JP6357920B2 - 分散型電源の系統連系装置 - Google Patents

分散型電源の系統連系装置 Download PDF

Info

Publication number
JP6357920B2
JP6357920B2 JP2014134389A JP2014134389A JP6357920B2 JP 6357920 B2 JP6357920 B2 JP 6357920B2 JP 2014134389 A JP2014134389 A JP 2014134389A JP 2014134389 A JP2014134389 A JP 2014134389A JP 6357920 B2 JP6357920 B2 JP 6357920B2
Authority
JP
Japan
Prior art keywords
control device
arithmetic
abnormality
command
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014134389A
Other languages
English (en)
Other versions
JP2016013026A (ja
Inventor
克典 矢井
克典 矢井
紀拓 直井
紀拓 直井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2014134389A priority Critical patent/JP6357920B2/ja
Priority to EP15170371.7A priority patent/EP2963794B1/en
Publication of JP2016013026A publication Critical patent/JP2016013026A/ja
Application granted granted Critical
Publication of JP6357920B2 publication Critical patent/JP6357920B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、分散型電源の系統連系装置に関し、より詳細には、分散型電源の系統連系装置に異常が発生したときの保護制御に関する。
上記分散型電源の系統連系装置の一例として、特許文献1に記載の発明が挙げられる。特許文献1に記載の保護制御装置は、A/Dコンバータの異常を検出する第1の異常検出手段および制御回路の異常を検出する第2の異常検出手段の少なくとも一方を備えている。特許文献1に記載の保護制御装置は、第2の異常検出手段として、制御回路の内部に、制御回路の動作を監視する内部監視回路を有している。制御回路は、内部監視回路を通じて自身の動作の異常が検出されたときに、保護動作の実行を促す。
また、特許文献1に記載の保護制御装置は、第2の異常検出手段として、制御回路の外部に、制御回路の動作を監視する外部監視回路を有している。外部監視回路は、制御回路の動作の異常が検出されたときに、制御回路に代わって保護動作の実行を促す。特許文献1には、保護動作として、インバータ装置の停止や系統に設けられた開閉器、遮断器の開放が挙げられている。
特開2013−212026号公報
しかしながら、特許文献1に記載の外部監視回路は、制御回路の動作の異常が検出されたときに、「制御回路に代わって」保護動作の実行を促すものである。そのため、外部監視回路によって保護動作が実行されない場合には、制御回路の異常時に、内部監視回路以外に保護動作を実行する手段がなく、特許文献1に記載の保護制御装置による保護制御は十分とは言えない。
特に、分散型電源の系統連系装置を制御する演算装置(特許文献1に記載の制御回路に相当)に異常が発生したときには、分散型電源の系統連系装置は、安全性の確保のために、発電装置と系統電源とを速やかに解列する必要がある。また、分散型電源の系統連系装置の信頼性の向上のためには、発電装置と系統電源とを解列する手段を複数備えた冗長なシステムであることが望ましい。
本発明は、このような事情に鑑みて為されたものであり、分散型電源の系統連系装置を制御する制御装置の演算装置に異常が発生したときに、発電装置と系統電源とを解列するのに要する時間を低減するとともに、発電装置と系統電源とを解列する手段を複数備えた分散型電源の系統連系装置を提供することを課題とする。
請求項1に記載の分散型電源の系統連系装置は、直流電力を発電する発電装置と、交流の系統電源と、前記発電装置と前記系統電源との間に配設され、前記発電装置によって発電された前記直流電力を交流電力に変換して前記系統電源に出力する電力変換器と、前記電力変換器と前記系統電源とを接続する複数の電路にそれぞれ設けられ、前記複数の電路がそれぞれ遮断された開状態、または、前記複数の電路がそれぞれ導通可能な閉状態に切り替え可能な複数の開閉器と、前記複数の開閉器を前記開状態または前記閉状態に切り替える開閉器駆動回路と、演算装置を用いて、前記複数の開閉器を前記開状態にする開指令、または、前記複数の開閉器を前記閉状態にする閉指令を生成して前記開閉器駆動回路に出力する制御装置と、前記制御装置の前記演算装置の外部に別体に設けられ、前記演算装置の異常を監視する外部監視装置と、前記制御装置の前記演算装置の内部に設けられ、自己の前記演算装置の異常を監視する内部監視装置と、を備え、前記外部監視装置は、前記制御装置の前記演算装置の異常を検出したときに、前記複数の開閉器を前記開状態にする第一開指令を生成して前記開閉器駆動回路に出力し、かつ、前記制御装置の前記演算装置を再起動させ、前記外部監視装置によって前記制御装置の前記演算装置が再起動されたときに、前記制御装置の前記演算装置は、前記複数の開閉器を前記開状態にする第二開指令を生成して前記開閉器駆動回路に出力し、前記内部監視装置は、前記制御装置の前記演算装置の異常を検出したときに、前記複数の開閉器を前記開状態にする第三開指令を生成して前記開閉器駆動回路に出力し、かつ、前記外部監視装置によって前記制御装置の前記演算装置が再起動されていない場合に前記制御装置の前記演算装置を再起動させ、前記開閉器駆動回路は、前記第一開指令前記第二開指令および前記第三開指令のうちの少なくとも一の前記開指令を受信している間、前記複数の開閉器を前記開状態に保持する。
請求項1に記載の分散型電源の系統連系装置によれば、開閉器駆動回路は、制御装置の演算装置に異常が発生したときに、演算装置の再起動指示とともに出力される第一開指令に基づいて、複数の開閉器を開状態に保持することができ、発電装置と系統電源とを解列することができる。そのため、開閉器駆動回路は、再起動した演算装置によって生成される第二開指令を受信する前に、発電装置と系統電源とを解列することができる。よって、請求項1に記載の分散型電源の系統連系装置は、第二開指令のみに基づいて解列を行う場合と比べて、解列に要する時間を低減することができる。また、内部監視装置は、外部監視装置によって制御装置の演算装置が再起動されていない場合に、制御装置の演算装置を再起動させる。さらに、開閉器駆動回路は、制御装置の演算装置に異常が発生したときに、第一開指令および第二開指令に加えて、内部監視装置によって生成される第三開指令を用いて、発電装置と系統電源とを解列することができる。よって、請求項1に記載の分散型電源の系統連系装置は、制御装置の演算装置に異常が発生したときに、三つの解列手段を有する冗長なシステムであり、信頼性が向上する。
請求項2に記載の分散型電源の系統連系装置は、請求項1に記載の分散型電源の系統連系装置において、前記制御装置は、前記外部監視装置に対して、自己の前記演算装置が正常に動作していることを示す一定の矩形波信号を継続して送信し、前記外部監視装置は、前記制御装置から受信した前記矩形波信号の周波数およびデューティ比のうちの少なくとも一方が予め設定された基準範囲外のときに、前記制御装置の前記演算装置の異常を検出したと判定する。
請求項2に記載の分散型電源の系統連系装置によれば、外部監視装置は、制御装置から受信した矩形波信号の周波数およびデューティ比のうちの少なくとも一方に基づいて、制御装置の演算装置の異常を検出する。よって、請求項2に記載の分散型電源の系統連系装置は、所定時間内に制御装置から上記矩形波信号を受信したか否かによって演算装置の異常を検出する場合と比べて、演算装置の異常の検出精度を向上させることができる。
分散型電源の系統連系装置10の一例を示す構成図である。 演算装置16a、内部監視装置16b、開閉器駆動回路40および外部監視装置50の結線例を示す結線図である。 分散型電源の系統連系装置10の制御ブロックの一例を示すブロック図である。 外部監視装置50で実行される演算装置16aの異常を検出する手順の一例を示すフローチャートである。 矩形波信号SG1、リセット信号SG2,SG3、開閉器制御信号SG4およびゲート入力信号SG5a,SG5bと、第一解列リレー15a,第二解列リレー15bの開状態または閉状態と、の関係の一例を示すタイミングチャートである。
