JP3592495B2 - Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus - Google Patents

Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus Download PDF

Info

Publication number
JP3592495B2
JP3592495B2 JP23225297A JP23225297A JP3592495B2 JP 3592495 B2 JP3592495 B2 JP 3592495B2 JP 23225297 A JP23225297 A JP 23225297A JP 23225297 A JP23225297 A JP 23225297A JP 3592495 B2 JP3592495 B2 JP 3592495B2
Authority
JP
Japan
Prior art keywords
exchange resin
tower
cation exchange
basic anion
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23225297A
Other languages
Japanese (ja)
Other versions
JPH1170000A (en
Inventor
友二 浅川
伸 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP23225297A priority Critical patent/JP3592495B2/en
Publication of JPH1170000A publication Critical patent/JPH1170000A/en
Application granted granted Critical
Publication of JP3592495B2 publication Critical patent/JP3592495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ショ糖液精製装置および同装置の再生方法に関するものである。さらに詳しくは軟化塔とアニオン塔と混床塔を組み合わせたショ糖液精製装置および同装置の再生方法に関するものである。
【0002】
【従来の技術】
従来から、ショ糖液は、活性炭処理、骨炭処理、イオン交換樹脂処理による脱色処理を行った後、イオン交換樹脂を用いて脱塩処理を行って精製されている。脱塩精製システムとして、OH形の強塩基性アニオン交換樹脂を用いたアニオン塔と、OH形の強塩基性アニオン交換樹脂とH形の弱酸性カチオン交換樹脂の混床塔を用いる脱塩精製システム(特開平2−295499号)が提案されている。このシステムは従来の脱塩精製システムであるリバース法や混床法に比べて処理量、脱色率とも優れた脱塩精製システムである。
【0003】
【発明が解決しようとする課題】
ショ糖液はpHが酸性側になるとショ糖が分解するため、ショ糖液の脱塩精製は糖液のpHが酸性側にならないように行う必要がある。そのため、OH形の強塩基性アニオン交換樹脂を用いたアニオン塔とOH形のアニオン交換樹脂とH形の弱酸性カチオン交換樹脂の混床塔を組み合わせた上記脱塩システムでは、ショ糖液を始めにOH形のアニオン交換樹脂に接触させてショ糖液のpHをアルカリ性とした後、強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂の混床樹脂に接触させて精製を行う。
【0004】
しかしこの方法ではOH形の強塩基性アニオン交換樹脂との接触において糖液がアルカリ性になるため、カルシウムやマグネシウムなどの硬度成分が比較的多く含まれている糖液を処理する場合には、これらの硬度成分が水酸化物や炭酸化合物として析出して樹脂層内部に沈殿し、イオン交換樹脂の交換基を閉塞して脱塩性能の低下を引き起こしたり、また樹脂層の差圧が上昇する等の問題があった。リバース法でも始めに強塩基性アニオン交換樹脂に接触させて処理を行うため同様の問題が起きる。
【0005】
その沈積した硬度成分を除去するために、5〜50サイクルに1回の割合でアニオン交換塔内の強塩基性アニオン交換樹脂を温HCl等の酸を用いて回生するのが通常である。しかしながら、通液毎に硬度成分等が樹脂層内部に沈積するため安定した処理にはなりにくい。
【0006】
本発明が解決しようとする課題は、安定した脱塩精製処理を行うことのできるショ糖液精製装置及び同装置の効率的な再生方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らが、鋭意研究を進めた結果、従来のアニオン塔と混床塔を組み合わせた脱塩精製装置において、前段に軟化塔を設けることにより、上記課題が解決されることを見いだし、本発明を完成するに至った。
【0008】
すなわち、本発明は、ショ糖液を通液することにより、ショ糖液中のカルシウムイオンやマグネシウムイオン等の硬度成分をナトリウムイオンまたはカリウムイオンに置換するためのナトリウム形またはカリウム形カチオン交換樹脂を充填した軟化塔と、軟化塔を通過した処理液を通液する強塩基性アニオン交換樹脂を充填したアニオン塔と、アニオン塔を通過した処理液を通液する強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を充填した混床塔とを設けたことを特徴とするショ糖液精製装置、
混床塔の弱酸性カチオン交換樹脂の酸性再生廃液を軟化塔のカチオン交換樹脂に通薬した後、混床塔の強塩基性アニオン交換樹脂のアルカリ性再生廃液および/またはアニオン塔の強塩基性アニオン交換樹脂のアルカリ性再生廃液を軟化塔のカチオン交換樹脂に通薬することを特徴とする請求項1に記載のショ糖液精製装置の再生方法
および混床塔の弱酸性カチオン交換樹脂の酸性再生廃液と、混床塔の強塩基性アニオン交換樹脂のアルカリ性再生廃液および/またはアニオン塔の強塩基性アニオン交換樹脂のアルカリ性再生廃液とを混合して得られる中性再生廃液を軟化塔のカチオン交換樹脂に通薬することを特徴とする請求項1に記載のショ糖液精製装置の再生方法に関するものである。
【0009】
【発明の実施の形態】
本発明の請求項1に係るショ糖液精製装置は、図1に示すように強塩基性アニオン交換樹脂4を充填したアニオン塔3と強塩基性アニオン交換樹脂および弱酸性カチオン交換樹脂の混合樹脂6を充填した混床塔5からなる装置の前段にカチオン交換樹脂2を充填した軟化塔1を設けたものである。軟化塔に充填するカチオン交換樹脂は、ショ糖液中の硬度成分を吸着できるものであれば特に限定されず、強酸性のものでも弱酸性のものでも使用できるが、強酸性カチオン交換樹脂がカルシウムやマグネシウム等の硬度成分の除去性能に優れている点で好ましい。また、カチオン交換樹脂のイオン形としては、一般的にナトリウム形のものを使用するが、この他にもカリウム形のものを使用することもできる。
【0010】
本発明のショ糖液精製装置によりショ糖液を精製するには、原料のショ糖液の原液は、軟化塔1の上部から通液され、例えばナトリウム形のカチオン交換樹脂2の層を通り、原液中のカルシウムイオンやマグネシウムイオン等の硬度成分がイオン交換されナトリウムイオンと置換され、その結果、軟化処理後のショ糖液中には、NaCl、NaSO等のナトリウム塩が含まれることになる。軟化塔1の下部から流出した処理液を、アニオン塔3の上部から通液し、OH形の強塩基性アニオン交換樹脂4層を通り、脱色および脱アニオンされて下部から流出する。原液中のカルシウムイオンやマグネシウムイオン等の硬度成分は前段の軟化塔1のカチオン交換樹脂2に吸着されて除去されているので、アニオン塔3の強塩基性アニオン交換樹脂4に硬度成分が析出して蓄積されることがない。軟化処理後のショ糖液に含まれていたClイオン、SOイオン等の陰イオンは、アニオン塔3のOH形強塩基性アニオン交換樹脂4によってOHイオンと置換されるので、アニオン塔処理後のショ糖液中には主としてNaOHが含まれている。アニオン塔3の下部から流出した処理液を、混床塔5の上部から通液し、OH形の強塩基性アニオン交換樹脂とH形の弱酸性カチオン交換樹脂との混合樹脂6層を通り、脱色・脱塩処理されて混床塔5の下部から精製ショ糖液として流出してくる。混床塔5では、アニオン塔3処理後のショ糖液中に含まれているNaイオンや、該ショ糖液中に微量残留しているカルシウムイオン、マグネシウムイオン等のカチオンは弱酸性カチオン交換樹脂により吸着され、また、該ショ糖液中に微量残留しているCl、SOイオン等のアニオンは強塩基性アニオン交換樹脂によって吸着されて、除去される。
【0011】
請求項1に記載のショ糖液精製装置は、脱塩処理前に軟化処理を行うことにより、アニオン塔内の強塩基性アニオン交換樹脂へのカルシウムやマグネシウム等の硬度成分の析出、蓄積を防ぐことができ、該強塩基性アニオン交換樹脂の交換基の閉塞による脱塩性能の低下および樹脂塔の差圧上昇を防止することができる。
【0012】
本発明の請求項1記載のショ糖液精製装置の再生処理は、まず混床塔内の強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を比重差により分離した後行う。
【0013】
図2に示すように、分離後の混床塔5にまず塩酸水溶液等の酸再生剤を混床塔5上部から通液し、再生廃液を下部から排出して上層の強塩基性アニオン交換樹脂7と下層の弱酸性カチオン交換樹脂8とに一括して通薬する。酸再生剤の一括通薬により、混床塔5の弱酸性カチオン交換樹脂8が再生(H形化)され、強塩基性アニオン交換樹脂7が回生処理される。混床塔5から排出された酸性再生廃液を、アニオン塔3の上部から通薬し、アニオン塔3内の強塩基性アニオン交換樹脂4の回生処理を行う。アニオン塔3から排出された酸性再生廃液を、軟化塔1の上部より通薬する。これにより、軟化塔1のカチオン交換樹脂2の一部がNa形となり、その他がH形となる。すなわち、酸再生剤として例えば塩酸水溶液を使用した場合、酸性再生廃液中には、塩酸によって混床塔の弱酸性カチオン交換樹脂8から脱離したNaに由来するNaClと、再生に利用されなかった余剰の塩酸が含まれているのみでその他のCa等の不純物イオンは極くわずかしか含まれていないので、これを軟化塔1に通すとカチオン交換樹脂2はその一部がNa形、他がH形になる。
【0014】
なお、混床塔5の酸再生剤による一括通薬は、強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂との混合樹脂を分離せずに一括通薬し、その後両イオン交換樹脂を比重分離して、後述の強塩基性アニオン交換樹脂の再生を行うようにしてもよい。
【0015】
次いで、図3(a)に示すように、混床塔5の上部よりNaOH水溶液等のアルカリ再生剤を通薬し、同時に混床塔5下部より水を導入し、再生廃液を両イオン交換樹脂層のほぼ中間部に設けたコレクター(不図示)から排出させて、混床塔5内の強塩基性アニオン交換樹脂7を再生(OH形)する。
【0016】
混床塔5から排出されたアルカリ性再生廃液を軟化塔1の上部から通薬し、カチオン交換樹脂2のうち、H形になっているカチオン交換樹脂をNa形に再生する。
【0017】
なお、軟化塔1に混床塔5から排出される酸性再生廃液を通薬することなく直接アルカリ性再生廃液を通薬すると、軟化塔1内のカチオン交換樹脂2に吸着されているカルシウムイオンやマグネシウムイオンが水酸化物として析出してしまうので好ましくない。
【0018】
さらに、図3(b)に示すように、アニオン塔3の上部よりアルカリ再生剤を通薬し、強塩基性アニオン交換樹脂4を再生(OH形化)する。通常、混床塔5の強塩基性アニオン交換樹脂7の再生時に排出されるアルカリ性再生廃液中には軟化塔1のカチオン交換樹脂2の再生に必要なナトリウム量は充分に含まれているが、もし不足する場合は、アニオン塔3より排出されたアルカリ性再生廃液を軟化塔1上部から通薬してもよい。
【0019】
再生方法のその他の実施形態として、混床塔5に酸再生剤を通薬する際に、強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を比重差を利用して分離した後、酸再生剤を混床塔5下部から導入して、下層の弱酸性カチオン交換樹脂8層に酸再生剤を上向流で通薬し、酸性再生廃液をコレクターより排出させてもよい。この場合、同時に混床塔5上部より水を導入し、上層の強塩基性アニオン交換樹脂7層に下降流で水を流してコレクターから排出させる。ただし、強塩基性アニオン交換樹脂を回生処理できる点で、上述の酸再生剤を一括通薬する再生方法が好ましい。
【0020】
また、混床塔5から排出される酸性再生廃液を、アニオン塔3に導入せず直接軟化塔1に導入してもよい。ただし、アニオン塔3の強塩基性アニオン交換樹脂の回生処理を行える点で、図2に示した方法が好ましい。
【0021】
図3(a)、(b)に示した方法は、軟化塔1のカチオン交換樹脂2をほぼ完全にNa形にするために、混床塔5の強塩基性アニオン交換樹脂7のアルカリ性再生廃液と、アニオン塔3の強塩基性アニオン交換樹脂4のアルカリ性再生廃液を用いる例を示したが、いずれか一方のみで軟化塔1のカチオン交換樹脂2を充分Na形にできる場合は、いずれか一方のアルカリ性再生廃液を使用すればよい。
【0022】
また、混床塔5から排出される酸性再生廃液、あるいはこの酸性再生廃液をさらにアニオン塔3に通薬して排出される酸性再生廃液と、混床塔5の強塩基性アニオン交換樹脂7のアルカリ性再生廃液およびアニオン塔3のアルカリ性再生廃液の両方あるいはいずれか一方とを混合して中和し、得られた中性廃液を軟化塔1のカチオン交換樹脂2の再生に用いてもよい。
【0023】
もちろん、軟化塔1のカチオン交換樹脂2を、新品の再生剤(例えば、塩化ナトリウム水溶液等)を用いて再生してもよいが、薬品コストが増大する。
【0024】
【実施例】
以下、実施例により本発明を詳細に説明するが、実施例により本発明が限定されるものではない。
【0025】
実施例1
表1に示した原糖液を強酸性カチオン交換樹脂(ローム アンド ハース社製、「アンバーライト IR−120B」)20mlを充填した軟化用カラム(軟化塔)と、強塩基性アニオン交換樹脂(ローム アンド ハース社製、「アンバーライト IRA−402BL」)40mlを充填したアニオンカラム(アニオン塔)と強塩基性アニオン交換樹脂(ローム アンド ハース社製、「アンバーライト IRA−402BL」)40mlと弱酸性カチオン交換樹脂(ローム アンド ハース社製、「アンバーライト IRC−76)20mlを混合して充填した混床式カラム(混床塔)を用いて、通液温度50℃、通液流量200ml/hで2000mlを処理する操作を1サイクルとして通液を行った。
【0026】
再生処理としては、はじめに混床式カラム内の強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を比重差を利用して分離した後、下降流式で1N−HCl(160ml)を混床式カラムに通薬して、強塩基性アニオン交換樹脂の回生と弱酸性カチオン交換樹脂の再生を行った。その酸性再生廃液をアニオンカラムの強塩基性アニオン交換樹脂に通薬して回生した後、軟化用カラムの強酸性カチオン交換樹脂に通薬した。
【0027】
その後、混床式カラム内の強塩基性アニオン交換樹脂に1N−NaOH(80ml)を通薬して強塩基性アニオン交換樹脂を再生し、そのアルカリ性再生廃液を軟化用カラムの強酸性カチオン交換樹脂に通薬した。その後、混床式カラム内の強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂が均等になるように混合した。また、酸性再生廃液通薬後のアニオンカラム内の強塩基性アニオン交換樹脂に1N−NaOH(80ml)を通薬して再生し、そのアルカリ性再生廃液を軟化用カラムの強酸性カチオン交換樹脂に通薬した。
【0028】
上記の方法で、ショ糖液精製処理−再生の操作を繰り返して行った。5サイクル目の軟化処理したショ糖液の性状を表1に示す。
【0029】
【表1】

Figure 0003592495
【0030】
表1に示した結果から明かなように、本発明のショ糖液精製装置により処理を行うことにより、前段の軟化塔で硬度成分を予め除去することができ、アニオン塔内の強塩基性アニオン交換樹脂にショ糖液中の硬度成分が析出、蓄積することがないので、アニオン塔内での硬度成分の析出による目詰まりが解消され、色素の脱着、イオン交換処理が容易になり、従来の処理システムより、安定した処理性能が得られる。
【0031】
また、本発明の再生方法により、軟化塔のカチオン交換樹脂を充分に再生できることが分かる。
【0032】
比較例1
表1に示した原糖液を強塩基性アニオン交換樹脂(ローム アンド ハース社製、「アンバーライト IRA−402BL」)40mlを充填したアニオンカラムと、強塩基性アニオン交換樹脂(ローム アンド ハース社製、「アンバーライト IRA−402BL」)40mlと弱酸性カチオン交換樹脂(ローム アンド ハース社製、「アンバーライト IRC−76」)20mlを混合して充填した混床式カラムを用いて、通液温度50℃、通液流量200ml/hで2000mlを処理する操作を1サイクルとして通液を行った。
【0033】
再生処理としては、はじめに混床式カラム内の強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を比重差を利用して分離した後、下降流式で1N−HCl(160ml)を混床式カラムに通薬して、塩基性アニオン交換樹脂の回生と弱酸性カチオン交換樹脂の再生を行なった。
【0034】
その後、混床式カラム内の強塩基性アニオン交換樹脂に1N−NaOH(80ml)を通薬して強塩基性アニオン交換樹脂を再生した。その後、混床式カラム内の強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を均等になるように混合した。同様にアニオンカラムの強塩基性アニオン交換樹脂に1N−NaOH(80ml)を通薬して再生した。
【0035】
上記の方法でショ糖液精製処理−再生処理の操作を繰り返した。3サイクル目にはアニオンカラム内の強塩基性アニオン交換樹脂に肉眼で確認できるほど硬度成分が析出した。
【0036】
【発明の効果】
本発明のショ糖液精製装置により、アニオン塔の強塩基性アニオン交換樹脂に硬度成分が析出することがなく、ショ糖液の精製を安定して行うことができる。また、本発明の再生方法によれば、混床塔の再生廃液を用いて軟化塔のカチオン交換樹脂を再生することができるので、該カチオン交換樹脂を例えば新品の食塩水溶液を用いて再生する場合に比べて、再生薬品コストを低減することができる。
【図面の簡単な説明】
【図1】本発明のショ糖液精製装置の説明図。
【図2】本発明の再生方法のうち、酸再生剤による再生方法を示すフロー図。
【図3】本発明の再生方法のうち、アルカリ再生剤による再生方法を示すフロー図で、(a)は混床塔の強塩基性アニオン交換樹脂の再生と軟化塔のカチオン交換樹脂の再生を示すフロー図で、(b)はアニオン塔の強塩基性アニオン交換樹脂の再生と軟化塔のカチオン交換樹脂の再生を示すフロー図。
【符号の説明】
1 軟化塔
2 カチオン交換樹脂
3 アニオン塔
4 強塩基性アニオン交換樹脂
5 混床塔
6 強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂との混合樹脂
7 強塩基性アニオン交換樹脂
8 弱酸性カチオン交換樹脂[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sucrose liquid refining apparatus and a method for regenerating the same. More particularly, the present invention relates to a sucrose liquid refining apparatus in which a softening tower, an anion tower, and a mixed bed tower are combined, and a method for regenerating the same.
[0002]
[Prior art]
BACKGROUND ART Conventionally, a sucrose solution has been purified by performing a decolorizing treatment by an activated carbon treatment, a bone char treatment, and an ion exchange resin treatment, and then performing a desalting treatment by using an ion exchange resin. As a desalination purification system, a desalination purification system using an anion column using a strong basic anion exchange resin in the OH form and a mixed bed tower of a strong basic anion exchange resin in the OH form and a weakly acidic cation exchange resin in the H form (JP-A-2-295499) has been proposed. This system is a desalination and purification system that is superior in both throughput and decolorization rate as compared with the conventional desalination and purification systems such as the reverse method and the mixed bed method.
[0003]
[Problems to be solved by the invention]
Since sucrose decomposes when the pH of the sucrose solution becomes acidic, desalting and purification of the sucrose solution must be performed so that the pH of the sucrose solution does not become acidic. Therefore, in the above desalination system combining an anion column using an OH type strongly basic anion exchange resin and a mixed bed column of an OH type anion exchange resin and an H type weakly acidic cation exchange resin, a sucrose solution is used. After making the pH of the sucrose solution alkaline by contacting it with an anion exchange resin in the form of OH, the mixture is contacted with a mixed bed resin of a strongly basic anion exchange resin and a weakly acidic cation exchange resin for purification.
[0004]
However, in this method, the sugar solution becomes alkaline upon contact with a strong basic anion exchange resin in the OH form, and therefore, when a sugar solution containing a relatively large amount of a hardness component such as calcium or magnesium is treated, these sugar solutions are used. Hardness component precipitates as a hydroxide or carbonate compound and precipitates inside the resin layer, blocking the exchange groups of the ion exchange resin, causing a decrease in desalination performance, and an increase in the differential pressure of the resin layer, etc. There was a problem. Even in the reverse method, a similar problem occurs because the treatment is performed by first contacting with a strong basic anion exchange resin.
[0005]
In order to remove the deposited hardness component, the strong basic anion exchange resin in the anion exchange tower is usually regenerated using an acid such as hot HCl at a rate of once every 5 to 50 cycles. However, a stable treatment is unlikely to be performed because a hardness component or the like is deposited inside the resin layer for each liquid passage.
[0006]
The problem to be solved by the present invention is to provide a sucrose liquid purifying apparatus capable of performing a stable desalination purification treatment and an efficient regeneration method of the apparatus.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive research and found that the above-mentioned problem can be solved by providing a softening tower in the former stage in a conventional desalination and purification apparatus combining an anion tower and a mixed bed tower. The invention has been completed.
[0008]
That is, the present invention provides a sodium- or potassium-type cation exchange resin for replacing hardness components such as calcium ions and magnesium ions in a sucrose solution with sodium ions or potassium ions by passing a sucrose solution. A packed softening tower, an anion tower filled with a strong basic anion exchange resin that allows the processing liquid to pass through the softening tower, and a strong basic anion exchange resin that allows the processing liquid to pass through the anion tower and weak acidity A sucrose liquid purification apparatus, which is provided with a mixed bed tower filled with a cation exchange resin,
After the acidic regeneration waste liquid of the weakly acidic cation exchange resin in the mixed bed tower is passed through the cation exchange resin of the softening tower, the alkaline regeneration waste liquid of the strongly basic anion exchange resin in the mixed bed tower and / or the strong basic anion of the anion tower 2. The method for regenerating a sucrose solution purifying apparatus according to claim 1, wherein the alkaline regeneration waste liquid of the exchange resin is passed through the cation exchange resin of the softening tower, and the acidic regeneration waste liquid of the weakly acidic cation exchange resin in the mixed bed tower. And a neutral regeneration waste liquid obtained by mixing an alkaline regeneration waste liquid of the strongly basic anion exchange resin of the mixed bed tower and / or an alkaline regeneration waste liquid of the strongly basic anion exchange resin of the anion tower with the cation exchange resin of the softening tower. 2. A method for regenerating a sucrose solution refining apparatus according to claim 1, wherein
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The sucrose liquid purifying apparatus according to claim 1 of the present invention comprises an anion tower 3 filled with a strongly basic anion exchange resin 4, a mixed resin of a strongly basic anion exchange resin and a weakly acidic cation exchange resin as shown in FIG. A softening tower 1 filled with a cation exchange resin 2 is provided at the front stage of an apparatus composed of a mixed bed tower 5 filled with 6. The cation exchange resin to be filled in the softening tower is not particularly limited as long as it can adsorb the hardness component in the sucrose solution, and a strongly acidic or weakly acidic cation exchange resin can be used. It is preferable because it has excellent performance in removing hardness components such as magnesium and magnesium. As the ionic form of the cation exchange resin, a sodium form is generally used, but a potassium form can also be used.
[0010]
In order to purify the sucrose solution with the sucrose solution purifying apparatus of the present invention, the stock solution of the raw material sucrose solution is passed through the upper part of the softening tower 1 and, for example, passes through a layer of the cation exchange resin 2 in the form of sodium. Hardness components such as calcium ions and magnesium ions in the stock solution are ion-exchanged and replaced with sodium ions. As a result, the sucrose solution after the softening treatment contains sodium salts such as NaCl and NaSO 4. . The treatment liquid flowing out from the lower part of the softening tower 1 is passed through the upper part of the anion tower 3, passes through four layers of the strongly basic anion exchange resin in the OH form, is decolorized and deanionized, and flows out from the lower part. Since the hardness components such as calcium ions and magnesium ions in the stock solution are adsorbed and removed by the cation exchange resin 2 of the softening tower 1 in the former stage, the hardness components precipitate on the strongly basic anion exchange resin 4 of the anion tower 3. No accumulation. Anions such as Cl ions and SO 4 ions contained in the sucrose solution after the softening treatment are replaced with OH ions by the OH type strong basic anion exchange resin 4 of the anion tower 3. The sucrose solution contains mainly NaOH. The treatment liquid flowing out from the lower part of the anion tower 3 flows through the upper part of the mixed bed tower 5 and passes through a mixed resin 6 layer of an OH type strongly basic anion exchange resin and an H type weakly acidic cation exchange resin, It is decolorized and desalted and flows out from the lower part of the mixed bed tower 5 as a purified sucrose solution. In the mixed bed tower 5, Na ions contained in the sucrose solution after the treatment with the anion tower 3 and cations such as calcium ions and magnesium ions tracely remaining in the sucrose solution are weakly acidic cation exchange resins. And anions such as Cl and SO 4 ions, which are trace amounts remaining in the sucrose solution, are adsorbed and removed by the strong basic anion exchange resin.
[0011]
The sucrose liquid refining apparatus according to claim 1 performs softening treatment before desalting treatment, thereby preventing precipitation and accumulation of hardness components such as calcium and magnesium on the strongly basic anion exchange resin in the anion tower. Thus, it is possible to prevent a decrease in desalination performance and an increase in pressure difference in the resin tower due to blocking of the exchange group of the strong basic anion exchange resin.
[0012]
The regeneration treatment of the sucrose liquid purifying apparatus according to the first aspect of the present invention is performed after first separating the strongly basic anion exchange resin and the weakly acidic cation exchange resin in the mixed bed tower by a specific gravity difference.
[0013]
As shown in FIG. 2, an acid regenerant such as an aqueous hydrochloric acid solution is first passed through the mixed bed tower 5 from the upper part of the mixed bed tower 5 after separation, and the regenerated waste liquid is discharged from the lower part. 7 and the lower layer weakly acidic cation exchange resin 8 are passed through at once. Due to the simultaneous passage of the acid regenerant, the weakly acidic cation exchange resin 8 in the mixed bed tower 5 is regenerated (formed into an H form), and the strongly basic anion exchange resin 7 is regenerated. The acidic regeneration waste liquid discharged from the mixed bed tower 5 is passed through the upper part of the anion tower 3 to carry out regenerative treatment of the strongly basic anion exchange resin 4 in the anion tower 3. The acidic regeneration waste liquid discharged from the anion tower 3 is passed through the upper part of the softening tower 1. Thereby, a part of the cation exchange resin 2 of the softening tower 1 becomes the Na type, and the others become the H type. That is, when, for example, an aqueous hydrochloric acid solution was used as the acid regenerating agent, NaCl derived from Na desorbed from the weakly acidic cation exchange resin 8 of the mixed-bed tower by hydrochloric acid in the acidic regeneration waste liquid was not used for the regeneration. Since only excess hydrochloric acid is contained and only a small amount of other impurity ions such as Ca is contained, when this is passed through the softening tower 1, the cation exchange resin 2 is partially Na-type, and other H-shaped.
[0014]
In addition, in the batch flow of the mixed bed tower 5 with the acid regenerant, the batch flow is carried out without separating the mixed resin of the strongly basic anion exchange resin and the weakly acidic cation exchange resin, and then both ion exchange resins are separated by specific gravity. Then, regeneration of a strongly basic anion exchange resin described later may be performed.
[0015]
Next, as shown in FIG. 3 (a), an alkaline regenerant such as an aqueous solution of NaOH is passed through the upper portion of the mixed bed tower 5, and water is introduced from the lower portion of the mixed bed tower 5 at the same time. The strongly basic anion exchange resin 7 in the mixed bed tower 5 is regenerated (OH form) by discharging from a collector (not shown) provided substantially in the middle of the bed.
[0016]
The alkaline regeneration waste liquid discharged from the mixed bed tower 5 is passed through the upper part of the softening tower 1 to regenerate the H-type cation exchange resin among the cation exchange resins 2 into the Na form.
[0017]
When the alkaline regenerated waste liquid is directly passed through the softening tower 1 without passing the acidic regenerated waste liquid discharged from the mixed bed tower 5, calcium ions and magnesium adsorbed on the cation exchange resin 2 in the softening tower 1 are discharged. It is not preferable because ions are precipitated as hydroxide.
[0018]
Further, as shown in FIG. 3B, an alkali regenerant is passed through the upper part of the anion tower 3 to regenerate (OH form) the strongly basic anion exchange resin 4. Usually, the amount of sodium necessary for the regeneration of the cation exchange resin 2 of the softening tower 1 is sufficiently contained in the alkaline regeneration waste liquid discharged at the time of regeneration of the strongly basic anion exchange resin 7 of the mixed bed tower 5, If it is insufficient, the alkaline regeneration waste liquid discharged from the anion tower 3 may be passed through the upper part of the softening tower 1 as a chemical.
[0019]
As another embodiment of the regeneration method, when the acid regenerant is passed through the mixed-bed tower 5, the strongly basic anion exchange resin and the weakly acidic cation exchange resin are separated using a specific gravity difference, and then the acid regenerant is separated. May be introduced from the lower part of the mixed bed tower 5, and the acid regenerating agent may be passed through the lower layer of the weakly acidic cation exchange resin 8 in an upward flow, and the acidic regenerated waste liquid may be discharged from the collector. In this case, water is simultaneously introduced from the upper part of the mixed bed tower 5, and water is caused to flow downward through the upper layer of the strongly basic anion exchange resin 7 and discharged from the collector. However, the regeneration method in which the above-mentioned acid regenerant is passed through at once is preferable in that the strongly basic anion exchange resin can be regenerated.
[0020]
Further, the acidic regeneration waste liquid discharged from the mixed bed tower 5 may be directly introduced into the softening tower 1 without being introduced into the anion tower 3. However, the method shown in FIG. 2 is preferable in that the regeneration treatment of the strongly basic anion exchange resin in the anion tower 3 can be performed.
[0021]
In the method shown in FIGS. 3A and 3B, in order to almost completely convert the cation exchange resin 2 of the softening tower 1 into the Na form, the alkaline regeneration waste liquid of the strongly basic anion exchange resin 7 of the mixed bed tower 5 is used. And an example in which an alkaline regenerating waste liquid of the strongly basic anion exchange resin 4 of the anion tower 3 is used. In the case where the cation exchange resin 2 of the softening tower 1 can be sufficiently made into the Na form by only one of them, one of them is used. May be used.
[0022]
Further, the acidic regeneration waste liquid discharged from the mixed bed tower 5, or the acidic regeneration waste liquid discharged by further passing this acidic regeneration waste liquid through the anion tower 3, and the strong basic anion exchange resin 7 of the mixed bed tower 5 The alkaline regeneration waste liquid and / or the alkaline regeneration waste liquid of the anion tower 3 may be mixed and neutralized by mixing, and the resulting neutral waste liquid may be used for the regeneration of the cation exchange resin 2 of the softening tower 1.
[0023]
Of course, the cation exchange resin 2 of the softening tower 1 may be regenerated using a new regenerant (for example, an aqueous solution of sodium chloride), but the chemical cost increases.
[0024]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples.
[0025]
Example 1
A softening column (softening tower) in which the raw sugar solution shown in Table 1 was filled with 20 ml of a strongly acidic cation exchange resin (“Amberlite IR-120B” manufactured by Rohm and Haas Co.), and a strongly basic anion exchange resin (Rohm Anion column (anion tower) packed with 40 ml of “Amberlite IRA-402BL” manufactured by Andhase Company, 40 ml of strong basic anion exchange resin (“Amberlite IRA-402BL” manufactured by Rohm and Haas Company) and weakly acidic cation Using a mixed bed column (mixed bed tower) filled with 20 ml of an exchange resin (manufactured by Rohm and Haas Co., Ltd., “Amberlite IRC-76”), 2000 ml at a flowing temperature of 50 ° C. and a flowing flow rate of 200 ml / h were used. The liquid was passed through the operation of treating as one cycle.
[0026]
In the regeneration treatment, first, a strong basic anion exchange resin and a weakly acidic cation exchange resin in a mixed bed column are separated by using a specific gravity difference, and then 1N-HCl (160 ml) is mixed with a down flow type column in a mixed bed column. To regenerate the strongly basic anion exchange resin and regenerate the weakly acidic cation exchange resin. The acidic regeneration waste liquid was passed through a strongly basic anion exchange resin of an anion column to regenerate, and then passed through a strongly acidic cation exchange resin of a softening column.
[0027]
Thereafter, 1N-NaOH (80 ml) is passed through the strongly basic anion exchange resin in the mixed bed type column to regenerate the strongly basic anion exchange resin, and the alkaline regenerated waste liquid is used as the strongly acidic cation exchange resin in the softening column. I passed the medicine. Thereafter, the strongly basic anion exchange resin and the weakly acidic cation exchange resin in the mixed bed column were mixed so as to be uniform. Also, 1N-NaOH (80 ml) is passed through the strongly basic anion exchange resin in the anion column after passing the acidic regeneration waste liquid, and the alkaline regeneration waste liquid is passed through the strongly acidic cation exchange resin of the softening column. I took the medicine.
[0028]
By the above method, the operation of sucrose solution purification treatment-regeneration was repeated. Table 1 shows the properties of the softened sucrose solution at the fifth cycle.
[0029]
[Table 1]
Figure 0003592495
[0030]
As is clear from the results shown in Table 1, by performing the treatment with the sucrose liquid purifying apparatus of the present invention, the hardness component can be removed in advance in the softening tower in the former stage, and the strong basic anion in the anion tower is obtained. Since the hardness component in the sucrose solution does not precipitate and accumulate on the exchange resin, clogging due to the precipitation of the hardness component in the anion tower is eliminated, the desorption of the dye, the ion exchange treatment becomes easy, Stable processing performance can be obtained from the processing system.
[0031]
Further, it can be seen that the cation exchange resin of the softening tower can be sufficiently regenerated by the regenerating method of the present invention.
[0032]
Comparative Example 1
An anion column in which the raw sugar solution shown in Table 1 was filled with 40 ml of a strongly basic anion exchange resin (“Amberlite IRA-402BL” manufactured by Rohm and Haas), and a strongly basic anion exchange resin (manufactured by Rohm and Haas) , "Amberlite IRA-402BL") and 20 ml of a weakly acidic cation exchange resin ("Amberlite IRC-76" manufactured by Rohm and Haas Co.) were mixed and packed using a mixed-bed column, and the liquid passing temperature was 50%. The operation was performed at 2000 ° C. with a flow rate of 200 ml / h at 2000 ° C. as one cycle, and the flow was performed.
[0033]
In the regeneration treatment, first, a strong basic anion exchange resin and a weakly acidic cation exchange resin in a mixed bed column are separated by using a specific gravity difference, and then 1N-HCl (160 ml) is mixed with a down flow type column in a mixed bed column. To recover the basic anion exchange resin and regenerate the weakly acidic cation exchange resin.
[0034]
Thereafter, 1N-NaOH (80 ml) was passed through the strongly basic anion exchange resin in the mixed bed type column to regenerate the strongly basic anion exchange resin. Thereafter, the strongly basic anion exchange resin and the weakly acidic cation exchange resin in the mixed bed column were mixed so as to be uniform. Similarly, 1N-NaOH (80 ml) was passed through the strongly basic anion exchange resin of the anion column to regenerate.
[0035]
The operation of sucrose solution purification treatment-regeneration treatment was repeated by the above method. In the third cycle, a hard component was deposited on the strongly basic anion exchange resin in the anion column so as to be visually confirmed.
[0036]
【The invention's effect】
The sucrose liquid purifying apparatus of the present invention can stably purify a sucrose liquid without depositing a hard component on the strongly basic anion exchange resin of the anion tower. Further, according to the regeneration method of the present invention, the cation exchange resin of the softening tower can be regenerated by using the regeneration waste liquid of the mixed bed tower, so that the cation exchange resin is regenerated using, for example, a new salt solution. As compared with the above, the cost of the regenerated chemical can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a sucrose solution purifying apparatus of the present invention.
FIG. 2 is a flowchart showing a regeneration method using an acid regenerant in the regeneration method of the present invention.
FIG. 3 is a flowchart showing a regeneration method using an alkali regenerant among the regeneration methods of the present invention. FIG. 3 (a) shows regeneration of a strongly basic anion exchange resin in a mixed-bed column and regeneration of a cation exchange resin in a softening column. (B) is a flow chart showing regeneration of a strongly basic anion exchange resin in an anion tower and regeneration of a cation exchange resin in a softening tower.
[Explanation of symbols]
Reference Signs List 1 Softening tower 2 Cation exchange resin 3 Anion tower 4 Strongly basic anion exchange resin 5 Mixed bed tower 6 Mixed resin of strongly basic anion exchange resin and weakly acidic cation exchange resin 7 Strongly basic anion exchange resin 8 Weakly acidic cation exchange resin

Claims (3)

ショ糖液を通液することにより、ショ糖液中のカルシウムイオンやマグネシウムイオン等の硬度成分をナトリウムイオンまたはカリウムイオンに置換するためのナトリウム形またはカリウム形カチオン交換樹脂を充填した軟化塔と、軟化塔を通過した処理液を通液する強塩基性アニオン交換樹脂を充填したアニオン塔と、アニオン塔を通過した処理液を通液する強塩基性アニオン交換樹脂と弱酸性カチオン交換樹脂を充填した混床塔とを設けたことを特徴とするショ糖液精製装置。By passing a sucrose solution, a softening tower filled with a sodium or potassium cation exchange resin for replacing hardness components such as calcium ions and magnesium ions in the sucrose solution with sodium ions or potassium ions , An anion tower filled with a strong basic anion exchange resin that allows the processing solution to pass through the softening tower, and a strong basic anion exchange resin and a weakly acidic cation exchange resin that allows the processing solution to pass through the anion tower were filled. A sucrose liquid refining device comprising a mixed bed tower. 混床塔の弱酸性カチオン交換樹脂の酸性再生廃液を軟化塔のカチオン交換樹脂に通薬した後、混床塔の強塩基性アニオン交換樹脂のアルカリ性再生廃液および/またはアニオン塔の強塩基性アニオン交換樹脂のアルカリ性再生廃液を軟化塔のカチオン交換樹脂に通薬することを特徴とする請求項1に記載のショ糖液精製装置の再生方法。After the acidic regeneration waste liquid of the weakly acidic cation exchange resin in the mixed bed tower is passed through the cation exchange resin in the softening tower, the alkaline regeneration waste liquid of the strongly basic anion exchange resin in the mixed bed tower and / or the strong basic anion in the anion tower The method for regenerating a sucrose solution purifying apparatus according to claim 1, wherein the alkaline regenerated waste liquid of the exchange resin is passed through the cation exchange resin of the softening tower. 混床塔の弱酸性カチオン交換樹脂の酸性再生廃液と、混床塔の強塩基性アニオン交換樹脂のアルカリ性再生廃液および/またはアニオン塔の強塩基性アニオン交換樹脂のアルカリ性再生廃液とを混合して得られる中性再生廃液を軟化塔のカチオン交換樹脂に通薬することを特徴とする請求項1に記載のショ糖液精製装置の再生方法。Mixing the acidic regeneration waste liquid of the weakly acidic cation exchange resin in the mixed bed tower, the alkaline regeneration waste liquid of the strongly basic anion exchange resin in the mixed bed tower and / or the alkaline regeneration waste liquid of the strongly basic anion exchange resin in the anion tower The method for regenerating a sucrose liquid purifying apparatus according to claim 1, wherein the obtained neutral regeneration waste liquid is passed through a cation exchange resin in a softening tower.
JP23225297A 1997-08-28 1997-08-28 Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus Expired - Lifetime JP3592495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23225297A JP3592495B2 (en) 1997-08-28 1997-08-28 Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23225297A JP3592495B2 (en) 1997-08-28 1997-08-28 Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus

Publications (2)

Publication Number Publication Date
JPH1170000A JPH1170000A (en) 1999-03-16
JP3592495B2 true JP3592495B2 (en) 2004-11-24

Family

ID=16936369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23225297A Expired - Lifetime JP3592495B2 (en) 1997-08-28 1997-08-28 Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus

Country Status (1)

Country Link
JP (1) JP3592495B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186500A (en) * 2000-12-20 2002-07-02 Japan Organo Co Ltd Syrup refiner and method for regenerating mixed bed thereof
JP6265750B2 (en) * 2014-01-23 2018-01-24 オルガノ株式会社 Method and apparatus for purifying sucrose solution
JP7272884B2 (en) * 2019-07-17 2023-05-12 オルガノ株式会社 METHOD AND APPARATUS FOR PRODUCTION OF REGENERATED LIQUID FOR ION EXCHANGE RESIN, METHOD FOR REGENERATING ION EXCHANGE RESIN, AND SYSTEM FOR RECOVERING ION EXCHANGE RESIN

Also Published As

Publication number Publication date
JPH1170000A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
US3730770A (en) Sugar recovery method
JP6265750B2 (en) Method and apparatus for purifying sucrose solution
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
EP0840805B1 (en) Process for regeneration of ion-exchange resins used for sugar decolorization
JP3592495B2 (en) Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus
CA1100242A (en) Water softening method using thermally regenerable ion exchange resin
JPH11509419A (en) Process for regeneration of ion exchange resin used for sugar decolorization
JP3765653B2 (en) Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device
US5019542A (en) Processing for regenerating sugar decolorizing ion exchange resins, with regenerant recovery
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
JP2845489B2 (en) Regeneration method of mixed-bed sucrose liquid purification equipment
JP3352571B2 (en) Method for regenerating strongly basic anion exchange resin in sucrose liquid purification equipment
JP2000109453A (en) Recovery of betaine and amino acid
JPS5924663B2 (en) Solution processing method
KR830001887B1 (en) Regeneration Method of Anion Exchange Resin in Sugar Liquid Refining
JP2000153166A (en) Regeneration of mixed bed type ion exchange apparatus
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP4593830B2 (en) Mixed-bed type sugar solution refining device, regenerating method of mixed-bed type sugar solution purifying device, and purification method
JP2001232217A (en) Method for regenerating ion exchange resin
JP3311875B2 (en) Sugar liquid desalination and purification equipment
JPS621307B2 (en)
JP2003094053A (en) Method for treating effluent containing boron and sulfate group
JPH10179200A (en) Purification of sugar solution of beet and purification apparatus
CN116322998A (en) Effluent recovery and purification method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term