JP6342622B2 - フォトデバイス検査装置およびフォトデバイス検査方法 - Google Patents

フォトデバイス検査装置およびフォトデバイス検査方法 Download PDF

Info

Publication number
JP6342622B2
JP6342622B2 JP2013144127A JP2013144127A JP6342622B2 JP 6342622 B2 JP6342622 B2 JP 6342622B2 JP 2013144127 A JP2013144127 A JP 2013144127A JP 2013144127 A JP2013144127 A JP 2013144127A JP 6342622 B2 JP6342622 B2 JP 6342622B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
photo device
intensity distribution
light
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013144127A
Other languages
English (en)
Other versions
JP2015017851A (ja
Inventor
英俊 中西
英俊 中西
伊藤 明
明 伊藤
巌 川山
巌 川山
政吉 斗内
政吉 斗内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Osaka University NUC
Original Assignee
Screen Holdings Co Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Osaka University NUC filed Critical Screen Holdings Co Ltd
Priority to JP2013144127A priority Critical patent/JP6342622B2/ja
Priority to EP14176178.3A priority patent/EP2824469B1/en
Priority to US14/327,383 priority patent/US9651607B2/en
Publication of JP2015017851A publication Critical patent/JP2015017851A/ja
Application granted granted Critical
Publication of JP6342622B2 publication Critical patent/JP6342622B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

この発明は、フォトデバイスを検査する技術に関する。
フォトデバイスを検査する技術は、これまでにもいくつか提案されている(例えば、特許文献1,2)。
例えば、特許文献1では、フォトデバイスである太陽電池に、擬似太陽光を照射することによって、電流を発生させ、この電流を検出することによって、太陽電池が検査されている。また、特許文献2では、フォトデバイスにパルス光を照射することによって、電磁波を放射させる。この電磁波パルスを検出することによって、フォトデバイスを検査している。
特開2010−182969号公報 特開2013−019861号公報 特開2009−175127号公報
ところで、特許文献1における太陽電池に用いられる光源は、擬似太陽光(連続光)を出射するものであって、特許文献2で用いられている、パルス光を出射する光源とは種類が異なっている。このため、フォトデバイスで発生する電流および電磁波を測定するためには、それぞれに適した光源を個別に用意する必要があった。このため、装置コストが増大してしまうという問題があった。
本発明は、上記課題に鑑みなされたものであり、光照射に応じてフォトデバイスで発生する電流の測定および電磁波の測定を、低コストで行う技術を提供することを目的とする。
上記の課題を解決するため、第1の態様は、フォトデバイスを検査するフォトデバイス検査装置であって、光源から出射された光を前記フォトデバイスに照射する照射部と、前記光の照射に応じて、前記フォトデバイスから放射される電磁波を検出する電磁波検出部と、前記光の照射に応じて、前記フォトデバイスにて発生する電流を検出する電流検出部とを備え、前記照射部は、前記フォトデバイスにおける検査対象領域を前記光で走査する走査機構を備え、前記フォトデバイス検査装置は、さらに、前記検査対象領域において発生した前記電流の強度分布を示す電流強度分布画像を生成する電流強度分布画像生成部と、前記検査対象領域において発生した前記電磁波の強度分布を示す電磁波強度分布画像を生成する電磁波強度分布画像生成部と、前記電流強度分布画像および前記電磁波強度分布画像を合成する画像合成部と、を備えている。
また、第の態様は、第の態様に係るフォトデバイス検査装置において、前記検査対象領域において発生した前記電磁波の強度分布を示す電磁波強度分布画像を生成する電磁波強度分布画像生成部、をさらに備えている。
また、第3の態様は、第1または第2の態様に係るフォトデバイス検査装置において、前記光源は、フェムト秒レーザであり、前記電磁波検出部は、前記フェムト秒レーザから出射されたプローブ光を受光することによって、前記電磁波を検出する検出器と、前記プローブ光が前記検出器に入射するタイミングを、前記電磁波が前記検出器に入射するタイミングに対して相対的に遅延させる遅延部とを備え、前記フォトデバイス検査装置は、前記遅延部を動作させることによって検出される前記電磁波の電場強度に基づいて、前記電磁波の時間波形を復元する時間波形復元部、をさらに備えている。
また、第の態様は、第の態様に係るフォトデバイス検査装置において、前記時間波形を復元するために、前記照射部が前記光を照射する位置を設定する検査位置設定部、をさらに備えている。
また、第の態様は、第の態様に係るフォトデバイス検査装置において、前記電流検出部によって検出された前記電流の強度が、予め定められた基準値を満たすか否かを判定する判定部、をさらに備え、前記基準値を満たさなかった領域を、前記走査機構が前記光で走査し、発生する電磁波を前記電磁波検出部が検出する。
また、第6の態様は、フォトデバイスを検査するフォトデバイス検査方法であって、(a)光源から出射された光を前記フォトデバイスに照射する工程と、(b)前記光の照射に応じて、前記フォトデバイスから放射される電磁波を検出する工程と、(c)前記光の照射に応じて、前記フォトデバイスで発生する電流を検出する工程とを含み前記(a)工程は、(a-1)前記フォトデバイスの検査対象領域を前記光で走査する工程、を含み、前記フォトデバイス検査方法は、さらに、(d)前記検査対象領域において発生した前記電流の強度分布を示す電流強度分布画像を生成する工程と、(e)前記検査対象領域において発生した前記電磁波の強度分布を示す電磁波強度分布画像を生成する工程と、(f)前記電流強度分布画像および前記電磁波強度分布画像を合成する工程と、を含む。

第1の態様に係るフォトデバイス検査装置によると、同一の光源を利用して、フォトデバイスから放射される電磁波、および、フォトデバイスにて発生する電流を検出することができる。これによって、装置コストの増大を抑えつつ、電磁波および電流に基づく検査を行うことができる。フォトデバイスにおける検査対象領域を前記光で走査することにより、検査対象領域に効率的に光を照射して、電磁波または電流を発生させることができる。電流の強度分布を示す電流強度分布画像を生成することにより、電流強度分布を視覚的に把握することが可能となる。したがって、欠陥箇所などの特定を容易に行うことができる。電磁波強度分布と電流強度分布を同時に把握可能な合成画像を得ることができる。
の態様に係るフォトデバイス検査装置によると、電磁波強度分布を視覚的に把握することが可能となる。これによって、欠陥箇所などの特定を容易に行うことができる。
また、第の態様に係るフォトデバイス検査装置によると、電磁波の時間波形を復元できるため、フォトデバイスの特性をより詳細に解析することができる。
また、第の態様に係るフォトデバイス検査装置によると、比較的時間を要する電磁波を復元する検査が、設定された位置のみで行うことができるため、検査の効率化を図ることができる。
また、第の態様に係るフォトデバイス検査装置によると、比較的検査に時間がかかる電磁波の検出を限定的に行うことができるため、検査の効率化を図ることができる。
第1実施形態に係るフォトデバイス検査装置の概略構成図である。 図1に示される照射部と検出部の概略構成図である。 太陽電池パネルの概略断面図である。 太陽電池パネルを受光面側から見た平面図である。 太陽電池パネルを裏面側から見た平面図である。 太陽電池パネルの検査例1を示す流れ図である。 電磁波強度分布画像を示す図である。 電流強度分布画像を示す図である。 時間波形復元部によって復元された電磁波パルスの時間波形の一例を示す図である。 太陽電池パネルの検査例2を示す流れ図である。 第2実施形態に係るフォトデバイス検査装置が備える照射部および検出部の概略構成図である。 第3実施形態に係るフォトデバイス検査装置が備える照射部および検出部の概略構成図である。 第4実施形態に係るフォトデバイス検査装置が備える照射部および検出部の概略構成図である。
以下、添付の図面を参照しながら、本発明の実施形態について説明する。なお、図面においては、理解容易のため、必要に応じて各部の寸法や数が誇張または簡略化して図示されている場合がある。
<1. 第1実施形態>
<1.1. フォトデバイス検査装置の構成および機能>
図1は、第1実施形態に係るフォトデバイス検査装置100の概略構成図である。また、図2は、図1に示される照射部12と電磁波検出部13の概略構成図である。
フォトデバイス検査装置100は、フォトデバイスが形成された基板の一種である太陽電池パネル90の特性の検査に適するよう構成されている。太陽電池などフォトデバイスは、例えば、p型とn型の半導体が接合されたpn接合部を有している。このpn接合部付近では電子と正孔とが互いに拡散して結びつく拡散電流が生じることによって、pn接合部付近に電子と正孔とがほとんど存在しない空乏層が形成されている。この領域では、電子と正孔をそれぞれn型、p型領域に引き戻す力が生じるため、フォトデバイスの内部に電場(内部電界)が生じている。
ここで、禁制帯幅を超えるエネルギーを持つ光がpn接合部に照射された場合、pn接合部において発生した自由電子および自由正孔が、内部電界によって、自由電子がn型半導体側へ、取り残された自由正孔がp型半導体側へ移動する。フォトデバイスでは、この電流がn型半導体およびp型半導体のそれぞれに取り付けられた電極を介して、外部に取り出される。例えば太陽電池の場合、pn接合部の空乏層に光が照射されたときに生じる自由電子と自由正孔の移動が、直流電流として利用される。
発明者らは、フォトデバイスに所定波長のパルス光を照射したとき、特定波長の電磁波パルスが発生することを見出した。マクスウェルの方程式によると、電流に変化が生じたとき、その電流の時間微分に比例した強度の電磁波が発生する。すなわち、空乏層などの光励起キャリア発生領域にパルス光が照射されることで、瞬間的に光電流の発生および消滅が起こる。この瞬間的に発生する光電流の時間微分に比例して、電磁波パルスが発生する。
ここで、光電流の発生は、空乏層などの光励起キャリア発生領域の特性を反映したものである。したがって、発生した電磁波パルスを解析することによって、空乏層などの光励起キャリア発生領域の特性を検査することができる。このような原理に基づき、フォトデバイス検査装置100は、太陽電池パネル90に向けて所定波長のパルス光を照射したときに発生する電磁波パルスを検出するように構成されている。
図1に示されるように、フォトデバイス検査装置100は、ステージ11、照射部12、電磁波検出部13、電流計14、モーター15、制御部16、モニター17および操作入力部18、および可視カメラ80を備えている。
ステージ11は、図示を省略する固定手段によって、太陽電池パネル90をステージ11上に固定する。固定手段としては、基板を挟持する挟持具を利用したもの、粘着性シート、または、ステージ11の表面に形成される吸着孔などが想定される。ただし、太陽電池パネル90を固定できるのであれば、これら以外の固定手段を採用されてもよい。本実施形態では、ステージ11は、太陽電池パネル90の受光面91S側に照射部12および電磁波検出部13が配置されるよう、太陽電池パネル90を保持する。
図2に示されるように、照射部12は、フェムト秒レーザ121を備えている。フェムト秒レーザ121は、例えば、360nm(ナノメートル)以上1.5μm(マイクロメートル)以下の可視光領域を含む波長のパルス光(パルス光LP1)を放射する。具体例としては、中心波長が800nm付近であり、周期が数kHz〜数百MHz、パルス幅が10〜150フェムト秒程度の直線偏光のパルス光が、フェムト秒レーザから放射される。もちろん、その他の波長領域(例えば、青色波長(450〜495nm)、緑色波長(495〜570nm)などの可視光波長)のパルス光が出射されるようにしてもよい。
フェムト秒レーザ121から出射されたパルス光LP1は、ビームスプリッタB1により2つに分割される。分割された一方のパルス光(パルス光LP11)は、太陽電池パネル90に照射される。このとき、照射部12は、パルス光LP11の照射を、受光面91S側から行う。また、パルス光LP11の光軸が、太陽電池パネル90の受光面91Sに対して斜めに入射するように、パルス光LP11が太陽電池パネル90に対して照射される。本実施形態では、入射角度が45度となるように照射角度が設定されている。ただし、入射角度はこのような角度に限定されるものではなく、0度から90度の範囲内で適宜変更することができる。
図3は、太陽電池パネル90の概略断面図である。また、図4は、太陽電池パネル90を受光面91S側から見た平面図である。さらに、図5は、太陽電池パネル90を裏面側から見た平面図である。太陽電池パネル90は、結晶シリコン系である太陽電池パネルとして構成されている。太陽電池パネル90は、下から順にアルミニウムなどで形成された平板状の裏面電極92と、p型シリコン層93と、n型シリコン層94と、反射防止膜95と、格子状の受光面電極96とで構成される積層構造を有する結晶シリコン系太陽電池として構成されている。反射防止膜95は、酸化シリコン、窒化シリコンまたは酸化チタンなどで形成されている。
太陽電池パネル90の主面のうち、受光面電極96が設けられている側の主面が、受光面91Sとなっている。つまり、太陽電池パネル90は、受光面91S側から光を受けることで発電するように設計されている。受光面電極96には、透明電極が用いられていてもよい。なお、フォトデバイス検査装置100は、結晶シリコン系以外の太陽電池(アモルファスシリコン系など)の検査に適用してもよい。アモルファスシリコン系太陽電池の場合、一般的に、エネルギーギャップが1.75eV〜1.8eVといったように、結晶シリコン系太陽電池のエネルギーギャップ1.2eVに比べて大きい。このような場合、フェムト秒レーザ121の波長を、例えば700μm以下とすることで、アモルファスシリコン系太陽電池において、テラヘルツ波を良好に発生させることができる。同様の考え方で、他の半導体太陽電池(CIGS系、GaAS系など)にも適用可能である。
太陽電池パネル90の受光面91Sは、光の反射損失を抑えるために、所要のテクスチャー構造を有している。具体的には、異方性エッチングなどにより形成される数μm〜数十μmの凹凸、または機械的方法によるV字状の溝などが形成されている。このように、太陽電池パネル90の受光面91Sは、一般的に、できるだけ効率良く採光できるように形成されている。したがって、所定波長のパルス光が照射されたときに、該パルス光はpn接合部97に届きやすくなっている。例えば、太陽電池パネルの場合、主に可視光の波長領域を有する波長1μm以下の光であれば、pn接合部97に容易に到達し得る。このように、使用状態において受光する側の主面を受光面としてフォトデバイス検査装置100に設置すれば、良好に電磁波パルスLT1を発生させることができる。
また、p型シリコン層93とn型シリコン層94との接合部分は、空乏層が形成されるpn接合部97となっている。この部分にパルス光LP11が照射されることによって、電磁波パルスが発生し、外部に出射される。本実施形態において、電磁波検出部13において検出される電磁波パルスは、主にテラヘルツ領域(周波数0.01THz〜10THz)の電磁波パルス(以下、電磁波パルスLT1と称する。)となっている。
なお、フォトデバイス検査装置100において、検査対象となる基板は、太陽電池パネル90に限定されるものではない。可視光を含む光を電流に変換するフォトデバイスを含む基板であれば、フォトデバイス検査装置100の検査対象物となり得る。太陽電池パネル90以外のフォトデバイスとしては、具体的には、CMOSセンサやCCDセンサなどのイメージセンサが想定される。なお、イメージセンサの中には、使用状態においてフォトデバイスが形成された基板の裏面側となる部分に受光素子が形成されているものが知られている。このような基板であっても、使用状態において受光する側の主面を受光面としてフォトデバイス検査装置100に設置すれば、良好に電磁波パルスLT1を検出することができる。
図2に戻って、ビームスプリッタB1によって分割された他方のパルス光は、プローブ光LP12として遅延部131およびミラーなどを経由して、検出器132に入射する。また、パルス光LP11の照射に応じて発生した電磁波パルスLT1は、放物面鏡M1,M2において集光されて検出器132に入射する。
検出器132は、電磁波検出素子として、例えば、光伝導スイッチを備えている。電磁波パルスが検出器132に入射する状態で、プローブ光LP12が検出器132に照射されると、この光伝導スイッチに瞬間的に電磁波パルスLT1の電場強度に応じた電流が発生する。この電場強度に応じた電流は、I/V変換回路、A/D変換回路などを介してデジタル量に変換される。このようにして、電磁波検出部13は、プローブ光LP12の照射に応じて、太陽電池パネル90を透過した電磁波パルスLT1の電場強度を検出する。検出器132に、その他の素子、例えば非線形光学結晶を適用することも考えられる。
遅延部131は、ビームスプリッタB1から検出器132までのプローブ光LP12の到達時間を連続的に変更するための光学素子である。遅延部131は、図示を省略する移動ステージ(図示せず)によって、プローブ光LP12の入射方向に沿って直線移動可能に構成されている。また、遅延部131は、プローブ光LP12を入射方向に折り返させる折り返しミラー10Mを備えている。
遅延部131は、制御部16の制御に基づいて移動ステージを駆動して折り返しミラー10Mを移動させることにより、プローブ光LP12の光路長を精密に変更する。これにより、遅延部131は、電磁波パルスLT1が電磁波検出部13に到達する時間と、プローブ光LP12が電磁波検出部13へ到達する時間との時間差を変更する。したがって、遅延部131により、プローブ光LP12の光路長を変化させることによって、電磁波検出部13(検出器132)において電磁波パルスLT1の電場強度を検出するタイミング(検出タイミングまたはサンプリングタイミング)を遅延させることができる。
なお、その他の態様でプローブ光LP12の検出器132への到達時間を変更することも考えられる。具体的には、電気光学効果を利用すればよい。すなわち、印加する電圧を変化させることで屈折率が変化する電気光学素子を、遅延素子として用いてもよい。具体的には、特許文献3(特開2009−175127号公報)に開示されている電気光学素子を利用することができる。
また、パルス光LP11(ポンプ光)の光路長、もしくは、太陽電池パネル90から放射された電磁波パルスLT1の光路長を変更するようにしてもよい。この場合においても、検出器132に電磁波パルスLT1が到達する時間を、検出器132にプローブ光LP12が到達する時間に対して、相対的にずらすことができる。これにより、検出器132における電磁波パルスLT1の電場強度の検出タイミングを遅延させることができる。
また、太陽電池パネル90には、検査時に裏面電極92と受光面電極96との間に逆バイアス電圧を印加する逆バイアス電圧印加回路99が接続される。逆バイアス電圧が電圧間に印加されることによって、pn接合部97の空乏層の幅が大きくなり、内部電界を大きくすることができる。これによって、パルス光LP11によって発生する電流量を増大することができる。また、検出器132において検出される電磁波パルスLT1の電場強度を増大できるため、検出器132における電磁波パルスLT1の検出感度を向上できる。なお、逆バイアス電圧印加回路99は、省略することも可能である。
図2に示されるように、太陽電池パネル90には電流計14が接続されている。電流計14は、裏面電極92および受光面電極96にそれぞれ接続されている。上述したように、太陽電池パネル90にパルス光LP11が照射されると、太陽電池パネル90において自由電子および自由正孔が発生する。自由電子は内部電界と拡散とによって、受光面電極96へ移動し、自由正孔は裏面電極92へ移動する。電流計14は、この自由電子および自由正孔の移動によって生じる電流(直流電流)を検出し、その電流のデータを制御部16に送信する。本実施形態では、パルス光LP11(例えば、80MHz〜1GHz繰り返し周波数)を近似的に連続光として扱うことで、太陽電池パネル90で発生する直流電流を検出する。
図1に戻って、可視カメラ80は、CCDカメラで構成されており、撮影用の光源としてLEDやレーザを備えている。可視カメラ80は、太陽電池パネル90の全体を撮影したり、パルス光LP11が照射される位置を撮影したりするのに用いられる。可視カメラ80によって取得された画像データは、制御部16へ送信され、モニター17などに表示される。
モーター15は、ステージ11を二次元平面内で移動させる不図示のX−Yテーブルを駆動する。モーター15は、このX−Yテーブルを駆動することによって、ステージ11に保持された太陽電池パネル90を、照射部12に対して相対的に移動させる。フォトデバイス検査装置100は、モーター15により、太陽電池パネル90を2次元平面内で任意の位置に移動させることができる。フォトデバイス検査装置100は、モーター15により、太陽電池パネル90の広い範囲(検査対象領域)にパルス光LP11を照射して検査することができる。
なお、太陽電池パネル90を移動させる代わりに、または、太陽電池パネル90を移動させると共に、照射部12及び電磁波検出部13を2次元平面内で移動させる移動手段を設けてもよい。これらの場合においても、太陽電池パネル90の各領域について、電磁波パルスLT1を検出することができる。また、モーター15を省略して、ステージ11をオペレータによって手動で移動させるようにしてもよい。
制御部16は、図示を省略するCPU、ROM、RAMおよび補助記憶部(例えばハードディスク)などを備えた一般的なコンピュータとしての構成を備えている。制御部16は、照射部12のフェムト秒レーザ121、電磁波検出部13の遅延部131および検出器132、並びにモーター15に接続されており、これらの動作を制御したり、これらからデータを受け取ったりする。
より詳細には、制御部16は、検出器132から電磁波パルスLT1の電場強度に関するデータを受け取る。また、制御部16は、遅延部131を移動させる移動ステージ(図示せず。)の移動を制御し、または、該移動ステージに設けられたリニアスケールなどから折り返しミラー10Mの移動距離などの遅延部131の位置に関連するデータを遅延部131から受け取る。
また、制御部16は、時間波形復元部21、電磁波パルス解析部23、電磁波強度分布画像生成部25、電流強度分布画像生成部27、画像合成部28および検査位置設定部29を備えている。これら処理部は、CPUが不図示のプログラムに従って動作することにより実現される機能である。ただし、これらの処理部の機能の一部または全部が、専用の演算回路によってハードウェア的に実現されるようにしてもよい。
時間波形復元部21は、太陽電池パネル90において発生した電磁波パルスLT1について、電磁波検出部13(検出器132)にて検出される電場強度に基づいて、電磁波パルスLT1の時間波形を構築する。具体的には、遅延部131の折り返しミラー10Mを移動させることによって、プローブ光LP12の光路長(第1光路の光路長)を変更することによって、プローブ光が検出器132に到達する時間を変更する。これによって、検出器132において電磁波パルスLT1の電場強度を検出するタイミングが変更される。すると、時間波形復元部21は、電磁波パルスLT1の電場強度を、異なる位相毎に検出して、時間軸上にプロットすることにより、電磁波パルスLT1の時間波形を復元する。
電磁波パルス解析部23は、時間波形復元部21により復元された時間波形を解析する。電磁波パルス解析部23は、時間波形復元部21により復元された電磁波パルスLT1の時間波形における、電場強度のピーク検出、あるいは、フーリエ変換による周波数分析などを行う。これによって、太陽電池パネル90の特性が解析される。
電磁波強度分布画像生成部25は、太陽電池パネル90の検査対象領域(太陽電池パネル90の一部または全部)に関して、パルス光LP11を照射したときに放射される電磁波パルスLT1の電場強度の分布を視覚化した画像(電磁波強度分布画像)を生成する。電磁波強度分布画像は、パルス光LP11の照射箇所毎に、検出された電磁波パルスLT1の電場強度に応じた色または模様を付した画像である。
電流強度分布画像生成部27は、太陽電池パネル90の検査対象領域に関して、パルス光LP11を照射によって、太陽電池パネル90で発生する電流の電流強度分布を視覚化した画像(電流強度分布画像)を生成する。電流強度分布画像は、パルス光LP11の照射箇所毎に、検出された電流の強度に応じた色または模様を付した画像である。
画像合成部28は、電磁波強度分布画像生成部25が生成した電磁波強度分布画像と、電流強度分布画像生成部27が生成した電磁波強度分布画像とを、画素演算によって、双方の電磁波強度分布および電流強度分の情報を含んだ新たな合成画像を生成する。
例えば、合成画像を、電磁波強度分布画像と電流強度分布画像との差分画像とした場合、電磁波の放射または電流の発生のどちらかに異常がある箇所を、この合成画像から容易に特定することができる。
検査位置設定部29は、電磁波強度分布または電流強度分布を取得するために、パルス光LP11を照射する領域を設定する。検査位置設定部29は、後述するモニター17に、領域指定用画面を表示し、オペレータが操作入力部18を介して行う指定入力を受け付ける。そして、検査位置設定部29は、指定入力に基づいて、パルス光LP11を照射する領域を設定する。制御部16は、このようにして設定された領域を、パルス光LP11で走査するように、照射部12およびモーター15を制御する。
制御部16には、モニター17および操作入力部18が接続されている。モニター17は、液晶ディスプレイなどの表示装置であり、オペレータに対して各種画像情報を表示する。モニター17には、可視カメラ80で撮影された太陽電池パネル90の受光面91Sの画像、時間波形復元部21によって復元された電磁波パルスLT1の時間波形、電磁波パルス解析部23による解析結果が表示される。また、モニター17には、電磁波強度分布画像生成部25が生成した電磁波強度分布画像、電流強度分布画像生成部27が生成した電流強度分布画像、画像合成部28が生成した合成画像、および、検査位置設定部29が指定操作を受け付けるための画面が表示される。また、モニター17には、検査の条件設定などをするために必要なGUI(Graphical User Interface)画面が適宜表示される。
操作入力部18は、マウスおよびキーボードなどの各種入力デバイスで構成されている。オペレータは、操作入力部18を介してフォトデバイス検査装置100に対して各種操作入力を行うことができる。なお、モニター17がタッチパネルとして構成されることによって、モニター17が操作入力部18として機能するようにしてもよい。
以上が、フォトデバイス検査装置100の構成についての説明である。次に、フォトデバイス検査装置100において実行可能な太陽電池パネル90の検査の具体例を説明する。
<1.2. 太陽電池パネルの検査>
<1.2.1. 検査例1>
図6は、太陽電池パネル90の検査例1を示す流れ図である。なお、以下の説明においては、特に断らない限り、フォトデバイス検査装置100の各動作が制御部16による制御下のもとに行われるものとする。また、各工程の内容に応じて、複数の工程が並列に実行されたり、複数の工程の実行順序が適宜変更されたりしてもよいものとする。
まず、ステージ11に検査対象となる太陽電池パネル90が設置される(図6:ステップS11)。このとき、上述したように、受光面91S(すなわち、太陽電池パネル90が使用される状態において、太陽光を受光する側の主面)に向けて、パルス光LP11が照射されるように、太陽電池パネル90が設置される。
太陽電池パネル90がステージ11に設置されると、太陽電池パネル90の裏面電極92および受光面電極96に逆バイアス電圧印加回路99が接続され、逆バイアス電圧が印加される(図6:ステップS12)。なお、逆バイアス電圧を印加しない場合は、このステップS12を省略することも可能である。また、太陽電池パネル90の裏面電極92および受光面電極96に電流計14が接続される。
次に、電磁波検出部13による電磁波パルスLT1の検出タイミングが設定される(図6:ステップS13)。具体的には、制御部16が遅延部131を制御することによって、プローブ光LP12が検出器132に到達するタイミングが所要の検出タイミングに固定されるよう、折り返しミラー10Mの位置が調整される。なお、検出される電磁波強度ができるだけ大きくなるように、検出タイミングが設定することで、S/N比を高めることができる。
検出タイミングが設定されると、モーター15が駆動されることによって、太陽電池パネル90を2次元平面内で移動させることによって、検査対象領域をパルス光LP11で走査する(図6:ステップS14)。そして、パルス光LP11の各照射位置で放射される電磁波パルスLT1の電場強度が検出器132によって検出されるとともに、パルス光LP11の各照射位置で発生する電流が電流計14によって検出される。
ステップS14において、パルス光LP11の照射位置毎の電磁波パルスLT1の電場強度および電流強度が取得されると、電磁波強度分布画像生成部25および電流強度分布画像生成部27によって、電磁波強度分布画像および電流強度分布画像が生成され、それらの画像がモニター17の同一画面上に表示される(図6:ステップS15)。なお、ステップS15において、電磁波強度分布画像および電流強度分布画像を合成した合成画像が画像合成部28によって生成され、該画像がモニター17に表示されてもよい。
図7は、電磁波強度分布画像i1を示す図である。また、図8は、電流強度分布画像i2を示す図である。電磁波強度分布画像i1によると、太陽電池パネル90における電場強度分布を容易に把握することができる。また、電流強度分布画像i2によると、太陽電池パネル90における電場強度分布を容易に把握することができる。
図6に戻って、各画像の表示が完了すると、検査位置設定部29は、電磁波パルスLT1の時間波形を復元して検査する領域(時間波形復元検査領域)の指定を受け付ける(図6:ステップS16)。ステップS16においては、オペレータが、モニター17に表示された電磁波強度分布画像および電流強度分布画像を確認しつつ、詳細な検査が必要な領域を、操作入力部18を介して、指定する。そして、検査位置設定部29が、指定された領域を時間波形復元検査領域に設定する。
なお、時間波形復元検査領域は、自動で設定されるようにすることも考えられる。例えば、電磁波強度または電流強度が正常とされる基準値の範囲を予め定めておき、この基準値の範囲から外れる電磁波強度または電流強度が検出された位置を、検査位置設定部29が時間波形復元検査領域として自動的に設定するようにしてもよい。
フォトデバイス検査装置100は、ステップS16において設定された検査地点に関して、再びパルス光LP11を照射し、電磁波パルスLT1の復元および解析を行う(図6:ステップS17)。電磁波パルスLT1の復元および解析については、図9を参照しつつ説明する。
図9は、時間波形復元部21によって復元された電磁波パルスLT1の時間波形40の一例を示す図である。図9に示されるグラフの横軸は、時間を示しており、縦軸は電場強度を示している。また、図9における、時間波形40を示すグラフの下側には、遅延部131によって遅延されたために、検出器132に到達するタイミング(t1〜t8)が相互に異なる、複数のプローブ光LP12が概念的に示されている。
太陽電池パネル90に、パルス光LP11が照射されると、検出器132には、図9に示されるような時間波形40を示す電磁波パルスLT1が、パルス光LP11のパルス周期に一致する周期で繰り返し到来する。
例えば、検出器132に対して、検出タイミングt1でプローブ光LP12が到達するように遅延部131が調整された場合、検出器132では、値E1の電場強度が検出される。また、遅延部131が調整されることによって、検出タイミングがt2〜t8にそれぞれ遅延されると、それぞれ値E2〜E8の電場強度が電磁波検出部13において検出されることとなる。このように、遅延部131が制御されることで検出タイミングが細かく変更されることによって、各検出タイミングでの電磁波パルスLT1の電場強度が測定される。そして、時間波形復元部21が、取得された電場強度値を時間軸に沿ってグラフ上にプロットしていくことにより、電磁波パルスLT1の時間波形40が復元されることとなる。
時間波形40は、パルス光LP11の照射に応じた光励起キャリアの発生、移動、および、消滅の各過程の情報を含んでいる。すなわち、時間波形40を取得することによって、光励起キャリアのダイナミクスを解析することが可能となり、太陽電池パネル90の欠陥(例えば、結晶の格子欠陥など)または特性をより詳細に解析することができる。また、時間波形40をフーリエ変換することによって、電磁波パルスLT1の周波数分析を行うことも可能である。
以上のように、本実施形態に係るフォトデバイス検査装置100によると、電磁波強度のデータと、電流強度のデータとを、同一の光源(フェムト秒レーザ121)から出射されたパルス光LP11を使って取得することができる。このため、それぞれのデータを取得するために個別に光源を用意せずに済むため、装置コストの増大を抑えることができる。
また、図6に示される検査例1によると、同一のパルス光LP11で太陽電池パネル90を一度走査することによって、電磁波強度のデータおよび電流強度のデータを同時に収集することができる。したがって、効率的にデータ収集を行うことができる。ただし、検査対象領域をパルス光LP11で二度走査することによって電磁波強度のデータと、電流強度のデータとを別の走査で収集されるようにしてもよい。
電磁波強度は、主に空乏層の状態が反映されるのに対して、電流強度は、空乏層を含めたフォトデバイス全体の状態が反映される。このため、電磁波強度および電流強度を取得することによって、太陽電池パネル90から様々な情報を得ることができる。例えば、太陽電池パネル90上のある特定位置において、検出された電流強度および電磁波強度のどちらかが異常であった場合、その特定位置に、ある種の欠陥が存在することを推定することができる。例えば、太陽電池パネル90のある特定位置において、電流強度が正常で、電磁波強度が異常であった場合、実用上問題無いものの、経年劣化が起こり易い等といった欠陥の存在を推定することできる。
また、時間波形を復元する検査は、遅延部131の調整を伴うため、電磁波強度のデータの取得に比較的長い時間を要する。これに対して、図6に示される検査例1では、電磁波強度分布および電流強度分布に基づいて、時間波形の復元を伴う検査の領域を限定するため、太陽電池パネル90の検査を効率的に行うことが可能となっている。
また、電磁波強度を取得するときと、電流強度を取得するときとで、照射されるパルス光LP11の波長が変更されてもよい。例えば、電流強度取得時のパルス光LP11の波長を400nmとし、電磁波強度取得時のパルス光LP11の波長を800nmとすることが考えられる。
<1.2.2. 検査例2>
図10は、太陽電池パネル90の検査例2を示す流れ図である。図10に示される検査例2の流れにおいて、太陽電池パネル90の設置(ステップS20)、逆バイアス電圧の印加(ステップS21)および検出タイミングの設定(ステップS22)は、図6に示される検査例1のステップS11〜S13のそれぞれと同様であるため、説明を省略する。
ステップS22の検出タイミングの設定が完了すると、図10に示される検査例2では、フォトデバイス検査装置100は、検査対象領域をパルス光LP11で走査した際、直流電流の電流強度データのみを検出する(ステップS23)。そして、ステップS23にて取得された電流強度データに基づく電流強度分布画像が電流強度分布画像生成部27によって生成され、該画像がモニター17に表示される(ステップS24)。
そして、検査位置設定部29が、電磁波パルスLT1の電場強度を取得すべき領域の指定を受け付け、指定された領域を電磁波検査領域に設定する(ステップS25)。具体的には、オペレータによって、モニター17に表示された電流強度分布画像を確認しつつ、電磁波検査領域を指定する操作入力が行われる。これに基づき、検査位置設定部29が電磁波検査領域を設定する。
なお、ステップS25における電磁波検査領域の設定は、自動で設定されるようにすることも考えられる。例えば、電流強度が正常とされる基準値の範囲を予め定めておき、検査対象領域のうち、当該基準値の範囲から外れた電流強度が検出された位置を含むように、電磁波検査領域が自動的に設定されるようにしてもよい。この場合、検査位置設定部29は、電流強度が予め定められた基準値を満たすか否かを判定する判定部として機能することとなる。
電磁波検査領域が設定されると、フォトデバイス検査装置100は、電磁波検査領域をパルス光LP11で走査し、放射された電磁波パルスLT1の電場強度を検出する(ステップS26)。そして、収集された電磁波強度データに基づく電磁波強度分布画像が電磁波強度分布画像生成部25によって生成され、該画像がモニター17に表示される(ステップS27)。
電磁波強度分布画像がモニター17に表示されると、検査位置設定部29が、時間波形復元分析領域指定を設定する(ステップS28)。そして、時間波形復元分析領域における時間波形の復元および解析が行われる(ステップS29)。このステップS28,S29は、図6に示される検査例1のステップS16,S17のそれぞれと略同様であるため、詳細な説明を省略する。
信頼性の高い電磁波強度データを取得するためには、パルス光LP11を同じ箇所に所要回数繰り返し照射する必要がある。このため、一般的には、電磁波強度の取得は、電流強度の取得よりも長い測定時間を要する。これに対して、図10に示される検査例2では、電磁波強度を取得する範囲(電磁波検査領域)が、先に取得した検査対象領域の電流強度分布に基づいて絞り込まれる。このため、太陽電池パネル90における検査対象領域の検査を効率的に行うことができる。
なお、ステップS23の実行中(すなわち、電流強度データ取得のための走査中)、ある地点にパルス光LP11を照射した際に、得られた電流強度データが予め定められた基準値の範囲から外れている場合、当該地点での電磁波強度を直ちに取得するようにしてもよい。この場合、一度の走査で、検査対象領域の電流強度データと、特定箇所の電磁波データとを取得することができるため、検査の効率化を図ることができる。
また、図10に示される検査例2では、検査対象領域における電流強度データの収集が行われた後に、電磁波検査領域における電磁波強度データの収集が行われている。しかしながら、先に、検査対象領域についての電磁波強度データの収集が行われた後、検査対象領域よりも狭い領域において、電流強度データの収集が行われてもよい。
また、電磁波強度を取得する電磁波検査領域は、必ずしも、電流強度を取得した領域(電流検査領域)に含まれている必要はない。例えば、電磁波検査領域と電流検査領域とが、互いの一部分のみ重複する、あるいは、全く重複しないように設定されてもよい。
また、電磁波検査領域、電流検査領域および電磁波復元検査領域は、検査を開始する前に、検査位置設定部29によって設定されるようにしてもよい。この場合、例えばオペレータが、可視カメラ80で撮影された画像上で、各検査領域を検査前に指定できるようにすればよい。
<2. 第2実施形態>
図11は、第2実施形態に係るフォトデバイス検査装置100Aが備える照射部12Aおよび電磁波検出部13Aの概略構成図である。なお、以下の説明において、第1実施形態に係るフォトデバイス検査装置100の構成要素と同様の機能を有する要素については、同一符号を付してその説明を省略する。
図11に示されるように、フォトデバイス検査装置100Aにおいては、ビームスプリッタB1によって分割されたパルス光LP11が、透明導電膜基板(ITO)19を透過して、太陽電池パネル90の受光面91Sに対して垂直にパルス光LP11に入射する。そして、パルス光LP11の照射に応じて、太陽電池パネル90から放射される電磁波パルスLT1のうち、受光面91S側に放射される電磁波パルスLT1が、透明導電性基板19を反射した後、レンズによって集光されて、検出器132に入射する。
このようなフォトデバイス検査装置100Aによっても、第1実施形態に係るフォトデバイス検査装置100と同様に、太陽電池パネル90から放射される電磁波パルスLT1を検出することができる。また、太陽電池パネル90に接続された電流計14によって、パルス光LP11の照射に応じて太陽電池パネル90で発生する直流電流を計測することができる。
<3. 第3実施形態>
図12は、第3実施形態に係るフォトデバイス検査装置100Bが備える照射部12Bおよび電磁波検出部13Bの概略構成図である。フォトデバイス検査装置100Bにおいては、ビームスプリッタB1によって分割されたパルス光LP11が、太陽電池パネル90の受光面91Sに対して垂直に入射する。そして、パルス光LP11の照射に応じて、太陽電池パネル90から放射される電磁波パルスLT1のうち、太陽電池パネル90の裏面側に放射される(すなわち透過する)電磁波パルスLT1が、放物面鏡M1,M2などを介して、検出器132に入射する。
このようなフォトデバイス検査装置100Bによっても、太陽電池パネル90から放射される電磁波パルスLT1を検出することができる。また、太陽電池パネル90に接続された電流計14によって、パルス光LP11の照射に応じて太陽電池パネル90で発生する直流電流を計測することができる。
<4. 第4実施形態>
図13は、第4実施形態に係るフォトデバイス検査装置100Cが備える照射部12Cおよび電磁波検出部13Cの概略構成図である。フォトデバイス検査装置100Cにおいては、一対の波長可変レーザ121A,121Aから、発振周波数がわずかに異なる2つのレーザ光が出射される。そして、これらのレーザ光を、光導波路である光ファイバなどで形成されたカプラ123によって重ね合わせることで、差周波に対応する光ビート信号が生成される。差周波数は、波長可変レーザ121Aの発振周波数を可変にすることで、任意に調整することが可能とされている。波長可変レーザ121Aとしては、例えば温度制御によって、出射するレーザ光の波長をほぼ連続的(例えば、2nm毎)に変更可能とされる分布帰還型(DFB)レーザなどを利用することができる。
波長可変レーザ121A,121Aから出射されるレーザ光の波長は、例えば、300nm(ナノメートル)〜2μm(マイクロメートル)とされるが、検査対象であるフォトデバイスのバンドギャップの大きさ等に応じて適宜設定される。
2つの波長可変レーザ121A,121Aから、例えば、波長779nm、781nmのレーザ光を出射した場合、カプラ123によって、これらの差周波である約1THzの光ビート信号を生成することができる。そして混合光L13が検査対象物である太陽電池パネル90に照射されると、光励起キャリア発生領域にて光キャリアが発生し、内部電界によって加速されることで、光ビート信号の周波数に応じた電磁波(テラヘルツ波)が放射される。
また、ビームスプリッタB1によって分割された混合光L13は、ミラーなどを経由して、光伝導スイッチ(光伝導アンテナ)で構成されている検出器132に入射される。検出器132はこの入射された混合光L13が持つ光ビート信号の周波数に同期して電磁波を検出する。検出器132に電磁波が入射すると、電磁波の電場強度に応じた電流が発生し、その電流量がI/V変換回路、A/D変換回路などを介してデジタル量に変換される。このようにして電磁波検出部13Cは太陽電池パネル90から放射された電磁波の電場強度を検出する。
このように、フォトデバイス検査装置100Cによっても、太陽電池パネル90から放射される電磁波を検出可能である。また、太陽電池パネル90に電流計14を接続されており、電磁波強度の取得時と同一の光源から出射された混合光L13を用いて、太陽電池パネル90で発生する直流電流を測定することができる。なお、直流電流を測定する場合は、一対の波長可変レーザ121A,121Aのうちのどちらか一方からのみ、レーザ光が出射されるようにしてもよい。
また、本実施形態では、光源として、波長可変レーザ121Aが用いられている。しかしながら、連続光を出射する光源であって、レーザ光源とは異なるものを用いることも考えられる。
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。また、上記各実施形態で説明した各構成は、相互に矛盾しない限り、適宜組み合わせたることができる。
100,100A,100B,100C フォトデバイス検査装置
12,12A,12B,12C 照射部
121 フェムト秒レーザ(光源)
121A 波長可変レーザ(光源)
123 カプラ
13,13A,13B,13C 電磁波検出部
131 遅延部
132 検出器
14 電流計(電流検出部)
15 モーター
16 制御部
17 モニター
18 操作入力部
21 時間波形復元部
23 電磁波パルス解析部
25 電磁波強度分布画像生成部
27 電流強度分布画像生成部
28 画像合成部
29 検査位置設定部
40 時間波形
90 太陽電池パネル
91S 受光面
92 裏面電極
96 受光面電極
99 逆バイアス電圧印加回路
B1 ビームスプリッタ
LP11 パルス光(光)
LP12 プローブ光
L13 混合光(光)
LT1 電磁波パルス
i1 電磁波強度分布画像
i2 電流強度分布画像

Claims (6)

  1. フォトデバイスを検査するフォトデバイス検査装置であって、
    光源から出射された光を前記フォトデバイスに照射する照射部と、
    前記光の照射に応じて、前記フォトデバイスから放射される電磁波を検出する電磁波検出部と、
    前記光の照射に応じて、前記フォトデバイスにて発生する電流を検出する電流検出部と、
    を備え、
    前記照射部は、前記フォトデバイスにおける検査対象領域を前記光で走査する走査機構を備え、
    前記フォトデバイス検査装置は、さらに、
    前記検査対象領域において発生した前記電流の強度分布を示す電流強度分布画像を生成する電流強度分布画像生成部と、
    前記検査対象領域において発生した前記電磁波の強度分布を示す電磁波強度分布画像を生成する電磁波強度分布画像生成部と、
    前記電流強度分布画像および前記電磁波強度分布画像を合成する画像合成部と、
    を備えている、フォトデバイス検査装置。
  2. 請求項1に記載のフォトデバイス検査装置において、
    前記検査対象領域において発生した前記電磁波の強度分布を示す電磁波強度分布画像を生成する電磁波強度分布画像生成部、をさらに備えている、フォトデバイス検査装置。
  3. 請求項1または2に記載のフォトデバイス検査装置において、
    前記光源は、フェムト秒レーザであり、
    前記電磁波検出部は、
    前記フェムト秒レーザから出射されたプローブ光を受光することによって、前記電磁波を検出する検出器と、
    前記プローブ光が前記検出器に入射するタイミングを、前記電磁波が前記検出器に入射するタイミングに対して相対的に遅延させる遅延部と、
    を備え、
    前記フォトデバイス検査装置は、
    前記遅延部を動作させることによって検出される前記電磁波の電場強度に基づいて、前記電磁波の時間波形を復元する時間波形復元部、
    をさらに備えている、フォトデバイス検査装置。
  4. 請求項3に記載のフォトデバイス検査装置において、
    前記時間波形を復元するために、前記照射部が前記光を照射する位置を設定する検査位置設定部、
    をさらに備えている、フォトデバイス検査装置。
  5. 請求項1に記載のフォトデバイス検査装置において、
    前記電流検出部によって検出された前記電流の強度が、予め定められた基準値を満たすか否かを判定する判定部、
    をさらに備え、
    前記基準値を満たさなかった領域を、前記走査機構が前記光で走査し、発生する電磁波を前記電磁波検出部が検出するフォトデバイス検査装置。
  6. フォトデバイスを検査するフォトデバイス検査方法であって、
    (a) 光源から出射された光を前記フォトデバイスに照射する工程と、
    (b) 前記光の照射に応じて、前記フォトデバイスから放射される電磁波を検出する工程と、
    (c) 前記光の照射に応じて、前記フォトデバイスで発生する電流を検出する工程と、
    を含み
    前記(a)工程は、
    (a-1) 前記フォトデバイスの検査対象領域を前記光で走査する工程、を含み、
    前記フォトデバイス検査方法は、さらに、
    (d) 前記検査対象領域において発生した前記電流の強度分布を示す電流強度分布画像を生成する工程と、
    (e) 前記検査対象領域において発生した前記電磁波の強度分布を示す電磁波強度分布画像を生成する工程と、
    (f) 前記電流強度分布画像および前記電磁波強度分布画像を合成する工程と、
    を含む、フォトデバイス検査方法。
JP2013144127A 2013-07-10 2013-07-10 フォトデバイス検査装置およびフォトデバイス検査方法 Expired - Fee Related JP6342622B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013144127A JP6342622B2 (ja) 2013-07-10 2013-07-10 フォトデバイス検査装置およびフォトデバイス検査方法
EP14176178.3A EP2824469B1 (en) 2013-07-10 2014-07-08 Photo device inspection apparatus and photo device inspection method
US14/327,383 US9651607B2 (en) 2013-07-10 2014-07-09 Photo device inspection apparatus and photo device inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013144127A JP6342622B2 (ja) 2013-07-10 2013-07-10 フォトデバイス検査装置およびフォトデバイス検査方法

Publications (2)

Publication Number Publication Date
JP2015017851A JP2015017851A (ja) 2015-01-29
JP6342622B2 true JP6342622B2 (ja) 2018-06-13

Family

ID=51032954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013144127A Expired - Fee Related JP6342622B2 (ja) 2013-07-10 2013-07-10 フォトデバイス検査装置およびフォトデバイス検査方法

Country Status (3)

Country Link
US (1) US9651607B2 (ja)
EP (1) EP2824469B1 (ja)
JP (1) JP6342622B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013174B1 (fr) * 2013-11-14 2015-11-20 Soitec Solar Gmbh Dispositif de test d'un module photovoltaique a concentration
JP6418542B2 (ja) * 2013-12-10 2018-11-07 株式会社Screenホールディングス 検査装置および検査方法
JP6532695B2 (ja) * 2015-02-19 2019-06-19 株式会社Screenホールディングス 検査装置および検査方法
WO2017042248A1 (en) * 2015-09-08 2017-03-16 Danmarks Tekniske Universitet Method and apparatus for characterization of a solar cell
JP6743380B2 (ja) * 2015-12-04 2020-08-19 トヨタ自動車株式会社 太陽電池モジュール評価装置
JP7532083B2 (ja) 2020-05-15 2024-08-13 キヤノン株式会社 テラヘルツ波システム、テラヘルツ波システムの制御方法、およびテラヘルツ波システムの検査方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640002A (en) * 1982-02-25 1987-02-03 The University Of Delaware Method and apparatus for increasing the durability and yield of thin film photovoltaic devices
US4712063A (en) * 1984-05-29 1987-12-08 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for measuring areas of photoelectric cells and photoelectric cell performance parameters
JP2004134748A (ja) * 2002-07-26 2004-04-30 Canon Inc 光電変換素子の測定方法および装置、光電変換素子の製造方法及び製造装置
JP2006229052A (ja) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd 太陽電池とその製造方法及びこれに用いる短絡部除去装置
JP5352135B2 (ja) * 2007-06-25 2013-11-27 株式会社日立ハイテクノロジーズ 検査装置及び検査方法
JP5178079B2 (ja) * 2007-07-23 2013-04-10 株式会社日立ハイテクノロジーズ 欠陥検査方法およびその装置
JP4975001B2 (ja) 2007-12-28 2012-07-11 キヤノン株式会社 波形情報取得装置及び波形情報取得方法
JP5187843B2 (ja) * 2008-09-01 2013-04-24 浜松ホトニクス株式会社 半導体検査装置及び検査方法
JP5362379B2 (ja) 2009-02-06 2013-12-11 三洋電機株式会社 太陽電池のi−v特性の測定方法
WO2011016441A1 (ja) * 2009-08-04 2011-02-10 国立大学法人奈良先端科学技術大学院大学 太陽電池の評価方法、評価装置、メンテナンス方法、メンテナンスシステム、および太陽電池モジュールの製造方法
JP5319593B2 (ja) * 2010-04-09 2013-10-16 日清紡メカトロニクス株式会社 太陽電池の検査方法および検査装置
EP2546634B1 (en) * 2011-07-14 2019-04-17 SCREEN Holdings Co., Ltd. Inspection apparatus and inspection method
JP5804362B2 (ja) * 2011-07-14 2015-11-04 株式会社Screenホールディングス 検査装置および検査方法
ITUD20110115A1 (it) * 2011-07-19 2013-01-20 Applied Materials Italia Srl Dispositivo per la simulazione della radiazione solare e procedimento di test che utilizza tale dispositivo
JP5822194B2 (ja) * 2011-09-29 2015-11-24 株式会社Screenホールディングス 半導体検査方法および半導体検査装置

Also Published As

Publication number Publication date
EP2824469A2 (en) 2015-01-14
US20150015297A1 (en) 2015-01-15
JP2015017851A (ja) 2015-01-29
EP2824469B1 (en) 2017-12-27
EP2824469A3 (en) 2015-07-22
US9651607B2 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
US9450536B2 (en) Inspection apparatus and inspection method
JP5804362B2 (ja) 検査装置および検査方法
JP6078870B2 (ja) 検査装置および検査方法
JP6342622B2 (ja) フォトデバイス検査装置およびフォトデバイス検査方法
JP5892597B2 (ja) 検査装置および検査方法
EP2546634B1 (en) Inspection apparatus and inspection method
JP6044893B2 (ja) 検査装置および検査方法
JP6395206B2 (ja) 検査装置および検査方法
EP2840382B1 (en) Inspection apparatus and inspection method
JP5835795B2 (ja) 検査方法および検査装置
JP2014192444A (ja) 検査装置および検査方法
JP6078869B2 (ja) 検査装置および検査方法
JP5929293B2 (ja) 検査装置および検査方法
JP2021048351A (ja) 検査方法および検査装置
JP2016133344A (ja) 光強度設定方法、検査方法および検査装置
JP2016029345A (ja) 検査装置および検査方法
JP2019058042A (ja) 検査装置および検査方法
JP6099131B2 (ja) 検査装置および検査方法
JP2016151536A (ja) 検査装置および検査方法
JP6355100B2 (ja) 検査装置および検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6342622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees