JP4245745B2 - Mixed bed type sugar liquid purification equipment - Google Patents

Mixed bed type sugar liquid purification equipment Download PDF

Info

Publication number
JP4245745B2
JP4245745B2 JP25696599A JP25696599A JP4245745B2 JP 4245745 B2 JP4245745 B2 JP 4245745B2 JP 25696599 A JP25696599 A JP 25696599A JP 25696599 A JP25696599 A JP 25696599A JP 4245745 B2 JP4245745 B2 JP 4245745B2
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
mixed
resin
sugar solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25696599A
Other languages
Japanese (ja)
Other versions
JP2001078800A (en
Inventor
友二 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP25696599A priority Critical patent/JP4245745B2/en
Publication of JP2001078800A publication Critical patent/JP2001078800A/en
Application granted granted Critical
Publication of JP4245745B2 publication Critical patent/JP4245745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、糖液の脱塩、脱色を行う糖液精製装置に関し、さらに詳述すると、塩基性アニオン交換樹脂と強酸性カチオン交換樹脂を用いた、デンプン糖液の脱塩、脱色に最適な混床式糖液精製装置に関する。
【0002】
【従来の技術】
デンプンを酸又は酵素で加水分解すると、その分解条件によって種々のデンプン糖(デンプンを原料として製造された糖類の総称)が得られる。デンプンの加水分解工程は、デンプンの分子をおおまかに切断して水溶性のデキストリンにする液化と、デキストリンを分解してグルコース等を生成させる糖化の2工程に分けられ、現在では、デンプンの液化及び糖化には酵素を用いることがほとんどである。上述したデンプンの糖化によってデンプン糖液が得られるが、このデンプン糖液中には様々な不純物が含まれている。そのため、これら不純物除去を目的として、デンプンの糖化工程の後にはデンプン糖液の精製が行われる。
【0003】
従来、前述したデンプン糖液の精製は、活性炭による脱色処理と、その後段でのイオン交換樹脂による脱塩処理との組み合わせで行われている。この場合、後段のイオン交換樹脂による脱塩処理システムは、一般に、H形の強酸性カチオン交換樹脂層とOH形の弱塩基性アニオン交換樹脂層を用いた複床式の前脱塩システムと、OH形のII形強塩基性アニオン交換樹脂及びH形の強酸性カチオン交換樹脂を用いた混床式の仕上げ脱塩システムとによって構成され、前脱塩システムで原液中の塩類、色素、その他の不純物の大部分を除去し、仕上げ脱塩システムで仕上げの脱塩、脱色、pH調整を行っている。
【0004】
上述した混床式の仕上げ脱塩システムにおけるイオン交換樹脂の再生は、従来、次にように行われている。まず、混床塔で糖液処理を終了した後、混床塔内で強酸性カチオン交換樹脂を下層に、強塩基性アニオン交換樹脂を上層に分離する。混合状態の両樹脂の分離は、逆洗によって両樹脂の比重差を利用して行う。そして、下層の強酸性カチオン交換樹脂に塩酸水溶液等の酸再生剤を通薬して強酸性カチオン交換樹脂の再生を行う。同様に、上層の強塩基性アニオン交換樹脂に水酸化ナトリウム水溶液等のアルカリ再生剤を通薬して強塩基性アニオン交換樹脂の再生を行う。一方の樹脂層への通薬時には他方の樹脂層に水を通水し、両樹脂の分離境界面に設置したコレクタより樹脂再生廃液及び上記水を排出する。また、両樹脂層に同時に再生剤を通薬する方法もある。両樹脂を再生した後は、これらを再び混合して混床を形成させる。なお、最近では、II形強塩基性アニオン交換樹脂に代えて、弱塩基性アニオン交換樹脂やI形強塩基性アニオン交換樹脂を用いて混床を形成することも提案されている。
【0005】
【発明が解決しようとする課題】
前述の仕上げ脱塩システムにおけるイオン交換樹脂の再生工程では、混合状態の強塩基性アニオン交換樹脂と強酸性カチオン交換樹脂を逆洗によって比重差を利用して上下に分離するが、この際に両樹脂の境界面がきれいに形成されず、両樹脂の境界部分に両樹脂が混ざり合った混合樹脂層が形成される場合があった。すなわち、図2は従来の混床式仕上げ脱塩システムの構成を示すもので、この仕上げ脱塩システム1の下部にはイオン交換樹脂を支持するための支持床8が敷設されている。また、塔内には再生剤を供給する上部ディストリビュータ6及び下部ディストリビュータ(図示せず)が設置されている。図2に示したように、従来の仕上げ脱塩システム1では、イオン交換樹脂の再生廃液を排出するコレクタ2は、強酸性カチオン交換樹脂がナトリウム形であるときの上層の強塩基性アニオン交換樹脂3と下層の強酸性カチオン交換樹脂4との分離境界面7に設置されている。ところが、この仕上げ脱塩システム1において、両樹脂の分離時に、強塩基性アニオン交換樹脂と強酸性カチオン交換樹脂が混ざり合った混合樹脂層5が形成されることがあった。
【0006】
そして、上記のように両樹脂の境界部分に混合樹脂層が形成された状態で再生を行い、その後に糖液の精製処理を行った場合には、処理糖液の性状が悪化することがあった。すなわち、混合樹脂層が形成されると、下層の強酸性カチオン交換樹脂を例えば塩酸水溶液を用いて再生する際に、混合樹脂層のコレクタより下方に存在する強塩基性アニオン交換樹脂が強酸性カチオン交換樹脂の再生剤である塩酸と接触してCl形となる。アニオン交換樹脂のイオン交換基が4級又は3級アミンの状態であれば、このCl形の強塩基性アニオン交換樹脂が存在したまま糖液を通液しても、Cl-イオンはほとんど外れることなく問題はない。しかし、強塩基性アニオン交換樹脂を長期間糖液の精製に利用していると、イオン交換基の低級化が起こり、その結果、糖液を通液した場合にCl-イオンが外れて処理糖液中に漏出し、処理糖液が酸性になるとともに、処理糖液の純度が低下してしまう。そのため、樹脂を分離する際に混合樹脂層が形成された場合には、分離境界面がきれいに形成されるまで再度分離操作を行う必要があった。
【0007】
本発明は、前述した事情に鑑みてなされたもので、塩基性アニオン交換樹脂と強酸性カチオン交換樹脂を充填した混床式糖液精製装置であって、樹脂再生工程の混合樹脂分離操作の際に両樹脂の境界部分に混合樹脂層が形成された場合でも、樹脂再生後における糖液処理時に処理糖液中に塩類がリークしにくく、良好な性状の処理糖液を安定して得ることができる混床式糖液精製装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、塩基性アニオン交換樹脂と強酸性カチオン交換樹脂との分離境界面より下方に、イオン交換樹脂の再生廃液を排出するコレクタを設置した場合、前述した目的が効果的に達成されることを見出した。
【0009】
すなわち、コレクタを分離境界面に設置した場合には、前述したように、混合樹脂層の塩基性アニオン交換樹脂が強酸性カチオン交換樹脂の再生剤である塩酸等の酸性薬剤と接触してCl形等の塩形となり、糖液処理時にCl-イオン等が外れて処理糖液の性状が悪化する。これに対し、コレクタを分離境界面より下方に設置した場合には、混合樹脂層の塩基性アニオン交換樹脂が強酸性カチオン交換樹脂の再生剤と接触しないので、混合樹脂層の塩基性アニオン交換樹脂がCl形等の塩形とならず、その結果、処理糖液中へのCl-イオン等の漏出が防止される。また、上層の塩基性アニオン交換樹脂を例えば水酸化ナトリウム水溶液を用いて再生する際には、混合樹脂層の強酸性カチオン交換樹脂は水酸化ナトリウムと接触してNa形となるが、このNa形の強酸性カチオン交換樹脂が存在したまま糖液を通液しても、Na+イオンはほとんど外れることなく問題はない。
【0010】
本発明は、上述した知見に基づいてなされたもので、塩基性アニオン交換樹脂と強酸性カチオン交換樹脂を充填し、樹脂再生廃液を排出する1台のコレクタを設置した混床式糖液精製装置において、強酸性カチオン交換樹脂がナトリウム形であるときの上層の塩基性アニオン交換樹脂と下層の強酸性カチオン交換樹脂との分離境界面より下方に、前記1台のコレクタを設置したことを特徴とする混床式糖液精製装置を提供する。
【0011】
本発明において、コレクタの位置を決める際の基準面となる分離境界面とは、強酸性カチオン交換樹脂がナトリウム形であるときに、塩基性アニオン交換樹脂と強酸性カチオン交換樹脂を上下に完全に分離したときの両樹脂層が接する面を意味し、通常は糖液精製装置の設計時に定められる。
【0012】
本発明では、前記分離境界面とコレクタとの距離(分離境界面とコレクタの管の中心部との距離)を、下層の強酸性カチオン交換樹脂の層高Hc(図1参照)の1〜15%、特に5〜10%とすることが適当である。上記距離が層高Hcの1%より小さいと、強酸性カチオン交換樹脂を再生する際に、再生剤である酸性薬剤と接触する塩基性アニオン交換樹脂の量が多くなって所期の目的を達成できなくなることがある。また、上記距離が層高Hcの15%より大きいと、コレクタの上方に存在する強酸性カチオン交換樹脂は再生時に酸性再生剤と接触することなく塩形のまま残留することになるので、再生工程終了後の樹脂中に未再生のカチオン交換樹脂が多く存在することになって、糖液の処理工程において処理量が減少するとともに、処理糖液のpHが上昇し過ぎるので好ましくない。ここで、分離境界面とコレクタとの距離を決めるための基準となる強酸性カチオン交換樹脂の層高Hcとは、強酸性カチオン交換樹脂がナトリウム形であるときに、塩基性アニオン交換樹脂と強酸性カチオン交換樹脂を上下に完全に分離したときの強酸性カチオン交換樹脂の層高を意味する。
【0013】
本発明の混床式糖液精製装置で用いる塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂の種類に限定はなく、処理の目的等に応じて適宜選択すればよい。具体的には、アンバーライト(登録商標、以下同じ)200CT、IR120B、IR124、IR118、ダイヤイオン(登録商標、以下同じ)SK1B、SK102、PK208、PK212(以上、強酸性カチオン交換樹脂)、アンバーライトXE583、IRA67、IRA96SB、ダイヤイオンWA10、WA20、WA30(以上、弱塩基性アニオン交換樹脂)、アンバーライトIRA402BL、IRA400、IRA440B、XT5007、IRA400、IRA900、IRA904、ダイヤイオンSA10A、SA11A、PA306、PA308(以上、I形強塩基性アニオン交換樹脂)、アンバーライトIRA411S、IRA410、IRA910、ダイヤイオンSA20、PA418(以上、II形強塩基性アニオン交換樹脂)等を用いることができる。
【0014】
本発明の糖液精製装置は、例えば、デンプン糖液の仕上げ脱塩システムとして好適に使用されるが、これに限定されるものではなく、他の糖液の精製装置として使用することができる。
【0015】
【発明の実施の形態】
図1は本発明に係る混床式糖液精製装置の一実施形態を示す概略構成図である。本例の混床式糖液精製装置10は、強酸性カチオン交換樹脂がナトリウム形であるときの上層の塩基性アニオン交換樹脂3と下層の強酸性カチオン交換樹脂4との分離境界面7より下方に、樹脂再生廃液を排出するコレクタ2が設置されている。また、分離境界面7とコレクタ2との距離mは、下層の強酸性カチオン交換樹脂4の層高Hcの1〜15%としてある。なお、図中6は上部ディストリビュータ、8は支持床を示す。
【0016】
本例の糖液精製装置10では、樹脂再生工程の塩基性アニオン交換樹脂3と強酸性カチオン交換樹脂4との分離操作後に、両樹脂の境界部分に塩基性アニオン交換樹脂と強酸性カチオン交換樹脂が混合した混合樹脂層5が形成されることが多い。本例の装置のように、両イオン交換樹脂の分離境界面7の下方にコレクタ2を設置した場合、混合樹脂層に含まれている塩基性アニオン交換樹脂に、強酸性カチオン交換樹脂の再生剤である塩酸等の酸性薬剤が接触することがないので、混合樹脂層に含まれている塩基性アニオン交換樹脂がCl形等の塩形となることがなく、そのため樹脂再生後の糖液処理時に処理糖液中に塩類がリークすることが防止される。したがって、本例の装置によれば、樹脂再生工程の樹脂分離操作の際に両樹脂の境界部分に混合樹脂層が形成された場合であっても、品質の安定した処理糖液を得ることができる。
【0017】
【実施例】
以下に本発明を実施例に基づいて具体的に示す。
(実施例1)
図1に示した混床式糖液精製装置を作製した。イオン交換樹脂としては、OH形の強塩基性アニオン交換樹脂(アンバーライトIRA−411S)3Lと、H形の強酸性カチオン交換樹脂(アンバーライト200CT)1.5Lとを混合して塔内に充填した。また、本例の糖液精製装置では、コレクタ2を、強酸性カチオン交換樹脂がナトリウム形であるときの上層の塩基性アニオン交換樹脂3と下層の強酸性カチオン交換樹脂4との分離境界面7より下方に設置した。また、前記分離境界面とコレクタとの距離mは、下層の強酸性カチオン交換樹脂の層高Hcの10%とした。なお、両イオン交換樹脂としては、デンプン糖工場で121サイクル使用した樹脂を用いた。
【0018】
上記糖液精製装置を用いて原糖液の処理を行った。原糖液の性状を表1に示す。処理条件は、通液温度35℃、通液流量12L/h、1サイクルの処理量120Lとした。糖液処理後の樹脂再生操作は以下のように行った。まず、上向流の逆洗水により樹脂層を150%展開して強塩基性アニオン交換樹脂と強酸性カチオン交換樹脂を上下に分離した。このとき、両樹脂の境界部分には両樹脂が混ざり合った混合樹脂層が形成されていた。その後、糖液精製装置下部のディストリビュータより3.5%の塩酸水溶液4.5Lを下層の強酸性カチオン交換樹脂層に通薬し、同時に水を糖液精製装置の上部から上層の強塩基性アニオン交換樹脂層に通水し、樹脂再生廃液及び上記水をコレクタより排出した。続いて、4.0%の水酸化ナトリウム溶液6.0Lを上部ディストリビュータより上層の強塩基性アニオン交換樹脂層に通薬し、同時に水を糖液精製装置の下部から下層の強酸性カチオン交換樹脂層に通水し、樹脂再生廃液及び上記水をコレクタより排出した。さらに、糖液精製装置の上部及び下部から洗浄水を通水し、洗浄水をコレクタから排出して樹脂再生処理を完了した。その後、両樹脂を混合してから前記と同じ条件で原糖液の精製処理を行った。
【0019】
(比較例1)
図2に示した従来の糖液精製装置を用いた以外は、実施例1に準じて、糖液精製処理及び樹脂再生処理を行った。この糖液精製装置は、強酸性カチオン交換樹脂がナトリウム形であるときの上層の強塩基性アニオン交換樹脂と下層の強酸性カチオン交換樹脂との分離境界面にコレクタを設置したものである。
【0020】
実施例1及び比較例1の混床式糖液精製装置を用いて、糖液処理及び樹脂再生処理を5サイクル行ったときの、5サイクル目の糖液処理における処理糖液の性状を表1に示す。なお、表1におけるBxはブリックス糖濃度(%)を示す。
【0021】
【表1】

Figure 0004245745
【0022】
表1に示した結果より、実施例1の糖液精製装置は、従来の比較例1の糖液精製装置に比べて、電気伝導率の結果から処理糖液中への塩類のリークが少なく、また処理糖液のpHが安定していることが認められた。したがって、本発明の混床式糖液精製装置によれば、処理糖液の品質を安定化することが確認された。
【0023】
【発明の効果】
以上のように、本発明の混床式糖液精製装置によれば、樹脂再生工程の混合樹脂分離操作の際に両樹脂の境界部分に混合樹脂層が形成された場合でも、樹脂再生後における糖液処理時に処理糖液中に塩類がリークしにくく、良好な性状の処理糖液を安定して得ることができる。
【図面の簡単な説明】
【図1】本発明に係る混床式糖液精製装置の一実施形態を示す概略構成図である。
【図2】従来の混床式糖液精製装置の一例を示す概略構成図である。
【符号の説明】
2 コレクタ
3 強塩基性アニオン交換樹脂
4 強酸性カチオン交換樹脂
5 混合樹脂層
6 上部ディストリビュータ
7 分離境界面
8 支持床
10 混床式糖液精製装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sugar liquid purification apparatus for performing desalting and decolorization of a sugar liquid. More specifically, the present invention is most suitable for demineralization and decolorization of starch sugar liquid using a basic anion exchange resin and a strongly acidic cation exchange resin. The present invention relates to a mixed-bed sugar solution purifier.
[0002]
[Prior art]
When starch is hydrolyzed with an acid or an enzyme, various starch sugars (a general term for sugars produced using starch as a raw material) are obtained depending on the degradation conditions. The starch hydrolysis process is divided into two steps: liquefaction by roughly cleaving starch molecules to make water-soluble dextrin and saccharification by breaking down dextrin to produce glucose and the like. At present, starch liquefaction and Enzymes are most often used for saccharification. A starch sugar solution is obtained by the above-described saccharification of starch, and the starch sugar solution contains various impurities. Therefore, for the purpose of removing these impurities, the starch sugar solution is purified after the starch saccharification step.
[0003]
Conventionally, the purification of the starch sugar solution described above has been performed by a combination of a decolorization treatment with activated carbon and a desalting treatment with an ion exchange resin in the subsequent stage. In this case, the desalting treatment system using the ion exchange resin in the latter stage is generally a multi-bed type pre-desalting system using an H-type strongly acidic cation exchange resin layer and an OH-type weakly basic anion exchange resin layer, OH Form II strongly basic anion exchange resin and H-type strongly acidic cation exchange resin mixed bed type finishing desalination system, and the salt, dye, Most of impurities are removed and finishing desalination, desalination, decolorization, and pH adjustment are performed.
[0004]
Conventionally, the regeneration of the ion exchange resin in the mixed bed type finishing desalination system is performed as follows. First, after the sugar solution treatment is completed in the mixed bed tower, the strong acid cation exchange resin is separated into the lower layer and the strong base anion exchange resin is separated into the upper layer in the mixed bed tower. Separation of both resins in the mixed state is performed by backwashing using the difference in specific gravity of both resins. Then, an acid regenerating agent such as an aqueous hydrochloric acid solution is passed through the lower strong acid cation exchange resin to regenerate the strong acid cation exchange resin. Similarly, an alkali regenerator such as an aqueous sodium hydroxide solution is poured into the upper strong base anion exchange resin to regenerate the strong base anion exchange resin. When medicine is passed through one resin layer, water is passed through the other resin layer, and the resin regeneration waste liquid and the water are discharged from a collector installed at the separation boundary surface between the two resins. There is also a method in which a regenerant is poured into both resin layers simultaneously. After regenerating both resins, they are mixed again to form a mixed bed. Recently, it has also been proposed to form a mixed bed using a weakly basic anion exchange resin or a weakly basic anion exchange resin instead of a type II strong basic anion exchange resin.
[0005]
[Problems to be solved by the invention]
In the regeneration process of the ion exchange resin in the above-mentioned finishing desalination system, the mixed strong base anion exchange resin and strong acid cation exchange resin are separated up and down by backwashing using the specific gravity difference. In some cases, the boundary surface of the resin is not formed cleanly, and a mixed resin layer in which both resins are mixed is formed at the boundary portion between both resins. That is, FIG. 2 shows a configuration of a conventional mixed-bed type finishing desalination system, and a support floor 8 for supporting the ion exchange resin is laid under the finishing desalination system 1. Further, an upper distributor 6 and a lower distributor (not shown) for supplying the regenerant are installed in the tower. As shown in FIG. 2, in the conventional finishing desalination system 1, the collector 2 for discharging the regeneration waste liquid of the ion exchange resin is an upper layer strongly basic anion exchange resin when the strongly acidic cation exchange resin is in the sodium form. 3 and a separation boundary surface 7 between the strong acidic cation exchange resin 4 and the lower layer. However, in this finish desalting system 1, a mixed resin layer 5 in which a strongly basic anion exchange resin and a strongly acidic cation exchange resin are mixed may be formed during separation of both resins.
[0006]
When the regeneration is performed with the mixed resin layer formed at the boundary portion between the two resins as described above, and then the sugar solution is purified, the properties of the treated sugar solution may deteriorate. It was. That is, when the mixed resin layer is formed, when the lower strongly acidic cation exchange resin is regenerated using, for example, an aqueous hydrochloric acid solution, the strongly basic anion exchange resin existing below the collector of the mixed resin layer is changed to a strongly acidic cation. It comes into Cl form upon contact with hydrochloric acid which is a regenerant of the exchange resin. If the ion exchange group of the anion exchange resin is in a quaternary or tertiary amine state, the Cl ion is almost eliminated even if the sugar solution is passed in the presence of this Cl-type strongly basic anion exchange resin. There is no problem. However, if a strongly basic anion exchange resin is used for purification of a sugar solution for a long period of time, ion exchange groups are lowered, and as a result, when the sugar solution is passed through, Cl ions are released and the treated sugar is removed. It leaks into the liquid, and the treated sugar solution becomes acidic and the purity of the treated sugar solution decreases. Therefore, when the mixed resin layer is formed when the resin is separated, it is necessary to perform the separation operation again until the separation boundary surface is formed cleanly.
[0007]
The present invention has been made in view of the above-mentioned circumstances, and is a mixed bed type sugar liquid purification apparatus filled with a basic anion exchange resin and a strongly acidic cation exchange resin, and in the mixed resin separation operation in the resin regeneration step. Even when a mixed resin layer is formed at the boundary between the two resins, it is difficult for salts to leak into the treated sugar solution during the treatment of the sugar solution after resin regeneration, and a treated sugar solution with good properties can be stably obtained. It is an object of the present invention to provide a mixed bed type sugar solution refining device.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has installed a collector for discharging the regeneration waste liquid of the ion exchange resin below the separation boundary surface between the basic anion exchange resin and the strongly acidic cation exchange resin. In this case, it has been found that the above-mentioned purpose can be effectively achieved.
[0009]
That is, when the collector is installed on the separation boundary surface, as described above, the basic anion exchange resin of the mixed resin layer comes into contact with an acidic agent such as hydrochloric acid which is a regenerant of the strong acid cation exchange resin, and Cl form It becomes a salt form such as Cl ions and the like during treatment with the sugar solution, and the properties of the treated sugar solution deteriorate. In contrast, when the collector is installed below the separation boundary surface, the basic anion exchange resin of the mixed resin layer does not come into contact with the regenerant of the strongly acidic cation exchange resin. Does not become a salt form such as Cl form, and as a result, leakage of Cl - ions and the like into the treated sugar solution is prevented. Further, when the upper basic anion exchange resin is regenerated using, for example, an aqueous sodium hydroxide solution, the strongly acidic cation exchange resin of the mixed resin layer comes into contact with sodium hydroxide to form Na form. Even if the sugar solution is passed through in the presence of the strongly acidic cation exchange resin, Na + ions are almost eliminated and there is no problem.
[0010]
The present invention has been made on the basis of the above-described knowledge. The mixed-bed type sugar solution purification in which one collector for discharging a resin regeneration waste liquid is installed, which is filled with a basic anion exchange resin and a strongly acidic cation exchange resin. In the apparatus, the one collector is installed below the separation boundary surface between the upper basic anion exchange resin and the lower strong acid cation exchange resin when the strong acid cation exchange resin is in a sodium form. A mixed bed type sugar solution purifying apparatus is provided.
[0011]
In the present invention, the separation boundary surface that serves as a reference surface for determining the position of the collector means that when the strongly acidic cation exchange resin is in the sodium form, the basic anion exchange resin and the strongly acidic cation exchange resin are completely moved up and down. It means the surface where both resin layers come into contact with each other, and is usually determined when designing a sugar liquid purification apparatus.
[0012]
In the present invention, the distance between the separation boundary surface and the collector (the distance between the separation boundary surface and the central portion of the collector tube) is set to 1 to 15 of the layer height Hc (see FIG. 1) of the lower strong acid cation exchange resin. %, Particularly 5 to 10% is suitable. When the distance is less than 1% of the layer height Hc, the amount of the basic anion exchange resin that comes into contact with the acidic agent as the regenerant is increased when the strongly acidic cation exchange resin is regenerated, thereby achieving the intended purpose. It may not be possible. If the distance is greater than 15% of the layer height Hc, the strongly acidic cation exchange resin existing above the collector remains in the salt form without contacting with the acidic regenerant during regeneration, so that the regeneration process. Since a large amount of unregenerated cation exchange resin is present in the resin after the completion, the treatment amount is reduced in the treatment step of the sugar solution, and the pH of the treated sugar solution is excessively increased. Here, the layer height Hc of the strongly acidic cation exchange resin, which is a reference for determining the distance between the separation interface and the collector, is the basic anion exchange resin and the strong acid when the strongly acidic cation exchange resin is in the sodium form. It means the layer height of the strongly acidic cation exchange resin when the cationic cation exchange resin is completely separated vertically.
[0013]
There is no limitation in the kind of basic anion exchange resin and strong acid cation exchange resin used in the mixed bed type sugar liquid purification apparatus of the present invention, and it may be appropriately selected according to the purpose of the treatment. Specifically, Amberlite (registered trademark, same below) 200CT, IR120B, IR124, IR118, Diaion (registered trademark, same below) SK1B, SK102, PK208, PK212 (above, strongly acidic cation exchange resin), Amberlite XE583, IRA67, IRA96SB, Diaion WA10, WA20, WA30 (above, weakly basic anion exchange resin), Amberlite IRA402BL, IRA400, IRA440B, XT5007, IRA400, IRA900, IRA904, Diaion SA10A, SA11A, PA306, PA308 ( Above, type I strong base anion exchange resin), Amberlite IRA411S, IRA410, IRA910, Diaion SA20, PA418 (above, type II strong base Can be used an anion-exchange resin).
[0014]
The sugar liquid purification apparatus of the present invention is suitably used as, for example, a finishing desalination system for starch sugar liquid, but is not limited to this, and can be used as a purification apparatus for other sugar liquids.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram showing an embodiment of a mixed bed type sugar liquid purification apparatus according to the present invention. The mixed-bed sugar solution purifying apparatus 10 of this example is below the separation interface 7 between the upper basic anion exchange resin 3 and the lower strong acid cation exchange resin 4 when the strong acid cation exchange resin is in the sodium form. In addition, a collector 2 for discharging resin recycling waste liquid is installed. The distance m between the separation boundary surface 7 and the collector 2 is set to 1 to 15% of the layer height Hc of the strongly acidic cation exchange resin 4 in the lower layer. In the figure, 6 indicates an upper distributor and 8 indicates a support floor.
[0016]
In the sugar liquid refining device 10 of this example, after the separation operation between the basic anion exchange resin 3 and the strong acid cation exchange resin 4 in the resin regeneration step, the basic anion exchange resin and the strong acid cation exchange resin at the boundary portion between the two resins. In many cases, the mixed resin layer 5 is formed. When the collector 2 is installed below the separation boundary surface 7 of the both ion exchange resins as in the apparatus of this example, the regenerant of the strongly acidic cation exchange resin is added to the basic anion exchange resin contained in the mixed resin layer. The basic anion exchange resin contained in the mixed resin layer does not become a salt form such as a Cl form, so that an acid chemical such as hydrochloric acid is not contacted. Salts are prevented from leaking into the treated sugar solution. Therefore, according to the apparatus of this example, even when a mixed resin layer is formed at the boundary portion between the two resins during the resin separation operation in the resin regeneration step, it is possible to obtain a processed sugar solution with stable quality. it can.
[0017]
【Example】
The present invention will be specifically described below based on examples.
Example 1
The mixed bed type sugar solution purification apparatus shown in FIG. 1 was produced. As the ion exchange resin, 3 L of OH type strongly basic anion exchange resin (Amberlite IRA-411S) and 1.5 L of H type strongly acidic cation exchange resin (Amberlite 200CT) are mixed and packed in the tower. did. Further, in the sugar liquid purification apparatus of this example, the collector 2 is connected to the separation interface 7 between the upper basic anion exchange resin 3 and the lower strong acid cation exchange resin 4 when the strong acid cation exchange resin is in the sodium form. Installed below. The distance m between the separation boundary surface and the collector was 10% of the layer height Hc of the strongly acidic cation exchange resin in the lower layer. In addition, as a both ion exchange resin, resin used 121 cycles in the starch sugar factory was used.
[0018]
The raw sugar solution was processed using the sugar solution purifier. Table 1 shows the properties of the raw sugar solution. The processing conditions were a liquid passing temperature of 35 ° C., a liquid passing flow rate of 12 L / h, and a processing amount of 120 L for one cycle. The resin regeneration operation after the sugar solution treatment was performed as follows. First, the strongly basic anion exchange resin and the strongly acidic cation exchange resin were separated up and down by developing 150% of the resin layer with upward flow backwash water. At this time, a mixed resin layer in which both resins were mixed was formed at the boundary portion between both resins. Thereafter, 4.5 L of a 3.5% hydrochloric acid aqueous solution is passed through the lower strongly acidic cation exchange resin layer from the distributor at the lower part of the sugar liquid purification apparatus, and at the same time, water is supplied from the upper part of the sugar liquid purification apparatus to the strong basic anion in the upper layer. Water was passed through the exchange resin layer, and the resin regeneration waste liquid and the water were discharged from the collector. Subsequently, 6.0 L of 4.0% sodium hydroxide solution was passed through the upper strong base anion exchange resin layer from the upper distributor, and at the same time, water was fed from the lower part of the sugar solution purifier to the lower strong acid cation exchange resin. Water was passed through the bed, and the resin regeneration waste liquid and the water were discharged from the collector. Furthermore, washing water was passed from the upper part and the lower part of the sugar liquid purification apparatus, and the washing water was discharged from the collector to complete the resin regeneration process. Thereafter, both resins were mixed and the raw sugar solution was purified under the same conditions as described above.
[0019]
(Comparative Example 1)
A sugar solution purification treatment and a resin regeneration treatment were performed in the same manner as in Example 1 except that the conventional sugar solution purification apparatus shown in FIG. 2 was used. In this sugar liquid purification apparatus, a collector is installed on the separation interface between the strong basic anion exchange resin in the upper layer and the strong acidic cation exchange resin in the lower layer when the strong acid cation exchange resin is in the sodium form.
[0020]
Table 1 shows the properties of the processed sugar solution in the fifth cycle of the sugar solution treatment when the sugar solution treatment and the resin regeneration treatment were performed for five cycles using the mixed bed type sugar solution purification apparatus of Example 1 and Comparative Example 1. Shown in In Table 1, Bx represents the Brix sugar concentration (%).
[0021]
[Table 1]
Figure 0004245745
[0022]
From the results shown in Table 1, the sugar liquid refining apparatus of Example 1 has less leakage of salts into the processed sugar liquid from the result of electrical conductivity than the conventional sugar liquid refining apparatus of Comparative Example 1, It was also confirmed that the pH of the treated sugar solution was stable. Therefore, according to the mixed-bed type sugar solution refining device of the present invention, it was confirmed that the quality of the treated sugar solution was stabilized.
[0023]
【The invention's effect】
As described above, according to the mixed bed type sugar liquid refining device of the present invention, even when a mixed resin layer is formed at the boundary between both resins during the mixed resin separation operation in the resin regeneration step, Salts are unlikely to leak into the treated sugar solution during the treatment with the sugar solution, and a treated sugar solution with good properties can be stably obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic configuration diagram showing an embodiment of a mixed-bed sugar solution purifying apparatus according to the present invention.
FIG. 2 is a schematic configuration diagram showing an example of a conventional mixed-bed type sugar liquid purification apparatus.
[Explanation of symbols]
2 Collector 3 Strongly basic anion exchange resin 4 Strongly acidic cation exchange resin 5 Mixed resin layer 6 Upper distributor 7 Separation boundary surface 8 Support bed 10 Mixed bed type sugar liquid purification device

Claims (2)

塩基性アニオン交換樹脂と強酸性カチオン交換樹脂を充填し、樹脂再生廃液を排出する1台のコレクタを設置した混床式糖液精製装置において、強酸性カチオン交換樹脂がナトリウム形であるときの上層の塩基性アニオン交換樹脂と下層の強酸性カチオン交換樹脂との分離境界面より下方に、前記1台のコレクタを設置したことを特徴とする混床式糖液精製装置。In a mixed bed type sugar solution refining apparatus which is filled with a basic anion exchange resin and a strong acid cation exchange resin and has one collector for discharging the resin regeneration waste liquid, when the strong acid cation exchange resin is in the sodium form The mixed bed type sugar liquid refining apparatus, wherein the one collector is installed below a separation boundary surface between an upper basic anion exchange resin and a lower strong acid cation exchange resin. 前記分離境界面とコレクタとの距離を、下層の強酸性カチオン交換樹脂の層高の1〜15%とした請求項1に記載の混床式糖液精製装置。  The mixed-bed sugar solution purifier according to claim 1, wherein the distance between the separation boundary surface and the collector is 1 to 15% of the layer height of the strongly acidic cation exchange resin in the lower layer.
JP25696599A 1999-09-10 1999-09-10 Mixed bed type sugar liquid purification equipment Expired - Lifetime JP4245745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25696599A JP4245745B2 (en) 1999-09-10 1999-09-10 Mixed bed type sugar liquid purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25696599A JP4245745B2 (en) 1999-09-10 1999-09-10 Mixed bed type sugar liquid purification equipment

Publications (2)

Publication Number Publication Date
JP2001078800A JP2001078800A (en) 2001-03-27
JP4245745B2 true JP4245745B2 (en) 2009-04-02

Family

ID=17299841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25696599A Expired - Lifetime JP4245745B2 (en) 1999-09-10 1999-09-10 Mixed bed type sugar liquid purification equipment

Country Status (1)

Country Link
JP (1) JP4245745B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091909A (en) * 2013-11-08 2015-05-14 日本錬水株式会社 Method for purifying sugar lowered starch sugar solution
JP6993859B2 (en) * 2017-12-07 2022-01-14 オルガノ株式会社 Sugar solution purification method and sugar solution purification device

Also Published As

Publication number Publication date
JP2001078800A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP4245745B2 (en) Mixed bed type sugar liquid purification equipment
JP3231228B2 (en) Regeneration method of ion exchange resin tower
JP4192557B2 (en) Purification method of sugar solution
JP4347491B2 (en) Regeneration method of mixed-bed starch sugar liquid purification equipment
JP3765653B2 (en) Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
JP2020058296A (en) Refiner and refining method of sugar solution
JP4210408B2 (en) Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JP4193432B2 (en) Purification method of sugar solution
JP2845489B2 (en) Regeneration method of mixed-bed sucrose liquid purification equipment
JP3592495B2 (en) Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus
JP3638624B2 (en) Regeneration method of mixed bed type sucrose solution purification equipment
JP2000153166A (en) Regeneration of mixed bed type ion exchange apparatus
JPS6259630B2 (en)
JP4593830B2 (en) Mixed-bed type sugar solution refining device, regenerating method of mixed-bed type sugar solution purifying device, and purification method
EP0442849B1 (en) Method for utilisation and regeneration of anionic resins in reflux water systems in dyeworks and similar
JP2654053B2 (en) Condensate desalination equipment
JP4313477B2 (en) Starch molasses purification method and purification system
JP2742975B2 (en) Regeneration method of ion exchange device
JPS60998B2 (en) How to process sugar solution
JPH07256119A (en) Method for regenerating mixed-bed ion-exchange tower
JP2002102721A (en) Method for regenerating mixed bed type ion exchange column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090107

R150 Certificate of patent or registration of utility model

Ref document number: 4245745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term