JPH0511494B2 - - Google Patents

Info

Publication number
JPH0511494B2
JPH0511494B2 JP63085468A JP8546888A JPH0511494B2 JP H0511494 B2 JPH0511494 B2 JP H0511494B2 JP 63085468 A JP63085468 A JP 63085468A JP 8546888 A JP8546888 A JP 8546888A JP H0511494 B2 JPH0511494 B2 JP H0511494B2
Authority
JP
Japan
Prior art keywords
cation exchange
regeneration
liquid
exchange resin
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63085468A
Other languages
Japanese (ja)
Other versions
JPH01258749A (en
Inventor
Tadashi Yoshino
Akira Utsunomya
Hideo Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63085468A priority Critical patent/JPH01258749A/en
Publication of JPH01258749A publication Critical patent/JPH01258749A/en
Publication of JPH0511494B2 publication Critical patent/JPH0511494B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は陽イオン交換樹脂用再生剤、及びこの
再生剤を使用する陽イオン交換樹脂の再生方法に
関する。 「従来の技術及び発明が解決しようとする課題」 陽イオン交換樹脂は上水、工業用水、各種廃水
及び化学工場などで取扱われる種々の溶液(以下
これ等を総称して溶液等と記す)に含まれる、少
量ないし微量の各種陽イオンの除去に広く使用さ
れている。 而して、陽イオン交換樹脂を使用しての溶液等
からの陽イオンの除去は、衆知の如く陽イオンを
含む溶液等(被処理液)を、陽イオン交換樹脂を
充填したカラム(陽イオン交換塔)に通液する方
法で実施されるが、この通液により被処理液中の
陽イオンと陽イオン交換樹脂中の水素イオンとの
交換によつて除去される。 したがつて、このイオン交換能力は被処理液の
通液の経過と共に次第に低下し、遂にはイオン交
換しなくなるので、適当な時点で陽イオン交換樹
脂を再生しなければならない。 尚、イオン交換能力の低下の程度は、陽イオン
交換塔出口における被処理液中の陽イオンの濃度
の測定によつて知ることができる。即ち、イオン
交換能力が低下するにしたがい、該陽イオン交換
塔出口の被処理液中の陽イオンの濃度が上昇し、
遂には陽イオン交換入口の被処理液中の濃度と殆
ど等しくなる。 陽イオン交換樹脂の再生は通常次の様なサイク
ルで行われている。即ち被処理液の通液停止、被
処理液の抜液、再生前の洗浄、洗浄水の抜液、再
生、再生液の抜液、再生後の洗浄、洗浄水の抜
液、被処理液の通液の順序に従つて行われる。 再生前の洗浄は、陽イオン交換樹脂に含浸して
いる被処理液を回収するのが目的で、通常水を陽
イオン交換塔へ水張・抜水する操作を数回繰り返
し、被処理液を回収後、必要に応じ、更に水洗を
続行(水洗液は廃棄)する方法で行われる。従つ
て、被処理液が上水や工業用水である場合には、
当然のことながら、上記再生前の洗浄は必要はな
い。 再生とは、水素イオンと交換された陽イオン交
換樹脂中の陽イオンを再び水素イオンに戻す(H
型の陽イオン交換樹脂にする)ことであり、これ
は通常酸性水溶液を再生剤として陽イオン交換塔
に通液する方法で実施される。そして、この再生
剤は通常濃度が5〜20重量%の塩酸、硫酸等の鉱
酸の水溶液が使用されている。 上記再生において、再生剤の通液は被処理液の
通液と同一方向、つまり並流で行う場合と、逆方
向、つまり向流で行う場合があるが、再生後にお
ける被処理液の通液開始の際の陽イオンの漏洩を
防止するためには、向流で再生を行うのが好まし
い。 しかし何れにしても、陽イオン交換樹脂を完全
にH型にまで再生するためには、大量の再生剤及
び長時間の再生時間を必要とするので、不完全な
再生でもつて再生完了とするのが通常である。し
かし、このように再生が不完全であるということ
は、その分だけ再生頻度が増加する。このような
再生頻度の増加は、再生に要する費用や労力の増
加となるのみならず、陽イオン樹脂の粉化による
損失増加を招くという問題もある。 「課題を解決するための手段」 本発明者等は上記状況に鑑み、陽イオン交換樹
脂の再生率を向上させることを目的として鋭意検
討を重ねた結果、塩酸と硫酸との混酸水溶液を陽
イオン交換樹脂の再生剤として使用すれば、従来
の再生剤である塩酸、硫酸等の単独水溶液よりも
陽イオン交換樹脂の再生率が向上することを見出
し、本発明を完成するに至つたものである。 即ち、本発明の一つは塩酸と硫酸の混酸水溶液
からなることを特徴とする陽イオン交換樹脂用再
生剤であり、本発明の他の一つは上記混酸水溶液
を再生剤として使用することを特徴とする陽イオ
ン交換樹脂の再生方法である。 「発明の詳細な開示」 以下、本発明を更に詳細に説明する。 本発明の陽イオン交換樹脂用再生剤は、前記の
通り塩酸の硫酸との混酸水溶液であり、その場合
混合は混酸水溶液中の全水素イオン中に占める硫
酸がもたらす水素イオンの割合が5〜40モル%
(塩酸1モルに対し硫酸が約0.023〜0.327モル)
である。5モル%より少ないと効果は十分に発揮
されず、40%より多いと硫酸単独より効果はあが
るものの、塩酸より高い再生率は得られない。 上記の混酸水溶液の濃度は、本発明では従来の
塩酸単独または硫酸単独の水溶液の場合と同様
に、塩酸と硫酸を合計した濃度が5〜20重量%の
水溶液として使用される。 また、使用される塩酸及び硫酸は特に高純度で
ある必要はなく、通常市販の工業用のものが好適
に使用される。 本発明では上記の塩酸と硫酸の混酸水溶液から
なる再生剤を用いて、陽イオン交換樹脂の再生を
行うが、再生方法は、従来の再生剤である塩酸、
硫酸等の単独水溶液の代わりに上記の本発明の再
生剤を使用する以外は、従来公知の方法と全く同
様な方法で実施される。 即ち、再生操作は、被処理液の通液停止、被処
理液の抜液、再生前の洗浄、洗浄水の抜液、再
生、再生液の抜液、再生後の洗浄、洗浄水の抜
液、被処理液の通液の順序に従つて行われる。 尚、上記再生操作において、被処理液が水に可
溶性で沸点が水より低い有機溶媒を含む溶液であ
る場合は、上記再生操作の中の、再生前の洗浄、
洗浄水の抜液の代わりに、本発明者等が先に提案
した、陽イオン交換樹脂層へ水蒸気を吹き込むこ
とにより陽イオン交換樹脂に含浸している被処理
液を水に置換させる方法(特開昭62−42748号公
報記載の方法)を適用することもできる。 (実施例) 以下実施例により本発明をより具体的に説明す
る。尚、以下において%は重量%を意味する。 実施例 1 P2O5濃度54.1%の湿式燐酸液にイソプロピルア
ルコールを加え、湿式燐酸液中の遊離燐酸分を抽
出して第1表に示す組成の抽出液を得た。
"Industrial Application Field" The present invention relates to a regenerating agent for cation exchange resins and a method for regenerating cation exchange resins using this regenerating agent. "Prior art and problems to be solved by the invention" Cation exchange resins can be used in various solutions (hereinafter collectively referred to as solutions, etc.) handled in tap water, industrial water, various wastewaters, and chemical factories. It is widely used to remove small to trace amounts of various cations contained. As is well known, the removal of cations from a solution using a cation exchange resin is a process in which a solution containing cations (liquid to be treated) is transferred to a column filled with a cation exchange resin (cation exchange resin). This is carried out by passing the liquid through an exchange column (an exchange tower), and by passing the liquid through, the cations in the liquid to be treated are exchanged with the hydrogen ions in the cation exchange resin, thereby removing them. Therefore, this ion exchange ability gradually decreases as the liquid to be treated passes through the resin, and ions eventually cease to be exchanged, so the cation exchange resin must be regenerated at an appropriate point. The degree of decrease in ion exchange capacity can be determined by measuring the concentration of cations in the liquid to be treated at the outlet of the cation exchange tower. That is, as the ion exchange capacity decreases, the concentration of cations in the liquid to be treated at the outlet of the cation exchange column increases,
Eventually, the concentration becomes almost equal to the concentration in the liquid to be treated at the cation exchange inlet. Regeneration of cation exchange resins is usually carried out in the following cycle. In other words, stopping the flow of the liquid to be treated, draining the liquid to be treated, cleaning before regeneration, draining the cleaning water, regeneration, draining the regenerated liquid, cleaning after regeneration, draining the cleaning water, and draining the liquid to be treated. It is carried out according to the order of liquid passage. The purpose of cleaning before regeneration is to recover the liquid to be treated that is impregnated in the cation exchange resin, and the process of filling and draining normal water into the cation exchange column is repeated several times to remove the liquid to be treated. After collection, if necessary, washing with water is continued (the washing liquid is discarded). Therefore, if the liquid to be treated is tap water or industrial water,
Naturally, the above-mentioned cleaning before regeneration is not necessary. Regeneration means that the cations in the cation exchange resin that have been exchanged with hydrogen ions are returned to hydrogen ions (H
type of cation exchange resin), and this is usually carried out by passing an acidic aqueous solution as a regenerating agent through a cation exchange column. This regenerant is usually an aqueous solution of mineral acids such as hydrochloric acid or sulfuric acid having a concentration of 5 to 20% by weight. In the above regeneration, the regenerant is passed in the same direction as the liquid to be treated, that is, in parallel flow, or in the opposite direction, that is, in countercurrent. To prevent leakage of cations during start-up, regeneration is preferably carried out in countercurrent. However, in any case, in order to completely regenerate the cation exchange resin to H type, a large amount of regenerant and a long regeneration time are required, so even incomplete regeneration is not considered complete. is normal. However, this incomplete regeneration means that the regeneration frequency increases accordingly. Such an increase in regeneration frequency not only increases the cost and labor required for regeneration, but also causes the problem of increased loss due to pulverization of the cationic resin. "Means for Solving the Problems" In view of the above circumstances, the inventors of the present invention have conducted extensive studies with the aim of improving the regeneration