JPH01258749A - Regenerating agent for cation exchange resin and regenerating process using said regenerating agent - Google Patents

Regenerating agent for cation exchange resin and regenerating process using said regenerating agent

Info

Publication number
JPH01258749A
JPH01258749A JP63085468A JP8546888A JPH01258749A JP H01258749 A JPH01258749 A JP H01258749A JP 63085468 A JP63085468 A JP 63085468A JP 8546888 A JP8546888 A JP 8546888A JP H01258749 A JPH01258749 A JP H01258749A
Authority
JP
Japan
Prior art keywords
cation exchange
regenerating
regeneration
exchange resin
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63085468A
Other languages
Japanese (ja)
Other versions
JPH0511494B2 (en
Inventor
Tadashi Yoshino
正 芳野
Akira Utsunomiya
宇都宮 昭
Hideo Kamata
釜田 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63085468A priority Critical patent/JPH01258749A/en
Publication of JPH01258749A publication Critical patent/JPH01258749A/en
Publication of JPH0511494B2 publication Critical patent/JPH0511494B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve a rate of regeneration of a cation exchange resin as compared to a process wherein a single aq. soln. of hydrochloric acid or sulfuric acid is used as regenerating agent, by treating the cation exchange resin with a regenerating soln. consisting of an aq. mixture of hydrochloric acid and sulfuric acid. CONSTITUTION:A regenerating soln. for a cation exchange resin is prepd. from an aq. mixture of hydrochloric acid and sulfuric acid, wherein a proportion of hydrogen (H) ion derived from the sulfuric acid to the H ion in the aq. soln. of the mixed acid is pref. 5-40% (i.e. a proportion of H2SO4 to HCl is ca. 0.023-0.327mole/mole). Further, preferred concn. of the aq. soln. of the mixed acid is 5-20wt.% (in total of HCl+H2SO4). An operation for regeneration with this regenerating soln. is performed in the order from stopping of feed of a liquid to be treated, withdrawal of the liquid, washing of the cation exchange resin, withdrawal of washing water, regeneration, withdrawal of regenerating soln, washing of the resin after regeneration, withdrawal of the washing water, resumption of feed.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は陽イオン交換樹脂用再生剤、及びこの再生剤を
使用する陽イオン交換樹脂の再生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a regenerant for cation exchange resins and a method for regenerating cation exchange resins using this regenerant.

「従来の技術及び発明が解決しようとする課題」陽イオ
ン交換樹脂は上水、工業用水、各種廃水及び化学工場な
どで取扱われる種々の溶液(以下これ等を総称して溶液
等と記す)に含まれる、少量ないし微量の各種陽イオン
の除去に広く使用されている。
"Prior art and problems to be solved by the invention" Cation exchange resins are used in various solutions (hereinafter collectively referred to as solutions, etc.) handled in tap water, industrial water, various wastewaters, and chemical factories. It is widely used to remove small to trace amounts of various cations contained.

而して、陽イオン交換樹脂を使用しての溶液等からの陽
イオンの除去は、衆知の如く陽イオンを含む溶液等(被
処理液)を、陽イオン交換樹脂を充填したカラム(陽イ
オン交換塔)に通液する方法で実施されるが、この通液
により被処理液中の陽イオンと陽イオン交換樹脂中の水
素イオンとの交換によって除去される。
As is well known, the removal of cations from a solution using a cation exchange resin is a process in which a solution containing cations (liquid to be treated) is transferred to a column filled with a cation exchange resin (cation exchange resin). This is carried out by passing the liquid through an exchange column (exchange tower), and by passing the liquid through, the cations in the liquid to be treated are exchanged with the hydrogen ions in the cation exchange resin, thereby removing them.

したがって、このイオン交換能力は被処理液の通液の経
過と共に次第に低下し、遂にはイオン交換しなくなるの
で、適当な時点で陽イオン交換樹脂を再生しなければな
らない。
Therefore, this ion exchange capacity gradually decreases as the liquid to be treated passes through the resin, and eventually ions are no longer exchanged, so the cation exchange resin must be regenerated at an appropriate time.

