JP6352089B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6352089B2
JP6352089B2 JP2014147062A JP2014147062A JP6352089B2 JP 6352089 B2 JP6352089 B2 JP 6352089B2 JP 2014147062 A JP2014147062 A JP 2014147062A JP 2014147062 A JP2014147062 A JP 2014147062A JP 6352089 B2 JP6352089 B2 JP 6352089B2
Authority
JP
Japan
Prior art keywords
fuse
fuses
circuit
output
logical value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014147062A
Other languages
English (en)
Other versions
JP2016025157A (ja
Inventor
橋立 修一
修一 橋立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2014147062A priority Critical patent/JP6352089B2/ja
Publication of JP2016025157A publication Critical patent/JP2016025157A/ja
Application granted granted Critical
Publication of JP6352089B2 publication Critical patent/JP6352089B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)
  • Static Random-Access Memory (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Description

本発明は、半導体装置、特に、ヒューズ論理回路を有する半導体装置に関する。
一般に、DRAM(Dynamic Random Access Memory)などの半導体装置は、ウェハ製造工程、ウェハテスト工程、組立工程、組立品テスト工程を経て製造される。また、半導体装置には様々な用途からヒューズが設けられる場合がある。このヒューズを有する半導体装置においては、ウェハテスト工程は、例えば第1のウェハテスト工程、ヒューズブロー工程及び第2のウェハテスト工程が行われる。具体的には、第1のウェハテスト工程を行った後、例えば不良と判定されたメモリセルはヒューズブロー工程にて他の冗長メモリセルに置き換えられ、第2のウェハテスト工程において再度テストが行われる。また、ヒューズブロー工程においては、内蔵発振回路の周期調整などの回路特性の調整や、入出力バスの切換え及び出力バッファの負荷駆動能力の切換えなどの回路仕様の切換えがヒューズを切断することによって行われる場合がある。
例えば特許文献1には、温度特性補正用可変抵抗を有するバンドギャップ基準電圧発生回路と、第1及び第2のヒューズが接続された複数のトリミング回路とを有する半導体集積回路が開示されている。当該温度特性補正用可変抵抗はトリミング回路の出力の電圧に応じて可変であり、トリミング回路の出力の電圧は第1及び第2のヒューズのいずれかを切断することにより設定される。
特開2010-177612号公報
半導体製造工程においては、ユーザの要求数量に応じて作製されるウェハの数量が決定されるが、実際にはユーザの要求数量よりも多くのウェハが作製される。また、製造上、ウェハテスト工程までは全てのウェハに対して行われるが、後工程の組立工程にはユーザの要求数量分のウェハが投入される。従って、ユーザの要求数量を超えた分のウェハはウェハテスト工程が完了した状態で保留される。
この保留されたウェハは、既にヒューズブロー工程を経たウェハである。従って、保留されているウェハは、仕様変更や特性の調整がヒューズの切断によって行われたウェハである。従って、例えば同じ仕様のチップの要求が新たに発生した場合は当該保留されたウェハを使用して半導体装置を作製することができるが、仮に他の仕様のチップの要求が発生した場合には別のウェハを初めから作製することとなる。
