JP6332412B2 - Regeneration method of multi-layer anion exchange tower - Google Patents

Regeneration method of multi-layer anion exchange tower Download PDF

Info

Publication number
JP6332412B2
JP6332412B2 JP2016219875A JP2016219875A JP6332412B2 JP 6332412 B2 JP6332412 B2 JP 6332412B2 JP 2016219875 A JP2016219875 A JP 2016219875A JP 2016219875 A JP2016219875 A JP 2016219875A JP 6332412 B2 JP6332412 B2 JP 6332412B2
Authority
JP
Japan
Prior art keywords
anion exchange
layer
exchange resin
resin layer
basic anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016219875A
Other languages
Japanese (ja)
Other versions
JP2018075537A (en
Inventor
中馬 高明
高明 中馬
重希 堀井
重希 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016219875A priority Critical patent/JP6332412B2/en
Priority to PCT/JP2017/032488 priority patent/WO2018088015A1/en
Priority to CN201780067724.XA priority patent/CN109906115A/en
Publication of JP2018075537A publication Critical patent/JP2018075537A/en
Application granted granted Critical
Publication of JP6332412B2 publication Critical patent/JP6332412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/07Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/57Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、弱塩基性陰イオン交換樹脂層と強塩基性陰イオン交換樹脂層を備え、被処理水が弱塩基性陰イオン交換樹脂層から強塩基性陰イオン交換樹脂層の順に通水された複層式陰イオン交換塔の再生方法に関する。   The present invention comprises a weakly basic anion exchange resin layer and a strongly basic anion exchange resin layer, and the water to be treated is passed through the weakly basic anion exchange resin layer to the strongly basic anion exchange resin layer in this order. The present invention also relates to a method for regenerating a multilayer anion exchange column.

純水等の製造を目的として使用される陰イオン交換樹脂は、一部の強酸成分とシリカ、ホウ素、炭酸などの弱酸成分を吸着除去するための強塩基性陰イオン交換樹脂(以下「SA」と略記する場合がある。)と、硫酸イオン、塩化物イオンなどの強酸成分を吸着除去するための弱塩基性陰イオン交換樹脂(以下「WA」と略記する場合がある。)の2種類に大別される。
SAとWAは、構造中のイオン交換基の性質により吸着したイオンの保持力が異なり、SAは保持力が強く、WAは保持力が弱い。
Anion exchange resins used for the production of pure water and the like are strongly basic anion exchange resins (hereinafter "SA") for adsorbing and removing some strong acid components and weak acid components such as silica, boron and carbonic acid. And a weakly basic anion exchange resin (hereinafter sometimes abbreviated as “WA”) for adsorbing and removing strong acid components such as sulfate ions and chloride ions. Broadly divided.
SA and WA differ in the holding power of the adsorbed ions depending on the nature of the ion exchange group in the structure. SA has a strong holding power and WA has a low holding power.

陰イオン交換塔としては、SAのみを備えた塔を使用する単層式と、WAとSAの両方の樹脂を備えた塔を使用する複層式とがある。このうち複層式の陰イオン交換塔は、被処理水(通常の場合、陽イオン交換塔に通水された後の処理水)を、まずWA層に通水し、その後にSA層に通水する装置である。
複層式陰イオン交換塔としては、WAとSAとをそれぞれ別々の塔に充填した2塔式と、同じ一つの塔に、WAとSAとが層状になるように充填した1塔式とがある。1塔式の場合、通常、WA層とSA層とは、透水性の仕切り板で仕切られる。
As anion exchange towers, there are a single-layer system using a tower equipped with only SA and a multi-layer system using a tower equipped with both WA and SA resins. Of these, the multi-layer anion exchange tower first passes the water to be treated (treated water after being passed through the cation exchange tower) through the WA layer and then through the SA layer. It is a watering device.
As the multi-layer type anion exchange tower, there are a two-column system in which WA and SA are packed in separate towers, and a single-column system in which the same tower is packed so that WA and SA are layered. is there. In the case of a single tower type, the WA layer and the SA layer are usually partitioned by a water-permeable partition plate.

このような複層式陰イオン交換塔で純水を採水した後は、再生が行われるが、その際、SA層にはシリカ、ホウ素、炭酸などの弱酸成分と、WA層で吸着されずに一部WA層から漏洩した強酸成分が吸着している。また、WA層には強酸負荷の殆どが吸着している。   After collecting pure water with such a multi-layer type anion exchange tower, regeneration is performed. At that time, the SA layer is not adsorbed by weak acid components such as silica, boron, carbonic acid and the WA layer. A strong acid component leaked from a part of the WA layer is adsorbed on the surface. Also, most of the strong acid load is adsorbed on the WA layer.

複層式陰イオン交換塔は通常、SA層→WA層の順に再生剤である水酸化ナトリウム(NaOH)水溶液を通水して再生される。これは次の理由による。
即ち、SAとWAとでは吸着したイオンの保持力が異なるが、この保持力の強弱から再生効率が異なり、保持力の弱いWAは少ない再生剤量で再生されるため、SA層→WA層の順に再生剤を通水して、SA層で使用されなかった再生剤をWA層で使用する。
The multi-layered anion exchange tower is usually regenerated by passing a sodium hydroxide (NaOH) aqueous solution as a regenerant in the order of SA layer → WA layer. This is due to the following reason.
That is, the holding power of the adsorbed ions is different between SA and WA, but the regeneration efficiency differs depending on the strength of the holding power, and WA having a weak holding power is regenerated with a small amount of regenerant. The regenerant is passed through in order, and the regenerant not used in the SA layer is used in the WA layer.

SAを再生する際は、樹脂に吸着しているシリカの脱離率を高めるために、40〜50℃に加温された再生剤を使用することが多い。この際、SA層の再生廃液は高濃度のシリカを含むことになる。しかし、シリカを高濃度で含む再生廃液を使ってWA層を再生すると、WA層内でシリカのゲル化が発生する(非特許文献1)。これは、WAが再生されると、吸着していた強酸成分を脱離することにより、再生液のpHが急激に低下して、シリカの溶解度が低下するためである。   When regenerating SA, a regenerant heated to 40 to 50 ° C. is often used in order to increase the desorption rate of silica adsorbed on the resin. At this time, the regeneration waste liquid of the SA layer contains a high concentration of silica. However, when the WA layer is regenerated using a regeneration waste liquid containing silica at a high concentration, gelation of silica occurs in the WA layer (Non-patent Document 1). This is because when the WA is regenerated, the strong acid component that has been adsorbed is desorbed, whereby the pH of the regenerated solution is drastically lowered and the solubility of silica is lowered.

シリカのゲル化を防ぐ方法として、再生中に再生剤の水酸化ナトリウム濃度を調整して、脱離するシリカ濃度を変化させる方法がある(特許文献1)。しかし、この方法では、低濃度と言われる1%のNaOH水溶液であっても、7.5g−SiO/L程度のシリカ溶解度であるため、WAで脱離する酸が多ければ結果的にpHが急激に低下してシリカがゲル化することとなる。 As a method for preventing gelation of silica, there is a method in which the concentration of desorbed silica is changed by adjusting the sodium hydroxide concentration of the regenerant during regeneration (Patent Document 1). However, in this method, even a 1% NaOH aqueous solution, which is said to have a low concentration, has a silica solubility of about 7.5 g-SiO 2 / L. Is drastically reduced and the silica is gelled.

再生剤の温度を低温から段階的に上げていくことで、脱離するシリカ濃度を変化させる方法も知られているが、この方法ではシリカの濃度を低減できても、WA層で強酸の脱離を制御することはできず、ゲル化を起こすことに変わりはない。また、温度変化させるタイミングが明確ではなく、タイミングが遅ければ再生不十分となって潜在的に再生不良を招くリスクもある。さらに、再生に用いる純水の使用量が多くなり経済的ではない。   There is also known a method of changing the concentration of desorbed silica by gradually increasing the temperature of the regenerant from a low temperature. However, even if the silica concentration can be reduced by this method, strong acid can be removed in the WA layer. Separation cannot be controlled, and there is no change in causing gelation. In addition, the timing for changing the temperature is not clear, and if the timing is late, there is a risk that the reproduction is insufficient and potentially a reproduction failure is caused. Furthermore, the amount of pure water used for regeneration increases, which is not economical.