以下、本実施形態の分散型電源の系統連系装置10について説明する。本実施形態の分散型電源の系統連系装置10は、燃料電池11(発電装置に相当)と交流の系統電源20とを連系または解列する。図1に示すように、分散型電源の系統連系装置10は、燃料電池11、コンバータ12、インバータ13(電力変換器に相当)、平滑回路14、解列リレー15(複数の開閉器に相当)、制御装置16、系統電源20、各種センサ30、開閉器駆動回路40および外部監視装置50を備えている。
燃料電池11は、直流電力を発電する発電装置であり、種々の燃料電池(例えば、公知の固体酸化物形燃料電池(SOFC)など)を用いることができる。また、発電装置は、燃料電池11以外の直流電力を発電する発電装置(例えば、太陽光電池、ガスエンジンなど)を用いることもできる。つまり、発電装置は、交流発電機の交流電力を平滑回路で平滑して直流電力を生成することもできる。燃料電池11は、出力側端子11a,11bを備えている。出力側端子11aは、燃料電池11の正極(+)に接続されており、出力側端子11bは、燃料電池11の負極(−)に接続されている。
コンバータ12は、燃料電池11から出力される直流電力を昇圧してインバータ13に出力する。コンバータ12は、入力側端子12a,12bおよび出力側端子12c,12dを備えている。燃料電池11の出力側端子11aと、コンバータ12の入力側端子12aとの間には、電路17aが形成されており、燃料電池11の出力側端子11bと、コンバータ12の入力側端子12bとの間には、電路17bが形成されている。燃料電池11から出力された直流電力は、電路17a,17bを介してコンバータ12に入力され、コンバータ12によって昇圧された直流電力は、出力側端子12c,12dから出力される。電路17a,17bは、例えば、公知の電力用電線を用いて形成することができる。このことは、以降に示す電路についても同様である。
コンバータ12は、リアクトル12e、ダイオード12f、スイッチング素子12gおよびコンデンサ12hを備えている。これらの素子は、公知の電力用デバイスを用いることができる。例えば、スイッチング素子12gは、公知の電界効果トランジスタ(FET)、絶縁ゲートバイポーラトランジスタ(IGBT)などを用いることができ、コンデンサ12hは、公知の電解コンデンサを用いることができる。
コンバータ12の入力側端子12aと出力側端子12cとの間には、電路17cが形成されている。また、コンバータ12の入力側端子12bと出力側端子12dとの間には、電路17dが形成されている。電路17cには、入力側端子12a側から順に、リアクトル12e、ダイオード12fが設けられている。また、リアクトル12eとダイオード12fとの間の電路17cには、接続点12iが設けられており、接続点12iには、スイッチング素子12gのドレイン12g1が接続されている。スイッチング素子12gのソース12g2は、電路17dに設けられる接続点12jに接続されており、接続点12iと接続点12jとの間には、電路17eが形成されている。なお、スイッチング素子12gのゲート12g3は、図示しない駆動回路(ドライバ回路)を介して、後述する制御装置16に接続されている。
また、ダイオード12fと出力側端子12cとの間の電路17cには、接続点12kが設けられており、接続点12kには、コンデンサ12hの一端側(正極側端子)が接続されている。コンデンサ12hの他端側(負極側端子)は、電路17dに設けられる接続点12lに接続されている。なお、コンバータ12は、燃料電池11から出力される直流電力を昇圧することができれば良く、上述の構成に限定されるものではない。
コンバータ12の出力側端子12cと、後述するインバータ13の入力側端子13aとの間には、電路17fが形成されている。また、コンバータ12の出力側端子12dと、後述するインバータ13の入力側端子13bとの間には、電路17gが形成されている。電路17fと電路17gとの間には、コンバータ12の出力電圧(直流電圧)を測定する電圧センサ31が設けられている。
電圧センサ31は、例えば、電路17fと電路17gとの間に発生する直流電圧を、抵抗値が既知の抵抗器によって分圧して、分圧された電圧値に基づいてコンバータ12の出力電圧(直流電圧)を算出することができる。なお、上述の抵抗器によって分圧された直流電圧を、制御装置16に入力して、制御装置16によってコンバータ12の出力電圧(直流電圧)を算出することもできる。
制御装置16は、コンバータ12の出力電圧(直流電圧)に基づいて、パルス信号のデューティ比を決定する。制御装置16は、駆動回路(ドライバ回路)を介して、当該デューティ比に基づくパルス信号をスイッチング素子12gのゲート12g3に付与する。スイッチング素子12gのゲート12g3に付与される電圧がハイレベル(Hi)のときには、スイッチング素子12gのドレイン12g1とソース12g2との間が導通状態になり、リアクトル12eに電磁エネルギーが蓄えられる。
スイッチング素子12gのゲート12g3に付与される電圧がローレベル(Lo)のときには、スイッチング素子12gのドレイン12g1とソース12g2との間が遮断された開放状態になり、リアクトル12eに蓄えられた電磁エネルギーがコンデンサ12hに充電されて、コンバータ12の出力電圧(直流電圧)は上昇する。このようにして、制御装置16は、コンバータ12の出力電圧(直流電圧)を所望の電圧値に制御することができ、パルス振幅変調(PAM)方式によって、コンバータ12の出力電圧(直流電圧)を可変制御することができる。
インバータ13は、燃料電池11と系統電源20との間に配設されており、燃料電池11によって発電された直流電力を交流電力に変換して系統電源20に出力する。インバータ13は、入力側端子13a,13bおよび出力側端子13c,13dを備えている。なお、本実施形態では、インバータ13は、コンバータ12を介して燃料電池11(発電装置に相当)に接続されているが、発電装置が必要な直流電圧を出力可能な場合には、コンバータ12を省略することができる。
インバータ13の出力側端子13cと、系統電源20の接続端子20aとの間には、電路21が形成されている。また、インバータ13の出力側端子13dと、系統電源20の接続端子20bとの間には、電路22が形成されている。インバータ13から出力された交流電力は、電路21,22を介して系統電源20に出力される。なお、系統電源20は、電力会社が保有する商用の配電線網から供給される電源をいう。また、系統電源20は、単相に限定されるものではなく、多相(例えば、三相)の系統電源を用いることもできる。
インバータ13は、第一スイッチング素子13e〜第四スイッチング素子13hを備えている。第一スイッチング素子13e〜第四スイッチング素子13hは、コンバータ12のスイッチング素子12gと同様に、公知の電界効果トランジスタ(FET)、絶縁ゲートバイポーラトランジスタ(IGBT)などを用いることができる。図1に示すように、これらのスイッチング素子には、還流ダイオードがそれぞれ設けられている。還流ダイオードは、スイッチング素子のボディダイオード(寄生ダイオード)を用いることができる。また、還流ダイオードは、別途設けることもでき、スイッチング素子にそれぞれ並列接続することができる。
図1に示すように、インバータ13の入力側端子13aと、第一スイッチング素子13eのドレイン13e1と、第三スイッチング素子13gのドレイン13g1との間には、電路17hが形成されている。また、インバータ13の入力側端子13bと、第二スイッチング素子13fのソース13f2と、第四スイッチング素子13hのソース13h2との間には、電路17iが形成されている。
第一スイッチング素子13eおよび第二スイッチング素子13fは、電路17hと電路17iとの間において直列接続されており、第一スイッチング素子13eのソース13e2と、第二スイッチング素子13fのドレイン13f1との間には、電路17jが形成されている。また、第三スイッチング素子13gおよび第四スイッチング素子13hは、電路17hと電路17iとの間において直列接続されており、第三スイッチング素子13gのソース13g2と、第四スイッチング素子13hのドレイン13h1との間には、電路17kが形成されている。つまり、直列接続された第一スイッチング素子13eおよび第二スイッチング素子13fと、直列接続された第三スイッチング素子13gおよび第四スイッチング素子13hとは、電路17hと電路17iとの間において並列接続されている。
