JP4411669B2 - Regeneration method of cation exchange resin - Google Patents

Regeneration method of cation exchange resin Download PDF

Info

Publication number
JP4411669B2
JP4411669B2 JP23583398A JP23583398A JP4411669B2 JP 4411669 B2 JP4411669 B2 JP 4411669B2 JP 23583398 A JP23583398 A JP 23583398A JP 23583398 A JP23583398 A JP 23583398A JP 4411669 B2 JP4411669 B2 JP 4411669B2
Authority
JP
Japan
Prior art keywords
resin
regeneration
exchange resin
cation exchange
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23583398A
Other languages
Japanese (ja)
Other versions
JP2000061321A (en
Inventor
洋 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP23583398A priority Critical patent/JP4411669B2/en
Publication of JP2000061321A publication Critical patent/JP2000061321A/en
Application granted granted Critical
Publication of JP4411669B2 publication Critical patent/JP4411669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カチオン交換樹脂の再生方法、特に銀担持活性炭による処理水をイオン交換したカチオン交換樹脂の再生方法に関するものである。
【0002】
【従来の技術】
カチオン交換樹脂とアニオン交換樹脂を用いる純水製造装置では、水道水、河川水、井戸水等の原水を、必要により凝集、沈殿、濾過等の前処理を行ったのち、カチオン交換樹脂およびアニオン交換樹脂層に通してカチオン交換およびアニオン交換を行って純水を製造している。このような方法において、原水として水道水のように遊離塩素を含む原水を用いると、樹脂が劣化するので、前処理として活性炭層に通水することにより遊離塩素を除去してからイオン交換を行うことが行われる。
【0003】
このように活性炭処理を行うと、遊離塩素が除去されるため、活性炭層に細菌が増殖し、処理水に有機物や細菌が漏出してイオン交換装置を汚染する。このためこれを防止するために、銀担持活性炭を用いて遊離塩素を除去することにより、銀の殺菌力により細菌の増殖を抑制することが行われる。
【0004】
ところがこのような銀担持活性炭で処理を行うと、活性炭より微量の銀が溶出し、これがカチオン交換樹脂に吸着される。通常カチオン交換樹脂は塩酸や硫酸により再生される。しかし、銀イオンを吸着したカチオン交換樹脂を通常の再生方法で再生すると、塩化銀や硫酸銀のような難溶性の銀化合物が残留するためと推測されるが、ナトリウムやカルシウムイオンは脱着されてイオン交換能が回復するが、再生は十分ではなく処理水の比抵抗の立ち上がりに長時間を要するという問題点がある。
【0005】
銀イオンを吸着したイミノジ酢酸型のカチオン交換樹脂の再生に際し、硫酸銅水溶液で処理したのち塩酸で処理する方法が提案されている(特開昭56−130236号)。しかしここで使用しているカチオン交換樹脂はキレート樹脂であるため、通常の純水製造に使用されるカチオン交換樹脂とはイオン交換機構が異なり、硫酸銅水溶液で通常のカチオン交換樹脂を処理したのち、塩酸で再生を行っても再生は十分になされない。
【0006】
【発明が解決しようとする課題】
本発明の課題は、銀担持活性炭による処理水をイオン交換したカチオン交換樹脂を効率よく再生して銀を脱離させることができ、処理水の比抵抗の立ち上がりを速くすることが可能なカチオン交換樹脂の再生方法を提案することである。
【0007】
【課題を解決するための手段】
本発明は次のカチオン交換樹脂の再生方法である。