特公昭46−33926号公報Japanese Patent Publication No.46-33926 特許第3150836号公報Japanese Patent No. 3150836

ダイヤイオンマニュアル(改訂4版),78〜79頁,平成22年2月26日三菱化学株式会社発行Diaion Manual (4th revised edition), 78-79, February 26, 2010, Mitsubishi Chemical Corporation

本発明は上記実情に鑑みてなされたものであり、複層式陰イオン交換塔を再生する際のシリカのゲル化を抑制して、効率的な再生を行うことを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to suppress the gelatinization of the silica at the time of reproducing | regenerating a multilayer type anion exchange tower, and to perform efficient reproduction | regeneration.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、所定の第1再生工程と第2再生工程とを行うことにより、WA層におけるシリカのゲル化を防止することができることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention can prevent gelation of silica in the WA layer by performing the predetermined first regeneration step and second regeneration step. I found it.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 弱塩基性陰イオン交換樹脂層と強塩基性陰イオン交換樹脂層を備え、被処理水が弱塩基性陰イオン交換樹脂層から強塩基性陰イオン交換樹脂層の順に通水された複層式陰イオン交換塔に再生剤を通液して該弱塩基性陰イオン交換樹脂及び強塩基性陰イオン交換樹脂を再生する方法において、(ア)再生剤を、該複層式陰イオン交換塔の弱塩基性陰イオン交換樹脂層と強塩基陰イオン交換樹脂層との間から導入し、弱塩基性陰イオン交換樹脂層を通過させて該塔から流出させる工程、もしくは(イ)再生剤を、該複層式陰イオン交換塔の強塩基性陰イオン交換樹脂層側から導入して強塩基性陰イオン交換樹脂層から弱塩基性陰イオン交換樹脂層の順に通過させて該塔から流出させる工程を、塔流出液のpHがpH9以上のアルカリ性になるまで継続する第1再生工程と、該第1再生工程後に該強塩基性陰イオン交換樹脂層を、5℃以上35℃未満の再生剤に20分以上浸漬させることにより再生する第2再生工程とを行うことを特徴とする複層式陰イオン交換塔の再生方法。 [1] A weakly basic anion exchange resin layer and a strongly basic anion exchange resin layer are provided, and water to be treated is passed from the weakly basic anion exchange resin layer to the strongly basic anion exchange resin layer in this order. In the method for regenerating the weakly basic anion exchange resin and the strongly basic anion exchange resin by passing a regenerant through a multilayer anion exchange column, (a) the regenerant is the multilayer anion. introduced from between the weakly basic anion exchange resin layer and the strongly basic anion exchange resin layer of the exchange column, step to flow out from the tower is passed through a weakly basic anion exchange resin layer, or (b) A regenerant is introduced from the strong base anion exchange resin layer side of the multilayer anion exchange column and passed through the strong base anion exchange resin layer to the weak base anion exchange resin layer in this order. The step of letting out the water from the column becomes alkaline with a pH of the tower effluent of pH 9 or higher. A first regeneration step that continues until the second regeneration step, in which after the first regeneration step, the strongly basic anion exchange resin layer is regenerated by immersing it in a regenerant at 5 ° C. or higher and lower than 35 ° C. for 20 minutes or longer. And a method for regenerating a multi-layered anion exchange column.

] 弱塩基性陰イオン交換樹脂層と強塩基性陰イオン交換樹脂層を備え、被処理水が弱塩基性陰イオン交換樹脂層から強塩基性陰イオン交換樹脂層の順に通水された複層式陰イオン交換塔に再生剤を通液して該弱塩基性陰イオン交換樹脂及び強塩基性陰イオン交換樹脂を再生する方法において、(ア)再生剤を、該複層式陰イオン交換塔の弱塩基性陰イオン交換樹脂層と強塩基陰イオン交換樹脂層との間から導入し、弱塩基性陰イオン交換樹脂層を通過させて該塔から流出させる工程を、塔流出液のpHがpH9以上のアルカリ性になるまで継続する第1再生工程と、該強塩基性陰イオン交換樹脂層を、5℃以上35℃未満の再生剤に20分以上浸漬させることにより再生する第2再生工程とを行う複層式陰イオン交換塔の再生方法であって、該1再生工程と該第2再生工程とを同時に行い、該第2再生工程において、該強塩基性陰イオン交換樹脂層の再生に用いた再生剤を該弱塩基性陰イオン交換樹脂層を通過させることなく、該複層式陰イオン交換塔外へ排出することを特徴とする複層式陰イオン交換塔の再生方法。 [ 2 ] A weakly basic anion exchange resin layer and a strongly basic anion exchange resin layer are provided, and water to be treated is passed through the weakly basic anion exchange resin layer to the strongly basic anion exchange resin layer in this order. In the method for regenerating the weakly basic anion exchange resin and the strongly basic anion exchange resin by passing a regenerant through a multilayer anion exchange column, (a) the regenerant is the multilayer anion. introduced from between the exchange column of weakly basic anion exchange resin layer and the strongly basic anion exchange resin layer, the step of flowing out the tower is passed through a weakly basic anion exchange resin layer, column effluent A first regeneration step that continues until the pH of the aqueous solution becomes alkaline of pH 9 or higher, and a second regeneration by immersing the strongly basic anion exchange resin layer in a regenerant of 5 ° C. or higher and lower than 35 ° C. for 20 minutes or longer . In the regeneration method of the multilayer anion exchange tower that performs the regeneration process Thus, the first regeneration step and the second regeneration step are performed simultaneously, and in the second regeneration step, the regenerant used for the regeneration of the strong base anion exchange resin layer is used as the weak base anion exchange resin. A method for regenerating a multi-layer anion exchange column, wherein the multi-layer anion exchange column is discharged without passing through the layer.

] [1]又は2]において、前記再生剤を通液する複層式陰イオン交換塔中の前記強塩基性陰イオン交換樹脂はシリカを吸着、保持しており、前記弱塩基性陰イオン交換樹脂は強酸を吸着、保持していることを特徴とする複層式陰イオン交換塔の再生方法。 [3] Oite to [1] or [2], wherein the strongly basic anion exchange resin in the regenerant multilayer type anion exchange column in which liquid passing the adsorption of silica, holds, the weak A method for regenerating a multilayer anion exchange column, wherein the basic anion exchange resin adsorbs and retains a strong acid.

] [1]ないし[]のいずれかにおいて、前記第1の再生工程に先立つ、被処理水通水時の温度を5〜20℃の範囲に維持することを特徴とする複層式陰イオン交換塔の再生方法。
[ 4 ] In any one of [1] to [ 3 ], the temperature when the water to be treated is passed is maintained in the range of 5 to 20 ° C. prior to the first regeneration step. Regeneration method of anion exchange tower.

本発明によれば、複層式陰イオン交換塔を再生する際のシリカのゲル化を抑制して、効率的な再生を行うことができる。   According to the present invention, it is possible to suppress the gelation of silica at the time of regenerating the multi-layered anion exchange tower and perform efficient regeneration.