尚、イオン交換能力の低下の程度は、陽イオン交換塔出
口における被処理液中の陽イオンの濃度の測定によって
知ることができる。即ち、イオン交換能力が低下するに
したがい、該陽イオン交換塔出口の被処理液中の陽イオ
ンの濃度が上昇し、遂には陽イオン交換塔入口の被処理
液中の濃度と殆ど等しくなる。
The degree of decrease in ion exchange capacity can be determined by measuring the concentration of cations in the liquid to be treated at the outlet of the cation exchange tower. That is, as the ion exchange capacity decreases, the concentration of cations in the liquid to be treated at the outlet of the cation exchange column increases and eventually becomes almost equal to the concentration in the liquid to be treated at the inlet of the cation exchange column.

陽イオン交換樹脂の再生は通常次の様なサイクルで行わ
れている。即ち被処理液の通液停止、被処理液の抜液、
再生前の洗浄、洗浄水の抜液、再生、再生液の抜液、再
生後の洗浄、洗浄水の抜液、被処理液の通液の順序に従
って行われる。
Regeneration of cation exchange resins is usually carried out in the following cycle. In other words, stopping the flow of the liquid to be treated, draining the liquid to be treated,
The cleaning is performed in the following order: cleaning before regeneration, draining of the cleaning water, regeneration, draining of the regenerated liquid, cleaning after regeneration, draining of the cleaning water, and passage of the liquid to be treated.

再生前の洗浄は、陽イオン交換樹脂に含浸している被処
理液を回収するのが目的で、通常水を陽イオン交換塔へ
水張・抜水する操作を数回繰り返し、被処理液を回収後
、必要に応じ、更に水洗を続行(水洗液は廃棄)する方
法で行われる。従って、被処理液が上水や工業用水であ
る場合には、当然のことながら、上記再生前の洗浄は必
要はない。
The purpose of cleaning before regeneration is to recover the liquid to be treated that is impregnated in the cation exchange resin, and the process of filling and draining normal water into the cation exchange column is repeated several times to remove the liquid to be treated. After collection, if necessary, washing with water is continued (the washing liquid is discarded). Therefore, when the liquid to be treated is tap water or industrial water, the above-mentioned cleaning before regeneration is, of course, unnecessary.

再生とは、水素イオンと交換された陽イオン交換樹脂中
の陽イオンを再び水素イオンに戻す(H型の陽イオン交
換樹脂にする)ことであり、これは通常酸性水溶液を再
生剤として陽イオン交換塔に通液する方法で実施される
。そして、この再生剤は通常濃度が5〜20重置%の塩
酸、硫酸等の鉱酸の水溶液が使用されている。
Regeneration is to return the cations in the cation exchange resin that have been exchanged with hydrogen ions back to hydrogen ions (to make an H-type cation exchange resin), and this is usually done by using an acidic aqueous solution as a regenerating agent. This is carried out by passing the liquid through an exchange tower. As the regenerating agent, an aqueous solution of a mineral acid such as hydrochloric acid or sulfuric acid having a concentration of 5 to 20% by weight is usually used.

上記再生において、再生剤の通液は被処理液の通液と同
一方向、つまり並流で行う場合と、逆方向、つまり向流
で行う場合があるが、再生後における被処理液の通液開
始の際の陽イオンの漏洩を防止するためには、向流で再
生を行うのが好ましい。
In the above regeneration, the regenerant is passed in the same direction as the liquid to be treated, that is, in parallel flow, or in the opposite direction, that is, in countercurrent. To prevent leakage of cations during start-up, regeneration is preferably carried out in countercurrent.

しかし何れにしても、陽イオン交換樹脂を完全にH型に
まで再生するためには、大量の再生剤及び長時間の再生
時間を必要とするので、不完全な再生でもって再生完了
とするのが通常である。しかし、このように再生が不完
全であるということは、その分だけ再生頻度が増加する
。このような再生頻度の増加は、再生に要する費用や労
力の増加となるのみならず、陽イオン樹脂の粉化による
損失増加を招くという問題もある。
However, in any case, in order to completely regenerate the cation exchange resin to H-type, a large amount of regenerant and a long regeneration time are required, so incomplete regeneration is not considered complete. is normal. However, this incomplete regeneration means that the regeneration frequency increases accordingly. Such an increase in regeneration frequency not only increases the cost and labor required for regeneration, but also causes the problem of increased loss due to pulverization of the cationic resin.