(1) 銀担持活性炭による処理水をイオン交換したカチオン交換樹脂を再生するに際し、硝酸による再生および水酸化ナトリウムによる再生後、塩酸により再生することを特徴とするカチオン交換樹脂の再生方法
(2) カチオン交換樹脂が銀イオンを吸着した樹脂である上記(1)記載の方法。
(3) カチオン交換樹脂を塩酸または硫酸で再生するサイクルと、硝酸による再生および水酸化ナトリウムによる再生後、塩酸により再生するサイクルとを組み合わせて行う上記(1)または(2)記載の方法。
【0008】
本発明で用いるカチオン交換樹脂はナトリウムやカルシウムイオン等の通常のカチオンのほか銀を吸着するカチオン交換樹脂であり、一般的には強酸性カチオン交換樹脂が好ましいが、場合によっては弱酸性カチオン交換樹脂であってもよい。本発明で再生の対象とするのは、銀担持活性炭による処理水をイオン交換して銀イオンを吸着したカチオン交換樹脂である。
【0009】
銀担持活性炭は活性炭の表面に金属銀または銀化合物を担持させて殺菌性を付与したものであり、このような活性炭で処理することにより遊離塩素を除去すると同時に細菌の増殖を抑制する目的で使用されるが、他の目的で使用するものでもよい。このような活性炭による処理水はナトリウムやカルシウムイオン等の一般のカチオンのほか微量の銀がイオンとなって溶出している。
【0010】
本発明で再生の対象とするカチオン交換樹脂はこのような銀イオンを吸着した樹脂であり、純水製造装置に用いられるカチオン交換樹脂があげられるが、純水製造装置以外に用いられるカチオン交換樹脂であってもよい。純水製造装置としては強酸性カチオン交換樹脂層と強塩基性アニオン交換樹脂層の組み合わせが一般的であり、その前に弱酸性カチオン交換樹脂層または弱塩基性アニオン交換樹脂層を組み合わせるもの、あるいは後に強酸性カチオン交換樹脂層または混床式のポリッシャを組み合わせるものでもよい。
【0011】
銀担持活性炭の処理水をカチオン交換樹脂でイオン交換すると、銀イオンはカチオン交換樹脂に交換吸着される。銀イオンは一般に中性塩となっているので、弱酸性カチオン交換樹脂層を設ける場合でも、銀イオンは主として強酸性カチオン交換樹脂に吸着される。カチオン交換樹脂には銀以外にもナトリウム、カルシウム等の一般のカチオンが吸着され、量的には一般のカチオンの方が多く吸着される。
【0012】
通水により銀その他のカチオンが吸着されたカチオン交換樹脂は通常は塩酸、硫酸等により再生されるが、このような通常の再生を繰り返していると、不溶性の銀化合物が残留し、これが再生後の水洗水に溶出して比抵抗の立ち上がりが悪化し、水洗水を多量に使用する必要があるとともに、再生時間が長くなる。
【0013】
そこで本発明は、このような銀吸着カチオン交換樹脂の再生に際して、硝酸による再生および水酸化ナトリウムによる再生後、塩酸により再生を行う。
【0015】
すなわち硝酸による再生後、水酸化ナトリウムによる再生を行い、その後塩酸による再生を行う。再生レベルは60g・HNO3/liter−樹脂以上、好ましくは120〜300g・HNO3/liter−樹脂、40g・NaOH/liter−樹脂以上、好ましくは100〜200g・NaOH/liter−樹脂、および30g・HCl/liter−樹脂以上、好ましくは100〜200g・HCl/liter−樹脂とするのが好ましい。強酸性カチオン交換樹脂を複数段にわたって用いる場合も同様とする。
【0016】
このような再生方法は樹脂を劣化させやすいので、全サイクルについて行う必要はなく、塩酸、硫酸で再生する通常のサイクルと、硝酸による再生および水酸化ナトリウムによる再生後、塩酸により再生するサイクルを組み合わせるのが好ましい。この場合塩酸、硫酸で再生する通常のサイクル2〜1000回につき、硝酸による再生および水酸化ナトリウムによる再生後、塩酸により再生するサイクル1回の割合とするのが好ましい。通常の再生における塩酸による再生の再生レベルは30g・HCl/liter−樹脂以上、好ましくは70〜150g・HCl/liter−樹脂、硫酸再生の場合、50g・H2SO4/liter−樹脂以上、好ましくは100〜200g・H2SO4/liter−樹脂が好ましい。
【0017】
このようなカチオン交換樹脂の前段に弱酸性カチオン交換樹脂を用いる場合の塩酸による再生の再生レベルは30g・HCl/liter−樹脂以上、好ましくは70〜150g・HCl/liter−樹脂、硫酸再生の場合、50g・H2SO4/liter−樹脂以上、好ましくは100〜200g・H2SO4/liter−樹脂が好ましい。
また上記のカチオン交換樹脂と組み合わせて用いる強または弱塩基性アニオン交換樹脂の再生レベルは40g・NaOH/liter−樹脂、好ましくは100〜200g・NaOH/liter−樹脂とするのが好ましい。
