) Surface treatment copper foil, surface treatment copper foil manufacturing method, cathode current collector and non-aqueous secondary battery cathode material
KR101675706B1 (en) Electrolytic copper foil, electrode obtained using said electrolytic copper foil for lithium-ion secondary battery, and lithium-ion secondary battery obtained using said electrode
JP6757773B2 (en) Electrolytic copper foil
JP5503814B1 (en) Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2014101581A (en) Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode
JP5697051B2 (en) Electrolytic copper alloy foil, method for producing the same, electrolyte used for the production, negative electrode current collector for secondary battery, secondary battery and electrode thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R151 Written notification of patent or utility model registration

Ref document number: 6757773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350