JP6553558B2 - Surface treated copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery - Google Patents

Surface treated copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery Download PDF

Info

Publication number
JP6553558B2
JP6553558B2 JP2016162884A JP2016162884A JP6553558B2 JP 6553558 B2 JP6553558 B2 JP 6553558B2 JP 2016162884 A JP2016162884 A JP 2016162884A JP 2016162884 A JP2016162884 A JP 2016162884A JP 6553558 B2 JP6553558 B2 JP 6553558B2
Authority
JP
Japan
Prior art keywords
copper foil
zinc
tensile strength
negative electrode
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016162884A
Other languages
Japanese (ja)
Other versions
JP2016223018A (en
Inventor
美智 田代
美智 田代
歩 立岡
歩 立岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2016162884A priority Critical patent/JP6553558B2/en
Publication of JP2016223018A publication Critical patent/JP2016223018A/en
Application granted granted Critical
Publication of JP6553558B2 publication Critical patent/JP6553558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本件発明は、表面処理銅箔、負極集電体及び非水系二次電池の負極材に関する。特に、高温で長時間加熱された場合でも、引張強さの低下が少ないリチウムイオン二次電池等の負極集電体用途に用いられる表面処理銅箔、当該表面処理銅箔を用いた負極集電体及び負極材に関する。   The present invention relates to a surface-treated copper foil, a negative electrode current collector, and a negative electrode material for a non-aqueous secondary battery. In particular, a surface-treated copper foil used for a negative electrode current collector application such as a lithium ion secondary battery with little reduction in tensile strength even when heated for a long time at high temperature, a negative electrode current collector using the surface-treated copper foil The present invention relates to a body and a negative electrode material.

従来より、銅箔はプリント配線板をはじめとして種々の電子部品の回路形成材料として使用されている。また、近年では、銅箔はこれらの回路形成材料に限らず、リチウムイオン二次電池等の非水系二次電池の負極集電体としても用いられている。   Conventionally, copper foil has been used as a circuit forming material for various electronic components including printed wiring boards. Further, in recent years, copper foils are used not only for these circuit-forming materials but also as negative electrode current collectors of non-aqueous secondary batteries such as lithium ion secondary batteries.

一般に、リチウムイオン二次電池の負極材は、導電性材料からなる集電体の表面に負極活物質と、導電材と、結着剤(バインダー)等を含む負極合剤層を備えて構成される。リチウムイオン二次電池の充放電時において、負極活物質がリチウムを吸蔵・放出すると、これに伴い負極合剤層が膨張・収縮する。負極合剤層は集電体の表面に密着されているため、リチウムイオン二次電池の充放電サイクルを繰り返すことにより、負極合剤層と集電体との間には繰返し応力が加わる。このため、集電体の引張強さが低いと、集電体は負極合剤の体積変化により、伸張して皺などの変形を生じたり、破断する恐れがある。集電体が伸張して皺などの変形を生じた場合、正極と負極との間で短絡が生じたり、正極と負極との間の距離が変化して均一な電極反応が阻害され、充放電サイクル耐久性が低下する恐れがある。また、集電体が破断した場合は、単位体積当たりの容量が減少し、リチウムイオン二次電池の電池的特性が低下する。このため、集電体として銅箔を用いる場合、当該銅箔は高い引張強さを有することが求められる。   Generally, the negative electrode material of a lithium ion secondary battery comprises a negative electrode active material layer, a conductive material, a negative electrode mixture layer containing a binder (binder) and the like on the surface of a current collector made of a conductive material. The At the time of charge and discharge of the lithium ion secondary battery, when the negative electrode active material occludes and releases lithium, the negative electrode mixture layer expands and contracts. Since the negative electrode mixture layer is in close contact with the surface of the current collector, repetitive stress is applied between the negative electrode mixture layer and the current collector by repeating the charge and discharge cycle of the lithium ion secondary battery. For this reason, when the tensile strength of the current collector is low, the current collector may be stretched to cause deformation such as wrinkles or breakage due to a change in volume of the negative electrode mixture. When the current collector expands and causes deformation such as wrinkles, a short circuit occurs between the positive electrode and the negative electrode, or the distance between the positive electrode and the negative electrode changes to inhibit uniform electrode reaction, thereby causing charge and discharge. The cycle durability may be reduced. Further, when the current collector is broken, the capacity per unit volume is reduced, and the battery characteristics of the lithium ion secondary battery are deteriorated. For this reason, when using copper foil as a collector, it is calculated | required that the said copper foil has high tensile strength.

ところで、負極材を製造する工程では、集電体の表面に負極合剤層を形成する際に、高温の熱が集電体に負荷される。一般的な銅箔の場合、高温の熱が負荷されると、銅の再結晶化により結晶粒が粗大化し、引張強さ等の機械的強度が低下する。このため、集電体用途に用いる銅箔は、高温の熱処理が施された後も高い引張強さを維持することが求められる。このような銅箔として、例えば、特許文献1及び特許文献2には、350℃で60分間加熱した後であっても40kgf/mm以上、400℃で60分間加熱した後についても35kgf/mm以上の引張強さを維持することのできる表面処理銅箔が開示されている。 By the way, in the step of manufacturing the negative electrode material, high temperature heat is applied to the current collector when the negative electrode mixture layer is formed on the surface of the current collector. In the case of a general copper foil, when high temperature heat is applied, recrystallization of copper causes coarsening of crystal grains, and mechanical strength such as tensile strength decreases. For this reason, it is calculated | required that the copper foil used for a collector use maintains high tensile strength, even after high temperature heat processing is performed. As such copper foils, for example, in Patent Document 1 and Patent Document 2, even after heating at 350 ° C. for 60 minutes, 40 kgf / mm 2 or more, even after heating at 400 ° C. for 60 minutes, 35 kgf / mm 2 A surface-treated copper foil capable of maintaining two or more tensile strengths is disclosed.

国際公開第2012/070589号International Publication No. 2012/070589 国際公開第2012/070591号International Publication No. 2012/070591

しかしながら、リチウムイオン二次電池の負極材を製造する際には、集電体に対して350℃〜400℃の温度範囲で1時間を超える加熱が行われる場合がある。この場合、上記特許文献1又は特許文献2に開示の表面処理銅箔では引張強さが低下し、加熱時間によっては、十分なレベルの引張強さを維持することができない場合があった。   However, when manufacturing the negative electrode material of a lithium ion secondary battery, heating over 1 hour may be performed with respect to a collector in the temperature range of 350 degreeC-400 degreeC. In this case, the tensile strength of the surface-treated copper foil disclosed in Patent Document 1 or Patent Document 2 is lowered, and depending on the heating time, a sufficient level of tensile strength may not be maintained.

従って、本件発明の課題は、高温の熱処理が長時間施された場合でも、引張強さの低下の少ない表面処理銅箔、当該表面処理銅箔を用いた集電体及び非水系二次電池の負極材を提供することにある。   Therefore, an object of the present invention is to provide a surface-treated copper foil with little reduction in tensile strength even when high-temperature heat treatment is performed for a long time, and a collector and non-aqueous secondary battery using the surface-treated copper foil. An object of the present invention is to provide a negative electrode material.

本発明者等は、鋭意研究を行った結果、以下の技術的思想を採用することにより、高温の熱処理が長時間施された場合でも、引張強さの低下の少ない表面処理銅箔に想到した。   As a result of intensive researches, the present inventors conceived of a surface-treated copper foil with little reduction in tensile strength even when high temperature heat treatment is performed for a long time by adopting the following technical idea. .

本件発明に係る表面処理銅箔は、炭素、硫黄、塩素及び窒素から選ばれる1種又は2種以上の微量成分をその総量で100ppm以上含む銅箔の両面に、片面当たり20mg/m 〜1000mg/m の亜鉛を含む表面処理層を備え、当該表面処理層の亜鉛と当該微量成分との化合物が銅箔の結晶粒界に析出した表面処理銅箔であって、当該銅箔の常態引張強さが50kgf/mm 以上62kgf/mm 以下、当該表面処理銅箔の不活性ガス雰囲気下において350℃で5時間加熱した後の引張強さが50kgf/mm 以上であり、且つ、当該銅箔の常態の引張強さに対する表面処理銅箔の加熱後の引張強さの維持率が90%〜100%であることを特徴とする。
The surface-treated copper foil according to the present invention is 20 mg / m 2 to 1000 mg per side on both sides of a copper foil containing 100 ppm or more in total of one or two or more trace components selected from carbon, sulfur, chlorine and nitrogen. A surface-treated copper foil comprising a surface-treated layer containing zinc / m 2 , wherein a compound of the zinc in the surface-treated layer and the trace component is precipitated at grain boundaries of the copper foil, the normal tension of the copper foil strength 50 kgf / mm 2 or more 62kgf / mm 2 or less, a tensile strength after heating for 5 hours at 350 ° C. under an inert gas atmosphere of the surface treated copper foil 50 kgf / mm 2 or more, and, the It is characterized in that a retention ratio of tensile strength after heating of the surface treated copper foil to normal tensile strength of the copper foil is 90% to 100% .

本件発明に係る負極集電体は、上記いずれかに記載の表面処理銅箔を用いたことを特徴とする。   The negative electrode current collector according to the present invention is characterized in that the surface-treated copper foil described in any of the above is used.

本件発明に係る非水系二次電池の負極材は、上記負極集電体を用いたことを特徴とする。   The negative electrode material of the non-aqueous secondary battery according to the present invention is characterized by using the above-mentioned negative electrode current collector.

本件発明に係る表面処理銅箔は、銅箔の両面に亜鉛を含む表面処理層を形成し、上記プレアニール処理を施すことにより、簡易に製造することができ、且つ、高温の熱処理が長時間施された後であっても、引張強さの低下の少ない銅箔を提供することができる。   The surface-treated copper foil according to the present invention can be easily manufactured by forming a surface-treated layer containing zinc on both sides of the copper foil and performing the above-described pre-annealing treatment, and a high-temperature heat treatment is performed for a long time Even after being applied, it is possible to provide a copper foil with little decrease in tensile strength.

200℃で8時間プレアニール処理を施した後、350℃で5時間加熱した後の実施試料1の断面結晶組織の一例を示すFIB−SIM像である。It is a FIB-SIM image which shows an example of the cross-section crystal structure of the working sample 1 after heating at 350 degreeC for 5 hours, after pre-annealing treatment for 8 hours at 200 degreeC. 350℃で5時間加熱した後の比較試料1の断面結晶組織の一例を示すFIB−SIM像である。It is a FIB-SIM image which shows an example of the cross-section crystal structure of the comparative sample 1 after heating at 350 degreeC for 5 hours.

以下、本件発明に係る表面処理銅箔、表面処理銅箔の製造方法、負極集電体及び非水系二次電池の負極材の実施の形態を順に説明する。   Hereinafter, embodiments of a surface-treated copper foil, a method for producing the surface-treated copper foil, an anode current collector, and an anode material of a non-aqueous secondary battery according to the present invention will be described in order.