実験例1における再生廃液のClイオン濃度、イオン状シリカ濃度、コロイダルシリカ濃度及びpHの経時変化を示すグラフである。4 is a graph showing changes in Cl ion concentration, ionic silica concentration, colloidal silica concentration, and pH with time of a regeneration waste liquid in Experimental Example 1.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[複層式陰イオン交換塔]
本発明において、再生を行う複層式陰イオン交換塔は、弱塩基性陰イオン交換樹脂(WA)層と強塩基性陰イオン交換樹脂(SA)層とを備えるものであり、WA層とSA層とが1つの塔内に設けられた1塔式であっても、WAとSAとがそれぞれ別の塔に充填された2塔式であってもよい。
[Multi-layer anion exchange tower]
In the present invention, a multilayer anion exchange tower for regeneration comprises a weakly basic anion exchange resin (WA) layer and a strongly basic anion exchange resin (SA) layer. The single-column type in which the layers are provided in one tower may be used, or the double-column type in which WA and SA are packed in different towers may be used.

このような複層式陰イオン交換塔に被処理水を通水して採水する場合、被処理水はWA層からSA層の順で通水される。   In the case of collecting water by passing water to be treated through such a multi-layer anion exchange tower, the water to be treated is passed in the order of WA layer to SA layer.

本発明においては、このようにして被処理水を通水することで、WA層に強酸成分が吸着、保持され、SA層にシリカ、ホウ素、炭酸などの弱酸成分と、WA層で除去し得ずにSA層に流入した強酸成分とを吸着、保持した複層式陰イオン交換塔の再生を行う。   In the present invention, by passing the water to be treated in this way, the strong acid component is adsorbed and retained in the WA layer, and the SA layer can be removed by the weak acid component such as silica, boron, carbonic acid and the WA layer. The multi-layer anion exchange tower that adsorbs and holds the strong acid component that has flowed into the SA layer instead is regenerated.

本発明において、複層式陰イオン交換塔は、後述の第1再生工程と第2再生工程からなる再生工程で再生され、再生工程後は、再生剤の通液方向と同じ方向に純水を通液する押出し洗浄工程が実施される。押出し洗浄は、押出し洗浄時の塔流出液のpHが10〜12程度になるまで行われる。必要に応じて、押出し洗浄工程後は、塔流出液の純度を上げて採水を開始するために、被処理水や純水を採水時の通水方向と同じ方向に流して洗浄したり、洗浄廃液を少なくする目的で、塔流出液を陽イオン交換塔及び脱炭酸塔で処理した後循環、通液させたりして、所望の純度の塔流出液が得られるようになった時点で再生のための一連の処理を終了し、採水、即ち、純水の製造を再開する。   In the present invention, the multilayer anion exchange column is regenerated in a regeneration step comprising a first regeneration step and a second regeneration step, which will be described later, and after the regeneration step, pure water is supplied in the same direction as the flow direction of the regenerant. An extrusion cleaning process for passing liquid is performed. Extrusion washing is performed until the pH of the column effluent during extrusion washing reaches about 10-12. If necessary, after the extrusion washing process, in order to increase the purity of the tower effluent and start sampling, the water to be treated and pure water are washed in the same direction as the water flow direction during sampling. For the purpose of reducing washing waste liquid, the tower effluent is treated with a cation exchange tower and a decarboxylation tower, and then circulated and passed to obtain a tower effluent with a desired purity. A series of processes for regeneration is completed, and water sampling, that is, production of pure water is resumed.

本発明による複層式陰イオン交換塔の再生を行うに先立ち、採水時に被処理水を5〜20℃、好ましくは5〜15℃の低温にして複層式陰イオン交換塔に通水して複層式陰イオン交換塔内をこのような低温に維持する工程を行うことが好ましい。これは、以下の理由による。
SAに吸着したシリカは温度が高いほど重合し易いため、採水工程をこのような低温で行うことにより、複層式陰イオン交換塔内でのシリカの重合を抑制し、再生工程におけるシリカの脱離性を高めて効率的な再生を行えるようになる。このため、被処理水の温度が高い場合には、被処理水の温度を上記範囲に下げた上で、複層式陰イオン交換塔に通水することが好ましい。
Prior to the regeneration of the multi-layer anion exchange tower according to the present invention, the water to be treated is set to a low temperature of 5 to 20 ° C., preferably 5 to 15 ° C. at the time of sampling, and is passed through the multi-layer anion exchange tower. Thus, it is preferable to carry out the step of maintaining the inside of the multilayer anion exchange column at such a low temperature. This is due to the following reason.
Since the silica adsorbed on SA is more easily polymerized at higher temperatures, the water sampling step is performed at such a low temperature to suppress the polymerization of silica in the multi-layer anion exchange tower, and the silica in the regeneration step Increases detachability and enables efficient regeneration. For this reason, when the temperature of to-be-processed water is high, it is preferable to lower the temperature of to-be-processed water to the said range, and to flow through a multilayer anion exchange tower.

[再生工程]
<再生剤>
WA及びSAの再生には、再生剤として水酸化ナトリウム(NaOH)水溶液が使用される。
再生剤であるNaOH水溶液は、再生効率の面から、NaOH濃度0.5〜5.0重量%(通常pH13以上)であることが好ましい。NaOH濃度が上記上限よりも低いと、再生剤として、選択係数の小さいOHイオンで選択係数の大きいイオンを交換するので非効率であり、高くても、樹脂内部への浸透の観点で速度が上がらないために、非効率である。
[Regeneration process]
<Regenerant>
For the regeneration of WA and SA, an aqueous solution of sodium hydroxide (NaOH) is used as a regenerant.
The NaOH aqueous solution that is a regenerative agent preferably has a NaOH concentration of 0.5 to 5.0% by weight (usually pH 13 or more) from the viewpoint of regeneration efficiency. If the NaOH concentration is lower than the above upper limit, it is inefficient because OH ions having a small selection coefficient are exchanged with OH ions having a small selection coefficient as a regenerative agent, and even if it is high, the speed increases from the viewpoint of penetration into the resin. There is no inefficiency.

<通液方向>
再生剤を通液する際の通液方向には特に制限はないが、被処理水の通水方向(採水時の通水方向)と逆方向とすることが好ましい。
通常の場合、採水時の通水方向は下向流である場合が多く、従って、再生時の通液方向は上向流とすることが好ましい。前述の押出し洗浄時の通液方向についても、再生剤の通液方向と同様とすることが好ましい。
<Flow direction>
Although there is no restriction | limiting in particular in the liquid flow direction at the time of flowing a regenerant, It is preferable to set it as the reverse direction to the water flow direction (water flow direction at the time of sampling) of to-be-processed water.
In normal cases, the water flow direction at the time of sampling is often a downward flow, and therefore the liquid flow direction at the time of regeneration is preferably an upward flow. The liquid passing direction at the time of the above-described extrusion cleaning is preferably the same as the liquid passing direction of the regenerant.

<温度>
再生剤の温度は次の通りである。
WA層のみに通液される再生剤の温度は、常温から加温された範囲である5℃以上55℃以下でよく、通常は常温である5℃以上35℃未満(寒冷地や夏季の水温)、好ましくは20℃以上30℃以下である。また、SA層のみに通液される再生剤の温度は、常温から加温された範囲である5℃以上55℃以下でよく、通常は加温された35℃以上55℃以下が好ましく、40℃以上45℃以下がもっとも好ましい。さらに、SA層からWA層に連続して通液される再生剤は、5℃以上55℃以下とすることが好ましい。但し、SA層に対して後述の浸漬工程を行う場合、浸漬時間を30分以上とすることで、常温(5℃以上35℃未満、好ましくは20℃以上30℃以下)の再生剤を用いることができる。
<Temperature>
The temperature of the regenerant is as follows.
The temperature of the regenerant that is passed through only the WA layer may be 5 ° C. or more and 55 ° C. or less, which is a range heated from room temperature, and is usually 5 ° C. or more and less than 35 ° C. (water temperature in cold regions or summer). ), Preferably 20 ° C. or higher and 30 ° C. or lower. Further, the temperature of the regenerant that is passed through only the SA layer may be 5 ° C. or higher and 55 ° C. or lower, which is a range warmed from normal temperature, and is usually preferably 35 ° C. or higher and 55 ° C. or lower when heated. Most preferably, it is at least 45 ° C. Furthermore, the regenerant that is continuously passed from the SA layer to the WA layer is preferably 5 ° C. or higher and 55 ° C. or lower. However, when the immersion process described below is performed on the SA layer, a regenerant at room temperature (5 ° C. or more and less than 35 ° C., preferably 20 ° C. or more and 30 ° C. or less) is used by setting the immersion time to 30 minutes or more. Can do.