電路17jには、接続点13iが設けられており、接続点13iと、インバータ13の出力側端子13cとの間には、電路17lが形成されている。また、電路17kには、接続点13jが設けられており、接続点13jとインバータ13の出力側端子13dとの間には、電路17mが形成されている。以上のようにして、第一スイッチング素子13e〜第四スイッチング素子13hは、フルブリッジ接続されている。
第一スイッチング素子13e〜第四スイッチング素子13hの各ゲート13e3〜13h3は、図示しない駆動回路(ドライバ回路)を介して、制御装置16に接続されており、第一スイッチング素子13e〜第四スイッチング素子13hは、制御装置16から出力される駆動信号に基づいて開閉制御される。例えば、第一スイッチング素子13eのゲート13e3にハイレベル(Hi)が付与されると、第一スイッチング素子13eのドレイン13e1とソース13e2との間が導通状態になる。また、第四スイッチング素子13hのゲート13h3にハイレベル(Hi)が付与されると、第四スイッチング素子13hのドレイン13h1とソース13h2との間が導通状態になる。
このとき、第二スイッチング素子13fのゲート13f3には、ローレベル(Lo)が付与され、第二スイッチング素子13fのドレイン13f1とソース13f2との間が遮断された開放状態になる。また、第三スイッチング素子13gのゲート13g3には、ローレベル(Lo)が付与され、第三スイッチング素子13gのドレイン13g1とソース13g2との間が遮断された開放状態になる。この場合、コンバータ12から出力された直流電流は、インバータ13の入力側端子13a、電路17h、第一スイッチング素子13e、電路17j、接続点13i、電路17l、インバータ13の出力側端子13c、電路21、系統電源20、電路22、インバータ13の出力側端子13d、電路17m、接続点13j、電路17k、第四スイッチング素子13h、電路17i、インバータ13の入力側端子13bの順に流れる。上述の第一スイッチング素子13e〜第四スイッチング素子13hの状態を第一状態とする。
次に、第一スイッチング素子13eのゲート13e3にローレベル(Lo)が付与され、第一スイッチング素子13eのドレイン13e1とソース13e2との間が遮断された開放状態になる。また、第四スイッチング素子13hのゲート13h3にローレベル(Lo)が付与され、第四スイッチング素子13hのドレイン13h1とソース13h2との間が遮断された開放状態になる。
このとき、第二スイッチング素子13fのゲート13f3には、ハイレベル(Hi)が付与され、第二スイッチング素子13fのドレイン13f1とソース13f2との間が導通状態になる。また、第三スイッチング素子13gのゲート13g3には、ハイレベル(Hi)が付与され、第三スイッチング素子13gのドレイン13g1とソース13g2との間が導通状態になる。この場合、コンバータ12から出力された直流電流は、インバータ13の入力側端子13a、電路17h、第三スイッチング素子13g、電路17k、接続点13j、電路17m、インバータ13の出力側端子13d、電路22、系統電源20、電路21、インバータ13の出力側端子13c、電路17l、接続点13i、電路17j、第二スイッチング素子13f、電路17i、インバータ13の入力側端子13bの順に流れる。上述の第一スイッチング素子13e〜第四スイッチング素子13hの状態を第二状態とする。
第二状態における電路21,22の電流方向は、第一状態の場合と比べて、反対方向になっている。このように、インバータ13は、第一状態および第二状態を順に繰り返すことによって、インバータ13の入力側端子13a,13bから入力された直流電力を交流電力に変換することができる。なお、制御装置16は、種々の開閉制御を行うことができる。制御装置16は、例えば、パルス幅変調(PWM)方式によりデューティ比を可変して、デューティ比に基づいて第一スイッチング素子13e〜第四スイッチング素子13hの導通時間および遮断時間を制御することができる。
インバータ13と系統電源20とを接続する複数(本実施形態では、2つ)の電路21,22には、平滑回路14および解列リレー15が設けられている。平滑回路14は、インバータ13の出力側端子13c,13dから出力された交流電力の高周波成分を取り除いて、インバータ13の出力電圧を正弦波状の波形に整形して系統電源20に出力する。解列リレー15は、発電装置である燃料電池11と系統電源20とを連系または解列する常開型の開閉器であり、解列リレー15が開閉制御されることによって、電力供給が制御される。
平滑回路14は、リアクトル14a,14bおよびコンデンサ14cを備えている。解列リレー15は、第一解列リレー15aおよび第二解列リレー15b(複数の開閉器に相当)を備えている。これらの素子は、公知の電力用デバイスを用いることができる。電路21には、インバータ13の出力側端子13c側から順に、リアクトル14a、第一解列リレー15aが設けられている。電路22には、インバータ13の出力側端子13d側から順に、リアクトル14b、第二解列リレー15bが設けられている。
リアクトル14aと第一解列リレー15aとの間の電路21には、接続点14dが設けられており、接続点14dには、コンデンサ14cの一端側が接続されている。リアクトル14bと第二解列リレー15bとの間の電路22には、接続点14eが設けられており、接続点14eには、コンデンサ14cの他端側が接続されている。既述のとおり、インバータ13から出力される電力は、交流電力であるので、接続点14dと接続点14eとの間には、電路23が形成される。
平滑回路14は、インバータ13の出力電圧を正弦波状の波形に整形することができれば良く、上述の構成に限定されるものではない。また、第一解列リレー15aおよび第二解列リレー15bは、後述する開閉器駆動回路40によって、それぞれ開状態または閉状態に切り替えられる。ここで、開状態は、複数(本実施形態では、2つ)の電路21,22がそれぞれ遮断された状態をいい、閉状態は、複数(本実施形態では、2つ)の電路21,22がそれぞれ導通可能な状態をいう。
第一解列リレー15aおよび第二解列リレー15bが開状態になると、発電装置である燃料電池11と系統電源20とが解列され、第一解列リレー15aおよび第二解列リレー15bが閉状態になると、発電装置である燃料電池11と系統電源20とが連系される。このように、解列リレー15が開閉されることによって、発電装置である燃料電池11と系統電源20とが解列または連系される。
分散型電源の系統連系装置10は、各種センサ30を備えている。各種センサ30には、既述の電圧センサ31、系統電圧検出回路32および図示しない電流センサが含まれる。電路21,22には、系統電圧(電路21と電路22との間の電圧)を検出する系統電圧検出回路32が接続されている。系統電圧検出回路32は、例えば、系統電圧を変圧器によって降圧して、降圧された電圧値を検出する。系統電圧検出回路32の検出信号は、制御装置16に入力されて、制御装置16は、検出された電圧値に基づいて、系統電源20の異常(例えば、停電など)を検知することができる。
また、電路21,22に流れる電流を検出する電流センサ(例えば、カレントトランス式、シャント式など)を設けることもできる。電流センサや既述の電圧センサ31の検出結果に基づいて、制御装置16は、コンバータ12やインバータ13の異常を検知することができる。なお、各種センサ30は、これらの検出器に限定されるものではなく、分散型電源の系統連系装置10において用いられる種々の検出器を備えることができる。
制御装置16は、演算装置16aを用いて、少なくとも解列リレー15の開閉制御を行う。制御装置16は、公知の演算装置16aを有している。演算装置16aは、中央演算装置(CPU)、読み出しおよび書き込み可能な記憶装置(RAM)、読み出し専用の記憶装置(ROM)および入出力インターフェース(I/Oインターフェース)を備えており、これらは、バスを介して接続されている。
演算装置16aは、各種センサ30の検出結果を取得することができ、既述のとおり、コンバータ12およびインバータ13を制御することができる。また、演算装置16aは、開指令または閉指令を生成して、開閉器駆動回路40に出力する。ここで、開指令は、複数の開閉器(第一解列リレー15a,第二解列リレー15b)をそれぞれ開状態にする指令をいい、閉指令は、複数の開閉器(第一解列リレー15a,第二解列リレー15b)をそれぞれ閉状態にする指令をいう。制御装置16は、開閉器駆動回路40に対して、開指令または閉指令を出力することにより、開閉器駆動回路40を介して、複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開閉制御することができる。
