JP2006254794A - Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus - Google Patents

Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus Download PDF

Info

Publication number
JP2006254794A
JP2006254794A JP2005077061A JP2005077061A JP2006254794A JP 2006254794 A JP2006254794 A JP 2006254794A JP 2005077061 A JP2005077061 A JP 2005077061A JP 2005077061 A JP2005077061 A JP 2005077061A JP 2006254794 A JP2006254794 A JP 2006254794A
Authority
JP
Japan
Prior art keywords
resin
ion exchange
phenolic
adsorption
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005077061A
Other languages
Japanese (ja)
Inventor
Kyosuke Yamada
響介 山田
Hideya Yao
英也 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2005077061A priority Critical patent/JP2006254794A/en
Publication of JP2006254794A publication Critical patent/JP2006254794A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Saccharide Compounds (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the quality of an alkali solution used for regeneration of a phenolic absorbing resin and an ion exchange resin in a sugar solution-refining system having an absorption step for bringing the sugar solution into contact with the phenolic absorbing resin and an ion exchange step for bringing the sugar solution into contact with an ion exchange resin. <P>SOLUTION: An alkaline regeneration waste liquid of the ion exchange resin is used for regeneration of the phenolic absorption resin 12. For example, an alkali solution 64 is introduced from an alkali solution introducing pipe 36 into an anion exchange column 14 to bring the alkali solution 64 into contact with a strongly basic anion exchange resin 16, and then, the alkaline regeneration waste liquid discharged from the anion exchange column is introduced through connection pipes 28 and 34 into an absorption column 10 to bring the alkaline regeneration waste liquid into contact with the phenolic absorbing resin 12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フェノール系吸着樹脂およびイオン交換樹脂を用いた糖液精製システムにおけるフェノール系吸着樹脂の再生方法、およびフェノール系吸着樹脂およびイオン交換樹脂を用いた糖液精製装置に関する。   The present invention relates to a method for regenerating a phenolic adsorption resin in a sugar liquid purification system using a phenolic adsorption resin and an ion exchange resin, and a sugar liquid purification apparatus using the phenolic adsorption resin and the ion exchange resin.

糖液の精製は、通常、活性炭処理、骨炭処理、イオン交換樹脂処理などによる脱色処理と、イオン交換樹脂処理による脱塩処理との組み合わせによって行われる。また、後者の脱塩処理システムとしては、蔗糖液の場合、蔗糖液をアニオン交換塔と、カチオン交換塔とに順次通液するリバース式システム、蔗糖液を強塩基性アニオン交換樹脂および弱酸性カチオン交換樹脂の混床塔に通液する混床式システム、蔗糖液をアニオン交換塔と、強塩基性アニオン交換樹脂および弱酸性カチオン交換樹脂の混床塔とに順次通液するシステムなどが知られている(例えば、特許文献1参照)。   Purification of the sugar solution is usually performed by a combination of decolorization treatment by activated carbon treatment, bone charcoal treatment, ion exchange resin treatment, etc., and desalting treatment by ion exchange resin treatment. In addition, as the latter desalting treatment system, in the case of sucrose liquid, a reverse system in which the sucrose liquid is sequentially passed through an anion exchange tower and a cation exchange tower, and the sucrose liquid is a strongly basic anion exchange resin and a weakly acidic cation. Known is a mixed bed system that passes through a mixed bed tower of exchange resin, and a system that sequentially passes sucrose liquid through an anion exchange tower and a mixed bed tower of strong basic anion exchange resin and weakly acidic cation exchange resin. (For example, refer to Patent Document 1).

特許第2785833号公報Japanese Patent No. 2785833

現在、精製処理後の糖液から生じる臭気が問題となっている。処理糖液中に含まれる臭気成分が具体的に何であるかはわかっていないが、臭気成分は製品となったあとも糖液中に残存し、製品の品質を著しく低下させる。そのため、精製後の処理糖液中に臭気成分が含まれないようにする必要があるが、前述したイオン交換樹脂処理による脱塩処理では、糖液中から臭気成分を除去することは困難であった。   Currently, the odor generated from the sugar solution after the purification treatment is a problem. It is not known what the odor component contained in the treated sugar solution is, but the odor component remains in the sugar solution even after it has become a product, and the quality of the product is significantly reduced. For this reason, it is necessary to prevent the odorous component from being contained in the processed sugar solution after purification, but it is difficult to remove the odorous component from the sugar solution by the desalting treatment by the ion exchange resin treatment described above. It was.

これに対し、本発明者は、糖液中に含まれる臭気成分を効果的に除去することができる糖液精製システムとして、糖液をフェノール系吸着樹脂に接触させる吸着工程と、糖液をイオン交換樹脂に接触させるイオン交換工程とを行う糖液精製システムを既に提案した。   On the other hand, the present inventor, as a sugar solution purification system capable of effectively removing odor components contained in a sugar solution, an adsorption step of bringing the sugar solution into contact with a phenolic adsorption resin, and the sugar solution as an ion A sugar solution purification system that performs an ion exchange process in contact with an exchange resin has already been proposed.

フェノール系吸着樹脂は、母体樹脂が疎水性であることから溶液中に存在する色素物質の吸着性に優れ、また母体樹脂が多孔性であることから活性炭に似た吸着特性を有し、臭気物質の吸着にも効果を示す。フェノール系吸着樹脂は、フェノール性水酸基を官能基としていることから、一定のpH以上のアルカリ溶液に接触させると水酸基が解離し、疎水的に吸着した物質が脱着されて樹脂が再生される。   Phenol-based adsorbent resin is excellent in adsorptivity of pigment substances present in the solution because the base resin is hydrophobic, and has an adsorption characteristic similar to activated carbon because the base resin is porous. Also effective in adsorbing. Since the phenolic adsorption resin has a phenolic hydroxyl group as a functional group, when it is brought into contact with an alkaline solution having a certain pH or higher, the hydroxyl group is dissociated, and the hydrophobically adsorbed substance is desorbed to regenerate the resin.

フェノール系吸着樹脂は、上記のように薬剤により再生が可能であるという大きな利点を有し、アミノ酸溶液やタンパク溶液の脱色、脱臭など利用されている。同じ用途に使用される吸着剤としては、粒状活性炭、骨炭、粉末活性炭などがあるが、粒状活性炭や骨炭の再生には再生炉を設けたり、委託再生を行ったりする必要があり、粉末活性炭は使い捨てであるため購入費用、廃棄費用が高くなる。   Phenol-based adsorption resins have the great advantage that they can be regenerated with chemicals as described above, and are used for decolorization and deodorization of amino acid solutions and protein solutions. Adsorbents used for the same applications include granular activated carbon, bone charcoal, and powdered activated carbon. To regenerate granular activated carbon and bone charcoal, it is necessary to install a regenerative furnace or perform consignment regeneration. Because it is disposable, the purchase cost and disposal cost are high.

フェノール系吸着樹脂には、フェノール性水酸基のみを官能基とする樹脂と、母体樹脂にアミンを導入し、フェノール性水酸基とアニオン交換基の両方を官能基とする樹脂とがある。いずれの樹脂においても、再生にはアルカリ溶液が再生剤として用いられ、さらに残存アルカリ溶液の中和剤として酸溶液が用いられる。   The phenolic adsorption resin includes a resin having only a phenolic hydroxyl group as a functional group, and a resin in which an amine is introduced into the base resin and both the phenolic hydroxyl group and the anion exchange group are functional groups. In any resin, an alkali solution is used as a regenerant for regeneration, and an acid solution is used as a neutralizer for the remaining alkali solution.