本発明は上記した点に鑑みてなされたものであり、ヒューズの切断後に、当該ヒューズが切断されなかった場合の装置特性を、2回目の他のヒューズの切断によって再現することが可能な半導体装置を提供することを目的としている。
本発明による半導体装置は、N個のヒューズを有し、前記N個のヒューズの各々の切断及び非切断に応じたNビットの第1の論理値を出力するヒューズ回路と、前記第1の論理値を変換してMビット(M≧2)の第2の論理値を生成するデコーダと、を有し、前記N及び前記Mは、N>Mの関係を満たし、前記デコーダは、前記N個のヒューズのうち、いずれか1つの第1のヒューズ及び前記第1のヒューズ以外の第2のヒューズが切断されている場合には、前記第1のヒューズのみが切断されている場合とは異なる前記第2の論理値であって、かつ前記第1のヒューズが切断されていない場合の前記第2の論理値と同一の論理値を生成することを特徴としている。
また、本発明による半導体装置は、メモリデータを出力するメモリ回路と、前記メモリデータの出力強度を調整する出力バッファ回路と、N個(N≧2)のヒューズを有し、前記N個のヒューズの各々の切断及び非切断に応じたNビットの第1の論理値を出力するヒューズ回路と、前記第1の論理値を変換してMビット(M≧2)の第2の論理値を生成するデコーダと、を有し、前記出力バッファ回路は、前記第2の論理値のうちの一部のビット値に基づいて前記メモリデータの出力強度の粗調整を行う粗調整用出力バッファ回路と、前記第2の論理値のうちの前記一部のビット値以外の残りのビット値に基づいて前記メモリデータの出力強度の微調整を行う微調整用出力バッファ回路と、を有し、前記デコーダは、前記N個のヒューズのうちの、J個(1≦J<N)の第1のヒューズ及び前記第1のヒューズ以外の第2のヒューズが切断されている場合には、前記第1のヒューズのみが切断されている場合とは異なる前記第2の論理値であって、かつ前記第1のヒューズのうちのK個(0≦K<J)のヒューズが切断された場合の前記第2の論理値と同一の論理値を生成することを特徴としている。
本発明の実施例による半導体装置によれば、1回目のヒューズの切断によって1回目に当該ヒューズが切断されなかった場合の回路仕様を、2回目の他のヒューズの切断によって再現することが可能となる。従って、ウェハテスト前とウェハテスト後とで同じ自由度で仕様や特性の設定を行うことが可能となる。
(a)は実施例1の半導体装置10の構成を示すブロック図であり、(b)はデコーダ12の入出力の論理を示す図である。 ヒューズ回路11の回路図である。 半導体装置10の製造方法を示すフロー図である。 実施例2の半導体装置30の構成を示すブロック図である。 出力バッファ回路35Aの論理回路図である。 デコーダ32の論理回路図である。 実施例3の半導体装置50の構成を示すブロック図である。 デコーダ52の入出力の論理を示す図である。 デコーダ52の論理回路図である。
以下に本発明の実施例を詳細に説明する。
図1(a)は、実施例1の半導体装置10の構成を示すブロック図である。半導体装置10は、N個(N≧2)のヒューズ(本実施例においては3個のヒューズF1、F2及びF3)を有し、N個のヒューズの各々の切断及び非切断に応じたNビットの変換前論理値(第1の論理値、本実施例においては3ビットの論理値「FV1、FV2、FV3」)を出力するヒューズ回路11を有する。ヒューズ回路11は、ヒューズを用いた論理回路である。
半導体装置10は、3ビットの変換前論理値「FV1、FV2、FV3」を変換してMビット(M≧2)の変換後論理値(第2の論理値、本実施例においては2ビットの論理値「CV1、CV2」)を生成するデコーダ12を有している。また、半導体装置10は、デコーダ12に接続され、変換後論理値「CV1、CV2」によって回路特性が変更され得るように構成されている。例えば、機能回路13は、内蔵発振回路の周期調整回路、入出力バスの切替回路及びこれらに接続された回路であるが、これに限定されない。本実施例においては、機能回路13が回路特性A、B及びCの3種類の特性を有する場合について説明する。なお、以下においては、変換前論理値を単にFVと称し、変換後論理値を単にCVと称する場合がある。
図1(b)は、デコーダ12における入出力、すなわち変換前及び変換後論理値FV及びCVの真理値表である。まず、デコーダ12は、3個のヒューズF1〜F3のうち、J個(1≦J<N)のヒューズ及び他のヒューズが切断されている場合、J個のヒューズのみが切断されている場合とは異なる変換後論理値CVを生成する。