1.表面処理銅箔
まず、本件発明に係る表面処理銅箔の実施の形態を説明する。本件発明に係る表面処理銅箔は、銅箔の両面に、亜鉛を含む表面処理層(本実施の形態では亜鉛付着層と称する。)を備え、当該亜鉛付着層が形成された後、プレアニール処理を施すことにより、高温の熱処理が長時間施された後であっても、引張強さの低下を抑制できるようにしたものである。なお、本件明細書において高温とは、銅の再結晶化が生じる温度以上の温度を指し、主として300℃〜400℃程度の範囲内の温度を指す。また、長時間とは1時間を超える時間を指し、主として5時間以上の時間を意味するものとする。以下、本実施の形態では、当該表面処理銅箔をリチウムイオン二次電池等の非水系二次電池の負極集電体として用いる場合を例に挙げて説明するが、本件発明に係る表面処理銅箔は、当該リチウムイオン二次電池等の非水系二次電池の負極集電体に限らず、プリント配線板の製造材料として用いることができるのは勿論である。
1. Surface-treated copper foil First, an embodiment of the surface-treated copper foil according to the present invention will be described. The surface-treated copper foil according to the present invention is provided with a surface treatment layer containing zinc (referred to as a zinc adhesion layer in the present embodiment) on both sides of the copper foil, and after the zinc adhesion layer is formed, pre-annealing treatment is performed. Thus, even after high-temperature heat treatment is performed for a long time, the reduction in tensile strength can be suppressed. In the present specification, the high temperature refers to a temperature higher than the temperature at which copper recrystallization occurs, and mainly refers to a temperature within the range of about 300 ° C. to 400 ° C. In addition, a long time refers to a time exceeding 1 hour, and mainly means a time of 5 hours or more. Hereinafter, in the present embodiment, the surface-treated copper foil is described as an example of using the negative electrode current collector of a non-aqueous secondary battery such as a lithium ion secondary battery, but the surface-treated copper according to the present invention is described. The foil is not limited to the negative electrode current collector of the non-aqueous secondary battery such as the lithium ion secondary battery, and of course can be used as a manufacturing material of a printed wiring board.

(1)銅箔
まず、銅箔について説明する。本件発明では、炭素、硫黄、塩素及び窒素から選ばれる1種又は2種以上の微量成分を総量で100ppm以上含む銅箔の両面に上記亜鉛付着層が設けられる。
ここで、本件発明では、「銅箔」とは、上記表面処理等の各種処理が施されていない未処理の銅箔を意味するものとし、「表面処理銅箔」とは、上記亜鉛付着層を形成するための亜鉛付着処理、プレアニール処理の他、各種表面処理後の銅箔を意味するものとする。また、当該銅箔は、電解銅箔であっても、圧延銅箔であってもよいが、結晶粒が微細であり、引張強さの高い機械的特性に優れた銅箔が得られやすいという観点から、電解銅箔であることが好ましい。以下、主として、電解銅箔を例に挙げて説明するが、以下において、単に「銅箔」と記載した場合、当該銅箔には「電解銅箔」だけではなく、「圧延銅箔」が含まれるものとする。
(1) Copper foil First, copper foil is demonstrated. In the present invention, the above-mentioned zinc adhesion layer is provided on both sides of a copper foil containing 100 ppm or more in total of one or more trace components selected from carbon, sulfur, chlorine and nitrogen.
Here, in the present invention, "copper foil" means an untreated copper foil which has not been subjected to various treatments such as the above surface treatment, and "surface treated copper foil" means the above-mentioned zinc adhesion layer. In addition to zinc adhesion treatment to form W, pre-annealing treatment, copper foil after various surface treatments shall be meant. Further, the copper foil may be an electrolytic copper foil or a rolled copper foil, but it is said that a copper foil having fine crystal grains and excellent in mechanical characteristics with high tensile strength can be easily obtained. From the viewpoint, an electrolytic copper foil is preferable. Hereinafter, although an electrodeposited copper foil is mentioned as an example and explained as an example, when only saying "copper foil" below, not only "electrolytic copper foil" but "rolled copper foil" is contained in the said copper foil Shall be

微量成分: 本件発明において、上述したとおり、当該銅箔は炭素、硫黄、塩素及び窒素から選ばれる1種又は2種以上の微量成分を総量で100ppm以上含有する。これらの微量成分の含有量が総量で100ppm以上になると、当該銅箔を構成する銅の結晶組織(結晶粒)の微細化が容易になり、引張強さの高い機械的強度に優れた銅箔が得られやすくなるためである。 Minor Component: In the present invention, as described above, the copper foil contains 100 ppm or more in total of one or more minor components selected from carbon, sulfur, chlorine and nitrogen. When the total content of these trace components is 100 ppm or more in total, it is easy to miniaturize the crystal structure (crystal grains) of copper constituting the copper foil, and the copper foil has high mechanical strength with high tensile strength. Is easy to obtain.

ここで、本件発明で用いる銅箔は、当該微量成分を総量で100ppm以上含有すると共に、炭素を20ppm〜470ppm、硫黄を5ppm〜600ppm、塩素を15ppm〜600ppm、窒素を5ppm〜600ppmの範囲で含有することが好ましい。銅箔の結晶組織内にこれらの微量成分を適正な量だけ含有させることにより、上記銅の結晶組織の微細化がより容易になり、引張強さのより高い機械的強度に優れた銅箔とすることができる。具体的には、各微量成分を上記範囲内で含有させることにより、当該銅箔の平均結晶粒径が1.0μm以下となり、常態引張強さが50kgf/mm以上、常態伸び率が3%〜15%という機械的強度に優れた銅箔とすることができる。 Here, the copper foil used in the present invention contains 100 ppm or more of the total amount of the trace components, and contains 20 ppm to 470 ppm of carbon, 5 ppm to 600 ppm of sulfur, 15 ppm to 600 ppm of chlorine, and 5 ppm to 600 ppm of nitrogen. It is preferable to do. By incorporating these trace components in the crystal structure of the copper foil in an appropriate amount, it becomes easier to refine the crystal structure of the copper, and the copper foil is superior in mechanical strength with higher tensile strength and can do. Specifically, when each minor component is contained in the above range, the average crystal grain size of the copper foil is 1.0 μm or less, the normal state tensile strength is 50 kgf / mm 2 or more, and the normal state elongation rate is 3%. It can be set as the copper foil excellent in mechanical strength of -15%.

ここで、各微量成分の含有量が下限値未満の場合には、例えば、平均結晶粒径が1.0μm以下の極微細な結晶組織を得ることが困難であり、引張強さのより高い銅箔を得ることができず好ましくない。一方、当該銅箔内の各微量成分の含有量が上限値を超える場合、以下の観点から好ましくない。炭素含有量が470ppmを超える場合には、グラファイトが粗大化し、クラックが生じやすくなるため好ましくない。硫黄含有量が600ppmを超える場合には、当該銅箔の引張強さは高くなるが、伸び率が低下し、脆化するため好ましくない。塩素含有量が600ppmを超える場合には、電解銅箔の場合、その析出表面が粗くなる。その場合、その表面に負極活物質等をムラ無く密着させることが困難になり、充放電を繰り返した時の体積変化量が面内で不均一となり、局所的に破断することから好ましくない。さらに、窒素含有量が180ppmを超えると、窒素化合物が過剰となり、銅箔の析出組織の微細化効果が飽和して、窒素含有量を増加させる意義が没却するため好ましくない。
但し、本件発明において、当該銅箔中の微量成分の含有量を表すために用いた「ppm」という単位は「mg/kg」と同義であり、当該微量成分を総量で100ppm以上含むとは、当該銅箔1kg当たりに含まれる当該微量成分の総量が100mg以上であることを意味する。
Here, when the content of each minor component is less than the lower limit value, for example, it is difficult to obtain an extremely fine crystal structure having an average crystal grain size of 1.0 μm or less, and copper having a higher tensile strength. A foil cannot be obtained, which is not preferable. On the other hand, when content of each trace amount component in the said copper foil exceeds an upper limit, it is unpreferable from the following viewpoints. If the carbon content exceeds 470 ppm, the graphite is coarsened and cracks are likely to occur, which is not preferable. When the sulfur content exceeds 600 ppm, the tensile strength of the copper foil is increased, but the elongation is reduced, which is not preferable because it becomes brittle. When the chlorine content exceeds 600 ppm, in the case of the electrodeposited copper foil, the deposition surface becomes rough. In that case, it becomes difficult to uniformly adhere the negative electrode active material or the like on the surface thereof, and the volume change amount when charging and discharging are repeated becomes nonuniform in the plane, which is not preferable because it is locally broken. Furthermore, when the nitrogen content exceeds 180 ppm, the nitrogen compound becomes excessive, the refining effect of the precipitation structure of the copper foil is saturated, and the significance of increasing the nitrogen content is not preferable.
However, in the present invention, the unit “ppm” used to represent the content of minor components in the copper foil is synonymous with “mg / kg”, and the total amount of the minor components is 100 ppm or more. It means that the total amount of the said trace component contained per kg of the said copper foil is 100 mg or more.

平均結晶粒径: 次に、銅箔の結晶組織を構成する銅の結晶粒の平均結晶粒径について説明する。まず、当該平均結晶粒径は1.0μm以下であることが好ましく、0.8μm以下であることがより好ましい。当該平均結晶粒径が1.0μmを超える場合、リチウムイオン二次電池等の非水系二次電池の負極集電体として要求されるレベルの引張強さを維持することが困難になるため好ましくない。また、銅箔を構成する銅の結晶粒は微細であると共に、均一であることが好ましい。結晶粒が均一であることによって、結晶粒界が銅箔内に均一に分布し、当該銅箔に負荷された荷重が特定の結晶粒に偏ることなく分散され、引張強さの高い機械的強度に優れた銅箔とすることができる。但し、ここでいう平均結晶粒径は、当該銅箔の常態時における平均結晶粒径を指し、当該銅箔の断面を観察したときに断面に現れる結晶粒の粒径に基づいて求めることができる。 Average crystal grain size: Next, the average crystal grain size of the copper crystal grains constituting the crystal structure of the copper foil will be described. First, the average crystal grain size is preferably 1.0 μm or less, and more preferably 0.8 μm or less. When the average crystal grain size exceeds 1.0 μm, it is difficult to maintain the tensile strength of the level required as a negative electrode current collector of a non-aqueous secondary battery such as a lithium ion secondary battery, which is not preferable. . Moreover, it is preferable that the copper crystal grains constituting the copper foil are fine and uniform. Due to the uniformity of the crystal grains, the grain boundaries are uniformly distributed in the copper foil, the load applied to the copper foil is dispersed without being biased to specific crystal grains, and the mechanical strength is high in tensile strength. Copper foil excellent in However, the average crystal grain size referred to here indicates the average crystal grain size in the normal state of the copper foil, and can be determined based on the grain size of crystal grains appearing in the cross section when observing the cross section of the copper foil. .

常態引張強さ: 当該銅箔の常態引張強さは50kgf/mm以上であることが好ましい。但し、本件発明において「常態」とは、常温で管理されている状態、或いは、熱処理される前の状態を指す。常態引張強さが50kgf/mm以上の銅箔を用いることにより、高温の熱処理が施された後も高い引張強さを示す表面処理銅箔を得られるようになる。但し、常態引張強さの高い銅箔であっても、熱処理が施された後の引張強さの低下が著しい場合もある。従って、本件発明では、当該銅箔自体の常態引張強さがより高い値であることが好ましい訳ではなく、常態引張強さの値によらず、熱処理が施された後の当該表面処理銅箔の引張強さがより高い値であることが好ましい。 Normal tensile strength: The normal tensile strength of the copper foil is preferably 50 kgf / mm 2 or more. However, in the present invention, “normal state” refers to a state managed at normal temperature or a state before heat treatment. By using a copper foil having a normal tensile strength of 50 kgf / mm 2 or more, it is possible to obtain a surface-treated copper foil exhibiting high tensile strength even after high-temperature heat treatment. However, even in the case of a copper foil having high tensile strength in the normal state, the reduction in tensile strength after heat treatment may be significant. Therefore, in the present invention, it is not preferable that the normal tensile strength of the copper foil itself is a higher value, and the surface-treated copper foil after heat treatment is performed regardless of the value of the normal tensile strength. It is preferable that the tensile strength of is a higher value.