開閉器駆動回路40は、複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開状態または閉状態に切り替える。図2に示すように、開閉器駆動回路40は、論理回路41、励磁回路42およびスイッチング素子43を備えている。論理回路41は、第一論理回路41aおよび第二論理回路41bを備えており、第一論理回路41aおよび第二論理回路41bは、それぞれ三入力の論理積を出力する。具体的には、第一論理回路41aは、入力側端子41a1〜41a3および出力側端子41a4を備えている。第一論理回路41aは、入力側端子41a1〜41a3に入力される電圧がすべてハイレベル(Hi)のときに、出力側端子41a4にハイレベル(Hi)が出力される。一方、第一論理回路41aは、入力側端子41a1〜41a3に入力される電圧の少なくとも1つがローレベル(Lo)のときに、出力側端子41a4にローレベル(Lo)が出力される。
同様に、第二論理回路41bは、入力側端子41b1〜41b3および出力側端子41b4を備えている。第二論理回路41bは、入力側端子41b1〜41b3に入力される電圧がすべてハイレベル(Hi)のときに、出力側端子41b4にハイレベル(Hi)が出力される。一方、第二論理回路41bは、入力側端子41b1〜41b3に入力される電圧の少なくとも1つがローレベル(Lo)のときに、出力側端子41b4にローレベル(Lo)が出力される。
励磁回路42は、第一励磁回路42aおよび第二励磁回路42bを備えている。第一励磁回路42aは、第一ソレノイド42a1および第一還流ダイオード42a2を備えており、これらは並列接続されている。第一ソレノイド42a1は、第一解列リレー15aを励磁する励磁コイルであり、第一還流ダイオード42a2は、第一ソレノイド42a1に発生する逆起電力を低減させる。具体的には、第一還流ダイオード42a2は、逆起電力発生時に、第一ソレノイド42a1に流れる電流を電源Vref1側に還流させる。
同様に、第二励磁回路42bは、第二ソレノイド42b1および第二還流ダイオード42b2を備えており、これらは並列接続されている。第二ソレノイド42b1は、第二解列リレー15bを励磁する励磁コイルであり、第二還流ダイオード42b2は、第二ソレノイド42b1に発生する逆起電力を低減させる。具体的には、第二還流ダイオード42b2は、逆起電力発生時に、第二ソレノイド42b1に流れる電流を電源Vref1側に還流させる。なお、電源Vref1は、例えば、コンバータ12の出力電圧(直流電圧)を変圧器によって降圧して生成することができる。
スイッチング素子43は、第一スイッチング素子43aおよび第二スイッチング素子43bを備えている。第一スイッチング素子43aおよび第二スイッチング素子43bは、既述のスイッチング素子と同様に、公知の電界効果トランジスタ(FET)、絶縁ゲートバイポーラトランジスタ(IGBT)などを用いることができる。また、既述のスイッチング素子と同様に、第一スイッチング素子43aおよび第二スイッチング素子43bには、還流ダイオードがそれぞれ設けられている。
第一スイッチング素子43aのドレイン43a1と、第一励磁回路42aとの間には、電路44aが形成されており、第一スイッチング素子43aのソース43a2と、電源Vref1の負極(接地)側との間には、電路44bが形成されている。また、第一スイッチング素子43aのゲート43a3と、第一論理回路41aの出力側端子41a4との間には、電路44cが形成されている。
第一論理回路41aの出力側端子41a4がハイレベル(Hi)のときには、第一スイッチング素子43aのゲート43a3はハイレベル(Hi)になり、第一スイッチング素子43aのドレイン43a1とソース43a2との間が導通状態になる。その結果、第一ソレノイド42a1が励磁されて、第一解列リレー15aは閉状態になる。一方、第一論理回路41aの出力側端子41a4がローレベル(Lo)のときには、第一スイッチング素子43aのゲート43a3はローレベル(Lo)になり、第一スイッチング素子43aのドレイン43a1とソース43a2との間が遮断された開放状態になる。その結果、第一ソレノイド42a1は励磁されず、第一解列リレー15aは開状態になる。
同様に、第二スイッチング素子43bのドレイン43b1と、第二励磁回路42bとの間には、電路44dが形成されており、第二スイッチング素子43bのソース43b2と、電源Vref1の負極(接地)側との間には、電路44eが形成されている。また、第二スイッチング素子43bのゲート43b3と、第二論理回路41bの出力側端子41b4との間には、電路44fが形成されている。
第二論理回路41bの出力側端子41b4がハイレベル(Hi)のときには、第二スイッチング素子43bのゲート43b3はハイレベル(Hi)になり、第二スイッチング素子43bのドレイン43b1とソース43b2との間が導通状態になる。その結果、第二ソレノイド42b1が励磁されて、第二解列リレー15bは閉状態になる。一方、第二論理回路41bの出力側端子41b4がローレベル(Lo)のときには、第二スイッチング素子43bのゲート43b3はローレベル(Lo)になり、第二スイッチング素子43bのドレイン43b1とソース43b2との間が遮断された開放状態になる。その結果、第二ソレノイド42b1は励磁されず、第二解列リレー15bは開状態になる。なお、電路44cおよび電路44fには、駆動回路(ドライバ回路)を設けることができる。
外部監視装置50は、制御装置16の演算装置16aの外部に別体に設けられている。外部監視装置50は、制御装置16の演算装置16aと同様の演算装置を有しており、演算装置16aの異常を監視する。「演算装置16aの異常」は、例えば、コンバータ12やインバータ13を制御する制御プログラムの動作異常、制御プログラムの停止などが挙げられる。外部監視装置50は、電源供給端子50a、接地端子50b、矩形波信号入力端子50cおよび再起動信号出力端子50dを備えている。
外部監視装置50の電源供給端子50aには、電源Vref2の正極側が接続されており、接地端子50bには、電源Vref2の負極側が接続されて接地されている。外部監視装置50は、電源供給端子50aおよび接地端子50bを介して、電源が供給される。電源Vref2は、電源Vref1と同様に、例えば、コンバータ12の出力電圧(直流電圧)を変圧器によって降圧して生成することができる。
演算装置16aは、電源供給端子16c、接地端子16d、矩形波信号出力端子16e、再起動信号入力端子16fおよび第二開閉器制御端子16gを備えている。電源供給端子16cには、電源Vref2の正極側が接続されており、接地端子16dには、電源Vref2の負極側が接続されて接地されている。演算装置16aは、電源供給端子16cおよび接地端子16dを介して、電源が供給される。電源の供給方法は、後述する内部監視装置16bについても同様である。
制御装置16の演算装置16aの矩形波信号出力端子16eと、外部監視装置50の矩形波信号入力端子50cとの間には、電路45aが形成されている。制御装置16は、電路45aを介して、外部監視装置50に対して、自己の演算装置16aが正常に動作していることを示す一定の矩形波信号を継続して送信する。外部監視装置50は、矩形波信号入力端子50cから矩形波信号を受信する。
矩形波信号は、例えば、コンバータ12やインバータ13の制御プログラム(一定周期で演算処理が繰り返されるプログラムなど)を用いて生成することができる。例えば、制御装置16の演算装置16aは、電流の演算処理を開始するときに、矩形波信号を反転させ、電流の演算処理が完了したときに、矩形波信号を再び反転(トグル動作)させる。制御装置16の演算装置16aは、これを繰り返すことによって、一定の矩形波信号を継続して生成することができる。
外部監視装置50は、例えば、所定時間内に制御装置16(演算装置16a)から矩形波信号を受信しているときに、制御装置16の演算装置16aが正常に動作していると判定することができる。また、外部監視装置50は、所定時間内に制御装置16(演算装置16a)から矩形波信号を受信しなかったときに、制御装置16の演算装置16aが異常であると判定することができる。このように、所定時間内に制御装置16(演算装置16a)から矩形波信号を受信したか否かによって演算装置16aの異常を検出する場合、外部監視装置50は、矩形波信号の周波数が正常な周波数と比べて高いときや矩形波信号のデューティ比が正常なデューティ比と比べて異なるときに、演算装置16aの異常を検出することが困難になる。