<通液量>
再生剤の通液量は、再生する複層式陰イオン交換塔の負荷、或いは塔流出液(再生廃液)のpHに基づき、次のような量とすることが好ましい。
即ち、再生剤の通液量は、再生する複層式陰イオン交換塔の設計負荷(脱着するイオン量)に対して通液されたNaOHのモル比が100%以上、好ましくは110〜135%となる量とすることが好ましい。
この設計負荷に対するNaOHモル比は、WA層とSA層との全体の設計負荷に対して設定してもよく、各層個別の設計負荷に対して設定してもよい。また、実際の運用負荷を分析し、この値に対して設定してもよい。
<Flow rate>
The flow rate of the regenerant is preferably set to the following amount based on the load of the multilayer anion exchange tower to be regenerated or the pH of the tower effluent (regeneration waste liquid).
That is, the flow rate of the regenerant is such that the molar ratio of NaOH passed is 100% or more, preferably 110 to 135%, with respect to the design load (the amount of ions to be desorbed) of the multilayer anion exchange tower to be regenerated. It is preferable that the amount is as follows.
The NaOH molar ratio with respect to the design load may be set for the overall design load of the WA layer and the SA layer, or may be set for the design load of each layer individually. Also, the actual operational load may be analyzed and set for this value.

或いは、再生剤の通液量は、SA層のみの通液の場合は、SA層のみを通過した塔流出液(再生廃液)のpHが9以上、好ましくは10以上、より好ましくは13以上となるような量とすることが好ましい。また、WA層のみの通水の場合は、WA層のみを通過した塔流出液(再生廃液)のpHが9以上、好ましくは10以上、より好ましくは13以上となるような量とすることが好ましい。また、SA層とWA層とに連続して再生剤を通水する場合は、SA層→WA層の順で通過してWA層側から排出される塔流出液(WA層から排出される再生廃液)のpHが9以上、好ましくは10〜13となるような量とすることが好ましい。   Alternatively, the flow rate of the regenerant is, when only the SA layer is passed, the pH of the tower effluent (regeneration waste liquid) that has passed only the SA layer is 9 or more, preferably 10 or more, more preferably 13 or more. It is preferable to make such an amount. In addition, when water is passed through only the WA layer, the amount of the tower effluent (recycled waste liquid) that has passed through the WA layer is adjusted to 9 or more, preferably 10 or more, more preferably 13 or more. preferable. In addition, when the regenerant is continuously passed through the SA layer and the WA layer, the tower effluent (regeneration discharged from the WA layer) passes through the SA layer → WA layer and is discharged from the WA layer side. The pH of the waste liquid is preferably 9 or more, preferably 10-13.

<浸漬工程>
本発明において、再生剤の通液後、通液を停止して所定時間そのまま保持する浸漬工程を行ってもよい。
<Immersion process>
In the present invention, after the regenerant is passed, an immersion step may be performed in which the flow is stopped and held for a predetermined time.

この場合、浸漬を開始するタイミングは、再生剤の通液量が前述の量となった時点とすることが好ましい。   In this case, it is preferable that the timing of starting the immersion is the time when the flow rate of the regenerant reaches the aforementioned amount.

浸漬温度(浸漬工程において塔内に保持される再生剤の温度)は、浸漬時間によっても異なるが、通常5℃以上55℃以下でよく、好ましくは常温(5℃以上35℃未満、好ましくは20℃以上30℃以下)である。浸漬工程は通常20分以上、好ましくは30〜120分程度である。上記の温度と時間の範囲で、浸漬温度が高い場合には、浸漬時間を短く、浸漬温度が低い場合は浸漬時間を長くすることが好ましい。   The soaking temperature (the temperature of the regenerant held in the tower in the soaking step) varies depending on the soaking time, but is usually from 5 ° C. to 55 ° C., preferably normal temperature (5 ° C. to less than 35 ° C., preferably 20 ° C. ° C to 30 ° C). The dipping step is usually 20 minutes or longer, preferably about 30 to 120 minutes. When the immersion temperature is high within the above temperature and time range, the immersion time is preferably shortened, and when the immersion temperature is low, the immersion time is preferably increased.

このような浸漬工程を行うことで、SAに吸着しているシリカ等や、WAに吸着している強酸成分の脱着を促進させることができる。   By performing such an immersion step, it is possible to promote desorption of silica or the like adsorbed on SA, or a strong acid component adsorbed on WA.

<再生操作>
以下に、本発明における具体的な再生操作について説明する。
本発明においては、(ア)再生剤を、複層式陰イオン交換塔のWA層とSA層との間から導入し、WA層のみを通過させて流出させる工程、もしくは(イ)再生剤を、複層式陰イオン交換塔のSA層側から導入してSA層からWA層の順に通過させて流出させる工程を、塔流出液のpHがアルカリ性、好ましくはpH9以上、より好ましくはpH10以上になるまで継続する第1再生工程と、この第1再生工程後にSA層を再生する第2再生工程とを行う。
<Playback operation>
Hereinafter, a specific reproduction operation in the present invention will be described.
In the present invention, (a) a step of introducing the regenerant from between the WA layer and the SA layer of the multi-layered anion exchange tower and allowing only the WA layer to pass through, or (b) a regenerant The step of introducing from the SA layer side of the multi-layered anion exchange tower and passing it through the SA layer to the WA layer in order is carried out, and the pH of the tower effluent is alkaline, preferably pH 9 or higher, more preferably pH 10 or higher. A first regeneration process that continues until the first regeneration process is performed, and a second regeneration process that regenerates the SA layer after the first regeneration process is performed.

第2再生工程でSA層を再生する方法としては、次のような方法が挙げられる。
(i) 再生剤を複層式陰イオン交換塔のWA層とSA層との間から導入し、SA層のみを通過させて塔のSA層側から流出させる、或いは、再生剤を複層式陰イオン交換塔のSA層側から導入し、塔のSA層とWA層との間から流出させる。
(ii) 再生剤を複層式陰イオン交換塔のSA層側から導入してSA層からWA層の順に通過させて塔のWA層側から流出させる。
(iii) 再生剤を複層式陰イオン交換塔のSA層側から導入してSA層の浸漬再生を行う。
Examples of the method for regenerating the SA layer in the second regeneration step include the following methods.
(i) The regenerant is introduced from between the WA layer and the SA layer of the multi-layered anion exchange tower, and only the SA layer is allowed to flow out from the SA layer side of the tower, or the regenerant is multi-layered. It introduce | transduces from the SA layer side of an anion exchange column, and it is made to flow out between between the SA layer and WA layer of a column.
(ii) The regenerant is introduced from the SA layer side of the multi-layered anion exchange column, passed through the SA layer and the WA layer in this order, and then flows out from the WA layer side of the column.
(iii) A regenerant is introduced from the SA layer side of the multi-layered anion exchange tower to regenerate the SA layer by immersion.

なお、上記(i)のように、SA層のみに再生剤を通液してSA層の再生に用いた再生剤をWA層を通過させることなく塔外へ排出する場合、第1再生工程として、前記(ア)の工程を採用することで、第1再生工程と第2再生工程とを同時に行うことができる。
このようなSA層のみの再生、WA層のみの再生は、WA層とSA層との間に再生剤の導入配管や再生廃液の排出配管を設けた複層式陰イオン交換塔を用いて行うことができる。
When the regenerant is passed through only the SA layer and the regenerant used to regenerate the SA layer is discharged outside the tower without passing through the WA layer as in (i) above, the first regeneration step is performed. By adopting the step (a), the first regeneration step and the second regeneration step can be performed simultaneously.
Such regeneration of only the SA layer and regeneration of only the WA layer are performed using a multi-layer anion exchange tower provided with a regenerant introduction pipe and a regeneration waste liquid discharge pipe between the WA layer and the SA layer. be able to.

本発明では、第1再生工程で、塔流出液のpHがアルカリ性、好ましくはpH9以上、より好ましくはpH10以上となるまで再生剤を通液し、その後、SA層の再生を行うことで、WA層におけるシリカのゲル化を防止することができる。
即ち、(ア)の工程であっても、(イ)の工程であっても、WA層を通過した塔流出液のpHがアルカリ性、好ましくはpH9以上、より好ましくはpH10以上であるということは、WA層に吸着していた強酸成分が完全に脱離除去されたことを意味する。このため、第1再生工程で、WA層の強酸成分を完全に除去した後、SA層の再生を行うことで、SA層の再生でSA層から溶出したシリカを含む再生廃液が、WA層を通過したとしても、再生廃液のpHがWA層の通過中で下がることはなく、シリカのゲル化、析出が起こることはない。
In the present invention, in the first regeneration step, the regenerant is passed through until the pH of the column effluent becomes alkaline, preferably pH 9 or more, more preferably pH 10 or more, and then the SA layer is regenerated, so that WA Silica gelation in the layer can be prevented.
That is, whether it is step (a) or step (b), the pH of the tower effluent that has passed through the WA layer is alkaline, preferably pH 9 or higher, more preferably pH 10 or higher. This means that the strong acid component adsorbed on the WA layer has been completely desorbed and removed. Therefore, in the first regeneration step, the strong acid component in the WA layer is completely removed, and then the SA layer is regenerated, so that the regeneration waste liquid containing silica eluted from the SA layer in the regeneration of the SA layer Even if it passes, the pH of the regenerated waste liquid does not drop while passing through the WA layer, and silica gelation and precipitation do not occur.

本発明における具体的な再生工程の操作手順としては、以下の(1)〜(6)が挙げられる。
(1) (ア)のWA層のみに再生剤を通液する第1再生工程を行った後、SA層のみに再生剤を通液する第2再生工程を行う。
(2) (ア)のWA層のみに再生剤を通液する第1再生工程と、SA層のみに再生剤を通液する第2再生工程を同時に行う。
(3) (ア)のWA層のみに再生剤を通液する第1再生工程を行った後、SA層→WA層に再生剤を通液する第2再生工程を行う。
(4) (ア)のWA層のみに再生剤を通液する第1再生工程を行った後、SA層側から再生剤を塔内に導入して所定時間再生剤を保持する浸漬再生による第2再生工程を行う。この場合、複層式陰イオン交換塔が1塔式であれば、再生剤をSA層側から塔内に導入してSA層及びWA層の全体が再生剤に浸漬される。複層式陰イオン交換塔が2塔式であれば、SA層のみの浸漬再生を行える。
(5) (イ)のSA層→WA層の順で再生剤を通液する第1再生工程を行った後、SA層→WA層に再生剤を通液する第2再生工程を行う。
(6) (イ)のSA層→WA層の順で再生剤を通液する第1再生工程を行った後、所定時間再生剤を保持する浸漬再生による第2再生工程を行う。この(イ)の再生工程は、通常、複層式陰イオン交換塔が1塔式の場合に採用される。
Specific operation procedures of the regeneration step in the present invention include the following (1) to (6).
(1) After performing the first regeneration step of passing the regenerant through only the WA layer of (a), the second regeneration step of passing the regenerant through only the SA layer is performed.
(2) The first regeneration step in which the regenerant is passed through only the WA layer in (a) and the second regeneration step in which the regenerant is passed through only the SA layer are simultaneously performed.
(3) After performing the first regeneration step in which the regenerant is passed through only the WA layer in (a), the second regeneration step in which the regenerant is passed through from the SA layer to the WA layer is performed.
(4) After performing the first regeneration step in which the regenerant is passed through only the WA layer of (a), the regenerative agent is introduced into the tower from the SA layer side and retained for a predetermined time. 2 Perform the regeneration process. In this case, if the multi-layered anion exchange tower is a single tower type, the regenerant is introduced into the tower from the SA layer side, and the entire SA layer and WA layer are immersed in the regenerator. If the multi-layer type anion exchange tower is a double tower type, only the SA layer can be dipped and regenerated.
(5) After performing the first regeneration step of passing the regenerant in the order of SA layer → WA layer in (a), the second regeneration step of passing the regenerant through the SA layer → WA layer is performed.
(6) After performing the first regeneration step in which the regenerant is passed in the order of SA layer → WA layer in (a), the second regeneration step is performed by immersion regeneration that retains the regenerant for a predetermined time. This regeneration step (a) is usually employed when the multi-layered anion exchange tower is of a single tower type.

第2再生工程でSA層の再生を行う場合、再生剤としては、前述の通り、35℃以上55℃以下に加温したものを用いることが好ましい。これは、加温した再生剤であれば、NaOHが速やかに樹脂内に拡散して、シリカを効果的に溶離させることができることによる。
第1再生工程で用いる再生剤は、WA層のみに通液する場合も、SA層からWA層に通液する場合も、常温であっても加温されていても良く、通常は常温(5℃以上35℃未満、好ましくは20℃以上30℃以下)で良い。
When the SA layer is regenerated in the second regeneration step, it is preferable to use a regenerated agent that has been heated to 35 ° C. or more and 55 ° C. or less as described above. This is because if the regenerator is heated, NaOH can quickly diffuse into the resin and silica can be effectively eluted.
The regenerant used in the first regeneration step may be warmed or warmed, whether it is passed through the WA layer alone or from the SA layer to the WA layer. Or higher and lower than 35 ° C, preferably 20 ° C or higher and 30 ° C or lower).

第2再生工程でSA層の浸漬再生を行う場合、浸漬温度(浸漬工程において塔内に保持される再生剤の温度)は、浸漬時間によっても異なるが、通常5℃以上55℃以下、好ましくは常温(5℃以上35℃未満、好ましくは20℃以上30℃以下)である。浸漬工程は通常20分以上、好ましくは30〜120分程度である。上記の温度と時間の範囲で、浸漬温度が高い場合には、浸漬時間を短く、浸漬温度が低い場合は浸漬時間を長くすることが好ましい。   When immersion regeneration of the SA layer is performed in the second regeneration step, the immersion temperature (the temperature of the regenerant retained in the tower in the immersion step) varies depending on the immersion time, but is usually 5 ° C. or more and 55 ° C. or less, preferably It is normal temperature (5 degreeC or more and less than 35 degreeC, Preferably it is 20 degreeC or more and 30 degrees C or less). The dipping step is usually 20 minutes or longer, preferably about 30 to 120 minutes. When the immersion temperature is high within the above temperature and time range, the immersion time is preferably shortened, and when the immersion temperature is low, the immersion time is preferably increased.

浸漬再生の場合、浸漬時間を30分以上とすることで、常温(5℃以上35℃未満、好ましくは20℃以上30℃以下)の再生剤を用いることができる。即ち、浸漬再生の場合は、再生剤の温度に頼らず樹脂内にNaOHを拡散させることができるため、常温(5℃以上35℃未満、好ましくは20℃以上30℃以下)の再生剤を用いることができる。シリカはSAの樹脂内部で重合して吸着しているが、浸漬再生であれば、シリカの重合物を分解して溶離させる反応時間を確保することができる効果もある。   In the case of immersion regeneration, by setting the immersion time to 30 minutes or longer, a regenerant at room temperature (5 ° C. or higher and lower than 35 ° C., preferably 20 ° C. or higher and 30 ° C. or lower) can be used. That is, in the case of immersion regeneration, since NaOH can be diffused in the resin without depending on the temperature of the regenerant, a regenerant at room temperature (5 ° C. or more and less than 35 ° C., preferably 20 ° C. or more and 30 ° C. or less) is used. be able to. Silica is polymerized and adsorbed inside the SA resin, but immersion regeneration also has an effect of ensuring a reaction time for decomposing and eluting the polymer of silica.