rate of cation exchange resins, and as a result, the present inventors have found that a mixed acid aqueous solution of hydrochloric acid and sulfuric acid is used as a cation exchange resin. It was discovered that when used as a regenerating agent for exchange resins, the regeneration rate of cation exchange resins is improved compared to single aqueous solutions of conventional regenerants such as hydrochloric acid and sulfuric acid, which led to the completion of the present invention. . That is, one aspect of the present invention is a regenerating agent for cation exchange resin characterized by comprising an aqueous mixed acid solution of hydrochloric acid and sulfuric acid, and another aspect of the present invention is a regenerating agent characterized in that the aqueous mixed acid solution described above is used as a regenerating agent. This is a characteristic method for regenerating cation exchange resins. "Detailed Disclosure of the Invention" The present invention will be described in more detail below. As mentioned above, the regenerant for cation exchange resins of the present invention is a mixed acid aqueous solution of hydrochloric acid and sulfuric acid. mole%
(Approximately 0.023 to 0.327 mol of sulfuric acid per 1 mol of hydrochloric acid)
It is. If it is less than 5 mol%, the effect will not be sufficiently exhibited, and if it is more than 40%, it will be more effective than sulfuric acid alone, but it will not be possible to obtain a higher regeneration rate than hydrochloric acid. In the present invention, the mixed acid aqueous solution has a total concentration of 5 to 20% by weight, similar to the conventional aqueous solution of hydrochloric acid or sulfuric acid alone. Furthermore, the hydrochloric acid and sulfuric acid used do not need to be of particularly high purity, and commercially available industrial ones are preferably used. In the present invention, a cation exchange resin is regenerated using a regenerating agent consisting of the above-mentioned mixed acid aqueous solution of hydrochloric acid and sulfuric acid.
The method is carried out in exactly the same manner as the conventionally known method, except that the above-mentioned regenerating agent of the present invention is used instead of a single aqueous solution of sulfuric acid or the like. In other words, the regeneration operations include stopping the flow of the liquid to be treated, draining the liquid to be treated, cleaning before regeneration, draining the cleaning water, regeneration, draining the regenerated liquid, cleaning after regeneration, and draining the cleaning water. , and are carried out in accordance with the order of passage of the liquid to be treated. In addition, in the above-mentioned regeneration operation, if the liquid to be treated is a solution containing an organic solvent that is soluble in water and has a boiling point lower than that of water, cleaning before regeneration in the above-mentioned regeneration operation,
Instead of draining the washing water, a method previously proposed by the present inventors in which the liquid to be treated impregnated in the cation exchange resin is replaced with water by blowing water vapor into the cation exchange resin layer (especially The method described in JP-A-62-42748) can also be applied. (Example) The present invention will be explained in more detail with reference to Examples below. In addition, below, % means weight %. Example 1 Isopropyl alcohol was added to a wet phosphoric acid solution with a P 2 O 5 concentration of 54.1% to extract the free phosphoric acid content in the wet phosphoric acid solution to obtain an extract having the composition shown in Table 1.