また、本発明者が提案した前述の糖液精製システムでは、イオン交換樹脂は、溶液中のアニオンを除去するアニオン交換樹脂と、溶液中のカチオンを除去するカチオン交換樹脂との組み合わせで使用される。アニオン交換樹脂を再生する薬剤としてはアルカリ溶液、カチオン交換樹脂を再生する薬剤としては酸溶液が用いられる。一般的には、アルカリ溶液としては水酸化ナトリウム水溶液が使用され、酸溶液としては塩酸水溶液が使用される。   In the above-mentioned sugar liquid purification system proposed by the present inventors, the ion exchange resin is used in combination with an anion exchange resin that removes an anion in a solution and a cation exchange resin that removes a cation in the solution. . An alkaline solution is used as the agent for regenerating the anion exchange resin, and an acid solution is used as the agent for regenerating the cation exchange resin. In general, an aqueous sodium hydroxide solution is used as the alkaline solution, and an aqueous hydrochloric acid solution is used as the acid solution.

しかし、前述したフェノール系吸着樹脂およびイオン交換樹脂を用いた糖液精製システムは、薬剤により吸着剤の再生が可能であるという利点が得られる反面、フェノール系吸着樹脂およびイオン交換樹脂の再生に多量のアルカリ溶液が必要となり、またその再生廃液を中和するための酸溶液も必要となるため、運転コストが高くなる上、フェノール系吸着樹脂の再生廃液は有機成分を多く含むため、排水処理設備の負荷が大きくなるものであった。   However, the sugar liquid purification system using the phenolic adsorption resin and the ion exchange resin described above has an advantage that the adsorbent can be regenerated by a chemical, but a large amount is required for the regeneration of the phenolic adsorbent resin and the ion exchange resin. Wastewater treatment equipment is required because of the high operating cost and the phenolic adsorption resin regeneration waste liquid contains a lot of organic components. The load of was increased.

本発明は、前述した事情に鑑みてなされたもので、フェノール系吸着樹脂およびイオン交換樹脂を用いた糖液精製システムにおいて、フェノール系吸着樹脂およびイオン交換樹脂の再生に用いるアルカリ溶液の量を低減させることができる技術を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and in a sugar liquid purification system using a phenolic adsorption resin and an ion exchange resin, the amount of an alkaline solution used for the regeneration of the phenolic adsorption resin and the ion exchange resin is reduced. It aims at providing the technology which can be made to do.

本発明者は、前記目的を達成するために種々検討を行った結果、フェノール系吸着樹脂およびイオン交換樹脂を用いた糖液精製システムにおいては、イオン交換樹脂の再生に使用したアルカリ溶液の廃液をフェノール系吸着樹脂の再生に利用できることを見出した。すなわち、イオン交換樹脂の再生に使用したアルカリ性再生廃液をフェノール系吸着樹脂に接触させることにより、フェノール系吸着樹脂に吸着した色素成分および臭気成分を脱着することができ、これによってフェノール系吸着樹脂の再生に用いるアルカリ溶液の量を低減できることを見出した。   As a result of various studies to achieve the above object, the present inventor has found that the waste solution of the alkaline solution used for the regeneration of the ion exchange resin is used in the sugar liquid purification system using the phenolic adsorption resin and the ion exchange resin. It was found that it can be used for the regeneration of phenolic adsorption resins. That is, by contacting the alkaline regeneration waste solution used for the regeneration of the ion exchange resin with the phenolic adsorption resin, the pigment component and the odor component adsorbed on the phenolic adsorption resin can be desorbed. It has been found that the amount of alkaline solution used for regeneration can be reduced.

本発明は、上述した知見に基づいてなされたもので、糖液をフェノール系吸着樹脂に接触させる吸着工程と、糖液をイオン交換樹脂に接触させるイオン交換工程とを有する糖液精製システムにおけるフェノール系吸着樹脂の再生方法であって、前記イオン交換樹脂のアルカリ性再生廃液を前記フェノール系吸着樹脂の再生に用いることを特徴とする糖液精製システムにおけるフェノール系吸着樹脂の再生方法を提供する。   The present invention has been made based on the above-described knowledge, and phenol in a sugar solution purification system having an adsorption step in which a sugar solution is brought into contact with a phenolic adsorption resin and an ion exchange step in which the sugar solution is brought into contact with an ion exchange resin. There is provided a method for regenerating a phenolic adsorption resin in a sugar liquid purification system, characterized in that an alkaline regeneration waste solution of the ion exchange resin is used for regeneration of the phenolic adsorption resin.

また、本発明は、糖液をフェノール系吸着樹脂に接触させる吸着手段と、糖液をイオン交換樹脂に接触させるイオン交換手段と、アルカリ溶液をイオン交換手段のイオン交換樹脂に接触させるとともに、イオン交換樹脂に接触した後のアルカリ性再生廃液を吸着手段のフェノール系吸着樹脂に接触させる再生手段とを具備することを特徴とする糖液精製装置を提供する。   The present invention also provides an adsorption means for bringing a sugar solution into contact with a phenolic adsorption resin, an ion exchange means for bringing a sugar solution into contact with an ion exchange resin, an alkaline solution in contact with the ion exchange resin of the ion exchange means, There is provided a sugar solution purifying apparatus comprising a regeneration means for bringing an alkaline regeneration waste liquid after contact with an exchange resin into contact with a phenol-based adsorption resin of an adsorption means.

以下、本発明につきさらに詳しく説明する。本発明の再生方法を用いる糖液精製システムおよび本発明の糖液精製装置における吸着工程および吸着手段では、糖液をフェノール系吸着樹脂に接触させる。フェノール系吸着樹脂とは、多孔性の芳香族ポリマーの表面にフェノール性水酸基を有する吸着樹脂であり、本発明ではこのような構造の吸着樹脂であればどのようなものでも使用することができる。フェノール系吸着樹脂は、上記構造により、多孔性芳香族ポリマーによる活性炭のような物理的吸着作用およびフェノール性水酸基によるイオン交換作用の両作用を併せ持つ。フェノール系吸着樹脂として、具体的には、味の素ファインテクノ社製ホクエツ(登録商標、以下同様)HS、KS、ローム・アンド・ハース社製アンバーライト(登録商標、以下同様)XAD761等を使用することができる。   Hereinafter, the present invention will be described in more detail. In the sugar solution purification system using the regeneration method of the present invention and the adsorption step and the adsorption means in the sugar solution purification apparatus of the present invention, the sugar solution is brought into contact with the phenolic adsorption resin. The phenolic adsorption resin is an adsorption resin having a phenolic hydroxyl group on the surface of a porous aromatic polymer. In the present invention, any adsorption resin having such a structure can be used. Due to the above structure, the phenol-based adsorption resin has both a physical adsorption action like activated carbon by a porous aromatic polymer and an ion exchange action by a phenolic hydroxyl group. Specifically, Ajinomoto Fine Techno Co., Ltd. Hokuetsu (registered trademark, the same applies below) HS, KS, Rohm and Haas Amberlite (registered trademark, the same applies below) XAD761 etc. should be used as the phenolic adsorption resin. Can do.