以下に実施例を挙げて本発明をより具体的に説明する。
以下の実験例、実施例及び比較例において、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂としては次のものを用いた。
強塩基性アニオン交換樹脂(SA):三菱化学株式会社製「ダイヤイオンSA10ALOH」
弱塩基性アニオン交換樹脂(WA):三菱化学株式会社製「ダイヤイオンWA30C」
Hereinafter, the present invention will be described more specifically with reference to examples.
In the following experimental examples, examples and comparative examples, the followings were used as the strong basic anion exchange resin and the weak basic anion exchange resin.
Strongly basic anion exchange resin (SA): “Diaion SA10ALOH” manufactured by Mitsubishi Chemical Corporation
Weakly basic anion exchange resin (WA): “Diaion WA30C” manufactured by Mitsubishi Chemical Corporation

また、「シリカの溶離率」は次のように定義して、これを指標とすることで再生効率を評価した。シリカの溶離率が100%未満であることは、シリカのゲル化が起きていることを示す。なお、シリカの溶離率の上限は理論的には100%であるが、繰り返し採水を行った樹脂の場合、前回再生時のシリカ負荷の残留で100%を超える場合もある。
シリカの溶離率(%)=(カラムからの再生廃液中のシリカ総量/供給水のシリカ負荷総量)×100
再生廃液中のシリカ総量=再生廃液中の平均シリカ濃度×再生廃液量
供給水中のシリカ総量=供給水中のシリカ濃度×供給水流量×供給時間
シリカの分析はJISに準拠して行い、下記の通りとした。
イオン状シリカ:JIS44.1.2 モリブデン青法
全シリカ:JIS44.3
ゲル状シリカ:(JIS44.3による全シリカ分析値)−(JIS44.1.2によるイオン状シリカ分析値)
Further, “silica elution rate” was defined as follows, and this was used as an index to evaluate the regeneration efficiency. A silica elution rate of less than 100% indicates that silica gelation is occurring. The upper limit of the elution rate of silica is theoretically 100%. However, in the case of a resin that has been repeatedly sampled, there may be a case where it exceeds 100% due to the residual silica load during the previous regeneration.
Elution rate of silica (%) = (total amount of silica in the regenerated waste liquid from the column / total amount of silica loading of feed water) × 100
Total amount of silica in the reclaimed waste liquid = average silica concentration in the reclaimed waste liquid x amount of reclaimed waste liquid Total amount of silica in the feed water = silica concentration in the feed water x feed water flow rate x feed time The analysis of silica is performed according to JIS as follows: It was.
Ionic silica: JIS 44.1.2 Molybdenum blue method All silica: JIS 44.3
Gel silica: (total silica analysis value according to JIS 44.3)-(ionic silica analysis value according to JIS 44.1.2)

また、カラム(φ40mmのアクリルカラム)への通液、通水は以下の共通の条件と、目的に応じた樹脂量、供給水温度、イオン濃度で行った。
供給水の通水:LV=40m/hrで通水
再生剤の通液:供給水の通水と逆向きに、LV=10m/hrで通水
再生剤としてはNaOH水溶液を用い、供給水中の負荷イオン総量に対し、モル比で110%となるように量を決めて通液した。
In addition, liquid flow and water flow through the column (φ40 mm acrylic column) were performed under the following common conditions, resin amount, supply water temperature, and ion concentration according to the purpose.
Feed water flow: LV = 40 m / hr water regenerative agent flow: Reverse direction of feed water flow, LV = 10 m / hr water reflow agent The amount was determined so as to be 110% in terms of molar ratio with respect to the total amount of loaded ions.

[実験例1]
2本のカラムの一方に樹脂層高500mmとなるように、SAを充填し、他方に同じく樹脂層高500mmとなるように、WAを充填した。このカラムを直列につなぎ、WAカラム→SAカラムの順で、塩化物イオン濃度80mg/L、シリカ濃度43mg/Lの供給水を、樹脂1L当たり15g−SiO/L−R(SA)となるように通水した。
再生剤としては45℃、2重量%のNaOH水溶液(pH13以上)を用い、SA層→WA層の順で通液した。
WA充填カラムから排出される塔流出液(再生廃液)のClイオン濃度、イオン状シリカ濃度、コロイダルシリカ濃度及びpHの経時変化を調べ、結果を図1に示した。
図1より明らかなように、Clイオンが排出されている(再生廃液に含まれている)間は、pHが低く、シリカは排出されていない(図1の矢印で示される期間)。
その後、イオン状シリカが排出される。
この図1より、pH9、好ましくはpH10を超える条件であれば、イオン状でシリカが排出されるので、陰イオン交換塔の塔流出液がpH9、好ましくはpH10を超える条件で再生することにより、このWA層に流入してもシリカのゲル化は起こらないことが分かる。
[Experimental Example 1]
One of the two columns was filled with SA so that the resin layer height was 500 mm, and the other was filled with WA so that the resin layer height was 500 mm. This column is connected in series, and in the order of WA column → SA column, feed water having a chloride ion concentration of 80 mg / L and a silica concentration of 43 mg / L becomes 15 g-SiO 2 / LR (SA) per liter of resin. The water passed through.
As a regenerant, 45 ° C. and 2 wt% NaOH aqueous solution (pH 13 or more) were used, and the solution was passed in the order of SA layer → WA layer.
Changes in the Cl ion concentration, ionic silica concentration, colloidal silica concentration, and pH of the tower effluent (recycled waste liquid) discharged from the WA packed column were examined, and the results are shown in FIG.
As is clear from FIG. 1, while Cl ions are being discharged (contained in the regenerated waste liquid), the pH is low and silica is not discharged (period shown by the arrow in FIG. 1).
Thereafter, ionic silica is discharged.
As shown in FIG. 1, since the silica is discharged in an ionic state under a condition that exceeds pH 9, preferably pH 10, the column effluent of the anion exchange tower is regenerated under a condition that exceeds pH 9, preferably pH 10. It can be seen that silica does not gel even if it flows into this WA layer.

[実施例1]
2本のカラムの一方に樹脂層高500mmとなるように、SAを充填し、他方に同じく樹脂層高500mmとなるように、WAを充填した。このカラムを直列につなぎ、WAカラム→SAカラムの順で、塩化物イオン濃度80mg/L、シリカ濃度43mg/Lの供給水を、樹脂1L当たり15g−SiO/L−R(SA)となるように通水した。
再生剤としては常温(25℃)、NaOH濃度1重量%のNaOH水溶液を用い、まず、WAカラムにのみ再生剤を通液して塔流出液のpHが9になるまで先行再生を行った。塔流出液は系外へ排出した。その後、再生剤を加温(45℃)して、SAカラム→WAカラムの順に、塔流出液がpH14となるまで連続通液して再生を行った後、純水のみによる押出しを行った。
上記の供給水の通水と再生を5回繰り返した後、6回目のシリカの溶離率を計算したところ、110%であった。
[Example 1]
One of the two columns was filled with SA so that the resin layer height was 500 mm, and the other was filled with WA so that the resin layer height was 500 mm. This column is connected in series, and in the order of WA column → SA column, feed water having a chloride ion concentration of 80 mg / L and a silica concentration of 43 mg / L becomes 15 g-SiO 2 / LR (SA) per liter of resin. The water passed through.
As the regenerant, normal temperature (25 ° C.) and an aqueous NaOH solution having a NaOH concentration of 1 wt% were used. The tower effluent was discharged out of the system. Thereafter, the regenerant was heated (45 ° C.), and the regeneration was conducted by continuously passing the column effluent until the pH reached 14 in the order of the SA column → WA column, followed by extrusion with pure water alone.
After repeating the water flow and regeneration of the above feed water 5 times, the elution rate of the sixth silica was calculated and found to be 110%.