「課題を解決するための手段」 本発明者等は上記状況に鑑み、陽イオン交換樹脂の再生
率を向上させることを目的として鋭意検討を重ねた結果
、塩酸と硫酸との混酸水溶液を陽イオン交換樹脂の再生
剤として使用すれば、従来の再生剤である塩酸、硫酸等
の単独水溶液よりも陽イオン交換樹脂の再生率が向上す
ることを見出し、本発明を完成するに至ったものである
"Means for Solving the Problems" In view of the above circumstances, the inventors of the present invention have conducted extensive studies with the aim of improving the regeneration rate of cation exchange resins, and as a result, the present inventors have found that a mixed acid aqueous solution of hydrochloric acid and sulfuric acid is used as a cation exchange resin. It was discovered that when used as a regenerating agent for exchange resins, the regeneration rate of cation exchange resins is improved compared to single aqueous solutions of conventional regenerants such as hydrochloric acid and sulfuric acid, which led to the completion of the present invention. .

即ち、本発明の一つは塩酸と硫酸の混酸水溶液からなる
ことを特徴とする陽イオン交換樹脂用再生剤であり、本
発明の他の一つは上記混酸水溶液を再生剤として使用す
ることを特徴とする陽イオン交換樹脂の再生方法である
That is, one aspect of the present invention is a regenerating agent for cation exchange resin characterized by comprising an aqueous mixed acid solution of hydrochloric acid and sulfuric acid, and another aspect of the present invention is a regenerating agent characterized in that the aqueous mixed acid solution described above is used as a regenerating agent. This is a characteristic method for regenerating cation exchange resins.

「発明の詳細な開示」 以下、本発明を更に詳細に説明する。"Detailed Disclosure of the Invention" The present invention will be explained in more detail below.

本発明の陽イオン交換樹脂用再生剤は、前記の通り塩酸
と硫酸との混酸水溶液でなければならない。塩酸と硫酸
の混合割合は特に限定はなく、何れの混合割合でも塩酸
または硫酸単独の水溶液より再生率は向上するが、その
中でも、混酸水溶液中の全水素イオン中に占める硫酸が
もたらす水素イオンの割合が5〜40%(塩酸1モルに
対し硫酸が約0.023〜0.327モル)、更に好ま
しくは10〜20%(塩酸1モルに対し硫酸が約0.0
54〜0.122モル)である。
The regenerant for cation exchange resins of the present invention must be an aqueous mixed acid solution of hydrochloric acid and sulfuric acid, as described above. The mixing ratio of hydrochloric acid and sulfuric acid is not particularly limited, and the regeneration rate is improved compared to an aqueous solution of hydrochloric acid or sulfuric acid alone at any mixing ratio. The ratio is 5 to 40% (about 0.023 to 0.327 mol of sulfuric acid to 1 mol of hydrochloric acid), more preferably 10 to 20% (about 0.0 mol of sulfuric acid to 1 mol of hydrochloric acid).
54 to 0.122 mol).

上記の混酸水溶液の濃度は、本発明では従来の塩酸単独
または硫酸単独の水溶液の場合と同様に、塩酸と硫酸を
合計した濃度が5〜20重量%の水溶液として使用され
る。
In the present invention, the above-mentioned mixed acid aqueous solution is used as an aqueous solution in which the total concentration of hydrochloric acid and sulfuric acid is 5 to 20% by weight, similar to the conventional aqueous solution of hydrochloric acid alone or sulfuric acid alone.

また、使用される塩酸及び硫酸は特に高純度である必要
はなく、通常市販の工業用のものが好適に使用される。
Furthermore, the hydrochloric acid and sulfuric acid used do not need to be of particularly high purity, and commercially available industrial ones are preferably used.