本発明の再生方法を用いる糖液精製システムおよび本発明の糖液精製装置におけるイオン交換工程およびイオン交換手段では、糖液をイオン交換樹脂に接触させる。この場合、例えば糖液が蔗糖液であるときには、イオン交換樹脂として強塩基性アニオン交換樹脂および弱酸性カチオン交換樹脂を用いることができ、例えば下記(a)〜(c)に示す樹脂構成とすることができる。
(a)糖液を強塩基性アニオン交換樹脂と、弱酸性カチオン交換樹脂とに順次通液する構成。
(b)糖液を強塩基性アニオン交換樹脂および弱酸性カチオン交換樹脂の混床に通液する構成。
(c)糖液を強塩基性アニオン交換樹脂と、強塩基性アニオン交換樹脂および弱酸性カチオン交換樹の混床とに順次通液する構成。
In the sugar liquid purification system using the regeneration method of the present invention and the ion exchange step and ion exchange means in the sugar liquid purification apparatus of the present invention, the sugar liquid is brought into contact with an ion exchange resin. In this case, for example, when the sugar liquid is a sucrose liquid, a strongly basic anion exchange resin and a weakly acidic cation exchange resin can be used as the ion exchange resin. For example, the resin configurations shown in the following (a) to (c) are used. be able to.
(A) A configuration in which a sugar solution is sequentially passed through a strongly basic anion exchange resin and a weakly acidic cation exchange resin.
(B) A configuration in which the sugar solution is passed through a mixed bed of a strongly basic anion exchange resin and a weakly acidic cation exchange resin.
(C) A configuration in which the sugar solution is sequentially passed through a strongly basic anion exchange resin and a mixed bed of a strongly basic anion exchange resin and a weakly acidic cation exchange tree.

上記強塩基性アニオン交換樹脂および弱酸性カチオン交換樹脂としては、糖の転化を生じさせることなく糖液の脱塩を行うことができるものであればいかなるものでもよい。より具体的には、強塩基性アニオン交換樹脂として、例えばアンバーライトIRA−402BL、IRA−900、IRA−411S、XT−5007、三菱化学社製ダイヤイオン(登録商標、以下同様)PA−308、PA−412、弱酸性カチオン交換樹脂として、例えばアンバーライトIRC−76、IRC−50、ダイヤイオンWK−11を使用することができる。   Any strong basic anion exchange resin and weak acid cation exchange resin may be used as long as the sugar solution can be desalted without causing sugar conversion. More specifically, as the strongly basic anion exchange resin, for example, Amberlite IRA-402BL, IRA-900, IRA-411S, XT-5007, Mitsubishi Chemical Corporation Diaion (registered trademark, hereinafter the same) PA-308, As PA-412 and a weakly acidic cation exchange resin, for example, Amberlite IRC-76, IRC-50, and Diaion WK-11 can be used.

本発明の再生方法を用いる糖液精製システムおよび本発明の糖液精製装置では、糖液をフェノール系吸着樹脂に接触させた後にイオン交換樹脂に接触させてもよく、イオン交換樹脂に接触させた後にフェノール系吸着樹脂に接触させてもよいが、以下の理由により、前者の方が好ましい。すなわち、糖液をフェノール系吸着樹脂に接触させると、フェノール系吸着樹脂の再生方法によってはフェノール系吸着樹脂から酸またはアルカリが溶出するため、糖液のpHが酸性になったり、あるいはアルカリ性になったりしてしまうが、糖液をフェノール系吸着樹脂に接触させた後にイオン交換樹脂に接触させた場合には、フェノール系吸着樹脂との接触によって酸性またはアルカリ性になった糖液のpHをイオン交換樹脂との接触によって中性付近に回復させることができるという利点が得られる。また、フェノール系吸着樹脂は脱色作用を有するため、糖液をフェノール系吸着樹脂に接触させた後にイオン交換樹脂に接触させた場合には、後段のイオン交換樹脂の負荷を下げることができ、したがって後段のイオン交換樹脂による精製工程において、処理糖液の品質を高純度に維持しつつ、大きい処理量を得ることができるという利点も得られる。   In the sugar liquid purification system using the regeneration method of the present invention and the sugar liquid purification apparatus of the present invention, the sugar liquid may be contacted with the phenolic adsorption resin and then contacted with the ion exchange resin, or may be contacted with the ion exchange resin. Although it may be brought into contact with the phenolic adsorption resin later, the former is preferred for the following reasons. That is, when the sugar solution is brought into contact with the phenolic adsorption resin, depending on the method for regenerating the phenolic adsorption resin, acid or alkali is eluted from the phenolic adsorption resin, so that the pH of the sugar solution becomes acidic or becomes alkaline. However, when the sugar solution is brought into contact with the phenolic adsorption resin and then brought into contact with the ion exchange resin, the pH of the sugar solution that has become acidic or alkaline due to contact with the phenolic adsorption resin is ion-exchanged. There is an advantage that it can be restored to near neutrality by contact with the resin. In addition, since the phenolic adsorption resin has a decoloring action, when the sugar solution is brought into contact with the phenolic adsorption resin and then brought into contact with the ion exchange resin, the load of the ion exchange resin in the subsequent stage can be lowered, and therefore In the subsequent purification step using the ion-exchange resin, there is also an advantage that a large throughput can be obtained while maintaining the quality of the treated sugar solution at high purity.

本発明で用いるフェノール系吸着樹脂は、酸性条件または中性条件で臭気成分や色素成分を吸着し、アルカリ性条件で表面の性質が変り、吸着物を脱着する。そのため、通常は酸性条件または中性条件でフェノール系吸着樹脂に糖液を接触させ、フェノール系吸着樹脂の吸着能力が低下した時点で通液を停止し、水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ溶液を用いてフェノール系吸着樹脂の再生を行う。本発明では、このフェノール系吸着樹脂の再生にイオン交換樹脂のアルカリ性再生廃液を用いる。すなわち、イオン交換樹脂を水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ溶液を用いて再生するとともに、その再生廃液を用いてフェノール系吸着樹脂の再生を行う。   The phenolic adsorption resin used in the present invention adsorbs odor components and pigment components under acidic conditions or neutral conditions, changes surface properties under alkaline conditions, and desorbs adsorbates. For this reason, the sugar solution is usually brought into contact with the phenolic adsorption resin under acidic conditions or neutral conditions, and when the adsorption capacity of the phenolic adsorption resin decreases, the liquid passage is stopped, and an alkali solution such as aqueous sodium hydroxide or aqueous ammonia is used. The phenolic adsorption resin is regenerated using the solution. In the present invention, an alkaline regeneration waste solution of an ion exchange resin is used for regeneration of the phenol-based adsorption resin. That is, the ion exchange resin is regenerated using an alkaline solution such as an aqueous sodium hydroxide solution or an aqueous ammonia solution, and the phenol-based adsorbent resin is regenerated using the regenerated waste liquid.