具体的には、例えばヒューズF1が切断されている場合(すなわちJ=1の場合)、デコーダ12には変換前論理値FVとして3ビットの論理値「001」が入力され、デコーダ12は、変換後論理値CVとして2ビットの論理値「10」を生成する。これを受けて、機能回路13の回路特性は回路特性Bに設定される。一方、ヒューズF1に加え、他のヒューズであるヒューズF2が切断されている場合、デコーダ12には変換前論理値FVとして論理値「011」が入力され、デコーダ12は、変換後論理値CVとして論理値「01」を生成する。これを受けて、機能回路13の回路特性は回路特性Aに設定される。このようにして、デコーダ12は、ヒューズF1が切断された場合とヒューズF1及びF2が切断された場合とでは異なる変換後論理値CVを生成する。
また、デコーダ12は、J個(1≦J<N)のヒューズ及び他のヒューズが切断されている場合、J個のヒューズのうちのK個(0≦K<J)のヒューズが切断された場合の変換後論理値CVと同一の論理値を生成する。
具体的には、ヒューズF1が切断され(すなわちJ=1)、ヒューズF1に加え、他のヒューズであるヒューズF2が切断された場合、ヒューズF1が切断されなかった場合、例えば全てのヒューズが切断されていない場合(すなわちK=0の場合)における変換後論理値CVと同一の論理値(すなわち論理値「01」)を生成する。なお、他のヒューズとしてヒューズF3がヒューズF1に加えて切断された場合、ヒューズF1のみが切断された場合とは異なる変換後論理値CVである論理値「00」とは異なる論理値「11」が生成される。また、この論理値「11」は、ヒューズF1(J=1)のうちのJ個よりも小なるK個(K=0)のヒューズが切断されている場合(すなわちヒューズF1が切断されていない場合)、例えばヒューズF1ではなくヒューズF2が切断された場合の変換後論理値「11」と同一の論理値である。
デコーダ12は、異なる変換前論理値FVが入力された場合であっても、同一の変換後論理値CVを生成する論理を含むように構成されている。このため、例えば1回目に任意のヒューズを切断した後であっても、2回目に別のヒューズを切断することによって、1回目に切断したヒューズが切断されなかった場合と同じ変換後論理値CVを得ることが可能となる。なお、図1(b)に示した真理値表は一例に過ぎない。
なお、本実施例においては、例えば2回のヒューズブローを行う場合、ヒューズF1及びF2のいずれか1つが1回目の切断を想定して論理構成されている。なお、1回目で複数のヒューズを切断してもよいが、未切断のヒューズの本数が少なくなり、2回目のヒューズブローにおける特性変更の自由度が小さくなる。従って、1回目のヒューズブローでは最小限のヒューズ(すなわちいずれか1つのヒューズ)を切断すること(J=1の場合)を想定してデコーダ12の論理を構成することが好ましい。
また、2回目以降に切断されるヒューズ(すなわち上記における「他のヒューズ」)は、1回目に切断されたヒューズ以外のいずれか1つのヒューズであることが望ましい。2回目に切断するヒューズも最小限の個数にしておくことで、3回目以降の切断、すなわち3回以上の特性変更にもできるだけ対応可能としておくことが望ましいからである。換言すれば、複数回行われるヒューズブロー工程の際には、それぞれ未切断のヒューズを1つだけ切断することが望ましい。
また、本実施例のように、N及びMがN>Mの関係を満たす場合、すなわち変換前論理値FVのビット数Nが変換後論理値CVのビット数Mより大きい場合、2回よりも大きい回数のヒューズの切断を行っても同じ変換後論理値CVを再現することが可能となる。具体的には、N=3、M=2の場合、最大8種類の変換前論理値FVを、最大4種類の変換後論理値CVに割り当てることができる。従って、2回目のヒューズブロー以降、さらに別のヒューズを切断しても再々度の回路特性の変更(再現)が可能となる。従って、N>Mの場合、特性変更の自由度が増す。
図2は、ヒューズ回路11の回路構成を示す図である。図2を用いてヒューズ回路11の構成例について説明する。ヒューズ回路11は、図2に示すような論理回路からなる。変換前論理値FVの出力は、信号RSによって制御される。信号RSがHレベルとなった場合に、変換前論理値FVが出力される。ヒューズF1が切断されていない場合、Hレベルの信号RSはノードN11でLレベル、ノードN12でHレベルとなり、論理レベル0の論理値信号FV1が出力される。一方、ヒューズF1が切断されている場合、Hレベルの信号RSはノードN11でHレベル、ノードN12でLレベルとなり、論理レベル1の論理値信号FV1が出力される。