本発明では上記の塩酸と硫酸の混酸水溶液からなる再生
剤を用いて、陽イオン交換樹脂の再生を行うが、再生方
法は、従来の再生剤である塩酸、硫酸等の単独水溶液の
代わりに上記の本発明の再生剤を使用する以外は、従来
公知の方法と全(同様な方法で実施される。
In the present invention, the cation exchange resin is regenerated using a regenerating agent consisting of the above-mentioned mixed acid aqueous solution of hydrochloric acid and sulfuric acid. The method is carried out in the same manner as the conventionally known method except for using the regenerating agent of the present invention.

即ち、再生操作は、被処理液の通液停止、被処理液の抜
液、再生前の洗浄、洗浄水の抜液、再生、再生液の抜液
、再生後の洗浄、洗浄水の抜液、被処理液の通液の順序
に従って行われる。
In other words, the regeneration operations include stopping the flow of the liquid to be treated, draining the liquid to be treated, cleaning before regeneration, draining the cleaning water, regeneration, draining the regenerated liquid, cleaning after regeneration, and draining the cleaning water. , and are carried out in accordance with the order of passage of the liquid to be treated.

尚、上記再生操作において、被処理液が水に可溶性で沸
点が水より低い有機溶媒を含む溶液である場合は、上記
再生操作の中の、再生前の洗浄、洗浄水の抜液の代わり
に、本発明者等が先に提案した、陽イオン交換樹脂層へ
水蒸気を吹き込むことにより陽イオン交換樹脂に含浸し
ている被処理液を水と置換させる方法(特開昭62−4
2748号公報記載の方法)を適用することもできる。
In addition, in the above regeneration operation, if the liquid to be treated is a solution containing an organic solvent that is soluble in water and has a boiling point lower than water, instead of washing before regeneration and draining the washing water in the above regeneration operation, , a method previously proposed by the present inventors in which the liquid to be treated impregnated in the cation exchange resin is replaced with water by blowing water vapor into the cation exchange resin layer (Japanese Patent Laid-Open No. 62-4
The method described in Japanese Patent No. 2748) can also be applied.

(実施例) 以下実施例により本発明をより具体的に説明する。尚、
以下において%は重量%を意味する。
(Example) The present invention will be explained in more detail with reference to Examples below. still,
In the following, % means % by weight.

実施例1 hosfi度54.1%の湿式燐酸液にイソプロピルア
ルコールを加え、湿式燐酸液中の遊離燐酸分を抽出して
第1表に示す組成の抽出液を得た。
Example 1 Isopropyl alcohol was added to a wet phosphoric acid solution with a hosfi degree of 54.1% to extract the free phosphoric acid content in the wet phosphoric acid solution to obtain an extract having the composition shown in Table 1.

陽イオン交換樹脂レバチッ)SP−112(西独バイエ
ル社製)を充填した塔径1.5m、陽イオン交換塔(陽
イオン交換樹脂充填容量8 mりに 、第1表に示す組
成の抽出液を20a3への流量でアップフローにて通液
し、含有するNaイオンを脱イオン処理した。 12時
間通液したところでイオン交換処理能力が低下し、陽イ
オン交換塔出口のNaイオンの含有量がo、oos%に
上昇したので抽出液の通液を停止し、陽イオン交換塔内
の抽出液を抽出液タンクへ抜液した6 抽出液を抜液後、陽イオン交換塔の樹脂層まで上水を水
張・抜液する操作を2回行い、陽イオン交換樹脂に含浸
している抽出液を回収した。更にアップフローで上水を
10+s3/hの流量で3時間通水し、陽イオン交換樹
脂を充分洗浄した。
The extract having the composition shown in Table 1 was added to a cation exchange tower (cation exchange resin filling capacity: 8 m) with a diameter of 1.5 m filled with cation exchange resin SP-112 (manufactured by Bayer AG, West Germany). The solution was passed upflow at a flow rate of 20a3 to deionize the contained Na ions.After passing the solution for 12 hours, the ion exchange processing capacity decreased, and the content of Na ions at the outlet of the cation exchange column decreased to , oos%, so the flow of the extract was stopped and the extract in the cation exchange tower was drained to the extract tank.6 After draining the extract, water was pumped up to the resin layer of the cation exchange tower. The extraction liquid impregnated into the cation exchange resin was recovered by filling and draining twice.Furthermore, clean water was passed through the cation exchange resin at a flow rate of 10+s3/h for 3 hours to exchange cations. The resin was thoroughly washed.