そこで、外部監視装置50は、制御装置16(演算装置16a)から受信した矩形波信号の周波数およびデューティ比のうちの少なくとも一方が予め設定された基準範囲外のときに、制御装置16の演算装置16aの異常を検出したと判定すると好適である。具体的には、外部監視装置50は、例えば、制御装置16(演算装置16a)から受信した矩形波信号の立上りエッジおよび立下がりエッジを検出する。外部監視装置50は、矩形波信号の立上りエッジの間隔に基づいて、矩形波信号の周波数を算出することができる。また、外部監視装置50は、矩形波信号の立上りエッジから立下がりエッジまでの間隔と、矩形波信号の立上りエッジ間の間隔とから矩形波信号のデューティ比を算出することができる。
本実施形態では、外部監視装置50は、制御装置16(演算装置16a)から受信した矩形波信号の周波数およびデューティ比のうちの少なくとも一方が予め設定された基準範囲外のときに、制御装置16の演算装置16aの異常を検出したと判定する。よって、外部監視装置50は、所定時間内に制御装置16(演算装置16a)から矩形波信号を受信したか否かによって演算装置16aの異常を検出する場合と比べて、演算装置16aの異常の検出精度を向上させることができる。
外部監視装置50の再起動信号出力端子50dと、演算装置16aの再起動信号入力端子16fとの間には、電路45bが形成されている。電路45bは、途中で分岐しており、電路45cに接続されている。電路45cは、電路45bの分岐点と、第一論理回路41aの入力側端子41a1との間において形成されている。また、電路45cは、途中で分岐しており、第二論理回路41bの入力側端子41b1に接続されている。
外部監視装置50は、制御装置16の演算装置16aの異常を検出したときに、第一開指令を生成して開閉器駆動回路40に出力する。第一開指令は、外部監視装置50によって生成される複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開状態にする開指令をいう。外部監視装置50は、制御装置16の演算装置16aの異常を検出したときに、再起動信号出力端子50dからローレベル(Lo)を出力する(第一開指令の生成および出力)。これにより、電路45bおよび電路45cは、ローレベル(Lo)になり、第一論理回路41aの入力側端子41a1および第二論理回路41bの入力側端子41b1は、ローレベル(Lo)になる。
第一論理回路41aの入力側端子41a1がローレベル(Lo)になると、他の入力側端子41a2,41a3の状態に関わらず、第一論理回路41aの出力側端子41a4は、ローレベル(Lo)になる。そして、第一スイッチング素子43aのゲート43a3はローレベル(Lo)になり、第一スイッチング素子43aのドレイン43a1とソース43a2との間が遮断された開放状態になる。その結果、第一ソレノイド42a1は励磁されず、第一解列リレー15aは開状態になる。
同様に、第二論理回路41bの入力側端子41b1がローレベル(Lo)になると、他の入力側端子41b2,41b3の状態に関わらず、第二論理回路41bの出力側端子41b4は、ローレベル(Lo)になる。そして、第二スイッチング素子43bのゲート43b3はローレベル(Lo)になり、第二スイッチング素子43bのドレイン43b1とソース43b2との間が遮断された開放状態になる。その結果、第二ソレノイド42b1は励磁されず、第二解列リレー15bは開状態になる。
演算装置16aの第二開閉器制御端子16gと、第一論理回路41aの入力側端子41a2との間には、電路45dが形成されている。電路45dは、途中で分岐しており、第二論理回路41bの入力側端子41b2に接続されている。外部監視装置50は、制御装置16の演算装置16aの異常を検出したときに、第一開指令を生成して開閉器駆動回路40に出力するとともに、制御装置16の演算装置16aを再起動させる。
既述のとおり、外部監視装置50は、制御装置16の演算装置16aの異常を検出したときに、再起動信号出力端子50dからローレベル(Lo)を出力する。これにより、電路45bは、ローレベル(Lo)になり、演算装置16aの再起動信号入力端子16fは、ローレベル(Lo)になる。再起動信号入力端子16fがローレベル(Lo)になると、制御装置16の演算装置16aは、再起動される。
再起動された制御装置16の演算装置16aは、第二開指令を生成して開閉器駆動回路40に出力する。第二開指令は、再起動された制御装置16の演算装置16aによって生成される複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開状態にする開指令をいう。制御装置16の演算装置16aは、再起動されると、第二開閉器制御端子16gからローレベル(Lo)を出力する(第二開指令の生成および出力)。これにより、電路45dは、ローレベル(Lo)になり、第一論理回路41aの入力側端子41a2および第二論理回路41bの入力側端子41b2は、ローレベル(Lo)になる。
第一論理回路41aの入力側端子41a2がローレベル(Lo)になると、他の入力側端子41a1,41a3の状態に関わらず、第一論理回路41aの出力側端子41a4は、ローレベル(Lo)になる。そして、第一スイッチング素子43aのゲート43a3はローレベル(Lo)になり、第一スイッチング素子43aのドレイン43a1とソース43a2との間が遮断された開放状態になる。その結果、第一ソレノイド42a1は励磁されず、第一解列リレー15aは開状態になる。
同様に、第二論理回路41bの入力側端子41b2がローレベル(Lo)になると、他の入力側端子41b1,41b3の状態に関わらず、第二論理回路41bの出力側端子41b4は、ローレベル(Lo)になる。そして、第二スイッチング素子43bのゲート43b3はローレベル(Lo)になり、第二スイッチング素子43bのドレイン43b1とソース43b2との間が遮断された開放状態になる。その結果、第二ソレノイド42b1は励磁されず、第二解列リレー15bは開状態になる。
このようにして、開閉器駆動回路40は、制御装置16の演算装置16aに異常が発生したときに、第一開指令および第二開指令のうちの少なくとも一方の開指令を受信している間、複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開状態に保持することができる。これにより、開閉器駆動回路40は、発電装置である燃料電池11と系統電源20とを解列することができる。
本実施形態の分散型電源の系統連系装置10によれば、開閉器駆動回路40は、制御装置16の演算装置16aに異常が発生したときに、演算装置16aの再起動指示とともに出力される第一開指令に基づいて、複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開状態に保持することができ、発電装置である燃料電池11と系統電源20とを解列することができる。そのため、開閉器駆動回路40は、再起動した演算装置16aによって生成される第二開指令を受信する前に、発電装置である燃料電池11と系統電源20とを解列することができる。よって、本実施形態の分散型電源の系統連系装置10は、第二開指令のみに基づいて解列を行う場合と比べて、解列に要する時間を低減することができる。
また、開閉器駆動回路40は、制御装置16の演算装置16aに異常が発生したときに、第一開指令および第二開指令のうちの少なくとも一方の開指令によって、発電装置である燃料電池11と系統電源20とを解列することができる。よって、開閉器駆動回路40は、一の開指令を受信できない場合であっても、他の開指令の受信によって発電装置である燃料電池11と系統電源20とを解列することができる。つまり、本実施形態の分散型電源の系統連系装置10は、制御装置16の演算装置16aに異常が発生したときに、複数の解列手段を備えた冗長なシステムであり、信頼性が向上する。
制御装置16は、演算装置16aの内部に、自己の演算装置16aの異常を監視する内部監視装置16bをさらに備えていると好適である。内部監視装置16bは、ソフトウエアによって構成することもできるが、外部監視装置50と同様に、演算装置16aと独立したハードウエアによって構成されるのが好ましい。内部監視装置16bは、第三開閉器制御端子16hを備えている。内部監視装置16bの第三開閉器制御端子16hと、第一論理回路41aの入力側端子41a3との間には、電路45eが形成されている。電路45eは、途中で分岐しており、第二論理回路41bの入力側端子41b3に接続されている。
内部監視装置16bは、制御装置16の演算装置16aの異常を検出したときに、外部監視装置50によって制御装置16の演算装置16aが再起動されていない場合に、制御装置16の演算装置16aを再起動させる。内部監視装置16bは、外部監視装置50と同様の方法で、制御装置16の演算装置16aの異常を検出することができる。