[比較例1]
実施例1において、WAカラムの先行再生を行わずにSAカラム→WAカラムの順に連続通液して再生を行った後、純水のみによる押出しを行った。上記の供給水の通水と再生を5回繰り返した後、6回目のシリカの溶離率を計算したところ、97%であった。
[Comparative Example 1]
In Example 1, regeneration was performed by continuously passing in the order of the SA column → WA column without performing prior regeneration of the WA column, and then extrusion was performed only with pure water. After repeating the above-mentioned feed water flow and regeneration 5 times, the elution rate of the sixth silica was calculated and found to be 97%.

上記の実施例1と比較例1の結果から、WA層の先行再生を行うことにより、シリカのゲル化を防止してシリカを効率的に溶離させて再生することができることが分かる。   From the results of Example 1 and Comparative Example 1 above, it can be seen that by performing the preceding regeneration of the WA layer, the silica can be prevented from gelling and efficiently regenerated by eluting the silica.

[実施例2]
2本のカラムの一方に樹脂層高500mmとなるように、SAを充填し、他方に同じく樹脂層高500mmとなるように、WAを充填した。このカラムを直列につなぎ、WAカラム→SAカラムの順で、塩化物イオン濃度80mg/L、シリカ濃度43mg/Lの供給水を、樹脂1L当たり15g−SiO/L−R(SA)となるように通水した。
再生剤として、NaOH濃度1重量%のNaOH水溶液を用い、SAカラム及びWAカラムのそれぞれに、それぞれの樹脂に負荷したイオン量に対し110%となるように、再生剤を、塔流出液のpHがそれぞれ14となるまで個別に通液し、塔流出液を系外へ排出した。その後、同様に純水のみによる押出しを行った。なお、再生剤はWAカラムには常温(25℃)、SAカラムには加温(45℃)で通液した。
上記の供給水の通水と再生を5回繰り返した後、6回目のシリカの溶離率を計算したところ、105%であった。
[Example 2]
One of the two columns was filled with SA so that the resin layer height was 500 mm, and the other was filled with WA so that the resin layer height was 500 mm. This column is connected in series, and in the order of WA column → SA column, feed water having a chloride ion concentration of 80 mg / L and a silica concentration of 43 mg / L becomes 15 g-SiO 2 / LR (SA) per liter of resin. The water passed through.
A NaOH aqueous solution having a NaOH concentration of 1% by weight was used as the regenerant, and the regenerant was added to each of the SA column and WA column so that the amount of ions loaded on each resin was 110%. Were individually passed until each became 14, and the tower effluent was discharged out of the system. Thereafter, extrusion with pure water alone was similarly performed. The regenerant was passed through the WA column at room temperature (25 ° C.) and through the SA column at warm (45 ° C.).
After repeating the above-mentioned feed water flow and regeneration 5 times, the elution rate of the sixth silica was calculated and found to be 105%.

この実施例2より、SA層とWA層とを別々に個別再生することにより、シリカのゲル化を防止してシリカを効率的に溶離させて再生できることが分かる。   From this Example 2, it can be seen that by separately regenerating the SA layer and the WA layer, it is possible to regenerate by preventing silica gelation and efficiently eluting silica.

[実施例3]
2本のカラムに樹脂層高500mmとなるように、SAを充填した。この2つのカラムに対し、シリカ濃度43mg/Lの供給水を樹脂1L当たり15g−SiO/L−Rとなるように通水した。
一方のカラムの再生は、温度25℃、NaOH濃度1重量%のNaOH水溶液(pH14以上)を通液することにより行い、塔流出液のpHが13であることを確認した後、30分封入した。30分の浸漬工程後に所定量の残りのNaOH水溶液を通液して、終了後純水のみによる押出しを行った。この供給水の通水と再生を5回繰り返した後、6回目のシリカの溶離率を計算したところ、103%となった。
他方のカラムには、温度25℃、NaOH濃度1重量%のNaOH水溶液の全量を通液し、その後純水のみによる押出しを行って再生した。再生時の塔流出液のpHは13となっていた。その後シリカの溶離率を計算したところ、85%であった。
この結果から、浸漬工程を行うことにより、常温のNaOH水溶液であってもSAからシリカを効率的に溶離させることができることが分かる。
[Example 3]
Two columns were packed with SA so that the resin layer height was 500 mm. Through these two columns, feed water having a silica concentration of 43 mg / L was passed so as to be 15 g-SiO 2 / L-R per liter of resin.
One column was regenerated by passing a NaOH aqueous solution (pH 14 or higher) having a temperature of 25 ° C. and a NaOH concentration of 1% by weight. After confirming that the pH of the tower effluent was 13, the solution was sealed for 30 minutes. . A predetermined amount of the remaining NaOH aqueous solution was passed through after the immersion process for 30 minutes, and extrusion was performed only with pure water after completion. After the feed water was passed and regenerated five times, the sixth elution rate of silica was calculated and found to be 103%.
Through the other column, the whole amount of NaOH aqueous solution having a temperature of 25 ° C. and a NaOH concentration of 1% by weight was passed through, and thereafter, regeneration was performed by extruding only with pure water. The pH of the tower effluent during regeneration was 13. Thereafter, the elution rate of silica was calculated to be 85%.
From this result, it is understood that silica can be efficiently eluted from SA even by a NaOH aqueous solution at room temperature by performing the dipping process.

Claims (4)

弱塩基性陰イオン交換樹脂層と強塩基性陰イオン交換樹脂層を備え、被処理水が弱塩基性陰イオン交換樹脂層から強塩基性陰イオン交換樹脂層の順に通水された複層式陰イオン交換塔に再生剤を通液して該弱塩基性陰イオン交換樹脂及び強塩基性陰イオン交換樹脂を再生する方法において、
(ア)再生剤を、該複層式陰イオン交換塔の弱塩基性陰イオン交換樹脂層と強塩基陰イオン交換樹脂層との間から導入し、弱塩基性陰イオン交換樹脂層を通過させて該塔から流出させる工程、もしくは(イ)再生剤を、該複層式陰イオン交換塔の強塩基性陰イオン交換樹脂層側から導入して強塩基性陰イオン交換樹脂層から弱塩基性陰イオン交換樹脂層の順に通過させて該塔から流出させる工程を、塔流出液のpHがpH9以上のアルカリ性になるまで継続する第1再生工程と、
該第1再生工程後に該強塩基性陰イオン交換樹脂層を、5℃以上35℃未満の再生剤に20分以上浸漬させることにより再生する第2再生工程とを行うことを特徴とする複層式陰イオン交換塔の再生方法。
A multi-layer system that includes a weakly basic anion exchange resin layer and a strongly basic anion exchange resin layer, and water to be treated is passed in the order of weakly basic anion exchange resin layer to strong basic anion exchange resin layer. In a method for regenerating the weakly basic anion exchange resin and the strongly basic anion exchange resin by passing a regenerant through an anion exchange tower,
(A) a regenerant is introduced from between the plurality bed anionic weakly basic anion exchange resin layer of the ion exchange column and a strongly basic anion exchange resin layer, it passes through the weakly basic anion exchange resin layer Or (b) a regenerant is introduced from the strong base anion exchange resin layer side of the multi-layer anion exchange column to weak base from the strong base anion exchange resin layer. A first regeneration step of continuing the step of passing through the order of the functional anion exchange resin layer and letting it flow out of the tower until the pH of the tower effluent becomes alkaline of pH 9 or higher ;
And a second regeneration step in which the strongly basic anion exchange resin layer is regenerated by immersing the strongly basic anion exchange resin layer in a regenerant having a temperature of 5 ° C. or higher and lower than 35 ° C. for 20 minutes or longer after the first regeneration step. A method for regenerating an anion exchanger.
弱塩基性陰イオン交換樹脂層と強塩基性陰イオン交換樹脂層を備え、被処理水が弱塩基性陰イオン交換樹脂層から強塩基性陰イオン交換樹脂層の順に通水された複層式陰イオン交換塔に再生剤を通液して該弱塩基性陰イオン交換樹脂及び強塩基性陰イオン交換樹脂を再生する方法において、
(ア)再生剤を、該複層式陰イオン交換塔の弱塩基性陰イオン交換樹脂層と強塩基陰イオン交換樹脂層との間から導入し、弱塩基性陰イオン交換樹脂層を通過させて該塔から流出させる工程を、塔流出液のpHがpH9以上のアルカリ性になるまで継続する第1再生工程と、
該強塩基性陰イオン交換樹脂層を、5℃以上35℃未満の再生剤に20分以上浸漬させることにより再生する第2再生工程とを行う複層式陰イオン交換塔の再生方法であって、
該1再生工程と該第2再生工程とを同時に行い、該第2再生工程において、該強塩基性陰イオン交換樹脂層の再生に用いた再生剤を該弱塩基性陰イオン交換樹脂層を通過させることなく、該複層式陰イオン交換塔外へ排出することを特徴とする複層式陰イオン交換塔の再生方法。
A multi-layer system that includes a weakly basic anion exchange resin layer and a strongly basic anion exchange resin layer, and water to be treated is passed in the order of weakly basic anion exchange resin layer to strong basic anion exchange resin layer. In a method for regenerating the weakly basic anion exchange resin and the strongly basic anion exchange resin by passing a regenerant through an anion exchange tower,
(A) a regenerant is introduced from between the plurality bed anionic weakly basic anion exchange resin layer of the ion exchange column and a strongly basic anion exchange resin layer, it passes through the weakly basic anion exchange resin layer A first regeneration step in which the step of allowing the column effluent to flow out from the column is continued until the pH of the column effluent becomes alkaline of pH 9 or higher ,
A method for regenerating a multi-layer anion exchange column, comprising performing a second regeneration step of regenerating the strongly basic anion exchange resin layer by immersing it in a regenerant having a temperature of 5 ° C or higher and lower than 35 ° C for 20 minutes or longer. ,
The first regeneration step and the second regeneration step are performed simultaneously, and in the second regeneration step, the regenerant used to regenerate the strongly basic anion exchange resin layer passes through the weakly basic anion exchange resin layer. A method for regenerating a multi-layer anion exchange column, wherein the multi-layer anion exchange column is discharged outside the multi-layer anion exchange column.
請求項1又は2において、前記再生剤を通液する複層式陰イオン交換塔中の前記強塩基性陰イオン交換樹脂はシリカを吸着、保持しており、前記弱塩基性陰イオン交換樹脂は強酸を吸着、保持していることを特徴とする複層式陰イオン交換塔の再生方法。 In Claim 1 or 2 , the strongly basic anion exchange resin in the multilayer anion exchange tower through which the regenerant is passed adsorbs and holds silica, and the weakly basic anion exchange resin is A method for regenerating a multi-layer anion exchange column, characterized by adsorbing and holding a strong acid. 請求項1ないしのいずれか1項において、前記第1の再生工程に先立つ、被処理水通水時の温度を5〜20℃の範囲に維持することを特徴とする複層式陰イオン交換塔の再生方法。 The multilayer anion exchange according to any one of claims 1 to 3 , wherein the temperature when the treated water is passed is maintained in a range of 5 to 20 ° C prior to the first regeneration step. How to regenerate the tower.
JP2016219875A 2016-11-10 2016-11-10 Regeneration method of multi-layer anion exchange tower Active JP6332412B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016219875A JP6332412B2 (en) 2016-11-10 2016-11-10 Regeneration method of multi-layer anion exchange tower
PCT/JP2017/032488 WO2018088015A1 (en) 2016-11-10 2017-09-08 Regeneration method for multilayer anion exchange column
CN201780067724.XA CN109906115A (en) 2016-11-10 2017-09-08 The regeneration method of multi-layer anion exchange tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016219875A JP6332412B2 (en) 2016-11-10 2016-11-10 Regeneration method of multi-layer anion exchange tower

Publications (2)

Publication Number Publication Date
JP2018075537A JP2018075537A (en) 2018-05-17
JP6332412B2 true JP6332412B2 (en) 2018-05-30

Family

ID=62109645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219875A Active JP6332412B2 (en) 2016-11-10 2016-11-10 Regeneration method of multi-layer anion exchange tower

Country Status (3)

Country Link
JP (1) JP6332412B2 (en)
CN (1) CN109906115A (en)
WO (1) WO2018088015A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823156B2 (en) * 1978-08-08 1983-05-13 栗田工業株式会社 Pure water production method
JPS5673547A (en) * 1979-11-16 1981-06-18 Asahi Glass Co Ltd Regeneration of anion exchange membrane
US5443740A (en) * 1992-10-07 1995-08-22 Christ Ag Process for the conditioning of ion exchange resins
JPH08224580A (en) * 1995-02-21 1996-09-03 Japan Organo Co Ltd Acid removing apparatus, pure water producing apparatus provided therewith, and weakly basic anion-exchange resin for acid removal
JPH10137752A (en) * 1996-11-14 1998-05-26 Mitsubishi Chem Corp Ion exchange method
CN1069605C (en) * 1998-08-20 2001-08-15 南亚塑胶工业股份有限公司 Method and device for removing formic acid and acetic acid from water of glycol production
JP3922824B2 (en) * 1999-01-12 2007-05-30 オルガノ株式会社 High purity water production equipment
JP3907937B2 (en) * 2000-10-23 2007-04-18 日本電工株式会社 Method for treating boron-containing eluent containing alkali
JP6331014B2 (en) * 2014-06-19 2018-05-30 栗田工業株式会社 Method and apparatus for regenerating multilayer anion exchange resin tower

Also Published As

Publication number Publication date
WO2018088015A1 (en) 2018-05-17
JP2018075537A (en) 2018-05-17
CN109906115A (en) 2019-06-18

Similar Documents

Publication Publication Date Title
JP5081690B2 (en) Production method of ultra pure water
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
JP6332412B2 (en) Regeneration method of multi-layer anion exchange tower
JP5069606B2 (en) Sugar liquid decolorization equipment
TWI756249B (en) Regenerative ion exchange device and method of operating the same
JP3632331B2 (en) Ion exchange method and ion exchange column used in this ion exchange method
TWI781227B (en) Method for removing boron, and method for producing pure water or ultrapure water
JP6331014B2 (en) Method and apparatus for regenerating multilayer anion exchange resin tower
JP3632343B2 (en) Pure water production method and ion exchange tower
JP6015737B2 (en) Operation method of regenerative ion exchanger
JP2002361247A (en) Method for manufacturing pure water
JP2002205062A (en) Method for removing copper in salt water, method for regenerating copper adsorbing resin and apparatus for removing copper in salt water
JP3913379B2 (en) Regeneration method of mixed bed type ion exchange equipment
JP6337933B2 (en) Water quality management system and operation method of water quality management system
JP4411669B2 (en) Regeneration method of cation exchange resin
JP2018086660A (en) Method and device for the regeneration of bilayer type anion exchange resin column
JP3951456B2 (en) Pure water production equipment
JP2000189815A (en) Regeneration method for ion exchange device
JP5093292B2 (en) Method for treating vanadium-containing water
JP3458317B2 (en) Ion exchange apparatus and method for regenerating ion exchange resin
JP2023077744A (en) Regeneration process for pure water production apparatus and pure water production apparatus
JP2003080245A (en) Water purifying apparatus
JP5940011B2 (en) Ion exchange tower regeneration method
JP2654107B2 (en) Regeneration method of ion exchange equipment for pure water production
JP2015157251A (en) Method for regenerating anion exchange resin, and water treatment apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6332412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250