厚み: 当該銅箔の厚みは特に限定されるものではない。当該表面処理銅箔の用途に応じて、適宜適切な厚みの銅箔を採用すればよい。例えば、本件発明に係る表面処理銅箔をリチウムイオン二次電池等の非水系二次電池の負極集電体として用いる場合には、当該銅箔の厚みを5μm〜35μm(ゲージ厚)の範囲内とすることが多い。また、当該表面処理銅箔をプリント配線板を製造する際に用いる場合には、当該銅箔の厚みを5μm〜120μm(ゲージ厚)の範囲内とすることが多い。本件発明に係る表面処理銅箔は5μm〜35μmの薄い銅箔であっても、リチウムイオン二次電池の負極集電体として市場で要求されるレベルの引張強さを有する。 Thickness: The thickness of the copper foil is not particularly limited. What is necessary is just to employ | adopt the copper foil of appropriate thickness suitably according to the use of the said surface treatment copper foil. For example, when using the surface-treated copper foil according to the present invention as a negative electrode current collector of a non-aqueous secondary battery such as a lithium ion secondary battery, the thickness of the copper foil is in the range of 5 μm to 35 μm (gauge thickness) In many cases. Moreover, when using the said surface-treated copper foil when manufacturing a printed wiring board, the thickness of the said copper foil is often carried out in the range of 5 micrometers-120 micrometers (gauge thickness). Even if the surface-treated copper foil according to the present invention is a thin copper foil of 5 μm to 35 μm, it has a tensile strength required in the market as an anode current collector of a lithium ion secondary battery.

(2)亜鉛付着層(表面処理層)
次に、亜鉛付着層について説明する。本件発明の表面処理銅箔は、上記銅箔の両面に、片面当たり20mg/m〜1000mg/mの亜鉛を含む亜鉛付着層を備えている。銅箔の両面に設けられた亜鉛付着層中の亜鉛は、時間の経過と共に銅箔内に拡散し、結晶組織内の上記微量成分と反応する。この亜鉛と上記微量成分の化合物は、結晶粒界に析出し、当該銅箔に熱が負荷されたときに、結晶粒の成長を妨げ、結晶粒が粗大化するのを抑制する効果を発揮する。本件発明では、銅箔の両面に亜鉛付着層を形成した後、後述するプレアニール処理を施すことにより、工業的生産効率に見合った速度で、亜鉛を銅箔の表層部だけではなく、その内部(中央部)にまで拡散させることができる。このため、本件発明によれば、当該表面処理銅箔がその後の使用過程で、高温でより長時間の熱処理が施された場合であっても、熱処理後も微細な結晶組織を維持することができ、当該銅箔の引張強さが低下することを抑制することができる。
(2) Zinc adhesion layer (surface treatment layer)
Next, the zinc adhesion layer will be described. The surface-treated copper foil of the present invention is provided with a zinc adhesion layer containing 20 mg / m 2 to 1000 mg / m 2 of zinc per side on both sides of the copper foil. The zinc in the zinc adhesion layer provided on both sides of the copper foil diffuses into the copper foil over time, and reacts with the above-mentioned trace components in the crystal structure. The compound of zinc and the above-mentioned trace component precipitates at grain boundaries, and when heat is applied to the copper foil, it inhibits the growth of crystal grains and exerts the effect of suppressing the coarsening of crystal grains. . In the present invention, after forming a zinc adhesion layer on both sides of the copper foil, by performing a pre-annealing process described later, zinc is not only in the surface layer portion of the copper foil but also in the inside ( Can be diffused to the center). Therefore, according to the present invention, even if the surface-treated copper foil is subjected to heat treatment at a high temperature for a longer time in the subsequent use process, the fine crystalline structure can be maintained even after the heat treatment. It can suppress and it can suppress that the tensile strength of the said copper foil falls.

ここで、亜鉛付着層中の亜鉛含有量、すなわち銅箔の表面に対する亜鉛の付着量が片面当たり20mg/m未満である場合、銅箔内に拡散する亜鉛量が少なく、結晶粒の粗大化を十分に抑制する効果を得ることができず、微細な結晶組織を維持することが困難になるため好ましくない。当該観点から、亜鉛の付着量は25mg/m以上であることが好ましく、50mg/m以上であることがより好ましい。一方、亜鉛の付着量が1000mg/mを超える場合には、亜鉛の付着量を増加させても付着量に応じた効果が得られる訳ではなく、資源の無駄遣いとなるため好ましくない。当該観点から、亜鉛の付着量は500mg/m以下であることが好ましく、300mg/m以下であることがより好ましく、200mg/m以下であることが更に好ましい。 Here, when the zinc content in the zinc adhesion layer, that is, the adhesion amount of zinc on the surface of the copper foil is less than 20 mg / m 2 per one side, the amount of zinc diffused in the copper foil is small and coarsening of crystal grains It is not preferable because the effect of suppressing the crystal structure can not be obtained sufficiently and it becomes difficult to maintain a fine crystal structure. From this point of view, the adhesion amount of zinc is preferably 25 mg / m 2 or more, and more preferably 50 mg / m 2 or more. On the other hand, when the adhesion amount of zinc exceeds 1000 mg / m 2 , even if the adhesion amount of zinc is increased, the effect according to the adhesion amount can not be obtained, which is not preferable because it causes waste of resources. From the viewpoint, the adhesion amount of zinc is preferably 500 mg / m 2 or less, more preferably 300 mg / m 2 or less, and still more preferably 200 mg / m 2 or less.

ここで、亜鉛付着層は、銅箔の片面当たりの上記範囲内の亜鉛を含有するため、当該銅箔に対する亜鉛の総付着量は、40mg/m〜2000mg/mの範囲内となる。そして、当該亜鉛の総付着量は、上記と同様の観点から、50mg/m以上であることが好ましく、100mg/m以上であることがより好ましい。また、上限値は1000mg/m以下であることが好ましく、600mg/m以下であることがより好ましい。但し、当該亜鉛の付着量は、銅箔の表面が完全に平坦な状態であると仮定したときに単位面積当たりの亜鉛の付着量(換算量)とする。 Here, the zinc deposited layer, since it contains zinc in the range of per side of the copper foil, the total deposition amount of zinc to the copper foil will be in the range of 40mg / m 2 ~2000mg / m 2 . And from the same viewpoint as the above, it is preferable that it is 50 mg / m < 2 > or more, and, as for the total adhesion amount of the said zinc, it is more preferable that it is 100 mg / m < 2 > or more. The upper limit value is preferably 1000 mg / m 2 or less, more preferably 600 mg / m 2 or less. However, the adhesion amount of zinc is the adhesion amount (conversion amount) of zinc per unit area when it is assumed that the surface of the copper foil is completely flat.

上記亜鉛付着層は、亜鉛から成る亜鉛層とすることができる他、亜鉛以外に、銅及び/又は銅中の拡散速度が亜鉛よりも速い金属元素を含む亜鉛合金層としてもよい。例えば、300℃以上の温度下で、銅中の拡散速度が亜鉛よりも速い金属元素(以下、「異種金属元素」と称する。)として、Bi、Cd、Sn、Pb、Sb、In、Al、As、Ga、Geが挙げられる。また、亜鉛付着層を亜鉛層と上記異種金属元素のうち少なくともいずれか一種又は二種以上を含む異種金属層とを積層した亜鉛系複合層としてもよい。この場合、亜鉛層と異種金属層の積層順序は限定されるものではなく、銅箔の表面に亜鉛層、異種金属層の順に積層されてもよいし、銅箔の表面に異種金属層、亜鉛層の順に積層されていてもよい。亜鉛付着層を、亜鉛と共に上記異種金属元素を含む構成とすることにより、銅箔内に亜鉛と共に上記異種金属元素を拡散させることができる。異種金属元素の拡散速度は亜鉛よりも速いため、これらの異種金属元素は、銅箔の厚み方向において亜鉛よりも速くより深い位置に到達する。また、これらの異種金属元素は、亜鉛と同様に上記微量成分と反応して化合物を形成し、銅の結晶粒の粗大化を抑制する。従って、亜鉛付着層を亜鉛と共に異種金属元素を含む構成とすることにより、高温でより長時間の熱処理が施された場合でも、銅箔の厚み方向の略全域において、銅の結晶粒の粗大化をより有効に抑制させることができる。なお、亜鉛とは純度が99%以上の亜鉛を指す。また、亜鉛合金とは、亜鉛と他の元素との混合物、固溶体、共晶、化合物などを指す。   The zinc adhesion layer may be a zinc layer made of zinc, or may be a zinc alloy layer containing a metal element having a faster diffusion rate in copper and / or copper than zinc in addition to zinc. For example, Bi, Cd, Sn, Pb, Sb, In, Al, as a metal element having a faster diffusion rate in copper than zinc at a temperature of 300 ° C. or more (hereinafter referred to as “different metal element”). As, Ga, Ge can be mentioned. The zinc adhesion layer may be a zinc-based composite layer in which a zinc layer and a dissimilar metal layer containing at least one or more of the above-mentioned dissimilar metal elements are laminated. In this case, the lamination order of the zinc layer and the dissimilar metal layer is not limited, and the zinc layer and the dissimilar metal layer may be laminated in this order on the surface of the copper foil, or the dissimilar metal layer on the surface of the copper foil, zinc It may be laminated in the order of layers. By making the zinc adhesion layer include the above-mentioned foreign metal element together with zinc, it is possible to diffuse the above-mentioned foreign metal element together with zinc in the copper foil. Since the diffusion rate of the dissimilar metal element is higher than that of zinc, these dissimilar metal elements reach a deeper position faster than zinc in the thickness direction of the copper foil. Moreover, these dissimilar metal elements react with the above-mentioned trace components to form a compound in the same manner as zinc, thereby suppressing the coarsening of copper crystal grains. Therefore, by forming the zinc adhesion layer with the zinc together with the zinc, even if the heat treatment is performed at a high temperature for a longer time, coarsening of copper crystal grains is substantially achieved over the entire thickness of the copper foil. Can be suppressed more effectively. Zinc refers to zinc having a purity of 99% or more. In addition, a zinc alloy refers to a mixture, a solid solution, a eutectic, a compound, or the like of zinc and another element.

本件発明では、亜鉛付着層を亜鉛合金層又は亜鉛系複合層とする場合、上記異種金属元素の中でも特に錫を用いることが好ましい。この場合、上記換算量において、上記片面当たりの錫の付着量が1mg/m〜200mg/mとなるように表面処理が施されることが好ましい。また、この場合、{[亜鉛付着量]/[亜鉛−錫合金付着量]}×100で算出される亜鉛含有比率が30質量%以上であることが好ましい。銅箔の表面に対する亜鉛の付着量が上記範囲内であっても、亜鉛付着層中の亜鉛含有比率が30質量%未満である場合には、亜鉛量に対する錫量が過剰となる。このため、錫の存在により、銅箔内への亜鉛の拡散が阻害され、銅箔の内部に十分に亜鉛を拡散させることが困難になり、上述した効果が得られず好ましくない。なお、これらの亜鉛付着層は、例えば、亜鉛又は亜鉛−錫を含む防錆処理剤を用いて形成することができ、防錆処理層としての機能を奏する。 In the present invention, when the zinc adhesion layer is a zinc alloy layer or a zinc-based composite layer, it is particularly preferable to use tin among the above-mentioned dissimilar metal elements. In this case, in the terms of the amount of the surface treatment so that the amount of deposition of tin per the one side is 1mg / m 2 ~200mg / m 2 is is preferably subjected. Moreover, in this case, it is preferable that the zinc content ratio calculated by {[zinc adhesion amount] / [zinc-tin alloy adhesion amount] x 100 is 30 mass% or more. Even if the adhesion amount of zinc to the surface of the copper foil is in the above range, if the zinc content in the zinc adhesion layer is less than 30% by mass, the amount of tin with respect to the amount of zinc is excessive. For this reason, the presence of tin hinders the diffusion of zinc into the copper foil, making it difficult to sufficiently diffuse the zinc into the inside of the copper foil, and the above-mentioned effects can not be obtained, which is not preferable. These zinc adhesion layers can be formed using, for example, a rustproofing agent containing zinc or zinc-tin, and exhibit the function as a rustproofing layer.