ヒューズF2及びF3についてもそれぞれ信号RSがHレベルの場合、各ヒューズの切断及び非切断に応じてノードN21、N22、N31及びN32の各々のレベルが変化し、論理値信号FV2及びFV3が出力される。このようにして、ヒューズ回路11はヒューズF1〜F3の切断及び非切断に応じた変換前論理値FVを出力する。
図3は、半導体装置10の製造工程を示すフロー図である。まず、ステップS1においてウェハ製造を行う。具体的には、半導体ウェハにトランジスタや配線を形成する。次に、ステップS2において第1のウェハテストを行う。続いて、ステップS3第1のヒューズブローを行う。具体的には、本実施例においてはヒューズF1及びF2のいずれか1つを切断し、機能回路13の回路特性を決定(選択)する。次にステップS4において第2のウェハテストを行う。具体的には、ヒューズ切断によって決定された機能回路13の特性のテストを行う。
ステップS4の第2のウェハテスト後は、ウェハの大部分はステップS5の組立工程、ステップS6の組立品テスト工程を経て梱包、出荷される。一方、一部のウェハはステップS4の完了後に保留される。ここで、ユーザにより第1のヒューズブロー工程で決定した機能回路13の回路特性とは異なる回路特性の製品要求があった場合、保留されたウェハはステップS7の第2のヒューズブロー工程に進む。
ステップS7の第2のヒューズブロー工程では、1のヒューズブロー工程で切断されなかったヒューズのいずれかが追加で切断される。すなわち、第2のヒューズブロー工程では、第1のヒューズブロー工程で切断されたヒューズ(J個のヒューズ)に加えて他のヒューズを切断し、機能回路13の回路特性の変更を行う。続いて、ステップS8において第3のウェハテストを行う。その後、ステップS9において組立を行い、ステップS10において組立品テストを行う。このように特性が変更された半導体装置10が製造される。従って、例えば、特性の異なる製品の短納期での注文が入った場合などに、第1のヒューズブロー後のウェハを割り当てることで迅速な納品が可能となる。なお、機能回路13の回路特性などによっては第2及び第3のウェハテスト工程は省略されてもよい。
図4は、実施例2の半導体装置30の構成を示すブロック図である。半導体装置30は、4個のヒューズF1〜F4を有して4ビットの変換前論理値「FV1、FV2、FV3、FV4」を出力するヒューズ回路31と、変換前論理値を変換して4ビットの変換後論理値「CV1、CV2、CV3、CV4」を生成するデコーダ32を有している。すなわち、本実施例においては変換前論理値FVのビット数Nは変換後論理値CVのビット数Mと同一である(つまりN=M=4である)。ヒューズ回路31は、ヒューズの本数が3つから4つに変更された点を除いてはヒューズ11と同様の構成を有している。
半導体装置30は、メモリデータRDを出力するメモリ回路33と、メモリデータRDを調整して出力データDOを生成するデータバッファ回路34と、出力データDOの出力強度(負荷駆動能力)を調整する出力バッファ回路群35とを有している。出力バッファ回路群35は、4つの出力バッファ回路35A、35B、35C及び35Dからなる。データバッファ回路34は、例えばラッチ回路やレベルシフト回路を含む。本実施例においては、出力バッファ回路35A〜35Dがデコーダ32の制御対象となる機能回路である。
出力データDOは、出力バッファ回路群35の出力バッファ回路35A〜35Dの各々に入力され、出力強度が調整された調整済み出力データDTとして外部に出力される。また、出力バッファ回路35A〜35Dの各々にはデコーダ32からの変換後論理値CVが論理値信号CV1〜CV4としてパラレル入力される。論理値信号CV1〜CV4は、出力バッファ回路群35の出力制御信号として機能する。すなわち、変換後論理値CVは、出力バッファ回路35A〜35Dの各々の出力制御信号(イネーブル信号)として出力バッファ回路群35に供給される。出力バッファ回路35A〜35Bの各々は、変換前論理値に基づいて異なる出力強度を有する出力データDOを出力するように構成されている。
図5(a)は、出力バッファ回路35Aの論理回路を示す図である。出力バッファ回路35Aは、例えばトライステートバッファからなる。具体的には、論理値信号CV1がLレベル(論理レベルが0である)場合、出力バッファ回路35Aはハイインピーダンス(HiZ)状態となり、出力バッファ回路35Aからは出力データDOは出力されない。一方、論理値信号CV1がHレベル(論理レベルが1である)場合、出力データDOが出力される。なお、図示していないが、他の出力バッファ回路35B〜35Dは、出力バッファ回路35Aと同様の構成を有している。
例えば論理値信号CV1〜CV4の全てがHレベルである場合、すなわちデコーダ32の変換後論理値CVが「1111」である場合、全ての出力バッファ回路35A〜35Dの各々に入力された出力データDOが出力される。従って、出力バッファ回路群35は、出力データDOの強度に対して100%の強度を有する調整済み出力データDTを出力する。一方、例えば、論理値信号CV1がLレベルである場合、出力バッファ回路35B〜35Dから出力データDOが出力される。従って、出力バッファ回路群35は、出力データDTの75%の強度を有する調整済み出力データDTを出力する。
本実施例においては、出力バッファ回路群35の出力バッファ回路35A〜35Dの各々は同一の構造を有している。従って、1つの出力バッファ回路当たり25%分の出力強度調整を行うことができる。すなわち、出力バッファ回路群35は、25%単位で出力データDOの強度を調整することが可能である。
図5(b)は、半導体装置30のデコーダ32における入出力の真理値表である。デコーダ32は、デコーダ12と同様に、4個のヒューズF1〜F4のうち、J個(1≦J<N)のヒューズ及び他のヒューズが切断されている場合、J個のヒューズのみが切断されている場合とは異なる変換後論理値CVを生成する。
具体的には、例えばヒューズF1が切断されている場合(すなわちJ=1の場合)、デコーダ32には変換前論理値FVとして論理値「0001」が入力され、デコーダ32は、変換後論理値CVとして論理値「0111」を生成する。これを受けて、出力バッファ回路35A〜35Cから出力データDOが出力され、75%の強度を有する調整済み出力データDTが出力される。
一方、ヒューズF1に加え、他のヒューズであるヒューズF2が切断されている場合、デコーダ32には変換前論理値FVとして論理値「0011」が入力され、デコーダ32は、変換後論理値CVとして論理値「1111」を生成する。これを受けて、出力バッファ回路群35は100%の強度を有する調整済み出力データDTを出力する。従って、デコーダ32は、ヒューズF1が切断された場合とヒューズF1及びF2が切断された場合とでは異なる変換後論理値CVを生成する。
また、デコーダ12は、J個(1≦J<N)のヒューズ及び他のヒューズが切断されている場合、J個のヒューズのうちのK個(0≦K<J)のヒューズが切断された場合の変換後論理値CVと同一の論理値を生成する。
具体的には、ヒューズF1が切断され、ヒューズF1に加え、他のヒューズであるヒューズF2が切断されている場合、ヒューズF1が切断されない場合、例えば全てのヒューズが切断されていない場合(つまりK=0の場合)における変換後論理値CVと同一の論理値(すなわち論理値「1111」)を生成する。
本実施例においては、ヒューズの切断によって半導体メモリとして機能する半導体装置30における負荷駆動能力を調整することができる。なお、電子部品は、一般生活において様々な所で仕様されているため、電磁ノイズの対策が重要となる。例えば半導体メモリの場合、メモリに接続される負荷の大きさ及び数量に合わせて出力強度を設定することで電磁ノイズの低減を図ることが可能となる。従って、ユーザ毎に異なる負荷をメモリに接続することを考慮すると、出力強度の仕様変更は高頻度で行われる可能性が高い。従って、本実施例のように、製造段階で仕様を再変更(再設定)することが可能な半導体装置30は半導体メモリとして用いる用途としては効果が大きい。
図6は、デコーダ32の論理回路を示す図である。図6に示すように、デコーダ32は、AND回路、NOT回路及びOR回路を用いて構成することが可能である。なお、図示した回路構成は一例に過ぎない。
なお、本実施例においては出力バッファ回路群35が4つの出力バッファ回路35A〜35Dからなる場合について説明したが、例えば出力バッファ回路35Aのみ(1つの出力バッファ回路)が出力データDOのドライブ能力を調整してもよい。また、データバッファ回路34がメモリ回路33からのメモリデータRDを調整して出力データDOを生成する場合について説明したが、メモリデータRDがそのまま出力データDOとして出力される場合もある。従って、出力バッファ回路35A〜35Dの各々は、メモリデータRDの出力強度を調整することが可能である。
図7は、実施例3の半導体装置50の構成を示すブロック図である。半導体装置50は、半導体装置30と同様に半導体メモリとして機能する。半導体装置50は、ヒューズ回路31、メモリ回路33及びデータバッファ回路34とそれぞれ同様の構成を有するヒューズ回路51、メモリ回路53及びデータバッファ回路54を有している。
半導体装置50のデコーダ52は、変換後論理値CVのビット数が6個である点でデコーダ32と異なる。すなわち、本実施例においては、N=4、M=6である。また、半導体装置50の出力バッファ回路群55は、出力バッファ回路33B〜33Dと同様の構成を有する出力バッファ回路55B〜55Dを有する。また、出力バッファ回路群55は、出力バッファ回路35Aを、20%分の強度の信号を出力する部分と5%分の強度の信号を出力する部分に分け、それぞれ論理値信号CV11及びCV12によって独立して出力データDOを出力するように構成された出力バッファ回路55A1と、5%分の強度の信号を出力するように構成された出力バッファ回路55A2とを有している。なお、各出力バッファ回路は出力データDOの信号線によって並列に接続されている。
図8は、デコーダ52の入出力の真理値表を示す図である。本実施例においては、論理値信号CV12及びCV13を制御すること、すなわち出力バッファ回路55A1及び55A2からデータを出力するか否かを切替えることで出力強度の微調整を行うことができる。具体的には、変換後論理値CVの論理値信号CV13をHレベルとすることで、他のビットのデータによって設定された出力強度に5%加算した出力強度の出力データを出力することが可能となる。また、論理値信号CV12をLレベルとすることで、他のビットのデータによって設定された出力強度から5%減じた強度の出力データを出力することができる。この調整は、変換前論理値FVの論理値信号FV3及びFV4によって行うことができる。すなわち、ヒューズF3及びF4の切断及び非切断によって調整を行うことが可能となる。デコーダ52にはこのような論理を有するように構成されている。
図9は、デコーダ52の論理回路を示す図である。図9に示すように、デコーダ52は、デコーダ32と同様に、AND回路、OR回路、NOT回路を組み合わせて構成することが可能である。なお、図示した回路構成は一例に過ぎない。
なお、本変形例においては、ヒューズF1及びF2が出力強度選択(粗調整)用のヒューズとして構成されており、ヒューズF3及びF4が出力強度微調整用のヒューズとして構成されている。また、出力バッファ回路55A1及び55A2は、出力データDO(又はメモリデータRD)の出力強度を拡張的に微調整する出力バッファ回路として機能する。
すなわち、本変形例においては、出力バッファ回路群55が、メモリデータRDの出力強度の粗調整を行う粗調整用出力バッファ回路55B、55C及び55Dと、メモリデータRDの微調整を行う微調整用出力バッファ回路55A1及び55A2とを有している。従って、例えば出力バッファ回路群55が実施例2の出力バッファ回路群35と組み合わせることで、複数回のヒューズ切断によってメモリデータRDの出力強度の粗調整と微調整の両方を行うことができる。具体的には、複数回のヒューズ切断で種々の特性変更及び再現(出力強度の粗調整)を行った上で、最終的にその特性を微調整することが可能である。従って、高い自由度で特性変更を行うのみならず、変更された特性を微調整することも可能となる。従って、顧客の細かいニーズに対応することが可能となる。
なお、本変形例は、実施例1及び2と組み合わせることも可能である。具体的には、ヒューズ回路31が、ヒューズ回路51のように、出力データDOの出力強度を2回目以降の切断によって調整する(例えば最終的な微調整など)ためのみに用意されたヒューズを有していてもよい。また、実施例2の出力バッファ回路を変形例の出力バッファ回路のように構成することや、他の機能回路を追加することも可能である。
上記においては、デコーダは、N個のヒューズのうち、J個(1≦J<N)のヒューズ及び他のヒューズが切断されている場合、J個のヒューズのみが切断されている場合とは異なる第2の論理値であって、かつJ個のヒューズのうちのK個(0≦K<J)のヒューズが切断された場合の第2の論理値と同一の論理値を生成する。従って、2回目以降のヒューズの切断を行うことによって、1回目に切断したヒューズが切断されなかった場合の装置の特性に戻すことが可能となる。
10、30、50 半導体装置
11、31、51 ヒューズ回路
FV 変換前論理値(第1の論理値)
12、32、52 デコーダ
CV 変換後論理値(第2の論理値)
33、53 メモリ回路
34、54 データバッファ回路
35、55 出力バッファ回路群