この場合、上記イオン交換樹脂のアルカリ性再生廃液として、具体的にはアニオン交換樹脂の再生廃液やカチオン交換樹脂の回生廃液を用いることができ、特に強塩基性アニオン交換樹脂の再生廃液が好ましい。すなわち、イオン交換処理において強塩基性アニオン交換樹脂を使用する場合、多量のアルカリ性再生廃液が発生する。これは、強塩基性アニオン交換樹脂の吸着力が強く、再生効率が低いことに起因する。フェノール系吸着樹脂のフェノール性水酸基はpH10付近で解離し始めるため、イオン交換樹脂のアルカリ性再生廃液のpHは10以上であればフェノール系樹脂の再生が可能であるが、効率的に再生を行うにはイオン交換樹脂のアルカリ性再生廃液はpH12以上であることが望ましく、強塩基性アニオン交換樹脂の再生廃液はこの条件を満たす。   In this case, as the alkaline regeneration waste liquid of the ion exchange resin, specifically, the regeneration waste liquid of the anion exchange resin or the regeneration waste liquid of the cation exchange resin can be used, and the regeneration waste liquid of the strongly basic anion exchange resin is particularly preferable. That is, when a strongly basic anion exchange resin is used in the ion exchange treatment, a large amount of alkaline regeneration waste liquid is generated. This is due to the strong adsorbing power of the strongly basic anion exchange resin and low regeneration efficiency. Since the phenolic hydroxyl group of the phenolic adsorption resin starts to dissociate at around pH 10, the regeneration of the phenolic resin is possible if the pH of the alkaline regeneration waste liquid of the ion exchange resin is 10 or more. It is desirable that the alkaline regeneration waste solution of the ion exchange resin has a pH of 12 or more, and the regeneration waste solution of the strongly basic anion exchange resin satisfies this condition.

なお、本発明の再生方法を用いる糖液精製システムおよび本発明の糖液精製装置において処理対象とする糖液としては、前述した蔗糖液の他、澱粉糖液等のいかなる糖液でもよい。また、蔗糖液の場合、通常、原糖の洗糖、溶解、炭酸飽充、濾過、脱色などの各工程を経た後の精製糖液を使用するが、これに限定されるものではない。   In addition, as the sugar liquid to be processed in the sugar liquid purification system using the regeneration method of the present invention and the sugar liquid purification apparatus of the present invention, any sugar liquid such as starch sugar liquid may be used in addition to the sucrose liquid described above. In the case of a sucrose solution, a purified sugar solution that has undergone steps such as sugar washing, dissolution, carbonation saturation, filtration, and decolorization of the raw sugar is usually used, but is not limited thereto.

以上のように、本発明によれば、フェノール系吸着樹脂およびイオン交換樹脂を用いた糖液精製システムにおいて、フェノール系吸着樹脂およびイオン交換樹脂の再生に用いるアルカリ溶液の量を低減して、運転コストを削減することができる。   As described above, according to the present invention, in the sugar liquid purification system using the phenolic adsorption resin and the ion exchange resin, the amount of the alkaline solution used for the regeneration of the phenolic adsorption resin and the ion exchange resin is reduced, and the operation is performed. Cost can be reduced.

図1は本発明に係る糖液精製装置の一例を示すフロー図である。図1において、10は内部にフェノール系吸着樹脂12が充填された吸着塔、14は内部に強塩基性アニオン交換樹脂16が充填されたアニオン交換塔、18は内部に弱酸性カチオン交換樹脂20が充填されたカチオン交換塔を示す。また、図中22は吸着塔10の上部に連結された原糖液導入管、24は吸着塔10の下部とアニオン交換塔14の上部との間に設けられた連絡管、26は連絡管24に連結された廃液排出管、28はアニオン交換塔14の下部とカチオン交換塔18の上部との間に設けられた連絡管、30は連絡管28に連結された廃液排出管、32はカチオン交換塔18の下部に連結された処理液排出管、34は連絡管28と吸着塔10の上部との間に設けられた連絡管、36はアニオン交換塔14の上部に連結されたアルカリ溶液導入管、38はアニオン交換塔14の上部に連結された洗浄水導入管、40は吸着塔10の上部に連結された酸溶液導入管、42〜60はそれぞれ各管に介装された開閉バルブを示す。本例の糖液精製装置では、吸着塔10が吸着手段を構成し、アニオン交換塔14およびカチオン交換塔18がイオン交換手段を構成している。   FIG. 1 is a flow diagram showing an example of a sugar liquid purification apparatus according to the present invention. In FIG. 1, 10 is an adsorption tower filled with a phenolic adsorption resin 12 inside, 14 is an anion exchange tower filled with a strongly basic anion exchange resin 16, and 18 is a weak acidic cation exchange resin 20 inside. Fig. 2 shows a packed cation exchange column. In the figure, 22 is a raw sugar solution introduction pipe connected to the upper part of the adsorption tower 10, 24 is a communication pipe provided between the lower part of the adsorption tower 10 and the upper part of the anion exchange tower 14, and 26 is a communication pipe 24. , A waste liquid discharge pipe 28 connected to the lower part of the anion exchange column 14 and the upper part of the cation exchange tower 18, 30 a waste liquid discharge pipe connected to the communication pipe 28, and 32 a cation exchange. A processing liquid discharge pipe connected to the lower part of the tower 18, 34 a communication pipe provided between the communication pipe 28 and the upper part of the adsorption tower 10, and 36 an alkaline solution introduction pipe connected to the upper part of the anion exchange tower 14. , 38 is a washing water introduction pipe connected to the upper part of the anion exchange column 14, 40 is an acid solution introduction pipe connected to the upper part of the adsorption tower 10, and 42 to 60 are open / close valves provided in the respective pipes. . In the sugar liquid purification apparatus of this example, the adsorption tower 10 constitutes an adsorption means, and the anion exchange tower 14 and the cation exchange tower 18 constitute an ion exchange means.

本例の糖液精製装置によって糖液の精製を行う場合、図2に示すように、原糖液62を原糖液導入管22から吸着塔10に導入してフェノール系吸着樹脂12に接触させ、次いで吸着塔10を出た糖液を連絡管24を介してアニオン交換塔14に導入して強塩基性アニオン交換樹脂16に接触させた後、アニオン交換塔14を出た糖液を連絡管28を介してカチオン交換塔18に導入して弱酸性カチオン交換樹脂20に接触させることにより、臭気のない精製された処理糖液を処理液排出管32から得る。   When the sugar solution is purified by the sugar solution purifying apparatus of this example, as shown in FIG. 2, the raw sugar solution 62 is introduced from the raw sugar solution introduction tube 22 into the adsorption tower 10 and brought into contact with the phenolic adsorption resin 12. Then, after the sugar solution exiting the adsorption tower 10 is introduced into the anion exchange tower 14 via the connecting tube 24 and brought into contact with the strongly basic anion exchange resin 16, the sugar solution exiting the anion exchange tower 14 is connected to the connecting tube. By introducing into the cation exchange tower 18 via 28 and bringing it into contact with the weakly acidic cation exchange resin 20, a purified treated sugar solution having no odor is obtained from the treated solution discharge pipe 32.