(3)その他の層構成
本件発明に係る表面処理銅箔は、上記亜鉛付着層の他に、必要に応じて、粗化処理層、クロメート処理層、有機剤処理層等の他の表面処理層を任意に備えることができる。
(3) Other Layer Configurations The surface-treated copper foil according to the present invention includes, in addition to the above-mentioned zinc adhesion layer, other surface treatment layers such as a roughening treatment layer, a chromate treatment layer, and an organic agent treatment layer, as needed. Can optionally be provided.

例えば、粗化処理層を設けることにより、当該表面処理銅箔をリチウムイオン二次電池の負極集電体として用いる場合、当該表面処理銅箔の表面と負極活物質との密着性を良好にすることができる。   For example, when the surface-treated copper foil is used as a negative electrode current collector of a lithium ion secondary battery by providing a roughened layer, adhesion between the surface of the surface-treated copper foil and the negative electrode active material is improved. be able to.

また、クロメート処理層及び/又は有機剤処理層を備えることにより、上記亜鉛付着層と共に、これらの層により銅箔表面が酸化するのを抑制することができる。また、上記リチウムイオン二次電池の負極活物質等との密着性を更に良好なものとすることができる。なお、有機剤処理層としては、シランカップリング剤処理層、有機防錆処理層等を挙げることができる。   Moreover, by providing a chromate treatment layer and / or an organic agent treatment layer, it is possible to suppress the oxidation of the copper foil surface by these layers together with the zinc adhesion layer. Moreover, the adhesiveness with the negative electrode active material etc. of the said lithium ion secondary battery can be made still better. Examples of the organic agent treatment layer include a silane coupling agent treatment layer and an organic rust prevention treatment layer.

(4)プレアニール処理
本件発明に係る表面処理銅箔は、上記銅箔の両面に上記表面処理を施した後、200℃〜280℃の温度範囲で加熱するプレアニール処理を施すことにより得られる。当該プレアニール処理を施すことにより、銅の再結晶化を抑制した状態で銅箔内に亜鉛を拡散させることができる。このため、当該表面処理銅箔に銅の再結晶化が生じる温度以上の熱が負荷されたときに、粒界に析出された上記化合物により、結晶粒の成長を妨げ、結晶粒が粗大化するのを抑制する効果を発揮させることができる。なお、プレアニール処理については後述する。また、以下において、上記各表面処理後の銅箔であって、プレアニール処理前のものを「表面処理済みの銅箔」と称する場合がある。
(4) Pre-annealing treatment The surface-treated copper foil according to the present invention is obtained by subjecting both surfaces of the above-mentioned copper foil to the above-mentioned surface treatment and then performing pre-annealing treatment in which heating is performed in a temperature range of 200 ° C to 280 ° C. By performing the pre-annealing treatment, zinc can be diffused into the copper foil in a state where recrystallization of copper is suppressed. Therefore, when heat is applied to the surface-treated copper foil at a temperature higher than the temperature at which recrystallization of copper occurs, the above-described compound precipitated at grain boundaries prevents the growth of crystal grains and the crystal grains are coarsened. The effect which suppresses this can be exhibited. The pre-annealing process will be described later. Moreover, in the following, it is copper foil after said each surface treatment, Comprising: The thing before a pre-annealing process may be called "the copper foil with surface treatment completed."

(5)機械的特性
本件発明に係る表面処理銅箔は、表面処理済みの銅箔に対して上記プレアニール処理を施すことにより、不活性ガス雰囲気下において350℃で5時間加熱した後の引張強さが45kgf/mm以上を示し、プレアニール処理の条件を銅箔及び亜鉛(及び錫)の付着量等に応じて適切な条件に調整することにより、当該熱処理後の引張強さは50kg/mm以上を示す。本件発明においては、特に、プレアニール処理の条件を調整することにより、350℃で5時間加熱した後の引張強さが50kgf/mm以上を示すことが好ましい。
(5) Mechanical Properties The surface-treated copper foil according to the present invention has a tensile strength after being heated at 350 ° C. for 5 hours in an inert gas atmosphere by subjecting the surface-treated copper foil to the above-described pre-annealing treatment. Is 45 kgf / mm 2 or more, and the tensile strength after the heat treatment is 50 kg / mm by adjusting the pre-annealing conditions to appropriate conditions according to the amount of copper foil and zinc (and tin) attached etc. Indicates 2 or more. In the present invention, in particular, the tensile strength after heating at 350 ° C. for 5 hours is preferably 50 kgf / mm 2 or more by adjusting the conditions of the pre-annealing treatment.

また、本件発明に係る表面処理銅箔は、常態時の引張強さに対する350℃で5時間加熱した後の引張強さの維持率が90%〜100%の範囲内であることが好ましく、当該引張強さの維持率は95%〜100%の範囲内であることがより好ましい。本件発明によれば、プレアニール処理を施すことにより、プレアニール処理を施さない場合と比較すると、当該熱処理後の引張強さの維持率を向上させることができる。   In addition, the surface-treated copper foil according to the present invention preferably has a tensile strength retention ratio of 90% to 100% after heating at 350 ° C. for 5 hours with respect to the tensile strength in a normal state. The tensile strength retention ratio is more preferably in the range of 95% to 100%. According to the present invention, by performing the pre-annealing process, it is possible to improve the retention ratio of the tensile strength after the heat treatment as compared with the case where the pre-annealing process is not performed.

2.本件発明に係る表面処理銅箔の製造方法
次に、本件発明に係る表面処理銅箔の製造方法の実施の形態を説明する。下記の方法で表面処理銅箔を製造することにより、上述した本件発明に係る表面処理銅箔を得ることができる。以下、各工程毎に説明する。
2. 2. Manufacturing method of surface-treated copper foil which concerns on this invention Next, embodiment of the manufacturing method of the surface-treated copper foil which concerns on this invention is described. The surface-treated copper foil according to the present invention described above can be obtained by producing the surface-treated copper foil by the following method. Each step will be described below.

(1)銅箔の準備
本件発明では、炭素、硫黄、塩素及び窒素から選ばれる1種又は2種以上の微量成分を総量で100ppm以上含む銅箔を準備する。ここで、各微量成分の含有量はそれぞれ上述した範囲内であることが好ましい。また、当該銅箔を構成する銅の平均結晶粒径が1.0μm以下であることが好ましく、当該平均結晶粒径が0.8μm以下であることがより好ましい点についても上述したとおりである。さらに、常態抗張力が50kgf/mm以上の銅箔を用いることがより好ましい点についても上述したとおりである。このような条件を満たす銅箔を得ることができれば、その製造方法は限定されるものではないが、電解液中の各種添加物等を調整することにより、上記条件を満たす銅箔を得ることが容易であるという観点から電解法により銅箔を製造することが好ましい。
(1) Preparation of Copper Foil In the present invention, a copper foil containing 100 ppm or more in total of one or more trace components selected from carbon, sulfur, chlorine and nitrogen is prepared. Here, the content of each trace component is preferably within the above-described range. Moreover, it is as having mentioned above that it is preferable that the average grain size of copper which comprises the said copper foil is 1.0 micrometer or less, and it is more preferable that the said average grain size is 0.8 micrometer or less. Furthermore, as described above, it is more preferable to use a copper foil having a normal tensile strength of 50 kgf / mm 2 or more. The manufacturing method is not limited as long as a copper foil satisfying such conditions can be obtained, but a copper foil satisfying the above conditions can be obtained by adjusting various additives and the like in the electrolytic solution. It is preferable to manufacture a copper foil by an electrolytic method from a viewpoint of being easy.

(2)粗化処理工程
次に、銅箔の表面に粗化処理層を設ける場合は、上記銅箔の表面に対して粗化処理を施す。本件発明において、粗化処理層は任意の層構成であり、粗化処理方法及び粗化処理条件について、特段の限定はない。また、粗化処理を施す前に、銅箔表面を酸洗処理する等の前処理を行ってよいのは勿論である。但し、粗化処理方法及び粗化処理条件は、これに限定されるものではなく、従来公知の方法を、当該銅箔に要求される表面特性に応じて、適宜適切な方法及び条件を採用すればよい。
(2) Roughening treatment process Next, when providing a roughening process layer on the surface of copper foil, a roughening process is performed with respect to the surface of the said copper foil. In the present invention, the roughening treatment layer has an arbitrary layer configuration, and there is no particular limitation on the roughening treatment method and the roughening treatment conditions. Moreover, it is needless to say that pretreatment such as acid pickling treatment may be performed on the surface of the copper foil before the roughening treatment. However, the roughening treatment method and the roughening treatment conditions are not limited to this, and conventionally known methods may be appropriately adopted according to the surface characteristics required for the copper foil. Just do it.

(3)亜鉛付着工程(表面処理工程)
次に、銅箔の表面に、亜鉛を含む表面処理剤を用いて表面処理(以下、「亜鉛付着処理」と称する)を施し、亜鉛を含む亜鉛付着層を形成する。当該亜鉛付着処理工程では、銅箔の表面に、亜鉛の付着量が上記範囲内となるように、亜鉛付着層を形成することができれば、どのような方法を用いてもよい。例えば、電解めっき又は無電解めっき等の電気化学的手法、スパッタリング蒸着又は化学気相反応等の物理蒸着手法を用いることができる。しかしながら、生産コストを考慮すると、電気化学的手法を採用することが好ましい。なお、表面処理剤に亜鉛以外の他の金属元素が含まれていてもよいのは上述したとおりであり、当該他の金属元素として錫が好ましい点も上述したとおりである。
(3) Zinc adhesion process (surface treatment process)
Next, the surface of the copper foil is subjected to surface treatment (hereinafter referred to as “zinc adhesion treatment”) using a surface treatment agent containing zinc to form a zinc adhesion layer containing zinc. In the zinc adhesion treatment step, any method may be used as long as the zinc adhesion layer can be formed on the surface of the copper foil so that the adhesion amount of zinc falls within the above range. For example, an electrochemical method such as electrolytic plating or electroless plating, or a physical vapor deposition method such as sputtering deposition or chemical vapor reaction can be used. However, in consideration of production costs, it is preferable to employ an electrochemical method. In addition, it is as having mentioned above that other metal elements other than zinc may be contained in a surface treatment agent, and it is as having mentioned above the point whose tin is preferable as the said other metal element.

電解めっき法: 電解めっき法により、銅箔の表面に、亜鉛付着処理を施す場合、亜鉛めっき液として、ピロ燐酸亜鉛めっき浴、シアン化亜鉛めっき浴、硫酸亜鉛めっき浴等を用いることができる。例えば、ピロ燐酸亜鉛めっき浴を採用する場合、具体的には、亜鉛濃度が5g/l〜30g/l、ピロ燐酸カリウム濃度が50g/l〜500g/l、pH9〜pH12の浴組成を採用し、液温20〜50℃の溶液中で、銅箔自体をカソードに分極して、電流密度0.3A/dm〜10A/dmAの条件で電解することにより、銅箔表面に亜鉛付着層を形成することができる。 Electrolytic plating method: When the zinc adhesion treatment is performed on the surface of the copper foil by the electrolytic plating method, a zinc pyrophosphate zinc plating bath, a zinc cyanide plating bath, a zinc sulfate plating bath, or the like can be used. For example, when a pyrophosphate zinc plating bath is employed, specifically, a bath composition having a zinc concentration of 5 g / l to 30 g / l, a potassium pyrophosphate concentration of 50 g / l to 500 g / l, and a pH of 9 to 12 is employed. , in a solution of a liquid temperature of 20 to 50 ° C., and polarizing the copper foil itself cathode by electrolysis at a current density of 0.3A / dm 2 ~10A / dm 2 a, zinc adhered to the copper foil surface Layers can be formed.