Claims (6)

  1. N個のヒューズを有し、前記N個のヒューズの各々の切断及び非切断に応じたNビットの第1の論理値を出力するヒューズ回路と、
    前記第1の論理値を変換してMビット(M≧2)の第2の論理値を生成するデコーダと、を有し、
    前記N及び前記Mは、N>Mの関係を満たし、
    前記デコーダは、
    前記N個のヒューズのうち、いずれか1つの第1のヒューズ及び前記第1のヒューズ以外の第2のヒューズが切断されている場合には、前記第1のヒューズのみが切断されている場合とは異なる前記第2の論理値であって、かつ前記第1のヒューズが切断されていない場合の前記第2の論理値と同一の論理値を生成することを特徴とする半導体装置。
  2. 前記デコーダに接続され、前記第2の論理値によって回路特性が変更され得るように構成された機能回路を有することを特徴とする請求項1に記載の半導体装置。
  3. 前記第2のヒューズは、前記N個のヒューズのうち前記第1のヒューズ以外のいずれか1つのヒューズであることを特徴とする請求項1又は2に記載の半導体装置。
  4. メモリデータを出力するメモリ回路と、
    前記メモリデータの出力強度を調整する出力バッファ回路と、を有し、
    前記出力バッファ回路は、前記第2の論理値に基づいて異なる出力強度を有する出力データを出力するように構成されていることを特徴とする請求項1乃至のいずれか1つに記載の半導体装置。
  5. 前記出力バッファ回路は、前記メモリデータの出力強度の粗調整を行う粗調整用出力バッファ回路と、前記メモリデータの出力強度の微調整を行う微調整用出力バッファ回路と、を有することを特徴とする請求項に記載の半導体装置。
  6. メモリデータを出力するメモリ回路と、
    前記メモリデータの出力強度を調整する出力バッファ回路と、
    N個(N≧2)のヒューズを有し、前記N個のヒューズの各々の切断及び非切断に応じたNビットの第1の論理値を出力するヒューズ回路と、
    前記第1の論理値を変換してMビット(M≧2)の第2の論理値を生成するデコーダと、を有し、
    前記出力バッファ回路は、前記第2の論理値のうちの一部のビット値に基づいて前記メモリデータの出力強度の粗調整を行う粗調整用出力バッファ回路と、前記第2の論理値のうちの前記一部のビット値以外の残りのビット値に基づいて前記メモリデータの出力強度の微調整を行う微調整用出力バッファ回路と、を有し、
    前記デコーダは、
    前記N個のヒューズのうちの、J個(1≦J<N)の第1のヒューズ及び前記第1のヒューズ以外の第2のヒューズが切断されている場合には、前記第1のヒューズのみが切断されている場合とは異なる前記第2の論理値であって、かつ前記第1のヒューズのうちのK個(0≦K<J)のヒューズが切断された場合の前記第2の論理値と同一の論理値を生成することを特徴とする半導体装置。
JP2014147062A 2014-07-17 2014-07-17 半導体装置 Active JP6352089B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014147062A JP6352089B2 (ja) 2014-07-17 2014-07-17 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147062A JP6352089B2 (ja) 2014-07-17 2014-07-17 半導体装置