また、内部監視装置16bは、制御装置16の演算装置16aの異常を検出したときに、第三開指令を生成して開閉器駆動回路40に出力する。第三開指令は、内部監視装置16bによって生成される複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開状態にする開指令をいう。内部監視装置16bは、制御装置16の演算装置16aの異常が検出されると、第三開閉器制御端子16hからローレベル(Lo)を出力する(第三開指令の生成および出力)。これにより、電路45eは、ローレベル(Lo)になり、第一論理回路41aの入力側端子41a3および第二論理回路41bの入力側端子41b3は、ローレベル(Lo)になる。
第一論理回路41aの入力側端子41a3がローレベル(Lo)になると、他の入力側端子41a1,41a2の状態に関わらず、第一論理回路41aの出力側端子41a4は、ローレベル(Lo)になる。そして、第一スイッチング素子43aのゲート43a3はローレベル(Lo)になり、第一スイッチング素子43aのドレイン43a1とソース43a2との間が遮断された開放状態になる。その結果、第一ソレノイド42a1は励磁されず、第一解列リレー15aは開状態になる。
同様に、第二論理回路41bの入力側端子41b3がローレベル(Lo)になると、他の入力側端子41b1,41b2の状態に関わらず、第二論理回路41bの出力側端子41b4は、ローレベル(Lo)になる。そして、第二スイッチング素子43bのゲート43b3はローレベル(Lo)になり、第二スイッチング素子43bのドレイン43b1とソース43b2との間が遮断された開放状態になる。その結果、第二ソレノイド42b1は励磁されず、第二解列リレー15bは開状態になる。
このようにして、開閉器駆動回路40は、制御装置16の演算装置16aに異常が発生したときに、第一開指令、第二開指令および第三開指令のうちの少なくとも一の開指令を受信している間、複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開状態に保持することができる。これにより、開閉器駆動回路40は、発電装置である燃料電池11と系統電源20とを解列することができる。
本実施形態の分散型電源の系統連系装置10によれば、内部監視装置16bは、外部監視装置50によって制御装置16の演算装置16aが再起動されていない場合に、制御装置16の演算装置16aを再起動させる。また、開閉器駆動回路40は、制御装置16の演算装置16aに異常が発生したときに、第一開指令および第二開指令に加えて、内部監視装置16bによって生成される第三開指令を用いて、発電装置である燃料電池11と系統電源20とを解列することができる。よって、本実施形態の分散型電源の系統連系装置10は、制御装置16の演算装置16aに異常が発生したときに、三つの解列手段を有する冗長なシステムであり、信頼性が向上する。
なお、制御装置16の演算装置16aに供給される電源電圧の低下に伴って、演算装置16aに異常が発生する可能性がある。例えば、記憶装置の一種であるDRAMは、コンデンサに電荷を蓄えることによって情報を保持している。コンデンサに蓄えられた電荷は、時間とともに減少して保持している情報が消失してしまうので、DRAMは、コンデンサを充電するリフレッシュ動作が必要になる。このとき、演算装置16aに供給される電源電圧の低下によってリフレッシュ動作が十分に行われないコンデンサが生じると、DRAMが保持している情報が変更される可能性がある。これにより、例えば、既述の制御プログラムの動作異常や制御プログラムの停止などが生じる可能性がある。
本実施形態では、外部監視装置50は、電源供給端子50aおよび接地端子50bを介して、電源(電源Vref2)が供給されている。また、演算装置16aは、電源供給端子16cおよび接地端子16dを介して、電源(電源Vref2)が供給されている。つまり、外部監視装置50および制御装置16の演算装置16aは、共通の電源Vref2から電源が供給されている。そこで、外部監視装置50は、電源供給端子50aおよび接地端子50bを介して供給される電源電圧が基準電圧より低下したときに、制御装置16の演算装置16aの異常を検出したと判定すると好適である。基準電圧は、例えば、外部監視装置50および制御装置16の演算装置16aが正常に動作可能な電源電圧の下限値とすることができる。これにより、外部監視装置50は、制御装置16の演算装置16aに供給される電源電圧の低下に伴う演算装置16aの異常を検出することができる。
また、外部監視装置50は、制御装置16(演算装置16a)から受信した矩形波信号の周波数およびデューティ比と併せて、制御装置16の演算装置16aの異常を検出することもできる。つまり、外部監視装置50は、制御装置16(演算装置16a)から受信した矩形波信号の周波数およびデューティ比、並びに、外部監視装置50に供給される電源電圧のうちの少なくとも一つが予め設定された基準範囲外のときに、制御装置16の演算装置16aの異常を検出したと判定することもできる。以上のことは、内部監視装置16bについても同様である。
次に、図3に示すブロック図、図4に示すフローチャートおよび図5に示すタイミングチャートを用いて、外部監視装置50が制御装置16の演算装置16aの異常を検出して、開閉器駆動回路40が燃料電池11と系統電源20とを解列する手順を具体的に説明する。図3に示すように、外部監視装置50は、制御ブロックとして捉えると、計時部51、異常判定部52および指令出力部53を備えている。計時部51は、公知のタイマであり、所定時間(一定時間)を繰り返し計時する。異常判定部52は、制御装置16(演算装置16a)から受信した矩形波信号の周波数およびデューティ比が予め設定された基準範囲外であるか否かを判断して、制御装置16の演算装置16aの異常を検出する。
指令出力部53は、異常判定部52が制御装置16の演算装置16aの異常を検出したときに、第一開指令を生成して開閉器駆動回路40に出力し、かつ、制御装置16の演算装置16aを再起動させる。具体的には、指令出力部53は、再起動信号出力端子50dからローレベル(Lo)を出力する。また、再起動された制御装置16の演算装置16aは、第二開指令を生成して開閉器駆動回路40に出力する。一方、指令出力部53は、異常判定部52が制御装置16の演算装置16aの異常を検出しないときには、再起動信号出力端子50dからハイレベル(Hi)を出力する。このとき、演算装置16aは、制御プログラムに基づいて、開指令または閉指令を生成して開閉器駆動回路40に出力する。
内部監視装置16bは、外部監視装置50と同様の制御ブロックを備えている。ただし、内部監視装置16bの異常判定部が制御装置16の演算装置16aの異常を検出し、かつ、外部監視装置50によって制御装置16の演算装置16aが再起動されていない場合には、内部監視装置16bの指令出力部は、制御装置16の演算装置16aを再起動させる。また、内部監視装置16bの指令出力部は、内部監視装置16bの異常判定部が制御装置16の演算装置16aの異常を検出したときに、第三開指令を生成して開閉器駆動回路40に出力する。具体的には、内部監視装置16bの指令出力部は、制御装置16の演算装置16aの異常が検出されると、第三開閉器制御端子16hからローレベル(Lo)を出力する。
外部監視装置50の異常判定部52および内部監視装置16bの異常判定部のうちの少なくとも一方が制御装置16の演算装置16aの異常を検出したときには、開閉器駆動回路40は、第一開指令、第二開指令および第三開指令のうちの少なくとも一の開指令を受信している間、複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開状態に保持して、発電装置である燃料電池11と系統電源20とを解列する。また、外部監視装置50の異常判定部52および内部監視装置16bの異常判定部のいずれもが、制御装置16の演算装置16aの異常を検出しないときには、開閉器駆動回路40は、制御装置16の演算装置16aから出力される開指令または閉指令に基づいて、複数の開閉器(第一解列リレー15a,第二解列リレー15b)を開状態または閉状態に保持して、発電装置である燃料電池11と系統電源20とを解列または連係する。
ここで、図2に示すように、電路45aを介して送信される信号を矩形波信号SG1とする。また、電路45bおよび電路45cを介して送信される信号をリセット信号SG2とし、電路45eを介して送信される信号をリセット信号SG3とする。さらに、電路45dを介して送信される信号を開閉器制御信号SG4とする。また、電路44cを介して送信される信号をゲート入力信号SG5aとし、電路44fを介して送信される信号をゲート入力信号SG5bとする。
図4に示すように、計時部51は、所定時間(一定時間)が経過したか否かを判定する(ステップS10)。所定時間が経過していない場合(Noの場合)、制御手順は、次のステップS11に進む。そして、異常判定部52は、制御装置16(演算装置16a)から受信する矩形波信号SG1の立上りエッジおよび立下がりエッジを1回ずつ検出したか否かを判定する(ステップS11)。矩形波信号SG1の立上りエッジおよび立下がりエッジを1回ずつ検出した場合(Yesの場合)、制御手順は、次のステップS12に進む。