(4)クロメート処理
亜鉛付着層の表面に対して、任意でクロメート処理を施してもよい。クロメート処理には、電解クロメート処理と浸漬クロメート処理とがあるが、いずれの方法を用いても構わない。しかし、クロメート皮膜の厚さバラツキ、付着量の安定性等を考慮すると、電解クロメート処理を採用することが好ましい。電解クロメート処理の場合の電解条件は、特に限定を有するものではなく、適宜、適切な条件を採用することができる。
(4) Chromate treatment The surface of the zinc adhesion layer may be optionally subjected to chromate treatment. Chromate treatment includes electrolytic chromate treatment and immersion chromate treatment, and any method may be used. However, in consideration of the thickness variation of the chromate film, the stability of the adhesion amount, etc., it is preferable to employ electrolytic chromate treatment. The electrolysis conditions in the case of an electrolytic chromate process do not have a limitation in particular, Appropriate conditions can be employ | adopted suitably.

(5)有機剤処理
また、亜鉛付着層の表面に対して有機剤処理を施してもよい。ここで言う有機剤処理には、シランカップリング剤処理、有機防錆処理等がある。
(5) Organic agent treatment Moreover, you may perform an organic agent treatment with respect to the surface of a zinc adhesion layer. Examples of the organic agent treatment include silane coupling agent treatment and organic rust prevention treatment.

シランカップリング剤処理: 本件発明において、シランカップリング剤処理は必須ではなく、銅箔に対して要求される絶縁樹脂基材若しくはリチウムイオン二次電池の負極活物質との密着性等を考慮して、適宜施す処理であり、適宜、適切な条件及び方法を採用することができる。 Silane coupling agent treatment: In the present invention, the silane coupling agent treatment is not essential, and in view of the adhesion to the insulating resin base material required for copper foil or the negative electrode active material of a lithium ion secondary battery, etc. Therefore, appropriate conditions and methods can be adopted as appropriate.

有機防錆処理: また、防錆効果を更に向上するため、有機防錆処理を施す場合には、例えば、ベンゾトリアゾール類のメチルベンゾトリアゾール(トリルトリアゾール)、アミノベンゾトリアゾール、カルボキシルベンゾトリアゾール、ベンゾトリアゾール等の有機剤を用いて表面処理を施すことができる。また、その他の有機剤としては、脂肪族カルボン酸、アルキルアミン類、安息香酸類、イミダゾール類、トリアジンチオール類等を用いてもよい。有機防錆処理についても特に限定されるものではなく、適宜、適切な条件及び方法を採用することができる。 Organic rust prevention treatment: In addition, in order to further improve the rust prevention effect, when organic rust prevention treatment is performed, for example, benzotriazole methylbenzotriazole (tolyltriazole), aminobenzotriazole, carboxyl benzotriazole, benzotriazole Surface treatment can be performed using an organic agent such as As other organic agents, aliphatic carboxylic acids, alkylamines, benzoic acids, imidazoles, triazine thiols and the like may be used. The organic rust prevention treatment is not particularly limited, and appropriate conditions and methods can be appropriately employed.

(6)乾燥工程
銅箔に対して、上記各種表面処理が終了すると、乾燥工程を行い、上記各種表面処理工程で濡れた状態にある銅箔を乾燥させる。乾燥条件は特に限定されるものではない。但し、有機剤処理を行った場合には、銅箔表面に付着したシランカップリング剤及び/又は有機防錆剤の熱分解等を防止し、銅箔表面にこれらの薬剤を良好な状態で定着させることができる熱処理条件(温度、時間等)を採用すればよい。
(6) Drying Step When the above-described various surface treatments are completed on the copper foil, a drying step is performed to dry the copper foil in a wet state in the various surface treatment steps. Drying conditions are not particularly limited. However, when organic agent treatment is performed, thermal decomposition etc. of the silane coupling agent and / or organic rust inhibitor attached to the copper foil surface are prevented, and these agents are fixed in a good state on the copper foil surface. The heat treatment conditions (temperature, time, etc.) which can be made to adopt may be adopted.

(7)プレアニール工程
次に、プレアニール工程について説明する。プレアニール工程は、上記乾燥工程までの工程を経た銅箔に対して、200℃〜280℃の温度範囲で熱処理を施すことにより亜鉛付着層側から銅箔内に亜鉛を拡散させて、本件発明に係る表面処理銅箔を得る工程である。
(7) Pre-annealing step Next, the pre-annealing step will be described. In the pre-annealing process, zinc is diffused from the zinc adhesion layer side into the copper foil from the zinc adhesion layer side by performing heat treatment at a temperature range of 200 ° C. to 280 ° C. to the copper foil which has undergone the steps up to the drying step. This is a step of obtaining the surface-treated copper foil.

温度: 本件発明において、上記銅箔は上記微量成分の存在により、200℃〜280℃の温度範囲で加熱しても、結晶粒の粗大化が起こりにくい。また、表面に亜鉛付着層を備えた上記銅箔を上記温度範囲内で加熱すれば、当該銅箔を常温で保管する場合と比較すると、工業的生産効率に見合った速度で亜鉛を銅箔内に拡散させることができ、銅箔内における亜鉛の分布も均一化させることができる。このため、プレアニール処理を施すことにより、当該表面処理銅箔に対して高温の熱が長時間に渡って負荷されたときでも、銅の結晶粒の粗大化を抑制する効果を高めることができ、プレアニール処理を施さない場合と比較すると引張強さの低下を十分に抑制することが可能になる。 Temperature: In the present invention, due to the presence of the above-mentioned minor component, the copper foil hardly causes coarsening of crystal grains even if it is heated in a temperature range of 200 ° C. to 280 ° C. In addition, if the copper foil provided with a zinc adhesion layer on the surface is heated within the above temperature range, zinc can be contained in the copper foil at a speed commensurate with industrial production efficiency as compared with storage of the copper foil at normal temperature. The zinc distribution in the copper foil can be made uniform. Therefore, by performing the pre-annealing process, even when high temperature heat is applied to the surface-treated copper foil for a long time, the effect of suppressing the coarsening of copper crystal grains can be enhanced. Compared with the case where pre-annealing is not performed, it is possible to sufficiently suppress the decrease in tensile strength.

処理時間: 次に、プレアニール処理を施す時間(以下、「処理時間」)について説明する。上記表面処理後の銅箔に対してプレアニール処理を施すことにより、常温で保管した場合と比較すると、銅箔内への亜鉛拡散量を増加させることができ、高温で熱処理が施された後も引張強さの低下を抑制することが可能になる。しかしながら、銅箔の表層部だけではなく、銅箔の内部にも十分な量の亜鉛を拡散させるという観点から、当該処理時間は、2時間以上25時間以下であることが好ましい。また、銅箔の内部により十分に亜鉛を拡散させて、銅箔内の亜鉛の分布をより均一化するという観点から、当該処理時間は8時間以上25時間以下であることが好ましい。一方、当該処理時間が8時間未満の場合、銅箔の内部への亜鉛拡散量が少なく、高温の熱処理が長時間施された場合には銅箔の内部において結晶粒が粗大化する恐れがあり、引張強さの低下を十分に抑制することができない場合がある。また、プレアニール時間が25時間以上になると、それ以上プレアニール処理を施しても銅の結晶粒の粗大化を抑制する効果は飽和する。また、熱処理に係るコスト等も増加する。従って、これらの観点からプレアニール時間は25時間以内とすることが好ましい。
Processing Time: Next, the time for performing the pre-annealing process (hereinafter referred to as “processing time”) will be described. By subjecting the copper foil after the surface treatment to pre-annealing, the amount of zinc diffused into the copper foil can be increased as compared with the case of storage at normal temperature, and even after heat treatment at high temperature It becomes possible to control the fall of tensile strength. However, from the viewpoint of diffusing a sufficient amount of zinc not only in the surface layer portion of the copper foil but also in the inside of the copper foil, the treatment time is preferably 2 hours or more and 25 hours or less. Moreover, it is preferable that the said processing time is 8 hours or more and 25 hours or less from a viewpoint of diffusing zinc fully by the inside of copper foil and making distribution of zinc in copper foil more uniform. On the other hand, if the treatment time is less than 8 hours, the amount of zinc diffused into the inside of the copper foil is small, and if high temperature heat treatment is performed for a long time, crystal grains may be coarsened inside the copper foil. In some cases, the reduction in tensile strength can not be sufficiently suppressed. In addition, when the pre-annealing time is 25 hours or more, the effect of suppressing the coarsening of copper crystal grains is saturated even if the pre-annealing treatment is performed more than that. Moreover, the cost etc. concerning heat processing also increase. Therefore, from these viewpoints, the pre-annealing time is preferably within 25 hours.

但し、プレアニール条件は、当該銅箔の結晶構造、当該銅箔内の微量成分の含有量、当該銅箔に対する亜鉛の付着量等に応じて、亜鉛の拡散に適した最適な加熱温度及び/又は時間は異なる。従って、これらに応じて、適宜、上記範囲内の温度及び時間の中で適切なプレアニール条件を設定することが好ましい。   However, depending on the crystal structure of the copper foil, the content of minor components in the copper foil, the adhesion amount of zinc to the copper foil, etc., the pre-annealing condition is an optimal heating temperature and / or suitable for zinc diffusion. Time is different. Accordingly, it is preferable to appropriately set appropriate pre-annealing conditions in the temperature and time within the above range according to these.

〈本件発明に係る負極集電体の実施の形態〉
次に、本件発明に係る負極集電体の実施の形態を説明する。本件発明に係る負極集電体は、上述した本件発明に係る表面処理銅箔を用いたことを特徴とし、リチウムイオン二次電池等の非水系二次電池において、電池内部の負極合材に接触する集電体として用いることができる。本件発明に係る集電体は、上記表面処理銅箔を用いること以外は特に限定はない。本件発明に係る集電体は、上記表面処理銅箔を用いるため、引張強さ等の機械的特性に優れたものとなる。
<Embodiment of negative electrode current collector according to the present invention>
Next, an embodiment of the negative electrode current collector according to the present invention will be described. The negative electrode current collector according to the present invention is characterized by using the surface-treated copper foil according to the present invention described above, and in contact with the negative electrode mixture inside the battery in a non-aqueous secondary battery such as a lithium ion secondary battery. It can be used as a current collector. The current collector according to the present invention is not particularly limited except that the surface-treated copper foil is used. Since the current collector according to the present invention uses the surface-treated copper foil, it has excellent mechanical properties such as tensile strength.

〈本件発明に係る非水系二次電池の負極材の実施の形態〉
次に、本件発明に係る非水系二次電池の負極材の実施の形態を説明する。ここで、非水系二次電池とは、水溶液以外の電解質を用いた二次電池の総称であり、有機電解液、ポリマーゲル電解質、固体電解質、ポリマー電解質、溶融塩電解質などを用いた二次電池をいう。本件発明に係る負極材は、上記集電体を用いたものであれば、その形態について特に限定されるものではない。例えば、リチウムイオン二次電池の負極材のように、集電体の表面に負極合剤層を備えた構成とすることができる。また、この場合、負極合剤層は、例えば、負極活物質と、導電剤と、結着剤とを含む構成とすることができる。
<Embodiment of negative electrode material of non-aqueous secondary battery according to the present invention>
Next, embodiments of the negative electrode material of the non-aqueous secondary battery according to the present invention will be described. Here, the non-aqueous secondary battery is a generic term for secondary batteries using electrolytes other than aqueous solution, and secondary batteries using organic electrolytic solution, polymer gel electrolyte, solid electrolyte, polymer electrolyte, molten salt electrolyte, etc. Say The form of the negative electrode material according to the present invention is not particularly limited as long as the above current collector is used. For example, it can be set as the structure provided with the negative mix layer on the surface of a collector like the negative electrode material of a lithium ion secondary battery. In this case, the negative electrode mixture layer can include, for example, a negative electrode active material, a conductive agent, and a binder.