【0018】
上記の再生において、硝酸による再生、水酸化ナトリウムによる再生および塩酸による再生は向流再生でも並流再生でもよく、それぞれ一般の再生と同様に薬注、押出、水洗の工程を行う。上記の再生により樹脂に付着した不溶性の銀化合物は除去され、水洗時の比抵抗の立ち上がりが速くなる
【0019】
【発明の効果】
以上の通り本発明によれば、硝酸による再生および水酸化ナトリウムによる再生後、塩酸により再生するようにしたので、銀担持活性炭による処理水をイオン交換したカチオン交換樹脂を効率よく再生して銀を脱離させることができ、処理水の比抵抗の立ち上がりを早くすることが可能である。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面により説明する。
図1は実施形態における純水製造装置の系統図である。
【0021】
図1において、1は銀担持活性炭塔、2は弱塩基性アニオン交換樹脂塔(以下、弱アニオン樹脂塔という)、3は強酸性カチオン交換樹脂塔(以下、強カチオン樹脂塔という)、4は強酸性アニオン交換樹脂塔(以下、強アニオン樹脂塔という)、5は強酸性カチオン交換樹脂塔(以下、強カチオン樹脂塔という)で、それぞれ銀担持活性炭1a、弱塩基性アニオン交換樹脂2a、強酸性カチオン交換樹脂3a、強塩基性アニオン交換樹脂4a、強酸性カチオン交換樹脂5aが充填されている。7は比抵抗計である。
【0022】
上記の装置による純水製造は、原水をラインL1から銀担持活性炭塔1、弱アニオン樹脂塔2、強カチオン樹脂塔3、強アニオン樹脂塔4、強カチオン樹脂塔5にラインL2〜L5を通して供給し、それぞれの塔で吸着またはイオン交換を行い、最終的にラインL6、L7を通して純水を得る。このとき銀担持活性炭塔1から溶出する銀イオンは強カチオン樹脂塔3、5に吸着される。その間比抵抗計7において水質(比抵抗)を検出する。
【0023】
上記の純水製造において、弱塩基性アニオン交換樹脂2a、強酸性カチオン交換樹脂3a、強塩基性アニオン交換樹脂4a、強酸性カチオン交換樹脂5aのイオン交換能力が低下したときは通水を停止して再生に移る。再生は弱アニオン樹脂塔2、強カチオン樹脂塔3、強アニオン樹脂塔4、強カチオン樹脂塔5にそれぞれ薬注路L12〜L15から再生剤を薬注し、排液路L22〜L25から再生排液を排出して弱塩基性アニオン交換樹脂2a、強酸性カチオン交換樹脂3a、強塩基性アニオン交換樹脂4a、強酸性カチオン交換樹脂5aを再生する。再生剤は弱アニオン樹脂塔2および強アニオン樹脂塔4は水酸化ナトリウム水溶液、強カチオン樹脂塔3、5は前記硝酸、水酸化ナトリウムおよび塩酸順序で再生剤を薬注する。それぞれの再生剤の薬注後は純水による押出および水洗を行う。
【0024】
各塔の再生を行った後、銀担持活性炭塔1、弱アニオン樹脂塔2、強カチオン樹脂塔3、強アニオン樹脂塔4、強カチオン樹脂塔5を通して純水および/または原水を通水して水洗を行い、比抵抗計7により比抵抗を測定し、所定の比抵抗に達した時点で採水を行う。
【0025】
上記のような再生を行うサイクルは塩酸、または硫酸による再生を行うサイクル2〜5回に1回の割合で行う。これにより樹脂の劣化を防止して効率よく純水の製造を行うことができる。図1では通水、再生とも下向流の例を示したが、それぞれ上向流でもよく、また再生は向流再生でも並流再生でもよい。また純水製造装置の構成を弱アニオン樹脂塔2、強カチオン樹脂塔3、強アニオン樹脂塔4、強カチオン樹脂塔5の組み合わせとしたが、他の組み合わせでもよく、強カチオン樹脂塔と強アニオン樹脂塔との組み合わせでもよい。
【0026】
【実施例】
以下、本発明の実施例および比較例について説明する。
【0027】
参考例1
図1の装置において、銀担持活性炭塔1、弱アニオン樹脂塔2、強カチオン樹脂塔3、強アニオン樹脂塔4、強カチオン樹脂塔5にそれぞれ銀担持活性炭200ml、OH型弱塩基性アニオン交換樹脂175ml、H型強酸性カチオン交換樹脂160ml、OH型強塩基性アニオン交換樹脂200ml、H型強酸性カチオン交換樹脂50mlを充填し、通水速度170ml/分で通水して純水を製造した。活性炭処理水の銀イオン濃度は0.5μg/lであった。
【0028】
再生は弱アニオン樹脂塔2は水酸化ナトリウムにより再生レベル40g・NaOH/liter−樹脂で、強カチオン樹脂塔3、5はそれぞれ硝酸により200g・HNO3/liter−樹脂で、強アニオン樹脂塔4は100g・NaOH/liter−樹脂で再生を行った。このような通水、再生を3サイクル行った時の比抵抗の立ち上がりの結果を図2に示す。
【0029】