次いで、予め用意された、塩酸が21.OOkg−mo
l、硫酸が3.10kg−oralの塩酸と硫酸からな
る再生液16m’を、ダウンフローにて20m’/hの
速度で48分間通液し、陽イオン交換樹脂の再生を行っ
た。再生後は再生剤を抜液したのち陽イオン交換樹脂は
上水で充分洗浄した。
Next, previously prepared hydrochloric acid was added to 21. OOkg-mo
16 m' of a regenerating solution consisting of hydrochloric acid and sulfuric acid containing 3.10 kg/oral of sulfuric acid was passed downflow at a rate of 20 m'/h for 48 minutes to regenerate the cation exchange resin. After regeneration, the regenerant was drained and the cation exchange resin was thoroughly washed with tap water.

かくして再生された陽イオン交換塔に、再度第1表に示
す組成の抽出液を20m+3/hの流量でアップフロー
にて通液してNaイオンを脱イオンした。
The extract having the composition shown in Table 1 was again passed through the thus regenerated cation exchange column at a flow rate of 20 m+3/h in an upflow manner to deionize Na ions.

13.9時間通液したところで陽イオン交換塔出口の抽
出液中のNaイオンの含有量がo、oos%に上昇した
ので抽出液の通液をストップした。尚、この間の抽出液
の通液量は278m”、 Naイオンの脱イオン量は1
1.95kg−5olであった。
After passing through the solution for 13.9 hours, the content of Na ions in the extract at the outlet of the cation exchange column rose to 0.00%, so the passing of the extract was stopped. During this time, the amount of extract liquid passed through was 278 m'', and the amount of deionized Na ions was 1.
It was 1.95 kg-5 ol.

実施例2〜3 再生液の組成を第2表に示す濃度に変更した以外は、実
施例1と全く同様にして第1表に示す組成の抽出液中の
Naイオンの脱イオン及び陽イオン交換樹脂の再生を行
った。
Examples 2 to 3 Deionization and cation exchange of Na ions in the extract having the composition shown in Table 1 was carried out in exactly the same manner as in Example 1, except that the composition of the regeneration liquid was changed to the concentration shown in Table 2. Resin was regenerated.

陽イオン交換樹脂再生後の脱イオンにおいて、陽イオン
交換塔出口の抽出液中のNaイオンの含有量が実施例1
と同じ0.005%に上昇したところで抽出液の通液を
停止した。この間の抽出液の通液量及びNaイオンの脱
イオン量に第2表に示す通りであった。
In the deionization after regeneration of the cation exchange resin, the content of Na ions in the extract at the outlet of the cation exchange tower was determined as in Example 1.
The passage of the extract solution was stopped when it rose to the same 0.005%. During this period, the amount of the extract solution passed through and the amount of deionized Na ions were as shown in Table 2.

比較例1〜2 再生液を従来公知の塩酸及び硫酸の単独水溶液に変更(
水素イオン濃度は実施例1と同じ)し、第2表に示す濃
度とした以外は、実施例1と全く同様な方法で、第1表
に示す組成の抽出液中のNaイオンの脱イオン及び陽イ
オン交換樹脂の再生を行った。
Comparative Examples 1-2 Changing the regeneration liquid to a conventionally known single aqueous solution of hydrochloric acid and sulfuric acid (
The hydrogen ion concentration was the same as in Example 1), and the Na ions in the extract having the composition shown in Table 1 were deionized and The cation exchange resin was regenerated.