上述した通り、本件発明に係る表面処理銅箔は、プレアニール処理を施さない場合と比較すると、引張強さの低下を抑制する効果が高く、熱処理後の引張強さの維持率が高くなる。その結果、不活性ガス雰囲気下において350℃で5時間加熱された後でも、45kgf/mm以上、好ましくは50kgf/mm以上の引張強さを維持することが可能になる。このため、リチウムイオン二次電池等において充放電サイクルを繰り返すことにより、集電体に繰返し応力が加わる場合でも、集電体に皺などの変形を生じたり、破断する恐れが小さく、リチウムイオン二次電池の電気的特性を維持することができる。また、リチウムイオン二次電池の負極材を製造する際には、集電体の表面に負極合剤層を形成する工程で、高温の熱が集電体に負荷される。この場合であっても、十分なレベルの引張強さを有する。 As described above, in the surface-treated copper foil according to the present invention, the effect of suppressing the reduction in tensile strength is high as compared with the case where the pre-annealing treatment is not performed, and the maintenance ratio of the tensile strength after heat treatment is high. As a result, even after heating at 350 ° C. for 5 hours in an inert gas atmosphere, it is possible to maintain a tensile strength of 45 kgf / mm 2 or more, preferably 50 kgf / mm 2 or more. Therefore, even if stress is repeatedly applied to the current collector by repeating charge and discharge cycles in a lithium ion secondary battery etc., there is little risk of deformation such as wrinkles in the current collector or breakage, lithium ion The electrical characteristics of the secondary battery can be maintained. Moreover, when manufacturing the negative electrode material of a lithium ion secondary battery, a high temperature heat | fever is loaded on a collector in the process of forming a negative mix layer on the surface of a collector. Even in this case, it has a sufficient level of tensile strength.

以下、実施例、比較例及び参考例を挙げて、本件発明に係る表面処理銅箔をより具体的に説明するが、本件発明は以下の実施例に限定されるものではない。   EXAMPLES The surface-treated copper foil according to the present invention will be more specifically described by way of examples, comparative examples, and reference examples, but the present invention is not limited to the following examples.

本実施例1では、本件発明に係る銅箔を製造し、後述する比較例1と対比することとした。以下、工程順に述べる。   In Example 1, the copper foil according to the present invention was manufactured and compared with Comparative Example 1 described later. The steps will be described below in order.

銅箔の準備: まず、銅箔中の上記微量元素の合計量が100ppm以上(炭素44ppm、硫黄14ppm、塩素54ppm、窒素11ppm、平均結晶粒径0.64μm)の電解銅箔を用意した。具体的には、三井金属鉱業株式会社製のVLP銅箔の製造に用いる厚さ12μmの表面処理の施されていない電解銅箔を用意した。 Preparation of copper foil: First, an electrolytic copper foil was prepared in which the total amount of the above trace elements in the copper foil was 100 ppm or more (carbon 44 ppm, sulfur 14 ppm, chlorine 54 ppm, nitrogen 11 ppm, average crystal grain diameter 0.64 μm). Specifically, a 12 μm-thick non-surface-treated electrolytic copper foil used for manufacturing VLP copper foil manufactured by Mitsui Mining & Smelting Co., Ltd. was prepared.

粗化処理工程: そして、上記銅箔をフリー硫酸濃度が200g/l、銅濃度が8g/l、液温35℃の銅めっき液の中に浸漬し、銅箔自体をカソードに分極し、電流密度25A/dmのヤケ銅めっき条件で電解し、銅箔の陰極面側表面に微細銅粒を析出付着させた。次に、この微細銅粒の脱落を防止するため、フリー硫酸濃度が110g/l、銅濃度が70g/l、液温50℃の銅めっき液中で、銅箔自体をカソードに分極し、電流密度25A/dmの平滑めっき条件で電解して、陰極面側の粗化処理を完了した。 Roughening treatment step: Then, the copper foil is immersed in a copper plating solution having a free sulfuric acid concentration of 200 g / l, a copper concentration of 8 g / l, and a liquid temperature of 35 ° C. to polarize the copper foil itself to a cathode. Electrolysis was carried out under burnt copper plating conditions with a density of 25 A / dm 2 to deposit fine copper particles on the surface of the copper foil on the cathode side. Next, in order to prevent the fine copper particles from falling off, the copper foil itself is polarized to a cathode in a copper plating solution having a free sulfuric acid concentration of 110 g / l, a copper concentration of 70 g / l and a liquid temperature of 50.degree. It electrolyzed on the smooth plating conditions of density 25 A / dm < 2 >, and the roughening process of the cathode surface side was completed.

亜鉛付着処理工程: 上記粗化処理後の銅箔の両面に亜鉛及び錫を含む表面処理剤を用いて、銅箔の両面に亜鉛−錫合金からなる亜鉛付着層を形成した。まず、亜鉛付着層の形成方法について説明する。 Zinc adhesion treatment step: A surface treatment agent containing zinc and tin was used on both sides of the copper foil after the roughening treatment to form a zinc adhesion layer made of a zinc-tin alloy on both sides of the copper foil. First, a method of forming a zinc adhesion layer will be described.

本実施例では、ピロ燐酸亜鉛−錫めっき浴を用いて、銅箔の両面に亜鉛付着層として亜鉛−錫合金層を形成した。ピロ燐酸亜鉛−錫めっき浴の浴組成は、亜鉛濃度が1g/l〜6g/l、錫濃度が1g/l〜6g/l、ピロ燐酸カリウム濃度が100g/l、pH10.6とした。当該組成のピロ燐酸亜鉛−錫めっき浴中で、液温30℃とし、銅箔自体をカソードに分極して、電流密度及び電解時間を適宜調整することにより、銅箔の片面当たりの亜鉛の付着量が50mg/m、錫の付着量が5mg/mの銅箔を得て、これを試料1とした。 In this example, a zinc pyrophosphate-tin plating bath was used to form a zinc-tin alloy layer as a zinc adhesion layer on both sides of the copper foil. The bath composition of the zinc pyrophosphate-tin plating bath was a zinc concentration of 1 g / l to 6 g / l, a tin concentration of 1 g / l to 6 g / l, a potassium pyrophosphate concentration of 100 g / l, and a pH of 10.6. In a zinc pyrophosphate-tin plating bath of the composition, the temperature of the solution is 30 ° C., the copper foil itself is polarized to the cathode, and the current density and the electrolysis time are appropriately adjusted to adhere zinc per one side of the copper foil. A copper foil was obtained in a quantity of 50 mg / m 2 and a deposition amount of tin of 5 mg / m 2 .

プレアニール処理工程: 次に、試料1に対して、表1に示す条件でプレアニール処理を施し、それを実施試料1とした。但し、プレアニール処理に際しては、各試料をオーブンに入れて、庫内温度を5℃/minで昇温させた。そして、表1において当該試料1が該当する処理条件で加熱した。なお、表1において、「○」と表示される欄は、当該条件(温度、処理時間)でプレアニール処理がその欄の括弧内に示す番号の試料に対して行ったことを意味する。 Pre-annealing step: Next, the sample 1 was subjected to a pre-annealing process under the conditions shown in Table 1 and used as a working sample 1. However, at the time of pre-annealing treatment, each sample was placed in an oven to raise the temperature inside the chamber at 5 ° C./min. Then, in Table 1, the sample 1 was heated under the corresponding processing conditions. In Table 1, a column displayed as “o” means that the pre-annealing process was performed on the sample of the number indicated in the parenthesis of the column under the condition (temperature, processing time).

実施例2では、錫の片面当たりの付着量を15mg/mとした以外は、実施例1と同様にして、試料2を作製した後、表1に示す条件でプレアニール処理を施して、実施試料2とした。 In Example 2, sample 2 was prepared in the same manner as in Example 1 except that the adhesion amount of tin per one side was 15 mg / m 2, and then pre-annealing treatment was performed under the conditions shown in Table 1 Sample 2 was used.

実施例3では、錫の片面当たりの付着量を30mg/mとした以外は、実施例1と同様にして、試料3を作製した後、表1に示す条件でプレアニール処理を施して実施試料3とした。 In Example 3, a sample 3 was produced in the same manner as in Example 1 except that the adhesion amount of tin per one side was set to 30 mg / m 2, and then a pre-annealing treatment was performed under the conditions shown in Table 1 It was three.

実施例4では、錫の片面当たりの付着量を15mg/m、亜鉛の総付着量を100mg/mとした以外は、実施例1と同様にして、試料4を作製した後、表1に示す条件でプレアニール処理を施して実施試料4とした。 In Example 4, a sample 4 was prepared in the same manner as in Example 1 except that the adhesion amount of tin per one surface was 15 mg / m 2 and the total adhesion amount of zinc was 100 mg / m 2, and then Table 1 Pre-annealing treatment was performed under the conditions shown in FIG.

実施例5では、錫の片面当たりの付着量を15mg/m、亜鉛の総付着量を150mg/mとした以外は、実施例1と同様にして、試料5を作製した後、表1に示す条件でプレアニール処理を施して実施試料5とした。 In Example 5, a sample 5 was prepared in the same manner as in Example 1 except that the adhesion amount of tin per one surface was 15 mg / m 2 and the total adhesion amount of zinc was 150 mg / m 2, and then Table 1 Pre-annealing treatment was performed under the conditions shown in FIG.

次に、実施例6について説明する。実施例6では、本件発明に係る他の銅箔を以下のように製造した。以下、工程順に述べる。   A sixth embodiment will now be described. In Example 6, another copper foil according to the present invention was manufactured as follows. The steps will be described below in order.

銅箔の作製: 実施例6では、以下に示す条件で作製した電解銅箔を用いた。まず、硫酸系銅電解液として、銅イオンを80g/l、硫酸を250g/lの濃度で含み、且つ、塩素イオンを2.7ppm、ゼラチンを2ppmの濃度で含む電解液(50℃)を用い、50A/dmの電流密度で電解を行い、12μmの厚さの電解銅箔を得た。当該電解銅箔中の微量成分の含有量は、炭素49ppm、硫黄26ppm、塩素24ppm、窒素11ppm、平均結晶粒径は0.58μmであった。 Production of Copper Foil: In Example 6, an electrolytic copper foil produced under the following conditions was used. First, an electrolytic solution (50 ° C.) containing 80 g / l of copper ions and 250 g / l of sulfuric acid, 2.7 ppm of chlorine ions, and 2 ppm of gelatin is used as a sulfuric acid-based copper electrolytic solution. Electrolysis was carried out at a current density of 50 A / dm 2 to obtain an electrolytic copper foil with a thickness of 12 μm. The content of minor components in the electrodeposited copper foil was 49 ppm carbon, 26 ppm sulfur, 24 ppm chlorine, 11 ppm nitrogen, and the average crystal grain size was 0.58 μm.

粗化処理工程: そして、上記銅箔に対して、実施例1と同様にして粗化処理を施した。 Roughening treatment step: Then, the copper foil was subjected to a roughening treatment in the same manner as in Example 1.

亜鉛付着工程: 上記粗化処理後の電解銅箔に、片面当たりの錫の付着量を25mg/m、亜鉛の付着量を150mg/mとした以外は、実施例1と同様にして上記銅箔の両面に亜鉛付着層を形成して試料6を作製した。そして、実施例1と同様にして、表1に示す条件でプレアニール処理を施し、各プレアニール処理後の試料を実施試料6とした。 Zinc adhesion step: In the same manner as in Example 1, except that the adhesion amount of tin per one surface is 25 mg / m 2 and the adhesion amount of zinc is 150 mg / m 2 on the electrodeposited copper foil after the roughening treatment. A zinc adhesion layer was formed on both sides of the copper foil to prepare sample 6. Then, in the same manner as in Example 1, the pre-annealing process was performed under the conditions shown in Table 1, and the sample after each pre-annealing process was used as a working sample 6.