参考
参考例1において、強カチオン樹脂塔3、5の再生をそれぞれ水酸化ナトリウムにより再生レベル200g・NaOH/liter−樹脂で再生後、塩酸により再生レベル200g・HCl/liter−樹脂で再生したほかは同様に試験した結果を図3に示す。
【0030】
実施例
参考例1において、強カチオン樹脂塔3、5の再生をそれぞれ硝酸により再生レベル200g・HNO3/liter−樹脂で再生後、水酸化ナトリウムにより再生レベル200g・NaOH/liter−樹脂で再生し、さらに塩酸により再生レベル200g・HCl/liter−樹脂で再生したほかは同様に試験した結果を図4に示す。
【0031】
比較例1
参考例1において、強カチオン樹脂塔3の再生を塩酸により再生レベル60g・HCl/liter−樹脂で再生し、また強カチオン樹脂塔5の再生を塩酸により200g・HCl/liter−樹脂で再生したほかは同様に試験した結果を図5に示す。
【0032】
以上の結果より、参考例1、2および実施例1は比較例1に比べて比抵抗の立ち上がりが速い。また参考例1、2を組み合わせた実施例の方法が最も立ち上がりが速いことがわかる。
【図面の簡単な説明】
【 図1】 実施形態における純水製造装置の系統図である。
【図2】 参考例1の結果を示すグラフである。
【図3】 参考の結果を示すグラフである。
【図4】 実施例の結果を示すグラフである。
【図5】 比較例1の結果を示すグラフである。
【符号の説明】
1 銀担持活性炭塔
2 弱アニオン樹脂塔
3、5 強カチオン樹脂塔
4 強アニオン樹脂塔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating a cation exchange resin, and more particularly to a method for regenerating a cation exchange resin obtained by ion-exchange of treated water with silver-supported activated carbon.
[0002]
[Prior art]
In pure water production equipment using cation exchange resin and anion exchange resin, raw water such as tap water, river water, well water, etc. is subjected to pretreatment such as coagulation, precipitation and filtration as necessary, and then cation exchange resin and anion exchange resin Pure water is produced through cation exchange and anion exchange through the layers. In such a method, if raw water containing free chlorine such as tap water is used as raw water, the resin deteriorates, so that ion exchange is performed after removing free chlorine by passing water through an activated carbon layer as a pretreatment. Is done.
[0003]
When the activated carbon treatment is performed in this manner, free chlorine is removed, so that bacteria grow on the activated carbon layer, and organic matter and bacteria leak into the treated water to contaminate the ion exchange device. For this reason, in order to prevent this, the growth of bacteria is suppressed by the sterilizing power of silver by removing free chlorine using silver-supported activated carbon.
