JP2000153166A - Regeneration of mixed bed type ion exchange apparatus - Google Patents

Regeneration of mixed bed type ion exchange apparatus

Info

Publication number
JP2000153166A
JP2000153166A JP10330852A JP33085298A JP2000153166A JP 2000153166 A JP2000153166 A JP 2000153166A JP 10330852 A JP10330852 A JP 10330852A JP 33085298 A JP33085298 A JP 33085298A JP 2000153166 A JP2000153166 A JP 2000153166A
Authority
JP
Japan
Prior art keywords
water
exchange resin
anion
ion exchange
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10330852A
Other languages
Japanese (ja)
Other versions
JP3913379B2 (en
Inventor
Teruhide Matsuura
照秀 松浦
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP33085298A priority Critical patent/JP3913379B2/en
Publication of JP2000153166A publication Critical patent/JP2000153166A/en
Application granted granted Critical
Publication of JP3913379B2 publication Critical patent/JP3913379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simply regenerate a mixed bed type ion exchange apparatus for the water passing treatment of water to be treated wherein a ratio of silica to all of anions is large by chemical injecting regeneration so as to be capable of keeping the quality of treated water after regeneration equal to that of initial treated water before regeneration. SOLUTION: In a method for regenerating a mixed bed type ion exchange apparatus for applying water passing treatment to water to be treated wherein a ratio of silica to all of anions excepting hydroxide ions is 40% or more to collect treated water, a first process for passing an alkali regenerating agent through both anion and cation exchange resins to regenerate an anion exchange resin after the collection of treated water is stopped, a second process for backward washing both anion and cation exchange resins with water to separate the cation exchange resin and the anion exchange resin and a third process for regenerating the cation exchange resin of a lower bed separated in the second process by an acid regenerating agent are included.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、全アニオンに対す
るシリカの割合が大きな被処理水を通水処理して処理水
を採水する混床式イオン交換装置の再生方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a mixed bed type ion exchange apparatus in which water to be treated having a large ratio of silica to all anions is passed through to collect treated water.

【0002】[0002]

【従来の技術】半導体製造工程には、シリコンウエハー
の表面を純水及び研磨材を使用しながら化学的機械的に
研磨するCMP(Chemical-Mecanical Polishing) 工程
が組み込まれている。当該工程から排出される排水に
は、水酸化物イオンを除く全アニオンに対するシリカの
割合が50%以上のような高い割合で、且つ50mgSiO2
/L以上のような高濃度のシリカが含まれている。このよ
うなCMP工程から排出される排水はそのまま垂れ流し
されることはなく、通常、固液分離された後、透過水が
イオン交換装置に通水され、シリカが除去された処理水
として回収し再利用している。
2. Description of the Related Art A semiconductor manufacturing process includes a chemical mechanical polishing (CMP) process for chemically and mechanically polishing the surface of a silicon wafer using pure water and an abrasive. The wastewater discharged from the process has a high ratio of 50% or more of silica to all anions except hydroxide ions, and 50 mg of SiO 2.
High concentration of silica such as / L or more. The wastewater discharged from such a CMP process is not directly drained, but is usually separated into solid and liquid, and then the permeated water is passed through an ion exchange device, collected as treated water from which silica has been removed, and collected again. We are using.

【0003】一方、イオン交換装置は、従来からイオン
性の不純物を除去する目的で使用されており、その装置
形式は、固定式と連続式に大別され、更に固定式は陰イ
オン交換樹脂と陽イオン交換樹脂の混合樹脂床を備える
混床式、陰イオン交換樹脂又は陽イオン交換樹脂の単一
樹脂床を備える単床式及びそれぞれ違える単一樹脂床を
上下段に備える複床式に分かれる。これらのイオン交換
装置のうち、装置の小型化が可能で、処理水の水質の向
上が図れる混床式イオン交換装置が広く利用されてい
る。かかる混床式イオン交換装置は、定量採水又は定質
採水された後、薬剤による再生工程に移される。
[0003] On the other hand, ion exchange devices have been used for the purpose of removing ionic impurities from the past, and the types of the devices are roughly classified into a fixed type and a continuous type. It is divided into a mixed bed type with a mixed resin bed of cation exchange resin, a single bed with a single resin bed of anion exchange resin or cation exchange resin, and a double bed type with different single resin beds in upper and lower stages. . Among these ion exchangers, a mixed-bed ion exchanger capable of reducing the size of the apparatus and improving the quality of treated water is widely used. Such a mixed-bed ion exchange device is subjected to a chemical regeneration process after quantitative or constant-quality water sampling.

【0004】かかる混床式イオン交換装置の再生方法と
しては、通常、次の〜の工程を経る方法が一般的で
ある。逆洗分離工程;上昇流通水により混合樹脂を展
開流動化して樹脂床を弛緩させ、樹脂床に捕捉された濁
質を排出すると共に、比重差により陰陽両イオン交換樹
脂を分離する。その後、分離した陰陽両イオン交換樹脂
を沈整させる。薬剤注入工程;分離した樹脂床に対し
て、下方から酸液を注入して陽イオン交換樹脂床を再生
する。一方、上方からはアルカリ液を注入して陰イオン
交換樹脂床を再生する。薬剤及び再生排液は二層の分離
面に設けた排出管により排出される。この再生順序はこ
の逆であってもよい。押出−混合−満水−洗浄工程;
薬剤の注入終了後、洗浄水を用い樹脂床より薬剤を押出
して排出する。続いて、圧縮空気又は不活性ガスを供給
して陰陽両イオン交換樹脂を混合する。次に、水を供給
して空気を排出しつつ、イオン交換塔内を満水にする。
次いで、水を採水工程と同様に下降流で供給し、下方か
ら排出して、所定の水質となるまで混合イオン交換樹脂
床を洗浄する。
As a method for regenerating such a mixed bed type ion exchange apparatus, a method generally comprising the following steps (1) to (4) is generally employed. Backwashing separation step: The mixed resin is developed and fluidized by ascending flowing water to relax the resin bed, to discharge the turbid matter trapped in the resin bed, and to separate the anion and cation exchange resin by the specific gravity difference. Thereafter, the separated anion and cation exchange resins are settled. Chemical injection step: An acid solution is injected from below into the separated resin bed to regenerate the cation exchange resin bed. On the other hand, an alkaline solution is injected from above to regenerate the anion exchange resin bed. The drug and the regenerated effluent are discharged by a discharge pipe provided on the two-layer separation surface. This reproduction order may be reversed. Extrusion-mixing-full-washing step;
After the injection of the drug is completed, the drug is extruded from the resin bed using the washing water and discharged. Subsequently, compressed air or an inert gas is supplied to mix the anion and cation exchange resins. Next, the inside of the ion exchange tower is filled with water while supplying water and discharging air.
Next, water is supplied in a downward flow in the same manner as in the water sampling step, discharged from below, and the mixed ion exchange resin bed is washed until the water quality reaches a predetermined level.

【0005】また、復水処理を対象とする混床式イオン
交換装置の改良された再生方法として、特公昭61−3
3623号公報には、水で逆洗して陽イオン交換樹脂と
陰イオン交換樹脂とにほぼ分離する第1工程、上層の陰
イオン交換樹脂をアルカリ再生剤で再生した後、再び水
で陽・陰両イオン交換樹脂を逆洗することによって陽イ
オン交換樹脂と陰イオン交換樹脂とをより完全に分離す
る第2工程、当該陰イオン交換樹脂と陽イオン交換樹脂
の両イオン交換樹脂層にアンモニア水を一貫して下降流
で循環通液する第3工程、下層の陽イオン交換樹脂を酸
再生剤で再生する第4工程を順次行う方法が記載され、
陰イオン交換樹脂の再生後、アンモニア水の循環通液の
前に再び陽・陰両イオン交換樹脂の逆洗分離を行い、そ
の後陰イオン交換樹脂と陽イオン交換樹脂の両イオン交
換樹脂を一貫して下降流でアンモニア水を循環すること
により、アンモニア水の循環通液の時間を短縮すること
ができ、更に処理水中へのナトリウムイオンのリークを
減少させることが記載されている。
[0005] An improved regeneration method of a mixed-bed ion exchange apparatus for condensate treatment is disclosed in Japanese Patent Publication No. 61-3 / 1986.
No. 3623 discloses a first step of back-washing with water and substantially separating into a cation-exchange resin and an anion-exchange resin. After regenerating an upper-layer anion-exchange resin with an alkali regenerant, the cation-exchange resin is again used with water. A second step in which the cation exchange resin and the anion exchange resin are more completely separated by back washing the anion exchange resin, and ammonia water is added to both anion exchange resin layers of the anion exchange resin and the cation exchange resin. A method of sequentially carrying out a third step of circulating the liquid in a downward flow consistently and a fourth step of regenerating the lower layer cation exchange resin with an acid regenerant,
After regeneration of the anion exchange resin, back-flushing of the cation and anion exchange resins is performed again before the circulation of ammonia water, and then the anion exchange resin and the cation exchange resin are integrated. It is described that by circulating the ammonia water in a downward flow, the time of circulation of the ammonia water can be shortened, and the leakage of sodium ions into the treated water can be further reduced.