また、本例の糖液精製装置のフェノール系吸着樹脂12および強塩基性アニオン交換樹脂16を再生する場合は、以下のように行う。まず、図3に示すように、アルカリ溶液64をアルカリ溶液導入管36からアニオン交換塔14に導入して強塩基性アニオン交換樹脂16に接触させた後、アニオン交換塔14を出たアルカリ性再生廃液を連絡管28、34を介して吸着塔10に導入してフェノール系吸着樹脂12に接触させる。フェノール系吸着樹脂12に接触した後の再生廃液は連絡管24、廃液排出管26を通って系外に排出される。したがって、本例の糖液精製装置では、アルカリ溶液導入管36、連絡管28、34、24、廃液排出管26およびこれらに介装された開閉バルブによって再生手段が構成されている。   Moreover, when reproducing | regenerating the phenol type adsorption resin 12 and the strongly basic anion exchange resin 16 of the sugar liquid refiner | purifier of this example, it carries out as follows. First, as shown in FIG. 3, an alkaline solution 64 is introduced into the anion exchange column 14 from the alkaline solution introduction pipe 36 and brought into contact with the strongly basic anion exchange resin 16, and then the alkaline regeneration waste liquid exiting the anion exchange column 14. Is introduced into the adsorption tower 10 through the connecting pipes 28 and 34 and brought into contact with the phenolic adsorption resin 12. The recycled waste liquid after coming into contact with the phenolic adsorption resin 12 is discharged out of the system through the communication pipe 24 and the waste liquid discharge pipe 26. Therefore, in the sugar liquid purification apparatus of this example, the regeneration means is constituted by the alkaline solution introduction pipe 36, the communication pipes 28, 34, 24, the waste liquid discharge pipe 26, and the on-off valve interposed therebetween.

次に、図4に示すように、洗浄水66を洗浄水導入管38からアニオン交換塔14に導入して強塩基性アニオン交換樹脂16を洗浄水で洗浄した後、アニオン交換塔14を出た洗浄水を連絡管28、34を介して吸着塔10に導入してフェノール系吸着樹脂12を洗浄水で洗浄する。フェノール系吸着樹脂12を洗浄した後の洗浄水は連絡管24、廃液排出管26を通って系外に排出される。本発明では、本例のように、イオン交換手段のイオン交換樹脂を洗浄水で洗浄するともに、イオン交換樹脂を洗浄した洗浄水で吸着手段のフェノール系吸着樹脂を洗浄する洗浄手段を糖液精製装置に設けることが好ましく、これにより洗浄水の使用量を削減することができる。本例の糖液精製装置では、洗浄水導入管38、連絡管28、34、24、廃液排出管26およびこれらに介装された開閉バルブによって洗浄手段が構成されている。ただし、アニオン交換塔14の強塩基性アニオン交換樹脂16の洗浄および吸着塔10のフェノール系吸着樹脂12の洗浄は、アニオン交換塔14および吸着塔10にそれぞれ別個に洗浄水を導入して行ってもよい。   Next, as shown in FIG. 4, the washing water 66 was introduced into the anion exchange column 14 through the washing water introduction pipe 38 to wash the strong basic anion exchange resin 16 with washing water, and then exited the anion exchange column 14. Washing water is introduced into the adsorption tower 10 through the connecting pipes 28 and 34 to wash the phenolic adsorption resin 12 with the washing water. The washing water after washing the phenolic adsorption resin 12 is discharged out of the system through the communication pipe 24 and the waste liquid discharge pipe 26. In the present invention, as in this example, the ion exchange resin of the ion exchange means is washed with washing water, and the washing means for washing the phenolic adsorption resin of the adsorption means with the washing water washed with the ion exchange resin is purified by sugar solution. It is preferable to provide in an apparatus, and this can reduce the usage-amount of washing water. In the sugar liquid refining apparatus of this example, the washing means is constituted by the washing water introduction pipe 38, the communication pipes 28, 34, 24, the waste liquid discharge pipe 26, and the open / close valve interposed therebetween. However, washing of the strongly basic anion exchange resin 16 in the anion exchange tower 14 and washing of the phenol-based adsorption resin 12 in the adsorption tower 10 are performed by separately introducing washing water into the anion exchange tower 14 and the adsorption tower 10, respectively. Also good.

さらに、再生および洗浄処理後のフェノール系吸着樹脂12の中和を行う場合は、図5に示すように、酸溶液68を酸溶液導入管40から吸着塔10に導入してフェノール系吸着樹脂12に接触させ、フェノール系吸着樹脂12中に残存するアルカリ溶液を中和する。フェノール系吸着樹脂12に接触した後の酸溶液は連絡管24、廃液排出管26を通って系外に排出される。中和処理後は、洗浄水を原糖液導入管22から吸着塔10に導入して、フェノール系吸着樹脂12中の塩および過剰な酸を洗浄する。フェノール系吸着樹脂12を洗浄した後の洗浄水は連絡管24、廃液排出管26を通って系外に排出される。   Further, when neutralizing the phenolic adsorption resin 12 after the regeneration and washing treatment, as shown in FIG. 5, the acid solution 68 is introduced into the adsorption tower 10 from the acid solution introduction tube 40 and the phenolic adsorption resin 12 is introduced. To neutralize the alkaline solution remaining in the phenolic adsorption resin 12. The acid solution after contacting the phenolic adsorption resin 12 is discharged out of the system through the communication pipe 24 and the waste liquid discharge pipe 26. After the neutralization treatment, washing water is introduced from the raw sugar solution introduction pipe 22 into the adsorption tower 10 to wash away the salt and excess acid in the phenolic adsorption resin 12. The washing water after washing the phenolic adsorption resin 12 is discharged out of the system through the communication pipe 24 and the waste liquid discharge pipe 26.

上述したフェノール系吸着樹脂12中に残存するアルカリ溶液の中和には、カチオン交換塔18の弱酸性カチオン交換樹脂20の酸性再生廃液を使用することもできる。この場合、酸溶液をカチオン交換塔18に導入して弱酸性カチオン交換樹脂20を再生した後、再生廃液の一部を吸着塔10に導入すればよい。   For neutralization of the alkaline solution remaining in the phenol-based adsorption resin 12 described above, an acidic regeneration waste solution of the weakly acidic cation exchange resin 20 in the cation exchange tower 18 can be used. In this case, after the acid solution is introduced into the cation exchange column 18 to regenerate the weak acid cation exchange resin 20, a part of the regeneration waste liquid may be introduced into the adsorption column 10.

なお、図2〜図5では、使用する配管のみを図示している。図2〜図5に示した操作時においては、図示している配管に介装されている開閉バルブを開き、図示していない配管に介装されている開閉バルブは閉じればよい。   2 to 5 show only the piping to be used. At the time of the operation shown in FIGS. 2 to 5, the open / close valve interposed in the illustrated pipe may be opened and the open / close valve interposed in the unillustrated pipe may be closed.

以上の工程を行い、イオン交換樹脂のアルカリ性再生廃液をフェノール系吸着樹脂の再生に利用することにより、再生剤の使用量を低減することできる。フェノール系吸着樹脂をイオン交換樹脂のアルカリ性再生廃液を用いて再生した場合は、フェノール系吸着樹脂を未使用のアルカリ溶液を用いて再生した場合と同等の再生効果を得ることができる。   The amount of the regenerant used can be reduced by performing the above steps and utilizing the alkaline regeneration waste solution of the ion exchange resin for the regeneration of the phenolic adsorption resin. When the phenolic adsorption resin is regenerated using an alkaline regeneration waste solution of an ion exchange resin, a regeneration effect equivalent to that when the phenolic adsorption resin is regenerated using an unused alkaline solution can be obtained.

本発明では、フェノール系吸着樹脂およびイオン交換樹脂の再生に用いるアルカリ溶液の量は、フェノール系吸着樹脂量とイオン交換樹脂量との比などに対応して適宜設定することができる。また、フェノール系吸着樹脂の再生に必要なアルカリ溶液の量がイオン交換樹脂のアルカリ性再生廃液のみでは足らないことも考えられるが、この場合にはイオン交換樹脂のアルカリ性再生廃液に未使用のアルカリ液を補充してフェノール系吸着樹脂に接触させるよりも、イオン交換樹脂量の再生に用いるアルカリ溶液の量を増やす方が、イオン交換樹脂の再生効率が向上するために好ましい。   In the present invention, the amount of the alkaline solution used for the regeneration of the phenolic adsorption resin and the ion exchange resin can be appropriately set according to the ratio of the amount of the phenolic adsorption resin and the amount of the ion exchange resin. It is also possible that the amount of the alkaline solution required for the regeneration of the phenolic adsorption resin is not sufficient for the alkaline regeneration waste liquid of the ion exchange resin. In this case, an unused alkaline liquid is used for the alkaline regeneration waste liquid of the ion exchange resin. In order to improve the regeneration efficiency of the ion exchange resin, it is preferable to increase the amount of the alkaline solution used for regeneration of the amount of the ion exchange resin, rather than replenishing it with the phenolic adsorption resin.

さらに、フェノール系吸着樹脂およびイオン交換樹脂にそれぞれ加わる負荷の割合によっては、イオン交換樹脂の再生時に必ずしもフェノール系吸着樹脂を再生する必要はなく、例えばイオン交換樹脂の再生サイクルの数回に一度の頻度でフェノール系吸着樹脂の再生を行うことも考えられる。   Furthermore, depending on the ratio of the load applied to the phenolic adsorption resin and the ion exchange resin, it is not always necessary to regenerate the phenolic adsorption resin when the ion exchange resin is regenerated, for example, once every several cycles of the ion exchange resin regeneration cycle. It is also conceivable to regenerate the phenolic adsorption resin at a frequency.

以下に、実施例により本発明を具体的に示す。ただし、本発明はこれら実施例に限定されるものではない。
(実施例)
図1に示した精製装置と同一構成の実験装置であって、吸着カラム(吸着塔)にフェノール系吸着樹脂としてホクエツHSを100mL充填し、アニオン交換カラム(アニオン交換塔)に強塩基性アニオン交換樹脂としてアンバーライトIRA402BLを100mL充填し、カチオン交換カラム(カチオン交換塔)に弱酸性カチオン交換樹脂としてアンバーライトIRC−76を50mL充填した精製装置を作製した。この精製装置を用いて下記精製工程、再生工程、中和工程、吸着カラム通液工程を行った。
<精製工程>
表1に示した性状の蔗糖液(原糖液)5000mlを、通液温度50℃、通液流量400ml/hの条件で、吸着カラム、アニオン交換カラム、カチオン交換カラムの順に通液して精製された処理糖液を得た。表1におけるBxはブリックス糖濃度(%)を示し、pHおよび電気伝導率は20℃における値を示し、色価(ICUMSA単位)は下記式により算出した値を示す。
The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples.
(Example)
1 is an experimental apparatus having the same configuration as the purification apparatus shown in FIG. 1, and the adsorption column (adsorption tower) is filled with 100 mL of Hokuetsu HS as a phenolic adsorption resin, and the anion exchange column (anion exchange tower) is strongly basic anion exchange. A purification apparatus was prepared in which 100 mL of Amberlite IRA402BL was packed as a resin, and 50 mL of Amberlite IRC-76 was charged as a weakly acidic cation exchange resin in a cation exchange column (cation exchange column). Using this purification apparatus, the following purification step, regeneration step, neutralization step, and adsorption column flow step were performed.
<Purification process>
Purify 5000 ml of sucrose solution (raw sugar solution) with the properties shown in Table 1 in the order of adsorption column, anion exchange column, and cation exchange column under conditions of a flow rate of 50 ° C. and a flow rate of 400 ml / h. A treated sugar solution was obtained. Bx in Table 1 indicates the Brix sugar concentration (%), pH and electrical conductivity indicate values at 20 ° C., and color value (ICUMSA unit) indicates a value calculated by the following formula.

Figure 2006254794
Figure 2006254794

Figure 2006254794
<再生工程>
上記精製工程終了後、水で各カラムを洗浄して糖液を各カラムから押し出した。また、アニオン交換カラムと吸着カラムとを直列に連続した。そして、1mol/Lの水酸化ナトリウム水溶液200mlを流速400ml/Lでアニオン交換カラムおよび吸着カラムにこの順で通液した。次いで、水をアニオン交換カラムおよび吸着カラムにこの順で通液して両カラムを洗浄した。また、カチオン交換カラムに1mol/Lの塩酸水溶液100mlを通液した後、水でカチオン交換カラムを洗浄した。
<中和工程>
0.2mol/Lの塩酸水溶液100mlを流速400ml/Lで吸着カラムに通液して中和を行い、さらに水で吸着カラムを洗浄した。
Figure 2006254794
<Regeneration process>
After the purification step, each column was washed with water and the sugar solution was pushed out from each column. Moreover, the anion exchange column and the adsorption column were continued in series. Then, 200 ml of a 1 mol / L sodium hydroxide aqueous solution was passed through the anion exchange column and the adsorption column in this order at a flow rate of 400 ml / L. Next, water was passed through the anion exchange column and the adsorption column in this order to wash both columns. Further, 100 ml of a 1 mol / L hydrochloric acid aqueous solution was passed through the cation exchange column, and then the cation exchange column was washed with water.
<Neutralization process>
Neutralization was performed by passing 100 ml of a 0.2 mol / L hydrochloric acid aqueous solution through the adsorption column at a flow rate of 400 ml / L, and the adsorption column was washed with water.

フェノール系吸着樹脂、強塩基性アニオン交換樹脂、弱酸性カチオン交換樹脂の再生に要した薬剤量(NaOH量とHCl量)および洗浄水量と、上記再生時に発生した廃液量(薬剤量と洗浄水量の合計)を表2に示した。   The amount of chemicals (NaOH and HCl) and the amount of washing water required for regeneration of phenolic adsorption resins, strong basic anion exchange resins, and weakly acidic cation exchange resins, and the amount of waste liquid generated during the regeneration (drug amount and amount of washing water) Total) is shown in Table 2.

Figure 2006254794
<吸着カラム通液工程>
上記再生工程および中和工程を行った後、吸着カラムのみに表1に示した性状の原糖液5000mlを通液した。得られた処理液(吸着カラム出口の処理液)の品質を表1に示した。
(比較例)
実施例と同じ装置を用い、下記精製工程、再生工程、中和工程、吸着カラム通液工程を行った。
<精製工程>
実施例と同様の操作を行った。
<再生工程>
水で各カラムを洗浄して糖液を各カラムから押し出した。そして、1mol/Lの水酸化ナトリウム水溶液200mlを吸着カラムに通液した後、水で吸着カラムを洗浄した。また、1mol/Lの水酸化ナトリウム水溶液200mlをアニオン交換カラム通液した後、水でアニオン交換カラムを洗浄した。さらに、カチオン交換カラムに1mol/Lの塩酸水溶液100mlを通液した後、水でカチオン交換カラムを洗浄した。
<中和工程>
0.2mol/Lの塩酸水溶液100mlを吸着カラムに通液して中和を行い、さらに水で吸着カラムを洗浄した。
Figure 2006254794
<Adsorption column flow process>
After the regeneration step and the neutralization step, 5000 ml of the raw sugar solution having the properties shown in Table 1 was passed through only the adsorption column. The quality of the obtained treatment liquid (treatment liquid at the adsorption column outlet) is shown in Table 1.
(Comparative example)
Using the same apparatus as in the examples, the following purification step, regeneration step, neutralization step, and adsorption column flow step were performed.
<Purification process>
The same operation as in the example was performed.
<Regeneration process>
Each column was washed with water, and the sugar solution was pushed out from each column. Then, 200 ml of a 1 mol / L sodium hydroxide aqueous solution was passed through the adsorption column, and then the adsorption column was washed with water. Further, 200 ml of 1 mol / L sodium hydroxide aqueous solution was passed through the anion exchange column, and then the anion exchange column was washed with water. Further, 100 ml of a 1 mol / L hydrochloric acid aqueous solution was passed through the cation exchange column, and then the cation exchange column was washed with water.
<Neutralization process>
Neutralization was performed by passing 100 ml of 0.2 mol / L hydrochloric acid aqueous solution through the adsorption column, and the adsorption column was washed with water.

フェノール系吸着樹脂、強塩基性アニオン交換樹脂、弱酸性カチオン交換樹脂の再生に要した薬剤量(NaOH量とHCl量)および洗浄水量と、上記再生時に発生した廃液量(薬剤量と洗浄水量の合計)を表2に示した。
<吸着カラム通液工程>
上記再生工程および中和工程を行った後、吸着カラムのみに表1に示した性状の原糖液5000mlを通液した。得られた処理液(吸着カラム出口の処理液)の品質を表1に示した。
The amount of chemicals (NaOH and HCl) and the amount of washing water required for regeneration of phenolic adsorption resins, strong basic anion exchange resins, and weakly acidic cation exchange resins, and the amount of waste liquid generated during the regeneration (drug amount and amount of washing water) Total) is shown in Table 2.
<Adsorption column flow process>
After the regeneration step and the neutralization step, 5000 ml of the raw sugar solution having the properties shown in Table 1 was passed through only the adsorption column. The quality of the obtained treatment liquid (treatment liquid at the adsorption column outlet) is shown in Table 1.

表1の結果より、フェノール系吸着樹脂およびアニオン交換樹脂を用いた糖液精製システムにおいて、フェノール系吸着樹脂の再生にアニオン交換樹脂のアルカリ性再生廃液を用いた場合は、再生剤として未使用のアルカリ溶液を使用した場合と同等の再生効果が得られることが分かる。また、表2の結果より、フェノール系吸着樹脂の再生にアニオン交換樹脂のアルカリ性再生廃液を用いた場合は、フェノール系吸着樹脂の再生にアルカリ溶液を使用した場合に較べ、フェノール系吸着樹脂およびアニオン交換樹脂の再生に要するアルカリ溶液量および洗浄水量が低減することが分かる。したがって、上述した実験により、本発明によれば、フェノール系吸着樹脂およびイオン交換樹脂を用いた糖液精製システムにおいて、フェノール系吸着樹脂およびイオン交換樹脂の再生に用いるアルカリ溶液の量を低減できることが確認された。   From the results shown in Table 1, in the sugar liquid purification system using the phenolic adsorption resin and the anion exchange resin, when the alkaline regeneration waste liquid of the anion exchange resin is used for the regeneration of the phenolic adsorption resin, an unused alkali as a regenerant is used. It turns out that the reproduction | regeneration effect equivalent to the case where a solution is used is acquired. In addition, from the results in Table 2, when the alkaline regeneration waste liquid of anion exchange resin was used for regeneration of phenolic adsorption resin, the phenolic adsorption resin and anion were compared with the case of using alkaline solution for regeneration of phenolic adsorption resin. It can be seen that the amount of alkaline solution and the amount of washing water required for regeneration of the exchange resin are reduced. Therefore, according to the present invention, according to the present invention, it is possible to reduce the amount of the alkaline solution used for the regeneration of the phenolic adsorption resin and the ion exchange resin in the sugar liquid purification system using the phenolic adsorption resin and the ion exchange resin. confirmed.

本発明に係る糖液精製装置の一例を示すフロー図である。It is a flowchart which shows an example of the sugar liquid refinement | purification apparatus which concerns on this invention. 図1の糖液精製装置の糖液精製工程を示す説明図である。It is explanatory drawing which shows the sugar liquid refinement | purification process of the sugar liquid refinement | purification apparatus of FIG. 図1の糖液精製装置の再生工程を示す説明図である。It is explanatory drawing which shows the reproduction | regeneration process of the sugar liquid refinement | purification apparatus of FIG. 図1の糖液精製装置の洗浄工程を示す説明図である。It is explanatory drawing which shows the washing | cleaning process of the sugar liquid refinement | purification apparatus of FIG. 図1の糖液精製装置の中和工程を示す説明図である。It is explanatory drawing which shows the neutralization process of the sugar liquid refinement | purification apparatus of FIG.

符号の説明Explanation of symbols

10 吸着塔
12 フェノール系吸着樹脂
14 アニオン交換塔
16 強塩基性アニオン交換樹脂
18 カチオン交換塔
20 弱酸性カチオン交換樹脂
22 原糖液導入管
32 処理液排出管
36 アルカリ溶液導入管
38 洗浄水導入管
40 酸溶液導入管
DESCRIPTION OF SYMBOLS 10 Adsorption tower 12 Phenolic adsorption resin 14 Anion exchange tower 16 Strongly basic anion exchange resin 18 Cation exchange tower 20 Weak acidic cation exchange resin 22 Raw sugar liquid introduction pipe 32 Treatment liquid discharge pipe 36 Alkaline solution introduction pipe 38 Washing water introduction pipe 40 Acid solution introduction tube

Claims (6)

糖液をフェノール系吸着樹脂に接触させる吸着工程と、糖液をイオン交換樹脂に接触させるイオン交換工程とを有する糖液精製システムにおけるフェノール系吸着樹脂の再生方法であって、前記イオン交換樹脂のアルカリ性再生廃液を前記フェノール系吸着樹脂の再生に用いることを特徴とする糖液精製システムにおけるフェノール系吸着樹脂の再生方法。   A method for regenerating a phenolic adsorption resin in a sugar solution purification system comprising an adsorption step of bringing a sugar solution into contact with a phenolic adsorption resin, and an ion exchange step of bringing the sugar solution into contact with an ion exchange resin, A method for regenerating a phenolic adsorption resin in a sugar liquid purification system, wherein an alkaline regeneration waste liquid is used for the regeneration of the phenolic adsorption resin. フェノール系吸着樹脂を再生するに当たり、アルカリ溶液をイオン交換樹脂に接触させるとともに、イオン交換樹脂に接触した後のアルカリ性再生廃液をフェノール系吸着樹脂に接触させることを特徴とする請求項1に記載の糖液精製システムにおけるフェノール系吸着樹脂の再生方法。   2. The regeneration of the phenolic adsorption resin according to claim 1, wherein the alkaline solution is brought into contact with the ion exchange resin, and the alkaline regeneration waste liquid after being brought into contact with the ion exchange resin is brought into contact with the phenolic adsorption resin. A method for regenerating a phenolic adsorption resin in a sugar liquid purification system. アルカリ溶液をイオン交換樹脂に接触させるとともに、イオン交換樹脂に接触した後のアルカリ性再生廃液をフェノール系吸着樹脂に接触させる再生工程と、イオン交換樹脂を洗浄水で洗浄するともに、イオン交換樹脂を洗浄した洗浄水でフェノール系吸着樹脂を洗浄する洗浄工程とを順次行うことを特徴とする請求項1または2に記載の糖液精製システムにおけるフェノール系吸着樹脂の再生方法。   The alkaline solution is brought into contact with the ion exchange resin, and the regeneration process in which the alkaline regeneration waste liquid after coming into contact with the ion exchange resin is brought into contact with the phenolic adsorption resin. The ion exchange resin is washed with washing water and the ion exchange resin is washed. The method for regenerating a phenolic adsorption resin in a sugar liquid purification system according to claim 1 or 2, wherein a washing step of washing the phenolic adsorption resin with the washed water is sequentially performed. 前記イオン交換樹脂のアルカリ性再生廃液が、前記イオン交換工程で用いる強塩基性アニオン交換樹脂の再生廃液であることを特徴とする請求項1〜3のいずれか1項に記載の糖液精製システムにおけるフェノール系吸着樹脂の再生方法。   In the sugar liquid purification system according to any one of claims 1 to 3, wherein the alkaline regeneration waste liquid of the ion exchange resin is a regeneration waste liquid of a strongly basic anion exchange resin used in the ion exchange step. Regeneration method of phenolic adsorption resin. 糖液をフェノール系吸着樹脂に接触させる吸着手段と、糖液をイオン交換樹脂に接触させるイオン交換手段と、アルカリ溶液をイオン交換手段のイオン交換樹脂に接触させるとともに、イオン交換樹脂に接触した後のアルカリ性再生廃液を吸着手段のフェノール系吸着樹脂に接触させる再生手段とを具備することを特徴とする糖液精製装置。   Adsorption means for bringing sugar liquid into contact with phenolic adsorption resin, ion exchange means for bringing sugar liquid into contact with ion exchange resin, and contacting alkaline solution with ion exchange resin in ion exchange means and after contacting ion exchange resin And a regeneration means for bringing the alkaline regeneration waste liquid into contact with the phenolic adsorption resin of the adsorption means. イオン交換手段のイオン交換樹脂を洗浄水で洗浄するともに、イオン交換樹脂を洗浄した洗浄水で吸着手段のフェノール系吸着樹脂を洗浄する洗浄手段を具備することを特徴とする請求項5に記載の糖液精製装置。
The ion exchange resin of the ion exchange means is washed with washing water, and the washing means for washing the phenolic adsorption resin of the adsorption means with the washing water after washing the ion exchange resin is provided. Sugar solution purification equipment.
JP2005077061A 2005-03-17 2005-03-17 Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus Pending JP2006254794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005077061A JP2006254794A (en) 2005-03-17 2005-03-17 Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005077061A JP2006254794A (en) 2005-03-17 2005-03-17 Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus

Publications (1)

Publication Number Publication Date
JP2006254794A true JP2006254794A (en) 2006-09-28

Family

ID=37094657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077061A Pending JP2006254794A (en) 2005-03-17 2005-03-17 Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus

Country Status (1)

Country Link
JP (1) JP2006254794A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008100A1 (en) * 2010-07-15 2012-01-19 アサヒビール株式会社 Soft drink, fermented malt drink, and method for removing purines in wort
CN108046454A (en) * 2017-12-29 2018-05-18 南通波涛化工有限公司 A kind of resin adsorption method pre-processes waster water process containing phenol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256400A (en) * 1988-04-05 1989-10-12 Nippon Shokuhin Kako Co Ltd Cation column to be used for treating syrup
JPH1175899A (en) * 1997-09-09 1999-03-23 Japan Organo Co Ltd Purification of sucrose solution
WO2005090612A1 (en) * 2004-03-19 2005-09-29 Organo Corporation Process for refining sugar solutions and equipment therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256400A (en) * 1988-04-05 1989-10-12 Nippon Shokuhin Kako Co Ltd Cation column to be used for treating syrup
JPH1175899A (en) * 1997-09-09 1999-03-23 Japan Organo Co Ltd Purification of sucrose solution
WO2005090612A1 (en) * 2004-03-19 2005-09-29 Organo Corporation Process for refining sugar solutions and equipment therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008100A1 (en) * 2010-07-15 2012-01-19 アサヒビール株式会社 Soft drink, fermented malt drink, and method for removing purines in wort
JPWO2012008100A1 (en) * 2010-07-15 2013-09-05 アサヒビール株式会社 Method for removing purines from wort, soft drink, and fermented malt drink
JP5850553B2 (en) * 2010-07-15 2016-02-03 アサヒビール株式会社 Method for removing purines from wort, soft drink, and fermented malt drink
CN108046454A (en) * 2017-12-29 2018-05-18 南通波涛化工有限公司 A kind of resin adsorption method pre-processes waster water process containing phenol

Similar Documents

Publication Publication Date Title
JP6265750B2 (en) Method and apparatus for purifying sucrose solution
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JPH1085743A (en) Method and apparatus for treating water containing boron
WO2015129698A1 (en) Method for purifying sucrose solution and device therefor
JP5720138B2 (en) Treatment method for acetic acid-containing wastewater
JP2006254794A (en) Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus
JP4800931B2 (en) Sugar liquid purification method and purification apparatus
JP2607534B2 (en) Device for removing odor components in pure water
TWI781227B (en) Method for removing boron, and method for producing pure water or ultrapure water
JP3613376B2 (en) Pure water production apparatus and pure water production method
JPH1099853A (en) Apparatus for treating water containing tetraalkylammonium hydroxide
JPH04271848A (en) Recovery method for anion exchange resin
JP2001219163A (en) Treating method of boron-containing water
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JPS621307B2 (en)
JPH0372900A (en) Method for purifying sucrose solution and treating equipment therefor
JP3963599B2 (en) Acid component removal method
JP2845489B2 (en) Regeneration method of mixed-bed sucrose liquid purification equipment
JPS5823156B2 (en) Pure water production method
JP2003094053A (en) Method for treating effluent containing boron and sulfate group
JP4210408B2 (en) Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment
JP2007075720A (en) Method for treating strong basic anion exchange resin and strong basic anion exchange resin obtained thereby
RU2047558C1 (en) Method for activated carbon regeneration
JPH11221561A (en) Water purifying device
JP3563781B2 (en) Dechlorination of organic chlorinated products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019