[0004]
However, when treatment is performed with such silver-supported activated carbon, a small amount of silver is eluted from the activated carbon and is adsorbed by the cation exchange resin. Usually, cation exchange resins are regenerated with hydrochloric acid or sulfuric acid. However, when the cation exchange resin that adsorbs silver ions is regenerated by the usual regeneration method, it is assumed that poorly soluble silver compounds such as silver chloride and silver sulfate remain, but sodium and calcium ions are desorbed. Although the ion exchange capacity is restored, there is a problem that regeneration is not sufficient and it takes a long time to raise the specific resistance of the treated water.
[0005]
In the regeneration of an iminodiacetic acid type cation exchange resin adsorbing silver ions, a method of treating with an aqueous copper sulfate solution and then treating with hydrochloric acid has been proposed (Japanese Patent Laid-Open No. Sho 56-130236). However, since the cation exchange resin used here is a chelate resin, the ion exchange mechanism is different from the cation exchange resin used in the production of ordinary pure water. Regeneration with hydrochloric acid is not sufficient.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to efficiently regenerate a cation exchange resin obtained by ion-exchange of treated water with silver-supported activated carbon to desorb silver, and to accelerate the rise of the specific resistance of treated water. It is to propose a resin regeneration method.
[0007]
[Means for Solving the Problems]
The present invention is the following cation exchange resin regeneration method.
(1) A method for regenerating a cation exchange resin, characterized in that when regenerating a cation exchange resin ion-exchanged with water treated with silver-supported activated carbon, regeneration with nitric acid and regeneration with sodium hydroxide, followed by regeneration with hydrochloric acid .
(2) The method according to (1) above, wherein the cation exchange resin is a resin adsorbing silver ions.
(3) The method according to (1) or (2) above, wherein the cycle of regenerating the cation exchange resin with hydrochloric acid or sulfuric acid, and the cycle of regenerating with hydrochloric acid after regeneration with nitric acid and sodium hydroxide are combined.
[0008]
The cation exchange resin used in the present invention is a cation exchange resin that adsorbs silver in addition to normal cations such as sodium and calcium ions. Generally, a strong acid cation exchange resin is preferable, but in some cases, a weak acid cation exchange resin is used. It may be. The object of regeneration in the present invention is a cation exchange resin that adsorbs silver ions by ion-exchange of treated water with silver-supported activated carbon.
[0009]
Silver-supported activated carbon is a product in which metallic silver or a silver compound is supported on the surface of activated carbon to give bactericidal properties. By treating with such activated carbon, it is used to remove free chlorine and at the same time suppress bacterial growth. However, it may be used for other purposes. In such treated water by activated carbon, a small amount of silver elutes in addition to general cations such as sodium and calcium ions.
[0010]
The cation exchange resin to be regenerated in the present invention is a resin that adsorbs such silver ions, and examples thereof include a cation exchange resin used in a pure water production apparatus, but a cation exchange resin used in other than a pure water production apparatus. It may be. As a pure water production apparatus, a combination of a strongly acidic cation exchange resin layer and a strongly basic anion exchange resin layer is generally used, and before that, a weak acid cation exchange resin layer or a weakly basic anion exchange resin layer is combined, or A strong acid cation exchange resin layer or a mixed bed type polisher may be combined later.
[0011]
When the treated water of the silver-supported activated carbon is ion-exchanged with a cation exchange resin, silver ions are exchanged and adsorbed on the cation exchange resin. Since silver ions are generally neutral salts, silver ions are mainly adsorbed to the strong acid cation exchange resin even when a weak acid cation exchange resin layer is provided. In addition to silver, general cations such as sodium and calcium are adsorbed on the cation exchange resin, and the general cations are adsorbed more in quantity.
[0012]
Cation exchange resins in which silver and other cations are adsorbed by passing water are usually regenerated with hydrochloric acid, sulfuric acid, etc., but when such normal regeneration is repeated, insoluble silver compounds remain, which are recovered after regeneration. The specific resistance rises by elution in the washing water, and it is necessary to use a large amount of washing water, and the regeneration time becomes longer.
[0013]
Therefore, according to the present invention, when such a silver-adsorbing cation exchange resin is regenerated, after regeneration with nitric acid and sodium hydroxide, regeneration is performed with hydrochloric acid .