〔参考例〕
参考例では、亜鉛付着層として亜鉛層を形成した以外は、実施例1と同様にして表面処理銅箔を製造した。亜鉛層は、ピロ燐酸亜鉛めっき浴を用いて形成した。ピロ燐酸亜鉛めっき浴の浴組成は、亜鉛濃度が6g/l、ピロリン酸カリウム濃度が125g/l、pH10.5の浴組成を採用した以外は実施例1と同様にして電解を行い、銅箔の片面当たりの亜鉛の付着量が50mg/mの銅箔を得て、これを参考試料とした。その後、実施例1と同様にして、表1に示す条件でプレアニール処理を施し、各プレアニール後の試料を参考試料とした。
[Reference example]
In the reference example, a surface-treated copper foil was produced in the same manner as in Example 1 except that a zinc layer was formed as the zinc adhesion layer. The zinc layer was formed using a zinc pyrophosphate plating bath. The bath composition of the pyrophosphate zinc plating bath is the same as in Example 1 except that the bath composition of zinc concentration 6 g / l, potassium pyrophosphate concentration 125 g / l, pH 10.5 is employed, and copper foil A copper foil with an adhesion amount of 50 mg / m 2 was obtained as a reference sample. Thereafter, in the same manner as in Example 1, the pre-annealing treatment was performed under the conditions shown in Table 1, and the sample after each pre-annealing was used as a reference sample.

比較例Comparative example

比較例では、プレアニール処理を施さなかった以外は、実施例1〜実施例6及び参考試料と同様に試料を作製し、それぞれ比較試料1〜比較試料7とした。   In the comparative example, samples were prepared in the same manner as in the examples 1 to 6 and the reference sample except that the pre-annealing process was not performed, and they were respectively set as the comparative sample 1 to the comparative sample 7.

各実施例、比較例及び参考例で作製した試料の条件等の対比を容易にするため、表2に各試料における錫及び亜鉛の総付着量及び銅箔の種類の別を示す。また、表2には、後述する方法で測定した各銅箔(A又はB)の常態引張強さを示す。なお、表2において、銅箔の種別Aとは、実施例1〜実施例5及び参考例で用いた電解銅箔を指し、銅箔の種別Bとは、実施例6に記載の方法で作製した電解銅箔を指す。   In order to facilitate comparison of the conditions etc. of the samples produced in each example, comparative example and reference example, Table 2 shows the total adhesion amount of tin and zinc in each sample and the type of copper foil. Moreover, in Table 2, the normal-state tensile strength of each copper foil (A or B) measured by the method mentioned later is shown. In Table 2, Type A of the copper foil refers to the electrodeposited copper foil used in Examples 1 to 5 and the reference example, and type B of the copper foil is manufactured by the method described in Example 6. Refers to an electrodeposited copper foil.

[評価]
1.評価方法
(1)微量元素含有量
実施例1〜実施例6及び比較例で用いた各銅箔中の微量元素の微量元素の含有量は次のようにして測定した。まず、銅箔中の炭素及び硫黄の含有量は、株式会社堀場製作所製の炭素・硫黄分析装置(EMIA−920V)を用いて分析した。また、銅箔中の窒素の含有量については、株式会社堀場製作所製の酸素・窒素分析装置(EMGA−620)を用いて分析した。そして、銅箔中の塩素の含有量については、塩化銀比濁法により、株式会社日立ハイテクフィールディング製の分光光度計(U−3310)を用いて分析した。
[Evaluation]
1. Evaluation method (1) Trace element content Content of the trace element of the trace element in each copper foil used by Example 1- Example 6 and a comparative example was measured as follows. First, the content of carbon and sulfur in the copper foil was analyzed using a carbon / sulfur analyzer (EMIA-920V) manufactured by Horiba, Ltd. Moreover, about content of nitrogen in copper foil, it analyzed using the oxygen and nitrogen analyzer (EMGA-620) by Horiba, Ltd. make. And about content of the chlorine in copper foil, it analyzed using the spectrophotometer (U-3310) made from Hitachi High-Tech Fielding Co., Ltd. by the silver chloride nephelometry.

(2)引張強さ
実施例1〜実施例6及び比較例で得た各試料を不活性ガス雰囲気下において、350℃で5時間加熱し、加熱後の各試料の引張強さを測定した。
なお、本件発明において、「引張強さ」は、IPC−TM−650に準拠し、100mm×10mm(評点間距離:50mm)の短冊形の銅箔試料を用いて、引張り速度50mm/min.で測定したときの値をいう。
(2) Tensile strength Each sample obtained in Examples 1 to 6 and Comparative Example was heated at 350 ° C. for 5 hours in an inert gas atmosphere, and the tensile strength of each sample after heating was measured.
In the present invention, the “tensile strength” is based on IPC-TM-650, and using a strip-shaped copper foil sample of 100 mm × 10 mm (distance between marks: 50 mm), a tensile speed of 50 mm / min. The value when measured with.

(3)結晶組織
実施例1及び実施例5と、比較例1及び比較例5で得た各試料及び粗化処理、亜鉛付着処理等を施す前の未処理の銅箔(A及びB)について、不活性ガス雰囲気下において、350℃で5時間加熱した後の結晶粒径を以下の方法で測定した。なお、実施例1及び実施例5で得た実施試料1及び実施試料5については、処理条件(1)(200℃)で8時間のプレアニール処理を施したものを用いた。
(3) Crystal structure About the untreated copper foil (A and B) before giving each sample and roughening process, zinc adhesion process, etc. which were obtained by Example 1 and Example 5 and Comparative example 1 and Comparative example 5 The crystal grain size after heating at 350 ° C. for 5 hours in an inert gas atmosphere was measured by the following method. In addition, about the implementation samples 1 and 5 obtained in Example 1 and Example 5, what performed the pre-annealing process for 8 hours on process conditions (1) (200 degreeC) was used.

銅箔の結晶粒径の測定には、EBSD評価装置(OIM Analysis、株式会社TSLソリューションズ製)を搭載したFE銃型の走査型電子顕微鏡(SUPRA 55VP、カールツァイス株式会社製)及び付属のEBSD解析装置を用いた。この装置を用いて、適切に断面加工された当該サンプルについて、EBSD法に準じて、銅箔の断面の結晶状態のパターンの画像データを得て、この画像データを、EBSD解析プログラム(OIM Analysis、株式会社TSLソリューションズ製)の分析メニューにて、平均結晶粒径の数値化を行った。本評価においては、方位差5°以上を、結晶粒界とみなした。観察時の走査型電子顕微鏡の条件は加速電圧:20kV、アパーチャー径:60mm、High Current mode、試料角度:70°であった。なお、観察倍率、測定領域、ステップサイズは、結晶粒の大きさに応じて、適宜、条件を変更して測定した。   To measure the crystal grain size of copper foil, a scanning electron microscope (SUPRA 55VP, manufactured by Carl Zeiss Co., Ltd.) equipped with an EBSD evaluation device (OIM Analysis, manufactured by TSL Solutions Co., Ltd.) and the attached EBSD analysis The device was used. The image data of the pattern of the crystal state of the cross section of the copper foil is obtained according to the EBSD method for the sample appropriately cross-sectioned using this apparatus, and this image data is used as an EBSD analysis program (OIM Analysis, The average crystal grain size was quantified in the analysis menu of TSL Solutions Inc.). In this evaluation, an orientation difference of 5 ° or more was regarded as a crystal grain boundary. The conditions of the scanning electron microscope at the time of observation were an accelerating voltage: 20 kV, an aperture diameter: 60 mm, a high current mode, and a sample angle: 70 °. In addition, observation magnification, a measurement area | region, and step size changed the conditions suitably, and measured it according to the magnitude | size of a crystal grain.

2.評価結果
(1)引張強さ
まず、表3〜表7に、350℃で5時間熱処理を施した後の各実施試料、比較試料及び参考試料の引張強さを示す。また、表7には、350℃で1時間加熱した後の比較試料5及び比較試料6の引張強さを示す。また、各表には、常態引張強さに対する各試料の熱処理後の引張強さの維持率を百分率で示す。
2. Evaluation Results (1) Tensile Strength First, Tables 3 to 7 show the tensile strengths of the respective execution samples, comparative samples and reference samples after heat treatment at 350 ° C. for 5 hours. Table 7 shows tensile strengths of Comparative Sample 5 and Comparative Sample 6 after heating at 350 ° C. for 1 hour. In each table, the retention rate of the tensile strength after heat treatment of each sample to the normal tensile strength is shown as a percentage.

表3〜表6に示すように本件発明に係る実施試料1〜実施試料6及び参考試料は、プレアニール処理を施す際の処理条件によらず、350℃で5時間加熱した後の引張強さはいずれも45kgf/mm以上の値を示し、且つ、常態引張強さの79%〜102%の引張強さを維持した。また、銅箔の微量成分の含有量等に応じて、亜鉛の付着量、錫の付着量等を調整すると共に、好ましいプレアニール処理条件を採用することにより、350℃で5時間加熱した後でも50kgf/mm以上の引張強さを維持することが可能であり、引張強さの低下率を10%以内、より好ましくは5%以内に抑制することが可能であることが確認された。 As shown in Tables 3 to 6, the practical samples 1 to 6 according to the present invention and the reference sample have tensile strengths after heating for 5 hours at 350 ° C. regardless of the processing conditions for the pre-annealing treatment. All exhibited values of 45 kgf / mm 2 or more, and maintained a tensile strength of 79% to 102% of the normal tensile strength. Moreover, according to the content of trace components of copper foil, etc., while adjusting the adhesion amount of zinc, the adhesion amount of tin, etc., 50 kgf even after heating at 350 ° C. for 5 hours by adopting preferable pre-annealing conditions. It was confirmed that it is possible to maintain a tensile strength of at least 2 mm 2 and suppress the reduction rate of the tensile strength within 10%, more preferably within 5%.

また、実施試料1〜実施試料6と、参考試料とを比較すると、亜鉛付着層を亜鉛−錫合金層とすることにより、亜鉛付着層を錫を含まない亜鉛層とした場合よりも熱処理後の引張強さの値が高く、且つ、維持率も向上することが確認された。   Further, comparing the practical samples 1 to 6 with the reference sample, the zinc adhesion layer is made a zinc-tin alloy layer, and the heat treatment after the heat treatment is made more than the case where the zinc adhesion layer is a tin layer not containing tin. It was confirmed that the tensile strength was high and the maintenance rate was also improved.

一方、表7に示すように比較試料1〜比較試料7の場合、350℃で5時間加熱した後の引張強さは、45kgf/mm以上の値を示すものもあるが、引張強さ維持率は65%〜87%であり、いずれも引張強さが10%以上低下することが確認された。例えば、比較試料5及び比較試料6はそれぞれ350℃で1時間加熱した後の引張強さは51.5kgf/mm、58.8kgf/mmであったが、350℃で5時間加熱した後はそれぞれ47.3kgf/mm、40kgf/mmに低下する。一方、実施試料5及び実施試料6について見ると、例えば、表3に示すように最も温度の低い処理条件(1)(200℃)で8時間プレアニール処理を施した場合でも51.3kgf/mm、46.9kgf/mmの引張強さを維持している。また、表5に示すように、処理時間を例えば2時間としたとき、処理条件(3)(250℃)の場合には実施試料5及び実施試料6の引張強さはそれぞれ50.7kgf/mm、49.3kgf/mmを示し、処理条件(5)(275℃)の場合にはそれぞれ50.9kgf/mm、49.2kgf/mmである。従って、低温或いは短時間であってもプレアニール処理を施すことにより、高温で長時間加熱された後でも引張強さの低下を抑制する効果が得られることが確認された。 On the other hand, as shown in Table 7, in the case of Comparative Sample 1 to Comparative Sample 7, the tensile strength after heating at 350 ° C. for 5 hours may show a value of 45 kgf / mm 2 or more, but maintaining the tensile strength The percentage was 65% to 87%, and it was confirmed that the tensile strength decreased by 10% or more in each case. For example, tensile strength after Comparative Sample 5 and Comparative Sample 6 which was heated at 350 ° C. Each of 51.5kgf / mm 2, but was 58.8kgf / mm 2, was heated for 5 hours at 350 ° C. It drops each of the 47.3kgf / mm 2, 40kgf / mm 2. On the other hand, looking at Working Sample 5 and Working Sample 6, for example, as shown in Table 3, even if the pre-annealing treatment is performed for 8 hours under the lowest temperature treatment condition (1) (200 ° C.), 51.3 kgf / mm 2 , And maintains a tensile strength of 46.9 kgf / mm 2 . In addition, as shown in Table 5, when the processing time is 2 hours, for example, the tensile strength of the working sample 5 and the working sample 6 is 50.7 kgf / mm in the case of the processing condition (3) (250 ° C.) 2 shows a 49.3kgf / mm 2, respectively in the case of processing conditions (5) (275 ℃) is 50.9kgf / mm 2, a 49.2kgf / mm 2. Therefore, it has been confirmed that the effect of suppressing the decrease in tensile strength can be obtained even by heating at a high temperature for a long time by performing the pre-annealing process even at a low temperature or for a short time.