【表】 強酸性イオン交換樹脂レバチツトSP−112(ポ
リスチレン系、西独バイエル社製)を充填した塔
径1.5m、陽イオン交換塔(陽イオン交換樹脂充
填容量8m3)に、第1表に示す組成の抽出液を20
m3/hの流量でアツプフローにて通液し、含有す
るNaイオンを脱イオン処理した。12時間通液し
たところでイオン交換処理能力が低下し、陽イオ
ン交換塔出口のNaイオンの含有量が0.005%に上
昇したので抽出液の通液を停止し、陽イオン交換
塔内の抽出液を抽出液タンクへ抜液した。 抽出液を抜液後、陽イオン交換塔の樹脂層まで
上水を水張・抜液する操作を2回行い、陽イオン
交換樹脂に含浸している抽出液を回収した。更に
アツプフローで上水を10m3/hの流量で3時間通
水し、陽イオン交換樹脂を充分洗浄した。 次いで、予め用意された、塩酸が21.00Kmol、
硫酸が3.10Kmolの塩酸と硫酸からなる再生液
(全水素イオン中に占める硫酸がもたらす水素イ
オンの割合は22.8%)16m3を、ダウンフローにて
20m3/hの速度で48分間通液し、陽イオン交換樹
脂の再生を行つた。再生後は再生剤を抜液したの
ち陽イオン交換樹脂は上水で充分洗浄した。 かくして再生された陽イオン交換塔に、再度第
1表に示す組成の抽出液を20m3/hの流量でアツ
プフローにて通液してNaイオンを脱イオンした。 13.9時間通液したところで陽イオン交換塔出口
の抽出液中のNaイオンの含有量が0.005%に上昇
したので抽出液の通液をストツプした。尚、この
間の抽出液の通液量は278m3、Naイオンの脱イオ
ン量は11.95Kmolであつた。 実施例 2〜3 再生液の組成を第2表に示す濃度に変更した以
外は、実施例1と全く同様にして第1表に示す組
成の抽出液中のNaイオンの脱イオン及び陽イオ
ン交換樹脂の再生を行つた。 陽イオン交換樹脂再生後の脱イオンにおいて、
陽イオン交換塔出口の抽出液中のNaイオンの含
有量が実施例1と同じ0.005%に上昇したところ
で抽出液の通液を停止した。この間の抽出液の通
液量及びNaイオンの脱イオン量は第2表に示す
通りであつた。 比較例 1〜2 再生液を従来公知の塩酸及び硫酸の単独水溶液
[Table] A cation exchange column (cation exchange resin filling capacity 8 m 3 ) with a column diameter of 1.5 m filled with a strongly acidic ion exchange resin Levachit SP-112 (polystyrene type, manufactured by West German Bayer AG) was used as shown in Table 1. Composition of extract liquid 20
The solution was passed through the tube at an upflow rate of m 3 /h to deionize the Na ions contained therein. After passing the liquid for 12 hours, the ion exchange processing capacity decreased and the Na ion content at the outlet of the cation exchange tower increased to 0.005%, so the flow of the extract was stopped and the extract inside the cation exchange tower was The liquid was drained into the extract tank. After draining the extract, the operation of filling the resin layer of the cation exchange tower with water and draining it was performed twice, and the extract impregnating the cation exchange resin was recovered. Furthermore, clean water was passed through the tube at a flow rate of 10 m 3 /h for 3 hours using Upflow to thoroughly wash the cation exchange resin. Next, 21.00 Kmol of hydrochloric acid prepared in advance,
A regenerating solution consisting of hydrochloric acid and sulfuric acid containing 3.10 Kmol of sulfuric acid (the proportion of hydrogen ions provided by sulfuric acid in the total hydrogen ions is 22.8%) was pumped downflow .
The cation exchange resin was regenerated by flowing liquid at a rate of 20 m 3 /h for 48 minutes. After regeneration, the regenerant was drained and the cation exchange resin was thoroughly washed with tap water. The extract having the composition shown in Table 1 was again passed through the thus regenerated cation exchange tower at a flow rate of 20 m 3 /h to deionize Na ions. After passing the solution for 13.9 hours, the content of Na ions in the extract at the outlet of the cation exchange column rose to 0.005%, so the flow of the extract was stopped. Incidentally, the amount of extract solution passed during this period was 278 m 3 , and the amount of deionized Na ions was 11.95 Kmol. Examples 2-3 Deionization and cation exchange of Na ions in the extract having the composition shown in Table 1 was carried out in exactly the same manner as in Example 1, except that the composition of the regeneration liquid was changed to the concentration shown in Table 2. Resin was recycled. In deionization after cation exchange resin regeneration,
When the content of Na ions in the extract at the outlet of the cation exchange tower rose to 0.005%, the same as in Example 1, the flow of the extract was stopped. During this period, the amount of the extract solution passed through and the amount of deionized Na ions were as shown in Table 2. Comparative Examples 1 to 2 The regenerating solution was a single aqueous solution of conventionally known hydrochloric acid and sulfuric acid.

【表】 に変更(水素イオン濃度は実施例1と同じ)し、
第2表に示す濃度とした以外は、実施例1と全く
同様な方法で、第1表に示す組成の抽出液中の
Naイオンの脱イオン及び陽イオン交換樹脂の再
生を行つた。 陽イオン交換樹脂再生後の抽出液の脱イオンに
おいて、陽イオン交換塔出口の抽出液中のNaイ
オンの含有量が実施例1と同じ0.005%に上昇と
たところで抽出液の通液を停止した。この間の抽
出液の通液量及びNaイオンの脱イオン量は第2
表に示す通りであつた。 「発明の効果」 以上詳細に説明した如く、本発明は陽イオン交
換樹脂の再生剤として塩酸と硫酸の混酸水溶液を
使用するというものであつて、これによつて実施
例及び比較例が示す如く、従来公知の塩酸や硫酸
等の単独の水溶液を再生剤として使用する方法に
比べ、陽イオン交換樹脂の再生率を向上させるこ
とを可能とものである。 その結果、従来の方法に比べ再生頻度を少なく
することが可能となり、再生に要する費用及び労
力の低域が達成できるのみならず、陽イオン交換
樹脂の粉化による損失も抑制することができる。 また、従来技術では再生剤としての塩酸と硫酸
とでは、比較例が示す如く塩酸の方が再生率は高
いが一面塩酸の方が高価である。ところが本発明
では塩酸と硫酸の混酸水溶液を再生剤として使用
するものであるので、塩酸単独の水溶液を使用す
るよりも硫酸を併用する分だけ廉価である。 更にまた、本発明は以上のように、再生剤を従
来の塩酸又は硫酸等の鉱酸の水溶液から塩酸と硫
酸との混酸水溶液に変更するものであるので、従
来の方法を本発明の方法に変更する場合に、装置
的に変更するものは特にないという優れた経済的
効果もあるのである。
Changed to [Table] (hydrogen ion concentration is the same as Example 1),
In the same manner as in Example 1, except that the concentrations shown in Table 2 were used, the extracts having the composition shown in Table 1 were
Deionization of Na ions and regeneration of cation exchange resin were performed. In deionizing the extract after regenerating the cation exchange resin, the flow of the extract was stopped when the Na ion content in the extract at the outlet of the cation exchange tower rose to 0.005%, the same as in Example 1. . During this period, the amount of extract solution passed and the amount of deionized Na ions are
It was as shown in the table. "Effects of the Invention" As explained in detail above, the present invention uses a mixed acid aqueous solution of hydrochloric acid and sulfuric acid as a regenerating agent for cation exchange resin. This method makes it possible to improve the regeneration rate of cation exchange resins compared to conventional methods in which a single aqueous solution of hydrochloric acid, sulfuric acid, or the like is used as a regenerant. As a result, it is possible to reduce the frequency of regeneration compared to conventional methods, and not only can the costs and labor required for regeneration be reduced, but also losses due to pulverization of the cation exchange resin can be suppressed. Furthermore, in the prior art, when using hydrochloric acid and sulfuric acid as regenerating agents, as shown in the comparative example, hydrochloric acid has a higher regeneration rate, but hydrochloric acid is more expensive. However, in the present invention, since a mixed acid aqueous solution of hydrochloric acid and sulfuric acid is used as a regenerating agent, it is cheaper than using an aqueous solution of hydrochloric acid alone by the amount corresponding to the combination of sulfuric acid. Furthermore, as described above, the present invention changes the regenerating agent from the conventional aqueous solution of mineral acids such as hydrochloric acid or sulfuric acid to a mixed acid aqueous solution of hydrochloric acid and sulfuric acid, so the conventional method can be replaced with the method of the present invention. There is also an excellent economical effect in that there is no need to change anything in terms of equipment.

Claims (1)

【特許請求の範囲】[Claims] 1 湿式燐酸液中の遊離燐酸分を抽出し得られた
抽出液の脱イオン処理に用いた陽イオン交換樹脂
を再生する方法において、塩酸と硫酸との混酸水
溶液からなり、該混酸水溶液中の全水素イオンに
占める硫酸がもたらす水素イオンの割合が5〜40
モル%である再生液を使用することを特徴とする
陽イオン交換樹脂の再生方法。
1. In a method for regenerating a cation exchange resin used for deionizing an extract obtained by extracting free phosphoric acid from a wet phosphoric acid solution, a mixed acid aqueous solution of hydrochloric acid and sulfuric acid is used, and all of the mixed acid aqueous solution is The ratio of hydrogen ions brought by sulfuric acid to hydrogen ions is 5 to 40.
A method for regenerating a cation exchange resin, the method comprising using a regenerating solution having a mol% content.
JP63085468A 1988-04-08 1988-04-08 Regenerating agent for cation exchange resin and regenerating process using said regenerating agent Granted JPH01258749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63085468A JPH01258749A (en) 1988-04-08 1988-04-08 Regenerating agent for cation exchange resin and regenerating process using said regenerating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63085468A JPH01258749A (en) 1988-04-08 1988-04-08 Regenerating agent for cation exchange resin and regenerating process using said regenerating agent

Publications (2)

Publication Number Publication Date
JPH01258749A JPH01258749A (en) 1989-10-16
JPH0511494B2 true JPH0511494B2 (en) 1993-02-15

Family

ID=13859724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63085468A Granted JPH01258749A (en) 1988-04-08 1988-04-08 Regenerating agent for cation exchange resin and regenerating process using said regenerating agent

Country Status (1)

Country Link
JP (1) JPH01258749A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69313132T2 (en) * 1992-11-25 1997-12-11 Hoechst Celanese Corp METALION REDUCTION IN ANTI-REFLECTIVE UNDERLAYERS FOR PHOTORESIST
DE10024313A1 (en) * 2000-05-17 2001-11-22 Basf Ag Removal of alkali metal ions (production catalyst residues) from alkoxylates uses cation exchangers to give products sufficiently pure and combustible for use as fuel additives
JP5298639B2 (en) * 2008-05-26 2013-09-25 栗田工業株式会社 Method and apparatus for treating alkaline waste liquid containing water-soluble resin component
JP5062093B2 (en) * 2008-08-06 2012-10-31 栗田工業株式会社 Method for recovering water-soluble organic solvent having amino group

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149813A (en) * 1981-03-06 1982-09-16 Mitsui Toatsu Chem Inc Treatment of phosphoric acid extracted solution by ion exchange

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149813A (en) * 1981-03-06 1982-09-16 Mitsui Toatsu Chem Inc Treatment of phosphoric acid extracted solution by ion exchange

Also Published As

Publication number Publication date
JPH01258749A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US3618589A (en) Desalination process by ion exchange
Anderson et al. Phenol sorption on ion exchange resins
CN104736484B (en) The desalination process of boron-containing solution
GB2088850A (en) Treatment of N methyl pyrrolidone
KR101258730B1 (en) Method for the treatment of tetraalkylammonium ion-containing development waste liquor
JPH0511494B2 (en)
CN212142639U (en) Ion exchange system for liquid stream treatment
US20050029087A1 (en) Method for recovering activity of ion exchanger and agent for use in recovering activity of anion exchanger
US5124362A (en) Method for removing organic foulants from anion exchange resin
US3975267A (en) Liquid treating system
JP2003315496A5 (en)
JP3727212B2 (en) Apparatus and method for treating wastewater containing boron
JPH039774B2 (en)
JP4411669B2 (en) Regeneration method of cation exchange resin
RU2010889C1 (en) Method of copper regenerating from copper contained ammonium solution
KR810000051B1 (en) Washing method for ion-exchanged resin in mixed-bed desalting device
EP1651348A2 (en) Regenerant reuse
JPS61254166A (en) Regeneration of resin for purifying citrus fruit juice
JPS6133623B2 (en)
SU1673207A1 (en) Method of recovering h-cationite filter of first water desalting stage
JP2000317450A (en) Method for desalting condensate
CN111229330A (en) Ion exchange system for liquid stream treatment
JP3963599B2 (en) Acid component removal method
JPS5811272B2 (en) Condensate treatment method
JPH0675681B2 (en) Regeneration method of ion exchange resin