[0015]
That is, after regeneration with nitric acid, regeneration with sodium hydroxide is performed followed by regeneration with hydrochloric acid. The regeneration level is 60 g · HNO 3 / liter-resin or more, preferably 120 to 300 g · HNO 3 / liter-resin, 40 g · NaOH / liter-resin or more, preferably 100 to 200 g · NaOH / liter-resin, and 30 g · HCl / liter-resin or more, preferably 100 to 200 g · HCl / liter-resin. The same applies when a strongly acidic cation exchange resin is used in a plurality of stages.
[0016]
Such a playback method is likely to deteriorate the resin need not be performed for all cycles, hydrochloric acid, and the normal cycle of playback with sulfuric acid, after regeneration with regeneration and sodium hydroxide with nitric acid, the cycle of regeneration with hydrochloric acid It is preferable to combine them. In this case, it is preferable to set the ratio of one cycle of regenerating with hydrochloric acid after regeneration with nitric acid and regeneration with sodium hydroxide per 2 to 1000 times of normal cycles of regenerating with hydrochloric acid and sulfuric acid. The regeneration level of hydrochloric acid in normal regeneration is 30 g · HCl / liter-resin or higher, preferably 70 to 150 g · HCl / liter-resin, and in the case of sulfuric acid regeneration, 50 g · H 2 SO 4 / liter-resin or higher, preferably Is preferably 100 to 200 g · H 2 SO 4 / liter-resin.
[0017]
When a weakly acidic cation exchange resin is used in the preceding stage of such a cation exchange resin, the regeneration level of hydrochloric acid is 30 g · HCl / liter-resin or more, preferably 70 to 150 g · HCl / liter-resin, in the case of sulfuric acid regeneration. 50 g · H 2 SO 4 / liter-resin or more, preferably 100 to 200 g · H 2 SO 4 / liter-resin.
The regeneration level of the strong or weak basic anion exchange resin used in combination with the above cation exchange resin is preferably 40 g · NaOH / liter-resin, preferably 100 to 200 g · NaOH / liter-resin.
[0018]
In the above regeneration, regeneration with nitric acid, regeneration with sodium hydroxide, and regeneration with hydrochloric acid may be countercurrent regeneration or cocurrent regeneration, and the steps of chemical injection, extrusion, and water washing are performed in the same manner as in general regeneration. By the regeneration, the insoluble silver compound adhering to the resin is removed, and the specific resistance rises quickly when washed with water .
[0019]
【The invention's effect】
As described above, according to the present invention, after regeneration with nitric acid and regeneration with sodium hydroxide, regeneration is performed with hydrochloric acid . Thus, the cation exchange resin obtained by ion-exchange of the treated water with silver-supported activated carbon is efficiently regenerated and silver is recovered. It can be desorbed, and the rise of the specific resistance of the treated water can be accelerated.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram of a pure water production apparatus according to an embodiment.
[0021]
In FIG. 1, 1 is a silver-supported activated carbon tower, 2 is a weakly basic anion exchange resin tower (hereinafter referred to as a weak anion resin tower), 3 is a strongly acidic cation exchange resin tower (hereinafter referred to as a strong cation resin tower), and 4 is A strongly acidic anion exchange resin tower (hereinafter referred to as a strong anion resin tower) and 5 are strong acid cation exchange resin towers (hereinafter referred to as strong cation resin towers), which are silver-supported activated carbon 1a, weakly basic anion exchange resin 2a, and strong acid, respectively. The cation exchange resin 3a, the strongly basic anion exchange resin 4a, and the strong acid cation exchange resin 5a are filled. 7 is a specific resistance meter.
[0022]
In the pure water production by the above apparatus, raw water is supplied from the line L1 to the silver-supported activated carbon tower 1, the weak anion resin tower 2, the strong cation resin tower 3, the strong anion resin tower 4, and the strong cation resin tower 5 through the lines L2 to L5. Then, adsorption or ion exchange is performed in each column, and finally pure water is obtained through lines L6 and L7. At this time, silver ions eluted from the silver-supporting activated carbon tower 1 are adsorbed by the strong cation resin towers 3 and 5. Meanwhile, the water resistance (specific resistance) is detected by the specific resistance meter 7.