(2)結晶組織
次に、図1及び図2を参照して、実施試料1と比較試料1の結晶組織を対比する。図1及び図2はそれぞれ350℃で5時間加熱した後の実施試料1及び比較試料1の結晶組織を示すFIB−SIM像である。また、表8には、350℃で5時間加熱した後の実施試料1、実施試料5、比較試料1及び比較試料5の平均結晶粒径の値をそれぞれ示す。なお、上述した様に、実施試料1及び実施試料5については、350℃で5時間加熱する前に、プレアニール処理(処理条件(1)(200℃)で8時間加熱)が施されている。図1及び図2に示すように、実施試料1の結晶組織は、比較試料1の結晶組織と比較すると、結晶粒が全体的に微細であることが確認できる。また、表8に示すように、実施試料1及び実施試料5は銅箔の表層部及び中央部のいずれの領域においても平均結晶粒径が1.0μm以下であり、350℃で5時間加熱された後も銅箔の厚み方向全体において微細な結晶組織を維持していることが確認できる。一方、比較試料1及び比較試料5は、350℃で5時間加熱された場合、いずれの領域においても平均結晶粒径が1.0μmを超えると共に、特に銅箔の中央部における結晶粒が粗大する傾向が高いことが確認された。従って、各試料に対してプレアニール処理を施すことにより、銅箔の表層部だけではなく、銅箔の中央部にまで亜鉛(及び異種金属元素)を拡散させることができ、高温の熱が長時間負荷されたときも銅の結晶粒の粗大化を抑制することができることが確認された。
(2) Crystal structure Next, with reference to FIG. 1 and FIG. 2, the crystal structure of the working sample 1 and the comparative sample 1 is compared. 1 and 2 are FIB-SIM images showing the crystal structures of the working sample 1 and the comparative sample 1 after heating at 350 ° C. for 5 hours, respectively. Table 8 also shows values of average crystal grain sizes of Working Sample 1, Working Sample 5, Comparative Sample 1 and Comparative Sample 5 after heating at 350 ° C. for 5 hours. Note that, as described above, the pre-annealing process (heating under the processing condition (1) (200 ° C.) for 8 hours) is performed on the working samples 1 and 5 before heating at 350 ° C. for 5 hours. As shown in FIGS. 1 and 2, when compared with the crystal structure of the comparative sample 1, it can be confirmed that the crystal structure of the working sample 1 is entirely fine. In addition, as shown in Table 8, each of the working sample 1 and the working sample 5 has an average crystal grain size of 1.0 μm or less in any of the surface layer portion and the central portion of the copper foil, and is heated at 350 ° C. for 5 hours It can be confirmed that a fine crystal structure is maintained throughout the thickness direction of the copper foil. On the other hand, when Comparative Sample 1 and Comparative Sample 5 are heated at 350 ° C. for 5 hours, the average crystal grain size exceeds 1.0 μm in any region, and in particular, the crystal grains in the central portion of the copper foil are coarsened. It was confirmed that the tendency was high. Therefore, by subjecting each sample to pre-annealing, zinc (and different metal elements) can be diffused not only to the surface layer of copper foil but also to the central part of copper foil, so that high temperature heat is prolonged It was confirmed that coarsening of copper crystal grains can be suppressed even when loaded.

本件発明に係る表面銅箔は、銅箔の表面に対して上記表面処理を施した後、上記プレアニール処理を施すことにより、簡易に製造することができ、且つ、高温で長時間の熱処理を施された後であっても、引張強さの低下の少ない銅箔を提供することができる。従って、製造時に高温雰囲気に晒される用途に好適に用いることができ、リチウムイオン二次電池等の非水系二次電池の負極集電体、プリント配線板の製造材料として特に好ましく用いることができる。

The surface copper foil according to the present invention can be easily manufactured by applying the above-mentioned surface treatment to the surface of the copper foil and then applying the above-mentioned pre-annealing treatment, and performing long-time heat treatment at high temperature. Even after being processed, a copper foil with less reduction in tensile strength can be provided. Therefore, it can be used suitably for the use exposed to high temperature atmosphere at the time of manufacture, and can be especially preferably used as a negative electrode collector of non-aqueous secondary batteries, such as a lithium ion secondary battery, and a manufacturing material of a printed wiring board.

Claims (7)

炭素、硫黄、塩素及び窒素から選ばれる1種又は2種以上の微量成分をその総量で100ppm以上含む銅箔の両面に、片面当たり20mg/m 〜1000mg/m の亜鉛を含む表面処理層を備え、当該表面処理層の亜鉛と当該微量成分との化合物が銅箔の結晶粒界に析出した表面処理銅箔であって、
当該銅箔の常態引張強さが50kgf/mm 以上62kgf/mm 以下、
当該表面処理銅箔の不活性ガス雰囲気下において350℃で5時間加熱した後の引張強さが50kgf/mm 以上であり、
且つ、当該銅箔の常態の引張強さに対する表面処理銅箔の加熱後の引張強さに対する加熱後の引張強さの維持率が90%〜100%であることを特徴とする表面処理銅箔。
Surface treatment layer containing 20 mg / m 2 to 1000 mg / m 2 of zinc per surface on both sides of a copper foil containing 100 ppm or more in total of one or more trace components selected from carbon, sulfur, chlorine and nitrogen A surface-treated copper foil in which a compound of the zinc in the surface treatment layer and the minor component is deposited at grain boundaries of the copper foil,
Normal tensile strength of the copper foil 50 kgf / mm 2 or more 62kgf / mm 2 or less,
The tensile strength after heating at 350 ° C. for 5 hours in an inert gas atmosphere of the surface-treated copper foil is 50 kgf / mm 2 or more,
In addition, the surface-treated copper foil is characterized in that the retention ratio of tensile strength after heating to tensile strength after heating of the surface-treated copper foil relative to the tensile strength of normal state of the copper foil is 90% to 100%. .
前記表面処理層は、銅及び/又は銅中への拡散速度が亜鉛よりも速い金属元素を含む請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the surface treatment layer contains a metal element whose diffusion rate in copper and / or copper is faster than zinc. 前記銅及び/銅中への拡散速度が亜鉛よりも速い金属元素が錫である請求項2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 2, wherein the metal element whose diffusion rate into copper and / or copper is faster than zinc is tin . 前記表面処理層は、片面当たり1mg/m 〜200mg/m の錫を含む請求項3に記載の表面処理銅箔。 The surface-treated copper foil according to claim 3, wherein the surface-treated layer contains 1 mg / m 2 to 200 mg / m 2 of tin per side . 前記銅箔は、常態時の平均結晶粒径が1.0μm以下である請求項1〜請求項4のいずれか一項に記載の表面処理銅箔 The surface-treated copper foil according to any one of claims 1 to 4, wherein the copper foil has an average crystal grain size in a normal state of 1.0 µm or less. 請求項1〜請求項5のいずれか一項に記載の表面処理銅箔を用いたことを特徴とする負極集電体。 The negative electrode collector using the surface-treated copper foil as described in any one of Claims 1-5 . 請求項6に記載の負極集電体を用いたことを特徴とする非水系二次電池の負極材。 A negative electrode material of a non-aqueous secondary battery comprising the negative electrode current collector according to claim 6 .
JP2016162884A 2016-08-23 2016-08-23 Surface treated copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery Active JP6553558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016162884A JP6553558B2 (en) 2016-08-23 2016-08-23 Surface treated copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016162884A JP6553558B2 (en) 2016-08-23 2016-08-23 Surface treated copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012227367A Division JP6030401B2 (en) 2012-10-12 2012-10-12 Method for producing surface-treated copper foil

Publications (2)

Publication Number Publication Date
JP2016223018A JP2016223018A (en) 2016-12-28
JP6553558B2 true JP6553558B2 (en) 2019-07-31

Family

ID=57747489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162884A Active JP6553558B2 (en) 2016-08-23 2016-08-23 Surface treated copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6553558B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6440656B2 (en) * 2016-07-12 2018-12-19 古河電気工業株式会社 Electrolytic copper foil
JP6489252B1 (en) * 2018-02-15 2019-03-27 Tdk株式会社 Negative electrode current collector, negative electrode and lithium secondary battery
JP6489251B1 (en) * 2018-02-15 2019-03-27 Tdk株式会社 Negative electrode current collector, negative electrode and lithium secondary battery
JP6558453B1 (en) * 2018-02-15 2019-08-14 Tdk株式会社 Negative electrode current collector, negative electrode and lithium secondary battery
JP6757773B2 (en) * 2018-09-26 2020-09-23 古河電気工業株式会社 Electrolytic copper foil
CN112993261A (en) * 2019-12-12 2021-06-18 陕西铭硕新能源科技有限公司 Method for processing conductive current collector of ultra-low temperature battery with high specific energy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851281A (en) * 1994-08-08 1996-02-20 Nikko Gould Foil Kk Method for manufacture high-temperature large-expansion copper foil for printed circuit
JP4438541B2 (en) * 2004-04-19 2010-03-24 三井金属鉱業株式会社 Composite foil for negative electrode current collector of non-aqueous electrolyte secondary battery and manufacturing method thereof, and negative electrode current collector, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the composite foil
JP5080719B2 (en) * 2004-06-10 2012-11-21 三井金属鉱業株式会社 Metal foil with carrier foil, method for producing metal foil with carrier foil, and current collector of non-aqueous electrolyte secondary battery using the metal foil with carrier foil
JP2006128326A (en) * 2004-10-27 2006-05-18 Mitsui Mining & Smelting Co Ltd Capacitor-layer forming material, manufacturing method for composite foil used for manufacture of material, and printed-wiring board with built-in capacitor circuit obtained by using capacitor-layer forming material
KR101593282B1 (en) * 2010-11-22 2016-02-11 미쓰이금속광업주식회사 Surface-treated copper foil
JP5074611B2 (en) * 2011-03-30 2012-11-14 Jx日鉱日石金属株式会社 Electrolytic copper foil for secondary battery negative electrode current collector and method for producing the same

Also Published As

Publication number Publication date
JP2016223018A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP6553558B2 (en) Surface treated copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery
JP5400960B2 (en) Surface treated copper foil
JP6030401B2 (en) Method for producing surface-treated copper foil
JP6122847B2 (en) Copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery
JP2009215604A (en) Copper foil and manufacturing method thereof
JP5643732B2 (en) Negative electrode current collector copper foil for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode current collector copper foil for lithium ion secondary battery
JP6067910B1 (en) Electrolytic copper foil and lithium ion secondary battery using the electrolytic copper foil
JP2019536211A (en) Electrolytic copper foil for secondary battery and method for producing the same
JP5503814B1 (en) Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
KR20130119449A (en) Alkaline collector anode
US20230207829A1 (en) Electrolytic copper foil and secondary battery comprising the same
CA3172450A1 (en) Electrolytic copper foil having high tensile strength and secondary battery comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180314

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190704

R150 Certificate of patent or registration of utility model

Ref document number: 6553558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250