ステップS12では、異常判定部52は、矩形波信号SG1の周期が基準範囲内か否かを判定する。異常判定部52は、例えば、矩形波信号SG1の立上りエッジの間隔(前回取得した立上りエッジから今回取得した立上りエッジまでの間隔)に基づいて、矩形波信号SG1の周期が基準範囲内(予め設定された周波数の範囲内)か否かを判定することができる。矩形波信号SG1の周期が基準範囲内の場合(Yesの場合)、制御手順は、次のステップS13に進む。
ステップS13では、異常判定部52は、矩形波信号SG1のデューティ比が基準範囲内か否かを判定する。異常判定部52は、例えば、矩形波信号SG1の立上りエッジから立下がりエッジまでの間隔と、上述の矩形波信号SG1の立上りエッジの間隔とに基づいて、矩形波信号SG1のデューティ比が基準範囲内(予め設定されたデューティ比の範囲内)か否かを判定することができる。矩形波信号SG1のデューティ比が基準範囲内の場合(Yesの場合)、制御手順は、次のステップS14に進む。
ステップS14では、異常判定部52は、演算装置16aは正常であると判定する。そして、制御手順は、次のステップS15に進む。ステップS15では、指令出力部53は、リセット信号SG2としてハイレベル(Hi)を出力する。つまり、指令出力部53は、再起動信号出力端子50dからハイレベル(Hi)を出力する。そして、制御手順は、次のステップS16に進む。ステップS16では、計時部51は、計時値をクリアして、一旦、本ルーチンは終了する。なお、図4に示す制御は、ステップS10に示す所定時間より短い周期で、繰り返し実行される。また、図4に示す制御は、プログラムとして外部監視装置50の記憶装置であるROMに記憶されている。
ステップS10でYesの場合(所定時間が経過した場合)、制御手順は、ステップS17に進む。また、ステップS12でNoの場合(矩形波信号SG1の周期が基準範囲外の場合)、制御手順は、ステップS17に進む。さらに、ステップS13でNoの場合(矩形波信号SG1のデューティ比が基準範囲外の場合)、制御手順は、ステップS17に進む。ステップS17では、異常判定部52は、演算装置16aは異常であると判定する。そして、制御手順は、次のステップS18に進む。ステップS18では、指令出力部53は、第一開指令を生成して、リセット信号SG2としてローレベル(Lo)を出力する。つまり、指令出力部53は、再起動信号出力端子50dからローレベル(Lo)を出力する。そして、制御手順は、既述のステップS16に進む。
なお、ステップS11でNoの場合(矩形波信号SG1の立上りエッジおよび立下がりエッジを1回ずつ検出していない場合)、制御手順は、ステップS19に進む。ステップS19では、計時部51は、計時値の加算処理を行う。この場合、外部監視装置50は、制御装置16(演算装置16a)から矩形波信号SG1の立上りエッジおよび立下がりエッジを受信中なので、計時部51は、計時値に所定値(図4に示す制御手順が実行される周期に相当)を加算して、一旦、本ルーチンは終了する。以上のことは、内部監視装置16bが演算装置16aの異常を検出する場合についても同様であり、リセット信号SG2をリセット信号SG3として読み替える。
図5において、曲線L11は、矩形波信号SG1の経時変化の一例を示し、曲線L12は、リセット信号SG2,SG3の経時変化の一例を示している。また、曲線L13は、開閉器制御信号SG4の経時変化の一例を示し、曲線L14は、ゲート入力信号SG5a,SG5bの経時変化の一例を示している。さらに、曲線L15は、第一解列リレー15a,第二解列リレー15bの開状態または閉状態の経時変化の一例を示している。
時刻T11〜T13までの時間は、制御装置16の演算装置16aは、正常に動作しているものとする。そして、演算装置16aによって生成された閉指令に基づいて、第一解列リレー15aおよび第二解列リレー15bが閉状態に保持され、燃料電池11と系統電源20とが連係されているものとする。このとき、曲線L11に示す矩形波信号SG1の周期は、時刻T11〜T13までの時間の逆数であり、矩形波信号SG1のデューティ比は、時刻T11〜T12までの時間と、時刻T11〜T13までの時間との比になる。
時刻T11〜T13までの時間は、制御装置16の演算装置16aは、正常に動作しているので、リセット信号SG2は、ハイレベル(Hi)になっている。また、演算装置16aによって生成された閉指令によって、開閉器制御信号SG4は、ハイレベル(Hi)になっている。これらの信号により、ゲート入力信号SG5a,SG5bは、いずれもハイレベル(Hi)になり、第一解列リレー15aおよび第二解列リレー15bは、閉状態になっている。
時刻T13〜T15までの時間において、外部監視装置50は、制御装置16(演算装置16a)から矩形波信号SG1を受信しなかったとする。同図では、受信予定の矩形波信号SG1を破線で示している。外部監視装置50の計時部51は、時刻T13から計時を開始して、時刻T16において、所定時間(図4のステップS10に示す所定時間に相当)が経過したと判定する。
このとき、外部監視装置50の異常判定部52は、演算装置16aは異常であると判定する(図4のステップS17)。そして、外部監視装置50の指令出力部53は、第一開指令を生成して、リセット信号SG2をハイレベル(Hi)からローレベル(Lo)に変更する(図4のステップS18)。これにより、ゲート入力信号SG5a,SG5bは、それぞれハイレベル(Hi)からローレベル(Lo)に変更され、第一解列リレー15aおよび第二解列リレー15bは、閉状態から開状態に変更されて開状態が保持される。その結果、燃料電池11と系統電源20とが解列される。
時刻T16において、リセット信号SG2がハイレベル(Hi)からローレベル(Lo)に変更されると、制御装置16の演算装置16aは、再起動する。演算装置16aが再起動していない場合は、内部監視装置16bが演算装置16aを再起動させる。これらによって、時刻T17において、制御装置16の演算装置16aが再起動したとする。再起動された制御装置16の演算装置16aは、外部監視装置50に対して、矩形波信号SG1の送信を再開する。また、再起動された制御装置16の演算装置16aは、第二開指令を生成して開閉器駆動回路40に出力する。これにより、開閉器制御信号SG4は、ハイレベル(Hi)からローレベル(Lo)に変更される。
時刻T17以降は、矩形波信号SG1の周期およびデューティ比は、基準範囲内であるので(図4のステップS10〜S13)、時刻T18において、外部監視装置50の異常判定部52は、演算装置16aは正常であると判定する(図4のステップS14)。そして、外部監視装置50の指令出力部53は、リセット信号SG2をローレベル(Lo)からハイレベル(Hi)に変更する(図4のステップS15)。
時刻T18以降は、演算装置16aによって生成された閉指令に基づいて、第一解列リレー15aおよび第二解列リレー15bを閉状態に保持することができ、燃料電池11と系統電源20とを連係することができる。また、時刻T18以降は、演算装置16aによって生成された開指令に基づいて、第一解列リレー15aおよび第二解列リレー15bを開状態に保持することができ、燃料電池11と系統電源20とを解列することができる。以上のことは、内部監視装置16bが演算装置16aの異常を検出する場合についても同様であり、リセット信号SG2をリセット信号SG3として読み替える。
本発明は、上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施することができる。例えば、本発明は、発電装置と多相(例えば三相)の系統電源とを連係または解列する分散型電源の系統連系装置に適用することもできる。
10:分散型電源の系統連系装置、
11:燃料電池(発電装置に相当)、13:インバータ(電力変換器に相当)、
15a:第一解列リレー(複数の開閉器に相当)、
15b:第二解列リレー(複数の開閉器に相当)、
16:制御装置、16a:演算装置、16b:内部監視装置、
20:系統電源、21,22:複数の電路、
40:開閉器駆動回路、
50:外部監視装置。

Claims (2)

  1. 直流電力を発電する発電装置と、
    交流の系統電源と、
    前記発電装置と前記系統電源との間に配設され、前記発電装置によって発電された前記直流電力を交流電力に変換して前記系統電源に出力する電力変換器と、
    前記電力変換器と前記系統電源とを接続する複数の電路にそれぞれ設けられ、前記複数の電路がそれぞれ遮断された開状態、または、前記複数の電路がそれぞれ導通可能な閉状態に切り替え可能な複数の開閉器と、
    前記複数の開閉器を前記開状態または前記閉状態に切り替える開閉器駆動回路と、
    演算装置を用いて、前記複数の開閉器を前記開状態にする開指令、または、前記複数の開閉器を前記閉状態にする閉指令を生成して前記開閉器駆動回路に出力する制御装置と、
    前記制御装置の前記演算装置の外部に別体に設けられ、前記演算装置の異常を監視する外部監視装置と、
    前記制御装置の前記演算装置の内部に設けられ、自己の前記演算装置の異常を監視する内部監視装置と、
    を備え、
    前記外部監視装置は、前記制御装置の前記演算装置の異常を検出したときに、前記複数の開閉器を前記開状態にする第一開指令を生成して前記開閉器駆動回路に出力し、かつ、前記制御装置の前記演算装置を再起動させ、
    前記外部監視装置によって前記制御装置の前記演算装置が再起動されたときに、前記制御装置の前記演算装置は、前記複数の開閉器を前記開状態にする第二開指令を生成して前記開閉器駆動回路に出力し、
    前記内部監視装置は、前記制御装置の前記演算装置の異常を検出したときに、前記複数の開閉器を前記開状態にする第三開指令を生成して前記開閉器駆動回路に出力し、かつ、前記外部監視装置によって前記制御装置の前記演算装置が再起動されていない場合に前記制御装置の前記演算装置を再起動させ、
    前記開閉器駆動回路は、前記第一開指令前記第二開指令および前記第三開指令のうちの少なくとも一の前記開指令を受信している間、前記複数の開閉器を前記開状態に保持する分散型電源の系統連系装置。
  2. 前記制御装置は、前記外部監視装置に対して、自己の前記演算装置が正常に動作していることを示す一定の矩形波信号を継続して送信し、
    前記外部監視装置は、前記制御装置から受信した前記矩形波信号の周波数およびデューティ比のうちの少なくとも一方が予め設定された基準範囲外のときに、前記制御装置の前記演算装置の異常を検出したと判定する請求項1に記載の分散型電源の系統連系装置。
JP2014134389A 2014-06-30 2014-06-30 分散型電源の系統連系装置 Active JP6357920B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014134389A JP6357920B2 (ja) 2014-06-30 2014-06-30 分散型電源の系統連系装置
EP15170371.7A EP2963794B1 (en) 2014-06-30 2015-06-03 System interconnection device for decentralized power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014134389A JP6357920B2 (ja) 2014-06-30 2014-06-30 分散型電源の系統連系装置

Publications (2)

Publication Number Publication Date
JP2016013026A JP2016013026A (ja) 2016-01-21
JP6357920B2 true JP6357920B2 (ja) 2018-07-18

Family

ID=53298210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014134389A Active JP6357920B2 (ja) 2014-06-30 2014-06-30 分散型電源の系統連系装置

Country Status (2)

Country Link
EP (1) EP2963794B1 (ja)
JP (1) JP6357920B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022118457B4 (de) * 2022-07-22 2024-02-01 Sma Solar Technology Ag Brückenschaltung und Energieewandlungsanlage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003556B2 (ja) * 1995-10-05 2000-01-31 住友電装株式会社 フェイルセーフ装置
JPH10105422A (ja) * 1996-09-25 1998-04-24 Fuji Electric Co Ltd 保護装置の制御回路
JPH11242618A (ja) * 1998-02-25 1999-09-07 Toto Ltd 燃焼機器の安全回路
JP2001161032A (ja) * 1999-12-01 2001-06-12 Canon Inc 系統連系パワーコンディショナ及びそれを用いた発電システム
JP2001275259A (ja) * 2000-03-29 2001-10-05 Canon Inc 系統連系インバータおよび分散形発電システム
US7183667B2 (en) * 2003-12-19 2007-02-27 Square D Company Method and apparatus for power inverter synchronization
JP5605548B2 (ja) * 2010-04-12 2014-10-15 富士電機株式会社 系統連系装置
JP5972638B2 (ja) * 2012-03-30 2016-08-17 株式会社ダイヘン 保護制御装置

Also Published As

Publication number Publication date
EP2963794A1 (en) 2016-01-06
JP2016013026A (ja) 2016-01-21
EP2963794B1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
EP2779416B1 (en) System for fault protection of a motor
EP2944502B1 (en) Electric motor vehicle
US8975857B2 (en) Inverter apparatus and inverter control method
US8804383B2 (en) Starter of grid-connected inverter and control method thereof
JP4083120B2 (ja) 電気供給ユニットの接続監視のための装置及び方法
US11075540B2 (en) Uninterruptible power supply device
EP2693592A1 (en) Power supply system, vehicle mounted therewith, and method of controlling power supply system
CN104272571A (zh) 功率转换装置
JP5284447B2 (ja) 分散電源システム
JP2012205390A (ja) 電力変換装置
JP2008228494A (ja) 系統連系用インバータ
JP6357920B2 (ja) 分散型電源の系統連系装置
JP2012060786A (ja) 車両の制御装置および制御方法
US10110139B1 (en) Matrix converter and method for determining constants of alternating-current motor
JP2015211592A (ja) 電力変換回路
CN109121460B (zh) 电动机装置
CN107960144B (zh) 逆变器装置
JP2009115634A (ja) 電源システム、及び電源システムの電流計測方法
JP6508026B2 (ja) コンバータ装置
US11949347B2 (en) Power conversion device
JP2015149815A (ja) 電力変換装置
JP7370775B2 (ja) 電力変換装置、および電力変換装置の制御方法
JP2014217131A (ja) 電力変換装置
US11271499B2 (en) DC bus discharge control method, apparatus and device, and storage medium
JP2012115018A (ja) 電力制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6357920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151