Publications (2)

Publication Number Publication Date
JP2016025157A JP2016025157A (ja) 2016-02-08
JP6352089B2 true JP6352089B2 (ja) 2018-07-04

Family

ID=55271701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147062A Active JP6352089B2 (ja) 2014-07-17 2014-07-17 半導体装置

Country Status (1)

Country Link
JP (1) JP6352089B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117558328B (zh) * 2024-01-11 2024-04-19 上海安其威微电子科技有限公司 电子熔断器、控制方法以及计算机可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317499A (ja) * 2002-04-26 2003-11-07 Mitsubishi Electric Corp 半導体記憶装置およびそれを用いたメモリシステム
JP4076816B2 (ja) * 2002-08-08 2008-04-16 富士通株式会社 半導体装置及びその制御方法
JP4401194B2 (ja) * 2004-03-05 2010-01-20 Okiセミコンダクタ株式会社 半導体装置
JP4825429B2 (ja) * 2005-02-17 2011-11-30 富士通セミコンダクター株式会社 半導体装置
WO2009008151A1 (ja) * 2007-07-09 2009-01-15 Panasonic Corporation 半導体装置及び半導体装置の特性の調整方法
JP2009272372A (ja) * 2008-05-01 2009-11-19 Elpida Memory Inc 動作モード出力回路と動作モード出力回路を有する半導体集積回路

Also Published As

Publication number Publication date
JP2016025157A (ja) 2016-02-08

Similar Documents

Publication Publication Date Title
US6566937B1 (en) Fuse circuit
JP5026037B2 (ja) 面積効率に優れたフラクチャブルロジックエレメント
JP2007255984A (ja) 半導体装置及びそのテスト方法
JP6352089B2 (ja) 半導体装置
KR20150113587A (ko) 반도체 장치
KR100287541B1 (ko) 반도체 메모리 장치의 리던던시 디코더 인에이블회로
US7078957B2 (en) Internal voltage generator of semiconductor device comprising characteristic controller
US7079425B2 (en) Data output circuit in a semiconductor memory device and control method of a data output circuit
US7420407B2 (en) Device for controlling internal voltage
JP2009071799A (ja) バッファ回路
US6434077B1 (en) Method and apparatus for selectively disabling logic in a semiconductor device
US9607671B1 (en) Programmable integrated circuits with in-operation reconfiguration capability
US20030001661A1 (en) Programmable reference voltage generating circuit
KR101803464B1 (ko) 다수 판정 회로
KR20070058879A (ko) MRS를 이용하여 이퓨즈(Electrical fuse)커팅을 제어하는 반도체 메모리 장치 및 그 제어방법
JP7164264B2 (ja) 半導体装置
JP2015046206A (ja) 半導体装置とその制御方法
KR20140026837A (ko) 반도체 장치
JPH11312785A (ja) 半導体集積回路およびその製造方法
KR100856126B1 (ko) 퓨즈 메탈을 이용한 연산 증폭기의 오프셋 보상 방법 및 그장치
KR101026381B1 (ko) 기준전압 발생회로
US9383763B1 (en) Multimode current mirror circuitry
KR100443508B1 (ko) 반도체 메모리 모듈
KR101803465B1 (ko) 다수 판정 회로
US6975144B2 (en) System, method and apparatus for improving sense amplifier performance characteristics using process feedback

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180606

R150 Certificate of patent or registration of utility model

Ref document number: 6352089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150