陽イオン交換樹脂再生後の抽出液の脱イオンにおいて、
陽イオン交換塔出口の抽出液中のNaイオンの含有量が
実施例1と同じo、oos%に上昇とたところで抽出液
の通液を停止した。この間の抽出液の通液量及びNaイ
オンの脱イオン量は第2表に示す通りであった。
In deionizing the extract after cation exchange resin regeneration,
When the content of Na ions in the extract at the outlet of the cation exchange column rose to the same o, oos% as in Example 1, the flow of the extract was stopped. During this period, the amount of the extract solution passed through and the amount of deionized Na ions were as shown in Table 2.

「発明の効果」 以上詳細に説明した如く、本発明は陽イオン交換樹脂の
再生剤として塩酸と硫酸の混酸水溶液を使用するという
ものであって、これによって実施例及び比較例が示す如
く、従来公知の塩酸や硫酸等の単独の水溶液を再生剤と
して使用する方法に比べ、陽イオン交換樹脂の再生率を
向上させることを可能としたものである。
"Effects of the Invention" As explained in detail above, the present invention uses a mixed acid aqueous solution of hydrochloric acid and sulfuric acid as a regenerating agent for cation exchange resin, and as shown in the Examples and Comparative Examples, this invention This method makes it possible to improve the regeneration rate of cation exchange resins compared to the known method of using a single aqueous solution such as hydrochloric acid or sulfuric acid as a regenerant.

その結果、従来の方法に比べ再生頻度を少なくすること
が可能となり、再生に要する費用及び労力の低減が達成
できるのみならず、陽イオン交換樹脂の粉化による損失
も抑制することができる。
As a result, it is possible to reduce the frequency of regeneration compared to conventional methods, and not only can the cost and labor required for regeneration be reduced, but also loss due to pulverization of the cation exchange resin can be suppressed.

また、従来技術では再生剤としての塩酸と硫酸とでは、
比較例が示す如く塩酸の方が再生率は高いが一面塩酸の
方が高価である。ところが本発明では塩酸と硫酸の混酸
水溶液を再生剤として使用するものであるので、塩酸単
独の水溶液を使用するよりも硫酸を併用する分だけ廉価
である。
In addition, in the conventional technology, hydrochloric acid and sulfuric acid as regenerants
As shown in the comparative example, although hydrochloric acid has a higher regeneration rate, it is also more expensive. However, in the present invention, since a mixed acid aqueous solution of hydrochloric acid and sulfuric acid is used as a regenerating agent, it is cheaper than using an aqueous solution of hydrochloric acid alone by the amount corresponding to the combination of sulfuric acid.

更にまた、本発明は以上のように、再生剤を従来の塩酸
又は硫酸等の鉱酸の水溶液から塩酸と硫酸との混酸水溶
液に変更するものであるので、従来の方法を本発明の方
法に変更する場合に、装置的に変更するものは特にない
という優れた経済的効果もあるのである。
Furthermore, as described above, the present invention changes the regenerating agent from the conventional aqueous solution of mineral acids such as hydrochloric acid or sulfuric acid to a mixed acid aqueous solution of hydrochloric acid and sulfuric acid, so the conventional method can be replaced with the method of the present invention. There is also an excellent economical effect in that there is no need to change anything in terms of equipment.

特許出願人 三井東圧化学株式会社Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)塩酸と硫酸の混酸水溶液からなることを特徴とす
る陽イオン交換樹脂用再生液。
(1) A regenerating liquid for cation exchange resin, which is characterized by being composed of a mixed acid aqueous solution of hydrochloric acid and sulfuric acid.
(2)特許請求の範囲第1項記載の混酸水溶液を再生剤
として使用することを特徴とする陽イオン交換樹脂の再
生方法。
(2) A method for regenerating a cation exchange resin, which comprises using the mixed acid aqueous solution according to claim 1 as a regenerating agent.
JP63085468A 1988-04-08 1988-04-08 Regenerating agent for cation exchange resin and regenerating process using said regenerating agent Granted JPH01258749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63085468A JPH01258749A (en) 1988-04-08 1988-04-08 Regenerating agent for cation exchange resin and regenerating process using said regenerating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63085468A JPH01258749A (en) 1988-04-08 1988-04-08 Regenerating agent for cation exchange resin and regenerating process using said regenerating agent