[0023]
In the above pure water production, when the ion exchange ability of the weakly basic anion exchange resin 2a, the strongly acidic cation exchange resin 3a, the strongly basic anion exchange resin 4a, and the strong acid cation exchange resin 5a is reduced, the water flow is stopped. To start playback. Regeneration is performed by pouring a regenerant from the drug injection channels L12 to L15 into the weak anion resin tower 2, the strong cation resin tower 3, the strong anion resin tower 4 and the strong cation resin tower 5, respectively. The liquid is discharged to regenerate weakly basic anion exchange resin 2a, strong acidic cation exchange resin 3a, strong basic anion exchange resin 4a, and strong acidic cation exchange resin 5a. As for the regenerant, the weak anion resin tower 2 and the strong anion resin tower 4 are poured with an aqueous sodium hydroxide solution, and the strong cation resin towers 3 and 5 are poured with the regenerant in the order of nitric acid, sodium hydroxide and hydrochloric acid . After pouring each regenerant, extrusion with pure water and washing with water are performed.
[0024]
After regeneration of each tower, pure water and / or raw water is passed through the silver-supported activated carbon tower 1, the weak anion resin tower 2, the strong cation resin tower 3, the strong anion resin tower 4, and the strong cation resin tower 5. Water washing is performed, the specific resistance is measured by the specific resistance meter 7, and water is collected when a predetermined specific resistance is reached.
[0025]
The cycle for regeneration as described above is performed once every 2 to 5 cycles for regeneration with hydrochloric acid or sulfuric acid. Thereby, degradation of resin can be prevented and pure water can be manufactured efficiently. Although FIG. 1 shows an example of downward flow for both water flow and regeneration, each may be upward flow, and regeneration may be countercurrent regeneration or cocurrent regeneration. The pure water production apparatus is composed of a weak anion resin tower 2, a strong cation resin tower 3, a strong anion resin tower 4, and a strong cation resin tower 5. However, other combinations may be used. A combination with a resin tower may be used.
[0026]
【Example】
Examples of the present invention and comparative examples will be described below.
[0027]
Reference example 1
In the apparatus of FIG. 1, a silver-supported activated carbon tower 1, a weak anion resin tower 2, a strong cation resin tower 3, a strong anion resin tower 4, and a strong cation resin tower 5 are respectively filled with 200 ml of silver-supported activated carbon and an OH type weak basic anion exchange resin. 175 ml, H-type strongly acidic cation exchange resin 160 ml, OH-type strongly basic anion exchange resin 200 ml, and H-type strongly acidic cation exchange resin 50 ml were filled and water was passed at a water flow rate of 170 ml / min to produce pure water. The silver ion concentration of the activated carbon-treated water was 0.5 μg / l.
[0028]
Regeneration is weak anion resin tower 2 with sodium hydroxide at a regeneration level of 40 g · NaOH / liter-resin, strong cation resin towers 3 and 5 with nitric acid at 200 g · HNO 3 / liter-resin, and strong anion resin tower 4 is Regeneration was performed with 100 g of NaOH / liter-resin. FIG. 2 shows the results of the rise in specific resistance when three cycles of such water flow and regeneration are performed.
[0029]
Reference example 2
In Reference Example 1, the strong cation resin towers 3 and 5 were regenerated with sodium hydroxide at a regeneration level of 200 g · NaOH / liter-resin and then with hydrochloric acid at a regeneration level of 200 g · HCl / liter-resin. The results of the test are shown in FIG.
[0030]
Example 1
In Reference Example 1, regeneration of the strong cation resin towers 3 and 5 is regenerated with nitric acid at a regeneration level of 200 g · HNO 3 / liter-resin, then with sodium hydroxide at a regeneration level of 200 g · NaOH / liter-resin, and FIG. 4 shows the results of a similar test except that the regeneration level was 200 g · HCl / liter-resin with hydrochloric acid.
[0031]
Comparative Example 1
In Reference Example 1, the regeneration of the strong cation resin tower 3 was regenerated with hydrochloric acid at a regeneration level of 60 g · HCl / liter-resin, and the regeneration of the strong cation resin tower 5 with 200 g · HCl / liter-resin with hydrochloric acid. FIG. 5 shows the results of a similar test.
[0032]
From the above results, Example 1, 2 and Example 1, the rise of the specific resistance is higher than that of Comparative Example 1. Moreover, it turns out that the method of Example 1 combining Reference Example 1 and 2 has the fastest rise.