【0006】また、特開昭58−92463号公報に
は、陰陽イオン交換樹脂の再生にあたり、前記両イオン
交換樹脂を分離して薬注再生後、再び分離工程を付加し
たのち、陰イオン交換樹脂または陽イオン交換樹脂のい
ずれか一方のみを薬注再生することにより、再生後の処
理水の水質の向上が図れることが記載されている。これ
ら従来の再生方法は、いずれも、最初に行う処理が陰陽
両イオン交換樹脂の逆洗分離であり、その後の薬注再生
に伴う種々の問題点を解決するものである。
Japanese Patent Application Laid-Open No. 58-92463 discloses that, when regenerating an anion-cation exchange resin, the two ion-exchange resins are separated and regenerated by chemical injection, and a separation step is added again. Alternatively, it is described that the quality of treated water after regeneration can be improved by performing chemical injection regeneration of only one of the cation exchange resins. In all of these conventional regeneration methods, the first treatment is backwashing separation of the anion and cation exchange resin, and solves various problems associated with the subsequent regeneration of chemical injection.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
半導体製造のCMP工程から排出される排水のように、
全アニオンに対するシリカの割合が大きな被処理水を通
水処理する混床式イオン交換装置を薬剤によって再生す
る場合、従来の再生手順に従って、陰陽両イオン交換樹
脂の逆洗分離処理を行っても、該両樹脂はほとんど分離
しないか、あるいは全く分離しない。このような状態で
薬注再生を行うと、陰陽両イオン交換樹脂の非分離部分
(混合部)ではそれぞれの樹脂が互いの再生剤によって
汚染される。このため、洗浄ブロー時間が長くなった
り、処理水の純度がでないあるいは収量不足という問題
が生じる。従って、シリカを吸着した混床式イオン交換
装置を効率的に再生でき、再び当初の水質が確保される
有効な再生方法が望まれていた。
However, like the wastewater discharged from the above-described CMP process of semiconductor manufacturing,
In the case of regenerating a mixed-bed ion exchange device in which the ratio of silica to total anions is large by passing water to be treated through chemical treatment, according to a conventional regeneration procedure, even if a backwash separation treatment of an anion and cation ion exchange resin is performed, The two resins are hardly separated or not separated at all. When the chemical injection regeneration is performed in such a state, in the non-separable portion (mixing portion) of the anion and cation exchange resins, the respective resins are contaminated with each other's regenerant. For this reason, there arise problems that the cleaning blow time becomes long, the purity of the treated water is not sufficient, or the yield is insufficient. Therefore, there has been a demand for an effective regeneration method that can efficiently regenerate a mixed-bed type ion exchange device that has adsorbed silica and that ensures the initial water quality again.

【0008】従って、本発明の目的は、全アニオンに対
するシリカの割合が大きな被処理水を通水処理する混床
式イオン交換装置の薬注再生に際し、簡易な再生方法に
より、しかも再生後、採水される処理水を再生前の当初
の処理水と同等の水質に維持することのできる混床式イ
オン交換装置の再生方法を提供することにある。
[0008] Accordingly, an object of the present invention is to regenerate a chemical injection of a mixed bed type ion exchange apparatus in which water to be treated having a large ratio of silica to all anions is passed through by a simple regeneration method, and furthermore, to recover the chemical after regeneration. It is an object of the present invention to provide a method for regenerating a mixed-bed ion exchange apparatus capable of maintaining treated water to be treated at the same water quality as the original treated water before regeneration.

【0009】[0009]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、次のことを見出し、
本発明を完成するに至った。 (1) 混床式イオン交換装置で全アニオンに対するシリカ
の割合が比較的大きく、シリカ濃度の比較的高い被処理
水を通水処理した場合、被処理水中のシリカは陰イオン
交換樹脂に次々と吸着し、樹脂のイオン交換容量以上に
吸着する。通常、OH形、NO3 形、HCO3形等の強塩基性陰
イオン交換樹脂の真比重は、約1.1であるのに対し
て、このようなシリカ形陰イオン交換樹脂の真比重は約
1.2であるため、該シリカ形の割合が多くなる使用済
陰イオン交換樹脂では、その真比重は、陽イオン交換樹
脂の真比重の約1.2〜1.3と同等程度となる。従っ
て、この状態で、従来の薬注前に行われていた逆洗を行
っても陰陽両イオン交換樹脂はほとんど分離しないか、
全く分離しないこと。 (2) このような混合イオン交換樹脂は、最初にアルカリ
再生剤で処理すれば、混合イオン交換樹脂中の陰イオン
交換樹脂はシリカを脱離してOH形となるため、真比重
が低下し、その後に逆洗を行えば陰イオン交換樹脂と陽
イオン交換樹脂は完全に分離すること。一方、陽イオン
交換樹脂はアルカリ再生剤によってNa形やK形になる
が、これは、逆洗分離後、酸を用いた再生により陰イオ
ン交換樹脂を汚染することなく行えるので、その後の洗
浄ブロー時間も短くなり、且つ、再生後、採水される処
理水を再生前の当初の処理水と同等の水質に維持できる
こと。
Under such circumstances, the present inventors have conducted intensive studies and found the following.
The present invention has been completed. (1) In a mixed bed type ion exchange apparatus, when the ratio of silica to the total anions is relatively large and the water to be treated having a relatively high silica concentration is passed through, the silica in the water to be treated is successively added to the anion exchange resin. Adsorbs and adsorbs more than the ion exchange capacity of the resin. Usually, the true specific gravity of strongly basic anion exchange resins such as OH form, NO 3 form and HCO 3 form is about 1.1, while the true specific gravity of such silica form anion exchange resin is about 1.1. Since it is about 1.2, in the used anion exchange resin in which the ratio of the silica form is large, its true specific gravity is about the same as the true specific gravity of the cation exchange resin, which is about 1.2 to 1.3. . Therefore, in this state, the anion-cation ion-exchange resin hardly separates even if the backwashing performed before the conventional chemical injection is performed,
Do not separate at all. (2) If such a mixed ion exchange resin is first treated with an alkali regenerant, the anion exchange resin in the mixed ion exchange resin desorbs silica and becomes an OH form, so that the true specific gravity decreases, After that, if backwashing is performed, the anion exchange resin and the cation exchange resin should be completely separated. On the other hand, the cation exchange resin is converted into Na form or K form by the alkali regenerating agent. This can be carried out after backwashing and separation by regenerating with an acid without contaminating the anion exchange resin. The time can be shortened, and the treated water to be collected after regeneration can be maintained at the same water quality as the original treated water before regeneration.

【0010】すなわち、本発明は、水酸化物イオンを除
く全アニオンに対するシリカの割合が40%以上の被処
理水を通水処理して処理水を採水する混床式イオン交換
装置の再生方法であって、処理水の採水を停止した後、
アルカリ再生剤を陰陽両イオン交換樹脂に通液して陰イ
オン交換樹脂を再生する第1工程と、続いて、水で陰陽
両イオン交換樹脂を逆洗することによって陽イオン交換
樹脂と陰イオン交換樹脂とを分離する第2工程と、第2
工程で分離された下層の陽イオン交換樹脂を酸再生剤で
再生する第3工程と、を含むことを特徴とする混床式イ
オン交換装置の再生方法を提供するものである。
That is, the present invention provides a method for regenerating a mixed bed type ion exchange apparatus in which water to be treated having a ratio of silica to all anions other than hydroxide ions of 40% or more is passed through to collect treated water. And after stopping the collection of the treated water,
A first step of regenerating the anion exchange resin by passing an alkali regenerant through the anion and cation exchange resin, and subsequently back washing the anion and cation exchange resin with water to exchange the anion and cation exchange resin with the anion and cation exchange resin A second step of separating the resin,
And a third step of regenerating the lower-layer cation exchange resin separated in the step with an acid regenerating agent.

【0011】[0011]

【発明の実施の形態】本発明において、水酸化物イオン
を除く全アニオンに対するシリカの割合(以下、シリカ
分率ともいう。)が40%以上の被処理水としては、特
に制限されないが、例えば、半導体製造工程のCMP工
程から排出される排水等が挙げられる。かかる排水の水
質の例としては、pH9.5〜10.3、電気伝導率1
50〜350μS/cm-25 ℃、イオン状シリカ60〜25
0mgSiO2/L(50〜208mgCaCO3/L )、水酸化物イオ
ン20〜97mgCaCO3/L 、炭酸イオン50〜70mgCaCO
3/L 、シリカ分率50〜80%である。また、本発明の
再生方法は、シリカ分率が、特に45%以上、更に50
%以上である水、又はシリカ分率が40%以上で、且つ
シリカ濃度が50mgSiO2/L以上である水を通水処理する
混床式イオン交換装置において特に効果を発揮する。な
お、シリカ分率の計算にあたっては1.2mgSiO2/L=
1.0mgCaCO3/L とした。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a hydroxide ion
Ratio of silica to all anions except (hereinafter, silica
Also called fraction. ) Is more than 40%
Although not limited to, for example, CMP process in the semiconductor manufacturing process
Wastewater discharged from the process. Such drainage water
Examples of qualities are pH 9.5 to 10.3, electrical conductivity 1
50-350 μS / cm-25 ° C, ionic silica 60-25
0mgSiOTwo/ L (50-208mgCaCOThree/ L), hydroxide ion
20-97mgCaCOThree/ L, carbonate ion 50-70mgCaCO
Three/ L, silica fraction 50-80%. In addition, the present invention
In the regeneration method, the silica fraction is preferably 45% or more, more preferably 50% or more.
% Or more water or silica fraction is 40% or more, and
Silica concentration 50mgSiOTwo/ L or more water
This is particularly effective in a mixed bed type ion exchange device. What
When calculating the silica fraction, 1.2 mg SiOTwo/ L =
1.0mgCaCOThree/ L.

【0012】本発明において、混床式イオン交換装置に
用いられる陰イオン交換樹脂としては、シリカを除去す
るものであれば特に制限されないが、強塩基性陰イオン
交換樹脂が好ましい。また、陽イオン交換樹脂として
は、特に制限されず、強酸性陽イオン交換樹脂、弱酸性
陽イオン交換樹脂が挙げられる。強酸性陽イオン交換樹
脂は弱塩基性の塩、強塩基の塩及び中性塩を除去でき
る。また、弱酸性陽イオン交換樹脂は中性塩等を吸着で
きないものの、交換容量が大きく、再生が容易に行える
という利点がある。これらのイオン交換樹脂は、被処理
水の水質に合わせて適宜選択すればよい。
In the present invention, the anion exchange resin used in the mixed bed type ion exchange apparatus is not particularly limited as long as it removes silica, but a strongly basic anion exchange resin is preferred. The cation exchange resin is not particularly limited, and includes a strongly acidic cation exchange resin and a weakly acidic cation exchange resin. Strongly acidic cation exchange resins can remove weakly basic salts, strong base salts and neutral salts. In addition, although a weakly acidic cation exchange resin cannot adsorb a neutral salt or the like, there is an advantage that the exchange capacity is large and regeneration can be easily performed. These ion exchange resins may be appropriately selected according to the quality of the water to be treated.

【0013】本発明において、混床式イオン交換装置
は、上記特定のシリカ分率を有する水を通水処理するも
のであれば、特に制限されず、純水製造装置、排水回収
装置、排水処理装置等の水処理装置として広く使用され
るものである。また、本発明の前記混床式イオン交換装
置は、定量採水又は定質採水によって再生処理される。
In the present invention, the mixed-bed type ion exchange apparatus is not particularly limited as long as it allows water having the above-mentioned specific silica fraction to pass therethrough. It is widely used as a water treatment device such as a device. In addition, the mixed bed type ion exchange device of the present invention is regenerated by quantitative water sampling or quantitative water sampling.

【0014】次に、本発明の混床式イオン交換装置の再
生方法について具体的に説明する。 (第1工程)混床式イオン交換装置処理水の通水を停止
した後、アルカリ再生剤を陰陽両イオン交換樹脂に通液
する。これにより、混合イオン交換樹脂中の陰イオン交
換樹脂はシリカを脱離してOH形となり、再生されると
共に、真比重は低下する。また、陽イオン交換樹脂はN
a形やK形になる。アルカリ再生剤としては、特に制限
されないが、水酸化ナトリウム水溶液が好ましい。ま
た、アルカリ再生剤は加温されたアルカリ再生剤を使用
することができる。これにより、シリカの脱着が大きく
なりシリカ除去効率が向上する。アルカリ再生剤のアル
カリ濃度としては、水酸化ナトリウム水溶液の場合で、
0.5〜5.0%の濃度範囲が好ましい。
Next, the regeneration method of the mixed bed type ion exchange apparatus of the present invention will be specifically described. (First step) After stopping the flow of the treated water of the mixed bed type ion exchange apparatus, the alkali regenerant is passed through the anion and cation exchange resins. As a result, the anion exchange resin in the mixed ion exchange resin desorbs silica to become OH form, is regenerated, and the true specific gravity decreases. The cation exchange resin is N
It becomes a shape and K shape. The alkali regenerant is not particularly limited, but is preferably an aqueous sodium hydroxide solution. As the alkali regenerating agent, a heated alkali regenerating agent can be used. Thereby, desorption of silica is increased and silica removal efficiency is improved. As the alkali concentration of the alkali regenerant, in the case of sodium hydroxide aqueous solution,
A concentration range of 0.5-5.0% is preferred.

【0015】また、アルカリ再生剤の通液方法として
は、アルカリ再生剤として、水酸化ナトリウム水溶液を
使用する場合、最初に薄い濃度の水酸化ナトリウム水溶
液を流し、次いで濃い濃度の水酸化ナトリウム水溶液を
流して行うことが好ましい。シリカが吸着した陰イオン
交換樹脂とH形を含む陽イオン交換樹脂の混合樹脂に濃
い濃度の水酸化ナトリウム水溶液をいきなり通液する
と、陰イオン交換樹脂は前述の如くシリカを脱着する。
この時、樹脂間の隙間には局所的にシリカが高濃度にな
る部分が発生する。一方、陽イオン交換樹脂はNa+
+ 基が置換されてH+ 基を放出し、これがNaOHの
持つOH- を中和するため局所的に中性域が発生する。
高濃度のシリカは中性域では速やかにゲル化して析出
し、これが樹脂間の隙間を詰まらせ後工程の処理を困難
にする。従って、当初の通液は薄い濃度の水酸化ナトリ
ウム水溶液を流してシリカの脱着を徐々に行い、次いで
濃い濃度の水酸化ナトリウム水溶液を流してシリカの脱
着を完結することが好ましい。薄い濃度の水酸化ナトリ
ウム水溶液としては、0.5〜2.0%程度の水酸化ナ
トリウム水溶液が好ましく、濃い濃度の水酸化ナトリウ
ム水溶液としては、前記薄い濃度以上の濃度を有する水
酸化ナトリウム水溶液であればよいが、約5.0%の水
酸化ナトリウム水溶液が好ましい。
As a method for passing the alkali regenerating agent, when an aqueous sodium hydroxide solution is used as the alkali regenerating agent, first, a low-concentration aqueous sodium hydroxide solution is flowed, and then a high-concentration aqueous sodium hydroxide solution is passed. It is preferable to carry out by flowing. When a concentrated sodium hydroxide aqueous solution is immediately passed through a mixed resin of an anion exchange resin to which silica is adsorbed and a cation exchange resin containing H form, the anion exchange resin desorbs silica as described above.
At this time, a portion where the concentration of silica is locally high occurs in the gap between the resins. On the other hand, in the cation exchange resin, Na + and H + groups are substituted to release H + groups, which neutralize OH of NaOH, so that a neutral region is locally generated.
The high-concentration silica rapidly gels and precipitates in the neutral region, which clogs the gaps between the resins and makes subsequent processing difficult. Therefore, it is preferable to desorb silica gradually by flowing a low-concentration aqueous solution of sodium hydroxide, and then to flow a high-concentration aqueous solution of sodium hydroxide to complete the desorption of silica. As the aqueous sodium hydroxide solution having a low concentration, an aqueous sodium hydroxide solution of about 0.5 to 2.0% is preferable. As the aqueous sodium hydroxide solution having a high concentration, an aqueous sodium hydroxide solution having a concentration equal to or higher than the above-described low concentration is used. An aqueous solution of about 5.0% sodium hydroxide is preferred.

【0016】アルカリ剤の通液方向は、上昇流又は下降
流のいずれであってもよい。下降流採水の場合、シリカ
が樹脂層の上流側に多く吸着するという点では、アルカ
リ剤は上昇流で通液するのが好ましいが、装置構造の簡
易さという点では、アルカリ剤は下降流で通液するのが
好ましい。下降流通液の場合、通液排水は再生塔の下部
の処理水採水配管から排出すればよい。
The flow direction of the alkaline agent may be either an upward flow or a downward flow. In the case of downward flow sampling, it is preferable that the alkaline agent is passed in the upward flow from the viewpoint that silica is adsorbed more on the upstream side of the resin layer, but from the viewpoint of simplicity of the device structure, the alkaline agent flows downward. It is preferable to pass the solution through In the case of a downward flowing liquid, the passing drainage may be discharged from a treated water sampling pipe below the regeneration tower.

【0017】第1工程に続いて、アルカリ剤が下降流通
液の場合、洗浄水を前記再生剤と同じ程度の流速の下降
流で供給し、処理水採水配管から排出して陰イオン交換
樹脂層内から再生剤を押出す。
In the case where the alkaline agent is a downward flowing liquid following the first step, the washing water is supplied at a downward flow at a flow rate substantially equal to that of the regenerating agent, discharged from the treated water sampling pipe, and discharged through the anion exchange resin. The regenerant is extruded from within the layer.

【0018】(第2工程)再生剤の押出し後、逆洗水を
再生塔下部より流速約10m/h (LV)の上昇流で流入
し、約10分間の逆洗を行う。逆洗により混合樹脂は展
開流動化して樹脂床は弛緩され、樹脂床はこれに捕捉さ
れた濁質が排出されると共に、比重差により上層にOH
形の陰イオン交換樹脂及び下層にNa形やK形の陽イオ
ン交換樹脂の二層に分離される。逆洗後は、再生塔内の
樹脂を沈整する。
(Second step) After extruding the regenerant, backwash water flows from the lower part of the regenerator at an ascending flow rate of about 10 m / h (LV) to perform backwash for about 10 minutes. The mixed resin is developed and fluidized by the backwash, and the resin bed is relaxed, and the suspended resin trapped in the resin bed is discharged.
It is separated into two layers of an anion exchange resin in the form and a cation exchange resin in the Na form and K form in the lower layer. After the backwash, the resin in the regeneration tower is settled.

【0019】(第3工程)第2工程で分離された下層の
Na形やK形の陽イオン交換樹脂に酸再生剤を通液す
る。具体的には、従来と同様に再生塔の下部から再生剤
酸水溶液を樹脂層に上昇流で通液し、再生塔の上部から
水を通水して、酸水溶液が上層の陰イオン交換樹脂層に
接触しないようにする。なお、当該水及び再生排液を前
記二層の分離面付近に設けた排出管より排出する。これ
により、陽イオン交換樹脂はNa形やK形からH形に再
生される。酸再生剤の通液方法は、前記方法の他、樹脂
の分離面に酸再生剤供給配管を設け、これから下降流で
通液してもよい。
(Third Step) The acid regenerant is passed through the lower Na-type or K-type cation exchange resin separated in the second step. Specifically, as in the conventional case, an aqueous solution of a regenerant acid is passed through the resin layer from the lower portion of the regeneration tower in an ascending flow, and water is passed from the upper portion of the regeneration tower. Avoid contact with layers. The water and the regenerated effluent are discharged from a discharge pipe provided near the separation surface between the two layers. Thereby, the cation exchange resin is regenerated from the Na form or the K form to the H form. As a method for passing the acid regenerant, the acid regenerant supply pipe may be provided on the separation surface of the resin, and the acid regenerant may be passed in a downward flow.

【0020】第3工程に続いて、洗浄水を再生塔下部か
ら前記再生剤と同じ程度の流速の上昇流で供給し、又は
前記二層の分離面付近に設けた排出管より下降流で供給
し、排出管から排出して陽イオン交換樹脂層内から再生
剤を押出す。
After the third step, the washing water is supplied from the lower part of the regenerating tower by an ascending flow having a flow rate similar to that of the regenerant, or by a descending flow from a discharge pipe provided near the separation surface of the two layers. Then, the regenerant is discharged from the discharge pipe and extruded from the cation exchange resin layer.

【0021】酸の再生剤としては、特に制限されず、塩
酸、硫酸等の鉱酸水溶液が使用されるが、特に、5%硫
酸の水溶液が好ましい。
The acid regenerant is not particularly limited, and an aqueous solution of a mineral acid such as hydrochloric acid or sulfuric acid is used, and an aqueous solution of 5% sulfuric acid is particularly preferable.

【0022】第3工程後は、従来公知の水抜き、樹脂の
混合、満水、ブロー、循環の各工程が行われ、そして採
水工程へと移る。すなわち、水抜きは樹脂床上面まで水
を排出する。次いで、圧縮空気又は不活性ガスを樹脂床
に供給して陰陽両イオン交換樹脂を混合する。次に、水
を供給して空気を排出しつつ、イオン交換塔内を満水に
する。次いで、水を採水工程と同様に下降流で供給し、
再生塔下方から排出して、所定の水質となるまで混合イ
オン交換樹脂床を洗浄ブローする。
After the third step, the steps of draining, mixing resin, filling with water, blowing, and circulating, which are well known in the art, are performed, and the process proceeds to a water sampling step. That is, the drainage drains water to the upper surface of the resin floor. Next, compressed air or an inert gas is supplied to the resin bed to mix the anion and cation exchange resins. Next, the inside of the ion exchange tower is filled with water while supplying water and discharging air. Next, water is supplied in a downward flow in the same manner as in the water sampling step,
The mixed ion-exchange resin bed is discharged from the lower part of the regeneration tower and washed and blown until the water quality reaches a predetermined level.

【0023】本発明の混床式イオン交換装置の再生方法
は、前述の如く、第1工程から第3工程までを必須の構
成とするが、本発明の目的を損なわない範囲で種々の変
更、追加が可能である。例えば、採水を停止した後、第
1工程前に濁質の除去を目的とした逆洗を行ってもよ
い。この場合、前述のように、陰陽両イオン交換樹脂は
きれいに分離することは無い。また、第3工程後、再び
逆洗分離工程を付加した後、陰イオン交換樹脂又は陽イ
オン交換樹脂のいずれか一方又は双方を薬剤再生しても
よい。
As described above, the method for regenerating a mixed-bed ion exchange apparatus of the present invention has the essential steps from the first step to the third step, but various changes and modifications are possible without impairing the object of the present invention. Addition is possible. For example, after water sampling is stopped, back washing may be performed before the first step for the purpose of removing suspended matter. In this case, as described above, the anion and cation exchange resins do not separate cleanly. After the third step, after the backwash separation step is added again, one or both of the anion exchange resin and the cation exchange resin may be regenerated as a drug.

【0024】本発明によれば、シリカ分率の比較的大き
な被処理水を通水処理する混床式イオン交換装置を再生
するに際し、シリカ形陰イオン交換樹脂を含む使用済混
合イオン交換樹脂を最初にアルカリ再生剤で再生するた
め、混合イオン交換樹脂中の陰イオン交換樹脂はシリカ
を脱離してOH形となり再生されると共に、真比重が低
下する。その後、陰陽混合イオン交換樹脂を逆洗するか
ら上層に陰イオン交換樹脂、下方に陽イオン交換樹脂と
二層に分離することができる。一方、陽イオン交換樹脂
はアルカリ再生剤によってNa形やK形になるが、これ
は、逆洗分離後、酸を用いた再生により陰イオン交換樹
脂を汚染することなく行えるので、その後の洗浄ブロー
時間も短く、且つ、再生後、採水される処理水を再生前
の当初の処理水と同等の水質に維持できる。
According to the present invention, when regenerating a mixed bed type ion exchange apparatus for permeating water to be treated having a relatively large silica fraction, the used mixed ion exchange resin containing the silica type anion exchange resin is regenerated. First, since the resin is regenerated with an alkali regenerant, the anion exchange resin in the mixed ion exchange resin is desorbed from silica to form an OH form and is regenerated, and the true specific gravity decreases. Thereafter, the mixed anion-cation exchange resin is backwashed, so that the upper layer can be separated into an anion exchange resin and the lower part into a cation exchange resin and two layers. On the other hand, the cation exchange resin is converted into Na form or K form by the alkali regenerating agent. This can be carried out after backwashing and separation by regenerating with an acid without contaminating the anion exchange resin. The time is short, and the treated water sampled after regeneration can be maintained at the same water quality as the original treated water before regeneration.

【0025】[0025]

【実施例】実施例1 従来より一般的に使用されている下記仕様の混床式イオ
ン交換装置に、下記被処理水を約3カ月間連続通水処理
した後、採水を停止して以下の再生処理を行った。な
お、採水工程10日目の処理水の電気導電率は0.07
μS/cm(25 ℃) 以下であった。
EXAMPLE 1 The following treatment water was continuously passed through a mixed-bed type ion exchange device of the following specifications which has been generally used in the past for about three months. Was performed. The electric conductivity of the treated water on the 10th day of the water sampling step was 0.07.
μS / cm (25 ° C.) or less.

【0026】(混床式イオン交換装置) ・再生塔の大きさ;650mm 径×5400mm高さ( 断面積0.33
m2) ・混合イオン交換樹脂;強塩基性陰イオン交換樹脂IR
A−402BL 400L と強酸性陽イオン交換樹脂I
R−124 150L (いずれもロームアンドハース社
製) ・被処理水;半導体製造工場のCMP工程から排出され
た排水をセラミック膜で処理した下記水質の透過水 pH 10.1 電気伝導率 309μS/cm(25 ℃) イオン状シリカ 192mgSiO2/L(160mgCaCO3/L
)(シリカ分率、70.2%) 水酸化物イオン 72mgCaCO3/L 炭酸イオン 68mgCaCO3/L ・被処理水の流速;SV10
(Mixed bed type ion exchange device) ・ The size of the regeneration tower: 650 mm diameter x 5400 mm height (cross-sectional area 0.33
m 2 ) ・ Mixed ion exchange resin; Strongly basic anion exchange resin IR
A-402BL 400L and strongly acidic cation exchange resin I
R-124 150L (all manufactured by Rohm and Haas Co.) ・ Water to be treated; permeated water of the following water quality obtained by treating wastewater discharged from the CMP process of a semiconductor manufacturing plant with a ceramic membrane pH 10.1 Electric conductivity 309 μS / cm (25 ° C) Ionic silica 192 mg SiO 2 / L (160 mg CaCO 3 / L
) (Silica fraction, 70.2%) hydroxide ion 72mgCaCO 3 / L carbonate ion 68mgCaCO 3 / L ・ Flow rate of water to be treated; SV10

【0027】・再生工程 (第1工程)処理水の採水を停止した後、直ちに約1%
の水酸化ナトリウム水溶液を前記混床式イオン交換装置
の再生塔上部から流速5.0(S.V.A(アニオン交換樹脂
に対する空間速度)) の下降流で30分間通液した。続
いて、約5%の水酸化ナトリウム水溶液を同様に再生塔
上部から流速5.0(S.V.A) の下降流で20分間通液す
ることにより、陰イオン交換樹脂の再生を行った。
Regeneration step (First step) Immediately after stopping the collection of treated water, about 1%
Of sodium hydroxide was passed through the lower part of the regeneration tower of the mixed bed type ion exchanger at a flow rate of 5.0 (SVA (space velocity with respect to the anion exchange resin)) for 30 minutes. Subsequently, an anion exchange resin was regenerated by passing an aqueous solution of about 5% sodium hydroxide from the upper portion of the regenerator in the same manner at a downward flow rate of 5.0 (SVA) for 20 minutes.

【0028】(薬剤押出)次いで、洗浄水を同様に再生
塔上部から流速5.0(S.V.A) の下降流で40分間通水
して、陰イオン交換樹脂層から水酸化ナトリウム排液を
押し出し、再生塔下部から排出した。
(Chemical Extrusion) Next, washing water was similarly passed through the upper part of the regeneration tower with a downward flow at a flow rate of 5.0 (SVA) for 40 minutes to push out sodium hydroxide waste liquid from the anion exchange resin layer. It was discharged from the lower part of the regeneration tower.

【0029】(第2工程)次に、逆洗水を再生塔下部よ
り流速約10m/h (LV)の上昇流で流入し、約10分間
の逆洗を行い、上層に陰イオン交換樹脂、下層に陽イオ
ン交換樹脂の二層に分離した。逆洗後、再生塔内を5分
間沈整した。
(Second step) Next, backwashing water flows from the lower part of the regenerator in an upward flow at a flow rate of about 10 m / h (LV), and is backwashed for about 10 minutes. The lower layer was separated into two layers of a cation exchange resin. After the backwash, the inside of the regeneration tower was settled for 5 minutes.

【0030】(第3工程)再生剤として5%硫酸水溶液
を再生塔下部から流速5.0(S.V.A) の上昇流で20分
間通液し、その再生排液を前記二層の分離面付近に設け
た排出管より排出して陽イオン交換樹脂の再生を行っ
た。
(Third step) As a regenerating agent, a 5% sulfuric acid aqueous solution was passed through the lower part of the regenerating tower at an ascending flow rate of 5.0 (SVA) for 20 minutes, and the regenerated wastewater was discharged near the separation surface of the two layers. The cation exchange resin was discharged from the provided discharge pipe and regenerated.

【0031】(薬剤押出)洗浄水を前記硫酸再生剤と同
じ流速の上昇流で50分間供給し、排出管から排出して
陽イオン交換樹脂層内から硫酸再生剤を押出した。
(Chemical Extrusion) Washing water was supplied at an ascending flow at the same flow rate as the above-mentioned sulfuric acid regenerating agent for 50 minutes, and was discharged from a discharge pipe to extrude the sulfuric acid regenerating agent from inside the cation exchange resin layer.

【0032】(後処理工程)硫酸再生剤を押出した後、
5分間水を抜き出し、樹脂床のすぐ上まで水がくるよう
にした。次いで、窒素ガスを再生塔の上方から樹脂床に
5分間供給して陰陽両イオン交換樹脂を混合した。次
に、水を供給して空気を排出しつつ、イオン交換塔内を
満水にした。水の供給から満水まで20分間要した。次
いで、水を採水工程と同様に下降流で供給し、下方から
排出して、所定の水質となるまで混合イオン交換樹脂床
を洗浄ブローした。ブロー流量は4.5m3/hでブロー時
間は5分間であった。ブロー後、循環工程に切り換え
た。循環流量は4.5m3/hで循環時間は15分間であっ
た。
(Post-treatment step) After extruding the sulfuric acid regenerant,
The water was drained for 5 minutes and allowed to reach just above the resin bed. Next, nitrogen gas was supplied to the resin bed from above the regeneration tower for 5 minutes to mix the anion and cation exchange resins. Next, the inside of the ion exchange tower was filled with water while supplying water and discharging air. It took 20 minutes from supply of water to full water. Next, water was supplied in a downward flow in the same manner as in the water sampling step, discharged from below, and the mixed ion exchange resin bed was washed and blown until the water quality reached a predetermined level. The blow flow rate was 4.5 m 3 / h and the blow time was 5 minutes. After blowing, the process was switched to the circulation process. The circulation flow rate was 4.5 m 3 / h and the circulation time was 15 minutes.

【0033】(再生後の採水工程)上記再生工程を終了
した混床式イオン交換装置を採水工程に切り換えた。採
水条件は前記再生工程前の採水条件と同様にして行っ
た。採水工程10日目の処理水の電気導電率は0.07
μS/cm(25 ℃) 以下であり、初期の処理水の水質を維持
していた。
(Water sampling step after regeneration) The mixed bed type ion exchange device after the regeneration step was switched to a water sampling step. The water sampling conditions were the same as those before the regeneration step. The electric conductivity of the treated water on the 10th day of the water sampling process is 0.07
μS / cm (25 ° C.) or less, maintaining the initial quality of the treated water.

【0034】比較例1採水停止後、実施例1の再生の第
1工程を行うことなく、直ちに、逆洗水を再生塔下部よ
り流速約10m/h (LV)の上昇流で流入し、約10分間
の逆洗を行った。その結果、陰イオン交換樹脂と陽イオ
ン交換樹脂はほとんど分離せず、この段階で従来の薬剤
による再生は困難と判断された。
COMPARATIVE EXAMPLE 1 Immediately after the suspension of water sampling, the backwash water was introduced from the lower part of the regeneration tower at an upflow rate of about 10 m / h (LV) without performing the first step of regeneration in Example 1, Backwashing was performed for about 10 minutes. As a result, the anion-exchange resin and the cation-exchange resin hardly separated, and it was judged that regeneration at this stage with a conventional drug was difficult.

【0035】[0035]

【発明の効果】本発明によれば、半導体製造のCMP工
程から排出されるようなシリカ分率の高い被処理水を通
水処理する混床式イオン交換装置を再生するに際して、
先に薬剤で陰イオン交換樹脂を再生し、次いで逆洗し、
その後陽イオン樹脂を再生するという簡易な方法によ
り、再生後の処理水を再生前の当初の処理水の水質と同
等の水準に維持することができる。
According to the present invention, when regenerating a mixed bed type ion exchange apparatus for passing water to be treated having a high silica fraction as discharged from a CMP step in semiconductor production,
Regenerate the anion exchange resin with the drug first, then backwash,
Then, by a simple method of regenerating the cation resin, the treated water after regeneration can be maintained at the same level as the quality of the original treated water before regeneration.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年10月19日(1999.10.
19)
[Submission date] October 19, 1999 (1999.10.
19)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Correction target item name] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】また、アルカリ再生剤の通液方法として
は、アルカリ再生剤として、水酸化ナトリウム水溶液を
使用する場合、最初に薄い濃度の水酸化ナトリウム水溶
液を流し、次いでそれより濃い濃度の水酸化ナトリウム
水溶液を流して行うことが好ましい。シリカが吸着した
陰イオン交換樹脂とH形を含む陽イオン交換樹脂の混合
樹脂に濃い濃度の水酸化ナトリウム水溶液をいきなり通
液すると、陰イオン交換樹脂は前述の如くシリカを脱着
する。この時、樹脂間の隙間には局所的にシリカが高濃
度になる部分が発生する。一方、陽イオン交換樹脂はN
+ とH+ 基が置換されてH+ 基を放出し、これがNa
OHの持つOH- を中和するため局所的に中性域が発生
する。高濃度のシリカは中性域では速やかにゲル化して
析出し、これが樹脂間の隙間を詰まらせ後工程の処理を
困難にする。従って、当初の通液は薄い濃度の水酸化ナ
トリウム水溶液を流してシリカの脱着を徐々に行い、次
いでそれより濃い濃度の水酸化ナトリウム水溶液を流し
てシリカの脱着を完結することが好ましい。薄い濃度の
水酸化ナトリウム水溶液としては、0.5〜2.0%程
度の水酸化ナトリウム水溶液が好ましく、それより濃い
濃度の水酸化ナトリウム水溶液としては、前記薄い濃度
以上の濃度を有する水酸化ナトリウム水溶液であればよ
いが、約5.0%の水酸化ナトリウム水溶液が好まし
い。
As a method for passing the alkali regenerating agent, when an aqueous solution of sodium hydroxide is used as the alkali regenerating agent, a solution of sodium hydroxide having a low concentration is first flowed, and then a solution of sodium hydroxide having a higher concentration is used. It is preferable to carry out by flowing an aqueous solution. When a concentrated sodium hydroxide aqueous solution is immediately passed through a mixed resin of an anion exchange resin to which silica is adsorbed and a cation exchange resin containing H form, the anion exchange resin desorbs silica as described above. At this time, a portion where the concentration of silica is locally high occurs in the gap between the resins. On the other hand, the cation exchange resin is N
a + and H + groups are displaced to release H + groups, which are
OH with the OH - locally neutral zone occurs to neutralize. The high-concentration silica rapidly gels and precipitates in the neutral region, which clogs the gaps between the resins and makes subsequent processing difficult. Therefore, it is preferable to desorb silica gradually by flowing a sodium hydroxide aqueous solution having a low concentration and then flowing an aqueous solution of sodium hydroxide having a higher concentration to complete the desorption of silica. The aqueous sodium hydroxide low concentration, preferably aqueous sodium hydroxide of about 0.5 to 2.0%, the aqueous sodium hydroxide darker than the concentration of sodium hydroxide having a density lower than the density An aqueous solution may be used, but an aqueous solution of about 5.0% sodium hydroxide is preferred.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】アルカリ剤の通液方向は、上昇流又は下降
流のいずれであってもよい。下降流採水の場合、シリカ
が樹脂層の上流側に多く吸着するという点では、アルカ
リ剤は上昇流で通液するのが好ましいが、装置構造の簡
易さという点では、アルカリ剤は下降流で通液するのが
好ましい。下降流通液の場合、通液排水はイオン交換
の下部の処理水採水配管から排出すればよい。
The flow direction of the alkaline agent may be either an upward flow or a downward flow. In the case of downward flow sampling, it is preferable that the alkaline agent is passed in the upward flow from the viewpoint that silica is adsorbed more on the upstream side of the resin layer, but from the viewpoint of simplicity of the device structure, the alkaline agent flows downward. It is preferable to pass the solution through In the case of the downward flowing liquid, the passing water may be discharged from a treated water sampling pipe below the ion exchange tower.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】(第2工程)再生剤の押出し後、逆洗水を
イオン交換塔下部より流速約10m/h (LV)の上昇流で
流入し、約10分間の逆洗を行う。逆洗により混合樹脂
は展開流動化して樹脂床は弛緩され、樹脂床はこれに捕
捉された濁質が排出されると共に、比重差により上層に
OH形の陰イオン交換樹脂及び下層にNa形やK形の陽
イオン交換樹脂の二層に分離される。逆洗後は、イオン
交換塔内の樹脂を沈整する。
(Second step) After extruding the regenerant, backwash water is added.
The water flows from the lower part of the ion exchange tower at an ascending flow rate of about 10 m / h (LV) and backwashes for about 10 minutes. The mixed resin is developed and fluidized by the backwash, and the resin bed is relaxed, and the suspended resin trapped in the resin bed is discharged, and the OH type anion exchange resin in the upper layer and the Na type or the like in the lower layer due to a difference in specific gravity. Separated into two layers of K-type cation exchange resin. After backwash, ion
The resin in the exchange tower is settled.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】(第3工程)第2工程で分離された下層の
Na形やK形の陽イオン交換樹脂に酸再生剤を通液す
る。具体的には、従来と同様にイオン交換塔の下部から
再生剤酸水溶液を樹脂層に上昇流で通液し、イオン交換
塔の上部から水を通水して、酸水溶液が上層の陰イオン
交換樹脂層に接触しないようにする。なお、当該水及び
再生排液を前記二層の分離面付近に設けた排出管より排
出する。これにより、陽イオン交換樹脂はNa形やK形
からH形に再生される。酸再生剤の通液方法は、前記方
法の他、樹脂の分離面に酸再生剤供給配管を設け、これ
から下降流で通液してもよい。
(Third Step) The acid regenerant is passed through the lower Na-type or K-type cation exchange resin separated in the second step. Specifically, as in the conventional case, an aqueous solution of a regenerant acid is passed through the resin layer from the lower portion of the ion exchange tower in an upward flow, and water is passed through the upper portion of the ion exchange tower, whereby the acid aqueous solution is removed. Avoid contact with the upper anion exchange resin layer. The water and the regenerated effluent are discharged from a discharge pipe provided near the separation surface between the two layers. Thereby, the cation exchange resin is regenerated from the Na form or the K form to the H form. As a method for passing the acid regenerant, the acid regenerant supply pipe may be provided on the separation surface of the resin, and the acid regenerant may be passed in a downward flow.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】第3工程に続いて、洗浄水をイオン交換
下部から前記再生剤と同じ程度の流速の上昇流で供給
し、又は前記二層の分離面付近に設けた酸再生剤供給配
より下降流で供給し、排出管から排出して陽イオン交
換樹脂層内から再生剤を押出す。
After the third step, the washing water is supplied from the lower part of the ion exchange tower at an ascending flow having a flow rate similar to that of the regenerant, or the supply of acid regenerant supplied near the separation surface of the two layers is performed.
The regenerant is supplied from the pipe in a downward flow, discharged from the discharge pipe, and extruded from the cation exchange resin layer.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0022】第3工程後は、従来公知の水抜き、樹脂の
混合、満水、ブロー、循環の各工程が行われ、そして採
水工程へと移る。すなわち、水抜きは樹脂床上面まで水
を排出する。次いで、圧縮空気又は不活性ガスを樹脂床
に供給して陰陽両イオン交換樹脂を混合する。次に、水
を供給して空気を排出しつつ、イオン交換塔内を満水に
する。次いで、水を採水工程と同様に下降流で供給し、
イオン交換塔下方から排出して、所定の水質となるまで
混合イオン交換樹脂床を洗浄ブローする。
After the third step, the steps of draining, mixing resin, filling with water, blowing, and circulating, which are well known in the art, are performed, and the process proceeds to a water sampling step. That is, the drainage drains water to the upper surface of the resin floor. Next, compressed air or an inert gas is supplied to the resin bed to mix the anion and cation exchange resins. Next, the inside of the ion exchange tower is filled with water while supplying water and discharging air. Next, water is supplied in a downward flow in the same manner as in the water sampling step,
The mixed ion-exchange resin bed is discharged from below the ion-exchange tower and washed and blown until the water quality reaches a predetermined level.

【手続補正8】[Procedure amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】(混床式イオン交換装置) ・イオン交換塔の大きさ;650mm 径×5400mm高さ( 断面
積0.33m2) ・混合イオン交換樹脂;強塩基性陰イオン交換樹脂IR
A−402BL 400L と強酸性陽イオン交換樹脂I
R−124 150L (いずれもロームアンドハース社
製) ・被処理水;半導体製造工場のCMP工程から排出され
た排水をセラミック膜で処理した下記水質の透過水 pH 10.1 電気伝導率 309μS/cm(25 ℃) イオン状シリカ 192mgSiO2/L(160mgCaCO3/L
)(シリカ分率、70.2%) 水酸化物イオン 72mgCaCO3/L 炭酸イオン 68mgCaCO3/L ・被処理水の流速;SV10
(Mixed bed type ion exchange device) ・Ion exchange tower size: 650 mm diameter × 5400 mm height (cross-sectional area 0.33 m 2 ) ・ Mixed ion exchange resin; Strongly basic anion exchange resin IR
A-402BL 400L and strongly acidic cation exchange resin I
R-124 150L (all manufactured by Rohm and Haas Co.) ・ Water to be treated; permeated water of the following water quality obtained by treating wastewater discharged from the CMP process of a semiconductor manufacturing plant with a ceramic membrane pH 10.1 Electric conductivity 309 μS / cm (25 ° C) Ionic silica 192 mg SiO 2 / L (160 mg CaCO 3 / L
) (Silica fraction, 70.2%) hydroxide ion 72mgCaCO 3 / L carbonate ion 68mgCaCO 3 / L ・ Flow rate of water to be treated; SV10

【手続補正9】[Procedure amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】・再生工程 (第1工程)処理水の採水を停止した後、直ちに約1%
の水酸化ナトリウム水溶液を前記混床式イオン交換装置
イオン交換塔上部から流速5.0(S.V.A(アニオン交
換樹脂に対する空間速度)) の下降流で30分間通液し
た。続いて、約5%の水酸化ナトリウム水溶液を同様に
イオン交換塔上部から流速5.0(S.V.A) の下降流で2
0分間通液することにより、陰イオン交換樹脂の再生を
行った。
Regeneration step (First step) Immediately after stopping the collection of treated water, about 1%
Of sodium hydroxide was passed through the lower part of the ion exchange tower of the mixed bed type ion exchanger at a flow rate of 5.0 (SVA (space velocity for anion exchange resin)) for 30 minutes. Then, about 5% aqueous sodium hydroxide solution
Downflow from the top of the ion exchange tower at a flow rate of 5.0 (SVA)
By passing the solution for 0 minutes, the anion exchange resin was regenerated.

【手続補正10】[Procedure amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】(薬剤押出)次いで、洗浄水を同様にイオ
ン交換塔上部から流速5.0(S.V.A) の下降流で40分
間通水して、陰イオン交換樹脂層から水酸化ナトリウム
排液を押し出し、イオン交換塔下部から排出した。
[0028] Then (drug extrusion), similarly the wash water Io
Water was passed from the upper part of the exchange tower at a downward flow rate of 5.0 (SVA) for 40 minutes to push out sodium hydroxide waste liquid from the anion exchange resin layer and discharged from the lower part of the ion exchange tower.

【手続補正11】[Procedure amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】(第2工程)次に、逆洗水をイオン交換
下部より流速約10m/h (LV)の上昇流で流入し、約1
0分間の逆洗を行い、上層に陰イオン交換樹脂、下層に
陽イオン交換樹脂の二層に分離した。逆洗後、イオン交
塔内を5分間沈整した。
(Second step) Next, backwash water flows from the lower part of the ion exchange tower in an upward flow at a flow rate of about 10 m / h (LV),
After backwashing for 0 minutes, the upper layer was separated into two layers, an anion exchange resin and a lower layer, a cation exchange resin. After backwashing, ion exchange
The conversion tower was沈整5 minutes.

【手続補正12】[Procedure amendment 12]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】(第3工程)再生剤として5%硫酸水溶液
イオン交換塔下部から流速5.0(S.V.A) の上昇流で
20分間通液し、その再生排液を前記二層の分離面付近
に設けた排出管より排出して陽イオン交換樹脂の再生を
行った。
(Third step) As a regenerating agent, a 5% aqueous sulfuric acid solution was passed through the lower part of the ion exchange tower at an ascending flow rate of 5.0 (SVA) for 20 minutes. The cation exchange resin was regenerated by discharging from the discharge pipe provided in the above.

【手続補正13】[Procedure amendment 13]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】(後処理工程)硫酸再生剤を押出した後、
5分間水を抜き出し、樹脂床のすぐ上まで水がくるよう
にした。次いで、窒素ガスをイオン交換塔の樹脂床に5
分間供給して陰陽両イオン交換樹脂を混合した。次に、
水を供給して空気を排出しつつ、イオン交換塔内を満水
にした。水の供給から満水まで20分間要した。次い
で、水を採水工程と同様に下降流で供給し、下方から排
出して、所定の水質となるまで混合イオン交換樹脂床を
洗浄ブローした。ブロー流量は4.5m3/hでブロー時間
は5分間であった。ブロー後、循環工程に切り換えた。
循環流量は4.5m3/hで循環時間は15分間であった。
(Post-treatment step) After extruding the sulfuric acid regenerant,
The water was drained for 5 minutes and allowed to reach just above the resin bed. Next, nitrogen gas is applied to the resin bed of the ion exchange tower for 5 minutes.
For a minute to mix the anion and cation exchange resins. next,
While supplying water and discharging air, the inside of the ion exchange tower was filled with water. It took 20 minutes from supply of water to full water. Next, water was supplied in a downward flow in the same manner as in the water sampling step, discharged from below, and the mixed ion exchange resin bed was washed and blown until the water quality reached a predetermined level. The blow flow rate was 4.5 m 3 / h and the blow time was 5 minutes. After blowing, the process was switched to the circulation process.
The circulation flow rate was 4.5 m 3 / h and the circulation time was 15 minutes.

【手続補正14】[Procedure amendment 14]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】比較例1 採水停止後、実施例1の再生の第1工程を行うことな
く、直ちに、逆洗水をイオン交換塔下部より流速約10
m/h (LV)の上昇流で流入し、約10分間の逆洗を行っ
た。その結果、陰イオン交換樹脂と陽イオン交換樹脂は
ほとんど分離せず、この段階で従来の薬剤による再生は
困難と判断された。
COMPARATIVE EXAMPLE 1 After the water sampling was stopped, the backwash water was immediately discharged from the lower part of the ion exchange tower at a flow rate of about 10 without performing the first step of regeneration in Example 1.
It flowed in ascending flow of m / h (LV) and was backwashed for about 10 minutes. As a result, the anion-exchange resin and the cation-exchange resin hardly separated, and it was judged that regeneration at this stage with a conventional drug was difficult.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水酸化物イオンを除く全アニオンに対す
るシリカの割合が40%以上の被処理水を通水処理して
処理水を採水する混床式イオン交換装置の再生方法であ
って、処理水の採水を停止した後、アルカリ再生剤を陰
陽両イオン交換樹脂に通液して陰イオン交換樹脂を再生
する第1工程と、続いて、水で陰陽両イオン交換樹脂を
逆洗することによって陽イオン交換樹脂と陰イオン交換
樹脂とを分離する第2工程と、第2工程で分離された下
層の陽イオン交換樹脂を酸再生剤で再生する第3工程
と、を含むことを特徴とする混床式イオン交換装置の再
生方法。
1. A method for regenerating a mixed bed type ion exchange apparatus, wherein water to be treated having a ratio of silica of 40% or more to all anions other than hydroxide ions is passed through to collect treated water, After stopping the collection of the treated water, a first step of regenerating the anion exchange resin by passing an alkali regenerant through the anion and cation exchange resin, and then backwashing the anion and cation exchange resin with water. A second step of separating the cation exchange resin and the anion exchange resin from each other, and a third step of regenerating the lower layer cation exchange resin separated in the second step with an acid regenerant. A method for regenerating a mixed bed type ion exchange device.
【請求項2】 前記被処理水が、水酸化物イオンを除く
全アニオンに対するシリカの割合が40%以上、且つシ
リカ濃度が50mgSiO2/L以上の水であることを特徴とす
る請求項1記載の混床式イオン交換装置の再生方法。
2. The method according to claim 1, wherein the water to be treated is water having a ratio of silica of 40% or more to all anions other than hydroxide ions and a silica concentration of 50 mg SiO 2 / L or more. Of the mixed bed type ion exchange device of the above.
【請求項3】 水酸化物イオンを除く全アニオンに対す
るシリカの割合が40%以上の被処理水が、CMP工程
から排出される排水であることを特徴とする請求項1又
は2記載の混床式イオン交換装置の再生方法。
3. The mixed bed according to claim 1, wherein the water to be treated having a ratio of silica to all anions other than hydroxide ions of 40% or more is waste water discharged from the CMP step. A method for regenerating an ion exchange device.
【請求項4】 前記第1工程におけるアルカリ再生剤の
通液方法が、最初に薄い濃度の水酸化ナトリウム水溶液
を流し、次いで濃い濃度の水酸化ナトリウム水溶液を流
して行うことを特徴とする請求項1〜3のいずれか1項
記載の混床式イオン交換装置の再生方法。
4. The method of passing an alkaline regenerant in the first step is performed by first flowing a weak aqueous sodium hydroxide solution and then flowing a dense aqueous sodium hydroxide solution. The method for regenerating a mixed bed type ion exchange apparatus according to any one of claims 1 to 3.
JP33085298A 1998-11-20 1998-11-20 Regeneration method of mixed bed type ion exchange equipment Expired - Lifetime JP3913379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33085298A JP3913379B2 (en) 1998-11-20 1998-11-20 Regeneration method of mixed bed type ion exchange equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33085298A JP3913379B2 (en) 1998-11-20 1998-11-20 Regeneration method of mixed bed type ion exchange equipment

Publications (2)

Publication Number Publication Date
JP2000153166A true JP2000153166A (en) 2000-06-06
JP3913379B2 JP3913379B2 (en) 2007-05-09

Family

ID=18237261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33085298A Expired - Lifetime JP3913379B2 (en) 1998-11-20 1998-11-20 Regeneration method of mixed bed type ion exchange equipment

Country Status (1)

Country Link
JP (1) JP3913379B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361247A (en) * 2001-06-11 2002-12-17 Kurita Water Ind Ltd Method for manufacturing pure water
CN109748357A (en) * 2017-11-03 2019-05-14 山东电力高等专科学校 A kind of antipollution ion exchange water treatment actual training device
CN110180604A (en) * 2019-03-29 2019-08-30 山西太钢不锈钢股份有限公司 Mixed bed regeneration method
CN112919607A (en) * 2021-01-26 2021-06-08 华能国际电力股份有限公司日照电厂 Method for adjusting pH value of wastewater
CN113461098A (en) * 2021-06-30 2021-10-01 钱中明 Regeneration equipment and process for adsorbing heavy metal in water by using complexing resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361247A (en) * 2001-06-11 2002-12-17 Kurita Water Ind Ltd Method for manufacturing pure water
CN109748357A (en) * 2017-11-03 2019-05-14 山东电力高等专科学校 A kind of antipollution ion exchange water treatment actual training device
CN110180604A (en) * 2019-03-29 2019-08-30 山西太钢不锈钢股份有限公司 Mixed bed regeneration method
CN112919607A (en) * 2021-01-26 2021-06-08 华能国际电力股份有限公司日照电厂 Method for adjusting pH value of wastewater
CN113461098A (en) * 2021-06-30 2021-10-01 钱中明 Regeneration equipment and process for adsorbing heavy metal in water by using complexing resin

Also Published As

Publication number Publication date
JP3913379B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP6265750B2 (en) Method and apparatus for purifying sucrose solution
JP3632331B2 (en) Ion exchange method and ion exchange column used in this ion exchange method
JP2000153166A (en) Regeneration of mixed bed type ion exchange apparatus
JP2002361247A (en) Method for manufacturing pure water
JP2891790B2 (en) Regeneration method of anion exchange resin
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP2742975B2 (en) Regeneration method of ion exchange device
JP3160435B2 (en) Pure water production apparatus and method for regenerating the same
JP3592495B2 (en) Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus
JP3951456B2 (en) Pure water production equipment
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP3963599B2 (en) Acid component removal method
JP2845489B2 (en) Regeneration method of mixed-bed sucrose liquid purification equipment
US5942122A (en) Method of deodorizing ion-exchanged purified water
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP4245745B2 (en) Mixed bed type sugar liquid purification equipment
JP3570066B2 (en) Ion exchange equipment
JPH07256119A (en) Method for regenerating mixed-bed ion-exchange tower
JP2001232217A (en) Method for regenerating ion exchange resin
JP2001219163A (en) Treating method of boron-containing water
JPS6133623B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term