Publications (2)

Publication Number Publication Date
JPH01258749A true JPH01258749A (en) 1989-10-16
JPH0511494B2 JPH0511494B2 (en) 1993-02-15

Family

ID=13859724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63085468A Granted JPH01258749A (en) 1988-04-08 1988-04-08 Regenerating agent for cation exchange resin and regenerating process using said regenerating agent

Country Status (1)

Country Link
JP (1) JPH01258749A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503983A (en) * 1992-11-25 1996-04-30 ヘキスト、セラニーズ、コーポレーション Reduction of metal ions in bottom antireflective coatings for photoresists
US6827858B2 (en) * 2000-05-17 2004-12-07 Basf Aktiengesellschaft Method for separating alkali metal ions from alkoxylates
JP2009279561A (en) * 2008-05-26 2009-12-03 Kurita Water Ind Ltd Treatment method and treatment apparatus for water soluble resin component-containing alkaline waste liquid
JP2010036130A (en) * 2008-08-06 2010-02-18 Kurita Water Ind Ltd Method and apparatus for recovering water-soluble organic solvent having amino group

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149813A (en) * 1981-03-06 1982-09-16 Mitsui Toatsu Chem Inc Treatment of phosphoric acid extracted solution by ion exchange

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149813A (en) * 1981-03-06 1982-09-16 Mitsui Toatsu Chem Inc Treatment of phosphoric acid extracted solution by ion exchange

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503983A (en) * 1992-11-25 1996-04-30 ヘキスト、セラニーズ、コーポレーション Reduction of metal ions in bottom antireflective coatings for photoresists
US6827858B2 (en) * 2000-05-17 2004-12-07 Basf Aktiengesellschaft Method for separating alkali metal ions from alkoxylates
JP2009279561A (en) * 2008-05-26 2009-12-03 Kurita Water Ind Ltd Treatment method and treatment apparatus for water soluble resin component-containing alkaline waste liquid
JP2010036130A (en) * 2008-08-06 2010-02-18 Kurita Water Ind Ltd Method and apparatus for recovering water-soluble organic solvent having amino group

Also Published As

Publication number Publication date
JPH0511494B2 (en) 1993-02-15

Similar Documents

Publication Publication Date Title
US3618589A (en) Desalination process by ion exchange
US20050145572A1 (en) Selective fluoride and ammonia removal by chromatographic separation of wastewater
CN103214115A (en) Water treatment method of strong acid cation exchange resin incomplete regeneration
GB2088850A (en) Treatment of N methyl pyrrolidone
KR101258730B1 (en) Method for the treatment of tetraalkylammonium ion-containing development waste liquor
JPH01258749A (en) Regenerating agent for cation exchange resin and regenerating process using said regenerating agent
US4705637A (en) Process for reducing the wash water requirement of weakly basic anion exchangers
US3975267A (en) Liquid treating system
JP2003315496A5 (en)
JP2891790B2 (en) Regeneration method of anion exchange resin
JP4411669B2 (en) Regeneration method of cation exchange resin
RU2010889C1 (en) Method of copper regenerating from copper contained ammonium solution
JPH039774B2 (en)
CN217103410U (en) Device for removing ammonia nitrogen from manganese ore leachate
SU1673207A1 (en) Method of recovering h-cationite filter of first water desalting stage
JPS622875B2 (en)
EP1651348A2 (en) Regenerant reuse
JP2001219163A (en) Treating method of boron-containing water
JPH0615266A (en) Concentration of fluorine-containing waste water
JPS61254166A (en) Regeneration of resin for purifying citrus fruit juice
JP3963599B2 (en) Acid component removal method
SU1502080A1 (en) Method of regenerating weak-base ion exchanger
JP2000317450A (en) Method for desalting condensate
SU812726A1 (en) Method of deep chemical desalinization of water
SU1047843A1 (en) Method of na-cl ionizing of water