[Brief description of the drawings]
FIG. 1 is a system diagram of a pure water production apparatus according to an embodiment.
2 is a graph showing the results of Reference Example 1. FIG.
3 is a graph showing the results of Reference Example 2. FIG.
4 is a graph showing the results of Example 1. FIG.
5 is a graph showing the results of Comparative Example 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Silver carrying activated carbon tower 2 Weak anion resin tower 3, 5 Strong cation resin tower 4 Strong anion resin tower

Claims (3)

銀担持活性炭による処理水をイオン交換したカチオン交換樹脂を再生するに際し、硝酸による再生および水酸化ナトリウムによる再生後、塩酸により再生することを特徴とするカチオン交換樹脂の再生方法 A method for regenerating a cation exchange resin, characterized in that, when regenerating a cation exchange resin ion-exchanged with water treated with silver-supported activated carbon, regeneration with nitric acid and regeneration with sodium hydroxide, followed by regeneration with hydrochloric acid . カチオン交換樹脂が銀イオンを吸着した樹脂である請求項1記載の方法。  The method according to claim 1, wherein the cation exchange resin is a resin adsorbing silver ions. カチオン交換樹脂を塩酸または硫酸で再生するサイクルと、硝酸による再生および水酸化ナトリウムによる再生後、塩酸により再生するサイクルとを組み合わせて行う請求項1または2記載の方法。The method according to claim 1 or 2, wherein the cycle for regenerating the cation exchange resin with hydrochloric acid or sulfuric acid is combined with the cycle for regenerating with hydrochloric acid after regeneration with nitric acid and sodium hydroxide .
JP23583398A 1998-08-21 1998-08-21 Regeneration method of cation exchange resin Expired - Fee Related JP4411669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23583398A JP4411669B2 (en) 1998-08-21 1998-08-21 Regeneration method of cation exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23583398A JP4411669B2 (en) 1998-08-21 1998-08-21 Regeneration method of cation exchange resin

Publications (2)

Publication Number Publication Date
JP2000061321A JP2000061321A (en) 2000-02-29
JP4411669B2 true JP4411669B2 (en) 2010-02-10

Family

ID=16991948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23583398A Expired - Fee Related JP4411669B2 (en) 1998-08-21 1998-08-21 Regeneration method of cation exchange resin

Country Status (1)

Country Link
JP (1) JP4411669B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118891A (en) * 2018-01-09 2019-07-22 栗田工業株式会社 Pure water producing apparatus and pure water producing method
CN113070103A (en) * 2021-04-26 2021-07-06 上海邢东化工科技有限公司 Purification process and purification equipment of weak acid cation exchange resin

Also Published As

Publication number Publication date
JP2000061321A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
US5951874A (en) Method for minimizing wastewater discharge
JP6185924B2 (en) Desalination method for boron-containing solution
JP6265750B2 (en) Method and apparatus for purifying sucrose solution
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP4411669B2 (en) Regeneration method of cation exchange resin
JP2891790B2 (en) Regeneration method of anion exchange resin
JP2002361245A (en) Method and device for regenerating ion exchange resin in condensate demineralizer
JP2002205062A (en) Method for removing copper in salt water, method for regenerating copper adsorbing resin and apparatus for removing copper in salt water
JP3963101B2 (en) Vanadium-containing water ion exchange method and apparatus
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP2003315496A5 (en)
JP3963100B2 (en) Method and apparatus for treating vanadium-containing water
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
JP2000189815A (en) Regeneration method for ion exchange device
JPH05220477A (en) Nitric acid ion removing apparatus
JP3731847B2 (en) Chemical cleaning method for electric deionized water production equipment
JPH01258749A (en) Regenerating agent for cation exchange resin and regenerating process using said regenerating agent
JP3570066B2 (en) Ion exchange equipment
JP2001219163A (en) Treating method of boron-containing water
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JP2006254794A (en) Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus
JPS6362592A (en) Treatment of waste water in cleaning of semiconductor
JPS621307B2 (en)
JP2004136231A (en) Method for washing ion-exchange resin after regeneration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees