JPS5823156B2 - Pure water production method - Google Patents
Pure water production methodInfo
- Publication number
- JPS5823156B2 JPS5823156B2 JP53096352A JP9635278A JPS5823156B2 JP S5823156 B2 JPS5823156 B2 JP S5823156B2 JP 53096352 A JP53096352 A JP 53096352A JP 9635278 A JP9635278 A JP 9635278A JP S5823156 B2 JPS5823156 B2 JP S5823156B2
- Authority
- JP
- Japan
- Prior art keywords
- tower
- waste liquid
- pure water
- anion exchange
- exchange resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Water Treatment By Sorption (AREA)
Description
【発明の詳細な説明】
この発明はイオン交換樹脂の再生廃液の処理に改良の重
点を置いたイオン交換樹脂を用いる純水製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pure water using an ion exchange resin, with an emphasis on improving the treatment of recycled waste liquid of the ion exchange resin.
従来、イオン交換樹脂による純水の製造においては、カ
チオン交換樹脂の再生廃液とアニオン交換樹脂の再生廃
液を混合することにより中和処理して放流する手段が採
られており、そのため酸性廃液あるいはアルカリ性廃液
による公害問題は一応解決されていた。Conventionally, in the production of pure water using ion exchange resins, a method has been adopted in which recycled waste liquid from cation exchange resins and recycled waste liquid from anion exchange resins are mixed, neutralized, and then discharged. The problem of pollution caused by waste liquid had been resolved for the time being.
しかし、近年排水中のCOD成分も放流基準の対象とさ
れるに及び、上述の再生廃液を中和処理しただけで放流
することが困難となっている。However, in recent years, COD components in wastewater have also been subject to discharge standards, and it has become difficult to discharge the above-mentioned recycled wastewater simply by neutralizing it.
一方、COD含有廃水は粉状あるいは粒状の活性炭で吸
着処理する方法が一般に行われている。On the other hand, COD-containing wastewater is generally adsorbed using powdered or granular activated carbon.
しかしながら、イオン交換樹脂の再生廃液を中和処理し
た後にCODを除去するため活性炭で処理する場合、S
iO□濃度が高いと中性付近でも活性炭の表面ないし孔
にSiO2が析出して反応を阻害し、また賦活再生効率
を低下させる。However, when treating ion exchange resin recycled waste liquid with activated carbon to remove COD after neutralization, S
If the iO□ concentration is high, SiO2 will precipitate on the surface or pores of the activated carbon even in the vicinity of neutrality, inhibiting the reaction and lowering the activation regeneration efficiency.
これを防止するためには高アルカリ域で活性炭処理を行
うことも考えられるが、このような高アルカリ域での処
理では活性炭の吸着作用が低下するので好ましくなかっ
た。In order to prevent this, it may be possible to carry out activated carbon treatment in a high alkaline region, but such treatment in a highly alkaline region is not preferable because the adsorption effect of the activated carbon decreases.
なお、特性炭の吸着作用は酸性側ですぐれているが、S
iO2を含むような廃液は5102が析出するので使用
できない。The adsorption effect of special charcoal is excellent on the acidic side, but S
Waste liquid containing iO2 cannot be used because 5102 will precipitate therein.
この発明の目的は、イオン交換樹脂再生廃液からCOD
成分が効果的に除去すること、およびS i 02を高
濃度に含む廃液とCOD成分を高濃度に含む廃液とに分
離することができる方法を提供すること、さらに活性炭
のCOD脱着を効果的に行うことにある。The purpose of this invention is to reduce COD from ion exchange resin recycled waste liquid.
To provide a method capable of effectively removing components and separating a waste liquid containing a high concentration of S i 02 and a waste liquid containing a high concentration of COD components, and further to effectively remove COD components from activated carbon. It's about doing.
これらの目的を達成するために、この発明においては、
複数のアニオン交換樹脂塔のうちの一基に弱もしくは中
塩基性アニオン交換樹脂を充填し、この塔の再生廃液を
別個に採集して活性炭で吸着処理する手段を用いる。In order to achieve these objectives, in this invention,
One of the plurality of anion exchange resin towers is filled with a weakly or medium basic anion exchange resin, and the regenerated waste liquid from this tower is separately collected and adsorbed with activated carbon.
以下この発明を添付の図面にもとづいてさらに詳しく説
明する。The present invention will be explained in more detail below based on the accompanying drawings.
第1図はこの発明による純水製造工程の1例を示したも
ので、原水を先ず強酸性カチオン交換樹脂を内蔵したカ
チオン交換塔K(以下に塔という)に通し、次いで脱炭
酸塔D(以下り塔という)に通す。FIG. 1 shows an example of the pure water production process according to the present invention. Raw water is first passed through a cation exchange tower K (hereinafter referred to as tower) containing a strongly acidic cation exchange resin, and then decarboxylation tower D ( (hereinafter referred to as the tower).
次にアニオン交換塔に通水するのであるが、この発明で
は、アニオン交換塔を直列に配置した複数の塔から構成
してこれに通水する。Next, water is passed through an anion exchange tower, and in this invention, the anion exchange tower is composed of a plurality of towers arranged in series.
このアニオン交換塔のうち、第1のアニオン交換塔A1
(以下A1塔という)には、マクロポーラス型弱塩基性
アニオン交換樹脂または中塩基性アニオン交換樹脂が内
蔵されており、また第2のアニオン交換塔A2 (以下
A2塔という)には、強塩基性アニオン交換樹脂が内蔵
されている。Among these anion exchange towers, the first anion exchange tower A1
(hereinafter referred to as the A1 column) contains a macroporous weakly basic anion exchange resin or medium basic anion exchange resin, and the second anion exchange column A2 (hereinafter referred to as the A2 column) contains a strong base anion exchange resin. Built-in anion exchange resin.
そして、D塔からの原水をA1塔、A2塔の順に通水し
て純水を得る。Then, the raw water from the D tower is passed through the A1 tower and then the A2 tower to obtain pure water.
上述した純水製造工程において、原水中の天然有機物か
らくるCOD成分(主として腐植物質たとえばフミン酸
、フルボ酸、ツユ−状)などに起因するものであって、
これらは有機酸としての官能基を有する)は、弱塩基性
あるいは中塩基性アニオン交換樹脂の内蔵しであるA1
塔で殆ど交換され、一方、SiO2はA2塔で主として
交換される。In the above-mentioned pure water production process, COD components originating from natural organic substances in raw water (mainly humic substances such as humic acid, fulvic acid, and sugar), etc.
A1 (which has a functional group as an organic acid) has a built-in weakly or moderately basic anion exchange resin.
SiO2 is mostly exchanged in the A2 column, while SiO2 is mainly exchanged in the A2 column.
各交換塔のイオン交換樹脂は、第1図に一点鎖線で示す
工程で再生される。The ion exchange resin in each exchange tower is regenerated in the process shown by the dashed line in FIG.
すなわち、K塔はH(J’またはH2SO4で再生され
てその廃液は第1の廃液4w1c以下W1槽という)に
導かれ、一方A2塔はNaOHで再生されてその廃液は
同じくW1槽に導かれる。That is, the K tower is regenerated with H (J' or H2SO4 and its waste liquid is led to the first waste liquid 4W1c or below, referred to as W1 tank), while the A2 tower is regenerated with NaOH and its waste liquid is also led to W1 tank. .
したがって、W1槽ではに塔からの酸性の廃液とA2塔
からのSiO2を多、く含んだアルカリ性の廃液とが混
合され(混合のために空気攪拌または機械攪拌を行う)
て中和処理される。Therefore, in the W1 tank, the acidic waste liquid from the Ni column and the alkaline waste liquid containing a large amount of SiO2 from the A2 column are mixed (air agitation or mechanical agitation is used for mixing).
It is then neutralized.
このとき混合液が酸性またはアルカリ性を示す場合はそ
れに応じたアルカリまたは酸の中和剤を添加する。At this time, if the mixed liquid is acidic or alkaline, an appropriate alkali or acid neutralizer is added.
こうして中和処理した廃液は放流される。The waste liquid thus neutralized is discharged.
A1塔もNaOHで再生され、その廃液中には純水製造
中に交換吸着されたCODが含まれているので濃縮され
た状態にあり、その値は極めて高い。The A1 column is also regenerated with NaOH, and its waste liquid contains COD exchanged and adsorbed during pure water production, so it is in a concentrated state and its value is extremely high.
そして、その廃液は第2の廃液槽W2 (以下W2槽と
いう)に導かれる。The waste liquid is then led to a second waste liquid tank W2 (hereinafter referred to as W2 tank).
この廃液は低アルカリ域にあり、A1塔で交換したSi
O2が殆ど皆無なので廃液中で析出することはない。This waste liquid is in the low alkaline range, and the Si exchanged in the A1 tower
Since there is almost no O2, it does not precipitate in the waste liquid.
このW2槽の廃液は、粉状または粒状の活性炭を内蔵し
た活性炭吸着塔AC(以下AC塔という)に通され、こ
の廃液中にはA1塔が交換吸着していCOD成分が存在
するが、これがAC塔に吸着される。The waste liquid from the W2 tank is passed through an activated carbon adsorption tower AC (hereinafter referred to as an AC tower) containing powdered or granular activated carbon, and COD components present in this waste liquid are exchanged and adsorbed by the A1 tower. Adsorbed by AC tower.
W2槽の廃液をAC塔に供給するに当っては、予め活性
炭の吸着作用効果のよいpH3付近に調整しておく。Before supplying the waste liquid from the W2 tank to the AC tower, the pH is adjusted in advance to around 3, where activated carbon has a good adsorption effect.
このためAC塔からはCOD成分を含まない廃液がアル
カリ剤で中和されたのち放流される。For this reason, waste liquid that does not contain COD components is discharged from the AC tower after being neutralized with an alkaline agent.
また場合によっては、このAC塔からの放流をW0槽に
受入れるようにし、ここから放流するようにしてもよい
。In some cases, the discharge from the AC tower may be received in the W0 tank and discharged from there.
なお、A2塔で交換吸着されるCOD成分もあるが、こ
れは極めて僅かであり、したがってWlから放流される
廃液中に含まれるCOD成分は放流基準以下であるから
問題になることはない。Although some COD components are exchanged and adsorbed in the A2 tower, this is extremely small and does not pose a problem since the COD components contained in the waste liquid discharged from Wl are below the discharge standard.
上述した第1図に示すこの発明の実施態様では、アニオ
ン交換塔をA1およびA2塔にして通水する例であるが
、この発明はまた、第2図に示すように第1図に示した
A2塔をさらに2塔に分離しA2−1塔およびA2−2
塔に構成して通水するようにしてもよい。In the embodiment of the present invention shown in FIG. 1 described above, the anion exchange towers are A1 and A2 towers and water is passed through the anion exchange towers, but this invention also has the embodiment shown in FIG. The A2 column is further separated into two columns, A2-1 column and A2-2.
It may be configured as a tower to allow water to flow therethrough.
このA2−□とA2−2塔には第1図の場合と同様に強
塩基性アニオン交換樹脂を内蔵する。The A2-□ and A2-2 columns contain a strongly basic anion exchange resin as in the case of FIG.
第2図の実施例による純水製造時にはA□、A21゜A
2−2の順に通水して純水を得、第1図の実施例の場合
に比べてアニオン交換をより完全にすることぎできる。When producing pure water according to the embodiment shown in Fig. 2, A□, A21°A
By passing water in the order of 2-2 to obtain pure water, anion exchange can be more complete than in the embodiment shown in FIG.
再生に当っては、A、塔は第1図の実施例の場合と同様
であり、A2−1およびA2−2塔は図示したようにA
2−2塔の再生廃液でA2−1塔を再生するようにして
再生剤の有効利用を計るようになっている。For regeneration, the A and A columns are the same as in the embodiment shown in FIG. 1, and the A2-1 and A2-2 columns are
The A2-1 tower is regenerated with the regenerated waste liquid from the 2-2 tower to ensure effective use of the regenerant.
そしてA2−1塔からの再生廃液はW1槽に導かれて第
1図における処理と同様に処理される。The regenerated waste liquid from the A2-1 column is then led to the W1 tank and treated in the same manner as in FIG.
第3図はこの発明のさらに他の実施例を示したもので、
この例ではに塔をに1とに2の2塔に分割し、K1塔に
は強酸性のカチオン交換樹脂を、K2塔にも強酸性カチ
オン交換樹脂を内蔵してあり、第2のカチオン交換塔に
2ヲA2−1塔の後に配置して通水するようにしたもの
である。FIG. 3 shows still another embodiment of this invention.
In this example, the column is divided into two columns, 1 and 2, and the K1 column contains a strong acidic cation exchange resin, the K2 column also contains a strong acidic cation exchange resin, and the second cation exchange Two towers are placed after the A2-1 tower to allow water to flow therethrough.
この場合の純水製造工程では原水をに1 、 D )
At 2 A2−12 K2 )A2−2の順に通水し
て純水を得る。In this case, in the pure water production process, the raw water is
At 2 A2-12 K2 ) Water is passed in the order of A2-2 to obtain pure water.
A塔の再生は第2図の場合と同様であり、K塔において
は先ずに2塔を再生し、その再生廃液でに1塔を再生す
る。The regeneration of the A column is the same as in the case of FIG. 2, and in the K column, two columns are first regenerated, and then one column is regenerated using the recycled waste liquid.
モしてに1塔からの再生廃液はW□槽に導き、その後は
第1図および第2図の例で示したとおりの処理を行う。Firstly, the regenerated waste liquid from the first column is led to the W□ tank, and then treated as shown in the example of FIGS. 1 and 2.
この例に示すシリーズ再生方式の純水製造装置は再生剤
の節約をすることができ、この発明はこのようなシリー
ズ再生方式の純水製造装置にも適用できる。The series regeneration type pure water production apparatus shown in this example can save on regenerating agent, and the present invention can also be applied to such a series regeneration type pure water production apparatus.
なお、上述したすべての例では純水製造工程時の各基に
おける樹脂と液体の接触は下向流式に示されているが、
上向流に接触させる形式であってもよい。In addition, in all the examples mentioned above, the contact between the resin and the liquid at each group during the pure water production process is shown in a downward flow type.
It may also be of a type in which it is brought into contact with an upward flow.
実施例
原水中にCODを3〜5 p pm、 S A02を2
0ppm含む工業用水(伝導率300μ0/cIIL)
から第1図に示す塔配列の純水製造装置(K塔に強酸性
カチオン交換樹脂、A1塔に弱塩基性アニオン交換樹脂
、A2塔に強塩基性アニオン交換樹脂を充填)で20時
間に亘って1μ0/CIIL以下の純水を得たのち再生
工程に移った。Example: 3 to 5 ppm of COD, 2 of S A02 in the raw water
Industrial water containing 0ppm (conductivity 300μ0/cIIL)
1 for 20 hours using a pure water production apparatus with the tower arrangement shown in Figure 1 (K tower filled with a strongly acidic cation exchange resin, A1 tower filled with a weakly basic anion exchange resin, and A2 tower filled with a strongly basic anion exchange resin). After obtaining pure water with a purity of 1μ0/CIIL or less, the process moved to a regeneration step.
A1およびA2塔には4%NaOH溶液を樹脂11当り
11を通液するとともに押出水を樹脂11当り21通水
して再生し、A2塔の廃液ヲW1槽に受受けるとともに
に塔を再生した廃液もここに受けるとともにに塔を再生
した廃液もここに受けて中和処理して放流した。A 4% NaOH solution was passed through the A1 and A2 towers at 11 times per 11 resins, and extruded water was passed through 21 times per 11 resins for regeneration.The waste liquid from the A2 towers was received in the W1 tank and the towers were regenerated. Not only was the waste liquid received here, but also the waste liquid that had been regenerated from the tower was received here, neutralized, and then discharged.
なお、このW1槽の廃液中のS r 02は11000
ppであった。In addition, S r 02 in the waste liquid of this W1 tank is 11000
It was pp.
またW2槽の廃液のpHは10で、CODは530pp
m、5i02はOppmであった。In addition, the pH of the waste liquid in the W2 tank is 10, and the COD is 530pp.
m, 5i02 was Oppm.
この廃液を酸でpH3に調整したが、この調整後でもS
iO□は析出しなかった。This waste liquid was adjusted to pH 3 with acid, but even after this adjustment, S
iO□ was not precipitated.
この廃液を平均粒径20メツシユの粒状活性炭を充填し
たAC塔に通水して廃液中のCODを吸着除去した。This waste liquid was passed through an AC tower filled with granular activated carbon having an average particle size of 20 mesh to adsorb and remove COD in the waste liquid.
活性炭との廃液の接触はS■5で行った。Contact of the waste liquid with activated carbon was carried out at S5.
なおAC塔からの廃液のCODは10ppm以下であっ
た。Note that the COD of the waste liquid from the AC tower was 10 ppm or less.
第1図は本発明に係る純水製造工程を示すフロシート、
第2図および第3図はそれぞれ同じく別の工程を示すフ
ローシートである。
K 、 K、 、 K2・・・・・・カチオン交換塔、
D・・・・・・脱炭酸塔、A1.A2.A2−□) A
2−2・・・・・・アニオン交換塔、AC・・・・・・
活性炭吸着塔、Wl、W2・・・・・・再生廃液槽。FIG. 1 shows a flow sheet showing the pure water production process according to the present invention;
FIGS. 2 and 3 are flow sheets showing different steps. K, K, , K2...Cation exchange tower,
D...Decarboxylation tower, A1. A2. A2-□) A
2-2... Anion exchange tower, AC...
Activated carbon adsorption tower, Wl, W2...Regenerated waste liquid tank.
Claims (1)
列に配置し、前記カチオン交換塔からアニオン交換塔に
向い原水を通水して純水を得る方法において、前記アニ
オン交換塔を複数の塔より構成し、そのうちの−塔に弱
もしくは中塩基性アニオン交換樹脂を充填してこの塔の
再生廃液を別個に採集して活性炭で吸着処理することを
特徴とする純水製造方法。 2 別個に採集して再生廃液を酸性側に調整した後に活
性炭で吸着処理する特許請求の範囲第1項記載の純水製
造方法。[Scope of Claims] 1. A method for obtaining pure water by arranging a cation exchange resin tower and an anion exchange resin tower in series and passing raw water from the cation exchange tower to the anion exchange tower, the anion exchange tower comprising: A method for producing pure water comprising a plurality of columns, one of which is filled with a weak or medium basic anion exchange resin, and the recycled waste liquid from the column is separately collected and adsorbed with activated carbon. 2. The pure water production method according to claim 1, wherein the recycled waste liquid is collected separately and adjusted to the acidic side, and then treated by adsorption with activated carbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53096352A JPS5823156B2 (en) | 1978-08-08 | 1978-08-08 | Pure water production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53096352A JPS5823156B2 (en) | 1978-08-08 | 1978-08-08 | Pure water production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5522379A JPS5522379A (en) | 1980-02-18 |
JPS5823156B2 true JPS5823156B2 (en) | 1983-05-13 |
Family
ID=14162596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53096352A Expired JPS5823156B2 (en) | 1978-08-08 | 1978-08-08 | Pure water production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5823156B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109607910A (en) * | 2018-11-27 | 2019-04-12 | 江西世龙实业股份有限公司 | A kind of System and method for of processing AC foaming agent production waste water |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55114959U (en) * | 1979-02-07 | 1980-08-13 | ||
JPH0638037Y2 (en) * | 1985-07-24 | 1994-10-05 | 大日本プラスチツクス株式会社 | Long flat plate cutting and sorting machine |
JP6332412B2 (en) * | 2016-11-10 | 2018-05-30 | 栗田工業株式会社 | Regeneration method of multi-layer anion exchange tower |
-
1978
- 1978-08-08 JP JP53096352A patent/JPS5823156B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109607910A (en) * | 2018-11-27 | 2019-04-12 | 江西世龙实业股份有限公司 | A kind of System and method for of processing AC foaming agent production waste water |
CN109607910B (en) * | 2018-11-27 | 2020-02-07 | 江西世龙实业股份有限公司 | System and method for treating AC foaming agent production wastewater |
Also Published As
Publication number | Publication date |
---|---|
JPS5522379A (en) | 1980-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101066824B (en) | Process of treating and reusing effluent from 1-amino-8-naphthol-3, 6-disulfonic acid production | |
CN102190345A (en) | Method for enriching low-concentration heavy metal in water by recyclable magnesium hydroxide adsorbent | |
TWI808053B (en) | Ultrapure water production system and ultrapure water production method | |
CN108793323B (en) | Process for recovering cobalt metal by treating basic cobalt carbonate industrial wastewater by comprehensive environment-friendly method | |
CN104129831A (en) | Method for simultaneous removal and recovery of heavy metal ions and organic acid by using chelating resin | |
CN113134396B (en) | Process method for reducing dosage of desorbent in preparation of potassium phytate by using corn soaking water | |
WO2015111714A1 (en) | Sucrose solution refinement method and refinement device | |
JPS5823156B2 (en) | Pure water production method | |
NL2029939B1 (en) | Treatment process for purifying chlorine-containing wastewater by crystallization of ammonium salt | |
JPS5815193B2 (en) | How to treat boron-containing water | |
CN102417265A (en) | Method for effectively removing organic matters in nitrochlorobenzene production wastewater | |
CN108298721A (en) | A kind of method of graphite oxide colloidal sol waste liquid cleaning treatment and recycling | |
CN209522723U (en) | Chemical nickel waste liquid and waste water treatment system | |
CN108726541B (en) | Method for preparing sodium bisulfate by resource utilization of coal chemical industry waste gas and waste water | |
KR100201179B1 (en) | Process for valorizing a liquid acid effluent containing heavy metals | |
CN106565052A (en) | Technological processing method for phenolic wastewater in petrochemical engineering production | |
CN101254992A (en) | Chemical wastewater biochemical tailrace advanced treatment method | |
CN116621402B (en) | Near-zero emission recovery method and system for phosphorus-containing polishing waste acid | |
CN103894139A (en) | Preparation method of carrying type laminated hydroxyl magnesium oxide composite material | |
CN204779134U (en) | Regeneration type electroplating effluent clean system | |
JP2006254794A (en) | Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus | |
CN111747608B (en) | Treatment and recycling system and treatment and recycling method for electric defogging wastewater and/or electric dedusting wastewater | |
JP3963599B2 (en) | Acid component removal method | |
JP2000354772A (en) | Treatment of regenerable waste from condensate demineralizer | |
JPH0310378B2 (en) |