JPS6259630B2 - - Google Patents

Info

Publication number
JPS6259630B2
JPS6259630B2 JP55043530A JP4353080A JPS6259630B2 JP S6259630 B2 JPS6259630 B2 JP S6259630B2 JP 55043530 A JP55043530 A JP 55043530A JP 4353080 A JP4353080 A JP 4353080A JP S6259630 B2 JPS6259630 B2 JP S6259630B2
Authority
JP
Japan
Prior art keywords
exchange resin
water
tower
cation exchange
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55043530A
Other languages
Japanese (ja)
Other versions
JPS56141844A (en
Inventor
Shigeo Sakai
Sadao Yukimasa
Fumihiko Matsuda
Yoshitaka Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP4353080A priority Critical patent/JPS56141844A/en
Publication of JPS56141844A publication Critical patent/JPS56141844A/en
Publication of JPS6259630B2 publication Critical patent/JPS6259630B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は高純度の処理液を得るとともに、再生
用水量および水洗排水量の大幅な低減を目的とし
た複床式の糖液脱塩装置のイオン交換樹脂の再生
方法に関するものである。従来から糖液などの脱
塩においては、強酸性カチオン交換樹脂を充填し
たカチオン塔(以下K塔)と弱塩基性アニオン交
換樹脂あるいは強塩基性アニオン交換樹脂を充填
したアニオン塔(以下A塔)の複床式イオン交換
装置が用いられており、当該複床式イオン交換装
置で糖液を処理する場合は糖液をK塔・A塔の順
に下降流で通液し、また両塔の再生にあたつては
再生剤を下降流で通薬して再生する、いわゆる下
降流再生方法が採られている。この従来の下降流
再生方法は装置が単純で再生操作も簡単である
が、処理液の純度が低く、かつ再生用水を多量に
必要とし、また水洗排水が多量に発生するという
欠点がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating an ion exchange resin in a multi-bed sugar solution desalting apparatus, which aims to obtain a highly purified treated liquid and to significantly reduce the amount of water for regeneration and the amount of water used for washing. It is something. Conventionally, in the desalting of sugar solutions, etc., a cation tower (hereinafter referred to as K tower) filled with a strongly acidic cation exchange resin and an anion tower (hereinafter referred to as A tower) filled with a weakly basic anion exchange resin or a strongly basic anion exchange resin have been used. A double-bed ion exchange device is used, and when treating sugar solution with this double-bed ion exchange device, the sugar solution is passed through the K column and then the A column in a downward flow, and the regeneration of both columns is also carried out. In this case, a so-called downflow regeneration method is used, in which the regeneration agent is passed through in a downward flow for regeneration. Although this conventional downflow regeneration method has a simple device and easy regeneration operation, it has the drawbacks that the treated liquid has low purity, requires a large amount of regeneration water, and generates a large amount of washing water.

処理液の純度を上昇させるには、従来から水処
理装置で行なわれているように、K塔を上昇流再
生すれば、これを容易に解決することができる。
すなわち強酸性カチオン交換樹脂の上層部内に再
生廃液排出用のコレクタを付設し、イオン交換塔
の下部から再生剤、押出水を流入させると同時に
イオン交換塔の上部から空気、水などの支持流体
を流入せしめ、再生廃液あるいは押出水と当該支
持流体をコレクタから流出させ、当該支持流体の
流入圧力により強酸性カチオン交換樹脂を押圧保
持して再生するのである。このように強酸性カチ
オン交換樹脂を上昇流で再生すると、下層部ほど
よく再生されるので糖液を下降流で通液するに際
しては塩類のリーク量を著しく小さくすることが
きる。
In order to increase the purity of the treated liquid, this problem can be easily solved by performing upward flow regeneration of the K tower, as has been conventionally done in water treatment equipment.
In other words, a collector for discharging recycled waste liquid is installed in the upper layer of the strongly acidic cation exchange resin, and at the same time the regenerant and extruded water are introduced from the bottom of the ion exchange tower, supporting fluids such as air and water are introduced from the top of the ion exchange tower. The regenerated waste liquid or extrusion water and the support fluid are allowed to flow in, and the strongly acidic cation exchange resin is held under pressure by the inflow pressure of the support fluid and regenerated. When the strongly acidic cation exchange resin is regenerated in an upward flow in this way, the lower layer is more regenerated, so when the sugar solution is passed in a downward flow, the amount of leakage of salts can be significantly reduced.

しかしながら、この従来の上昇流再生はコレク
タの上部にある強酸性カチオン交換樹脂がイオン
交換的に無効になるという欠点を有しており、さ
らにこのような上昇流再生を行なつても再生用水
および水洗排水の低減には効果がない。
However, this conventional upflow regeneration has the disadvantage that the strongly acidic cation exchange resin in the upper part of the collector becomes ineffective in terms of ion exchange, and even with this upflow regeneration, the regeneration water and It has no effect on reducing flushing wastewater.

複床式脱塩装置による糖液の脱塩において、再
生用水を多量に必要とし、再生排水が多量に発生
するのはアニオン交換樹脂の有機物汚染に起因し
ている。すわち被処理液である糖液、特に澱粉や
酸や酵素で糖化したブドウ糖、水飴、麦芽糖、オ
リゴ糖などの澱粉糖の糖液中には、原料澱粉の不
純物に起因する多量の塩類のほかに、原料澱粉に
もともと存在する有機物や糖化の際に副生する有
機物も多量に存在し、使用サイクルを重ねるにし
たがつてこれらの有機物がアニオン交換樹脂に不
可逆的に吸着する、いわゆる有機物汚染を受け
る。これらの有機物は一般に高分子であるのでア
ニオン交換樹脂に不可逆的に吸着されることによ
り、アニオン交換樹脂粒子内のイオン拡散速度が
低下し、このため再生剤であるか性ソーダの洗浄
効果が低下する。さらにこれらの有機物の中には
カルボン酸基を有する有機物も存在し、当該有機
物がアニオン交換樹脂に不可逆的に吸着されるこ
とにより、アニオン交換樹脂をか性ソーダで再生
する際に、このカルボン酸基がナトリウム型とな
り、そしてこのナトリウム型のカルボン酸基は加
水分解しやすい性質を有しているため、再生後の
水洗中に加水分解してか性ソーダを生成するの
で、水洗排水のPHがなかなか低下しないという現
象も生ずる。
When desalting a sugar solution using a multi-bed desalting device, a large amount of water for regeneration is required and a large amount of regeneration wastewater is generated due to organic contamination of the anion exchange resin. In other words, the sugar solution that is the liquid to be processed, especially the sugar solution of starch sugars such as starch, glucose saccharified with acids and enzymes, starch syrup, maltose, and oligosaccharides, contains a large amount of salts due to impurities in the raw material starch. In addition, there are large amounts of organic substances that originally exist in the raw material starch and organic substances that are by-products during saccharification, and as the usage cycle increases, these organic substances irreversibly adsorb to the anion exchange resin, causing so-called organic contamination. receive. Since these organic substances are generally polymeric, they are irreversibly adsorbed by the anion exchange resin, reducing the rate of ion diffusion within the anion exchange resin particles, thereby reducing the cleaning effectiveness of the caustic soda regenerant. do. Furthermore, some of these organic substances have carboxylic acid groups, and as these organic substances are irreversibly adsorbed onto the anion exchange resin, when the anion exchange resin is regenerated with caustic soda, this carboxylic acid The group becomes sodium type, and this sodium type carboxylic acid group has the property of being easily hydrolyzed, so it hydrolyzes to produce caustic soda during washing after regeneration, so the pH of the washing wastewater decreases. There is also a phenomenon in which the temperature does not decrease easily.

なお被処理液である糖液、特にブドウ糖液のよ
うな澱粉糖液はアルカリに対して不安定であり、
アルカリ性になると糖が分解して着色成分を生成
するので、一般に水洗排水のPHが10以下になるま
で水洗をせねばならない。アニオン交換樹脂が有
機物汚染を受けると、たとえば通常行なわれてい
る充填アニオン交換樹脂容量の約12倍の水量を用
いて水洗をしても、その水洗排水のPHは12前後で
あるということもあり、したがつて場合によつて
はA塔の水洗排水量が充填アニオン交換樹脂容量
の20倍量以上にも達することがある。
It should be noted that the sugar solution to be treated, especially starch sugar solution such as glucose solution, is unstable to alkalis.
When the water becomes alkaline, the sugar decomposes and produces colored components, so washing should generally be continued until the pH of the washing water drops to below 10. If the anion exchange resin is contaminated with organic matter, the pH of the washing wastewater may remain around 12, even if it is washed with water that is approximately 12 times the amount of water that is normally used to fill the anion exchange resin. Therefore, in some cases, the amount of water washing water discharged from the A column reaches 20 times or more the capacity of the filled anion exchange resin.

このように複床式脱塩装置による糖液の脱塩に
おいては、使用サイクルを重ねるにしたがつて特
にA塔の水洗効率が低下し、このため多量の再生
用水を必要とし、さらに多量の洗浄排水が発生す
るが、省資源を指向する今日において再生用水を
多量に用いることは好ましいことではなく、かつ
当該洗浄排水中には着色成分などのBODを含有
しているので、単に洗浄排水中のか性ソーダを中
和しただけでは放流できず、生物処理等の必要が
あるので洗浄排水量が増加することも好ましくな
い。
In this way, when desalting a sugar solution using a double-bed desalting device, the water washing efficiency of tower A in particular decreases as the usage cycle increases, and therefore a large amount of recycled water is required, and an even larger amount of washing is required. Although wastewater is generated, it is not desirable to use a large amount of recycled water in today's era of resource conservation, and since the washing wastewater contains BOD such as coloring components, it is not possible to simply use the washing wastewater. It is not preferable that the amount of waste water for washing increases because it is not possible to discharge the water just by neutralizing the sodium chloride and biological treatment is required.

なお、洗浄排水量を低減させる目的でA塔の水
洗排水を再生済みのK塔に循環し、A塔の水洗排
水のか性ソーダの量が低下するまでこの循環を続
行する方法が水処理装置で行なわれている。この
方法を糖液処理における複床式脱塩装置に適用す
ることも考えられるが、糖液処理における複床式
脱塩装置のアニオン交換樹脂は水処理装置のアニ
オン交換樹脂と比較にならない程、多量に有機物
汚染を受けており、かつ前述したようにカルボン
酸基を有する有機物もアニオン交換樹脂に多量に
吸着されているため、水洗排水中のか性ソーダの
量はなかなか低下しない。したがつて水処理装置
の場合と比較して、かなり長い時間循環せねばな
らず、そのためK塔内の再生済みのH型の強酸性
カチオン交換樹脂のかなりの部分を当該循環水洗
中にNa型としてしまい、肝心の糖液の脱塩操作
時にK塔の容量が不足してしまうという不具合が
生ずる。
In addition, in order to reduce the amount of washing wastewater, the water treatment equipment circulates the washing wastewater from the A tower to the regenerated K tower, and continues this circulation until the amount of caustic soda in the washing wastewater from the A tower decreases. It is. It is possible to apply this method to a multi-bed desalination equipment for sugar solution processing, but the anion exchange resin in a multi-bed desalination equipment for sugar solution processing is incomparable to the anion exchange resin used in water treatment equipment. Since there is a large amount of organic contamination, and as mentioned above, a large amount of organic matter having carboxylic acid groups is also adsorbed to the anion exchange resin, the amount of caustic soda in the washing wastewater does not decrease easily. Therefore, compared to the case of water treatment equipment, it has to be circulated for a considerably longer time, and a considerable portion of the regenerated H-type strongly acidic cation exchange resin in the K tower is converted into Na-type during the circulating water washing. This causes a problem in that the capacity of the K tower becomes insufficient during the important desalting operation of the sugar solution.

本発明は、従来の複床式脱塩装置の前述した欠
点を解決し、高純度の処理液を得るとともにK塔
に充填したカチオン交換樹脂を有効に活用して再
生用水量および水洗排水量を大幅に低減すること
を目的とするものである。
The present invention solves the above-mentioned drawbacks of the conventional double-bed desalination equipment, obtains a highly purified treated liquid, and effectively utilizes the cation exchange resin packed in the K tower to significantly reduce the amount of water for regeneration and the amount of water used for washing. The purpose is to reduce the

本発明は強酸性カチオン交換樹脂の上部に少量
の弱酸性カチオン交換樹脂を充填し、両カチオン
交換樹脂の境界面付近にコレクタを付設したK塔
と、弱塩基性アニオン交換樹脂あるいは強塩基性
アニオン交換樹脂を充填したA塔とによつて糖液
脱塩装置を構成し、K塔およびA塔の順に糖液を
下降流で通液し、K塔のカチオン交換樹脂の再生
にあたつてはK塔の下部より再生剤を流入させる
と同時にK塔の上部より空気、水などの支持流体
を流入させて、再生廃液と当該支持流体を前記コ
レクタより流出させて強酸性カチオン交換樹脂を
押圧保持して上昇流で再生するとともに、当該強
酸性カチオン交換樹脂の再生の前後あるいは再生
中に弱酸性カチオン交換樹脂を再生し、またA塔
の再生にあたつては再生剤を下降流あるいは上昇
流で流入させてアニオン交換樹脂を再生し、K塔
およびA塔の再生後の洗浄にあたつてはK塔とA
塔を洗浄水の閉鎖循環配管で連通して洗浄水をそ
れぞれ下降流で循環し、A塔の洗浄排水中に含ま
れているナトリウムイオンをK塔の弱酸性カチオ
ン交換樹脂で除去することを特徴とする糖液脱塩
装置のイオン交換樹脂の再生方法に関するもので
ある。
The present invention consists of a K tower in which the upper part of a strong acidic cation exchange resin is filled with a small amount of weakly acidic cation exchange resin, and a collector is attached near the interface between both cation exchange resins, and a weakly basic anion exchange resin or a strong basic anion exchange resin. A sugar solution desalination device is constructed by A tower filled with exchange resin, and the sugar solution is passed through the K tower and then the A tower in a downward flow, and when regenerating the cation exchange resin in the K tower, At the same time as the regenerating agent flows in from the lower part of the K tower, a supporting fluid such as air or water flows in from the upper part of the K tower, and the regenerated waste liquid and the supporting fluid flow out from the collector to hold the strongly acidic cation exchange resin under pressure. At the same time, the weakly acidic cation exchange resin is regenerated before, during or after the regeneration of the strongly acidic cation exchange resin, and when regenerating the A tower, the regenerant is regenerated in the downward or upward flow. The anion exchange resin is regenerated by flowing into the K tower and the A tower.
The towers are connected by closed circulation piping for washing water, and the washing water is circulated in a downward flow, and the sodium ions contained in the washing wastewater from the A tower are removed by the weakly acidic cation exchange resin in the K tower. The present invention relates to a method for regenerating an ion exchange resin for a sugar solution desalting device.

以下に本発明を図面に基づいて詳細に説明す
る。
The present invention will be explained in detail below based on the drawings.

図面は本発明の実施態様の一例である澱粉を糖
化して得られるブドウ糖液の脱塩装置のフローを
示す説明図である。K塔1内に強酸性カチオン交
換樹脂2を充填し、その上部に小量の弱酸性カチ
オン交換樹脂3を充填する。強酸性カチオン交換
樹脂2の充填量はサイクル当たりのブドウ糖原液
の処理量とブドウ糖原液中に含まれるカチオンの
量により決定するが、弱酸性カチオン交換樹脂3
の充填量は原液の組成あるいは処理量に関係なく
樹脂層高として通常300mm前後となるように充填
する。当該弱酸性カチオン交換樹脂3の充填は水
処理装置の上昇流再生における、いわゆる無効樹
脂に相当するもので、上昇流再生時における強酸
性カチオン交換樹脂2の流動防止を目的のひとつ
とする。強酸性カチオン交換樹脂2と弱酸性カチ
オン交換樹脂3の境界面付近に再生廃液排出用の
コレクタ4を付設し、当該コレクタ4に再生廃液
流出管5を連通する。なお本実施態様においては
コレクタ4を水平状のものとしているが、尖端に
スリツトなどからなる流入口を有する堅形コレク
タの複数本を弱酸性カチオン交換樹脂3の上方か
ら挿入し、当該流入口が強酸性カチオン交換樹脂
2と弱酸性カチオン交換樹脂3の境界面付近に位
置させるようにしてもよい。
The drawing is an explanatory diagram showing the flow of a desalting apparatus for a glucose solution obtained by saccharifying starch, which is an example of an embodiment of the present invention. A strongly acidic cation exchange resin 2 is filled in the K column 1, and a small amount of a weakly acidic cation exchange resin 3 is filled in the upper part thereof. The filling amount of the strongly acidic cation exchange resin 2 is determined by the amount of glucose stock solution processed per cycle and the amount of cations contained in the glucose stock solution.
The filling amount is usually such that the resin layer height is around 300 mm regardless of the composition of the stock solution or the processing amount. The filling of the weakly acidic cation exchange resin 3 corresponds to a so-called ineffective resin in the upflow regeneration of the water treatment device, and one purpose is to prevent the strong acid cation exchange resin 2 from flowing during the upflow regeneration. A collector 4 for discharging recycled waste liquid is attached near the interface between the strongly acidic cation exchange resin 2 and the weakly acidic cation exchange resin 3, and a recycled waste liquid outflow pipe 5 is connected to the collector 4. In this embodiment, the collector 4 is horizontal, but a plurality of rigid collectors each having an inlet made of a slit or the like at the tip are inserted from above the weakly acidic cation exchange resin 3, and the inlet is It may be located near the interface between the strongly acidic cation exchange resin 2 and the weakly acidic cation exchange resin 3.

K塔1の上部に原液流入管6を連通するととも
に、上昇流再生の際における支持水の流入管7を
連通する。なお当該支持水の流入管7に酸の注入
管8を接続する。次にK塔1の下部に連結管9の
一端を連通し、連結管9の他端をA塔10の上部
に連通する。A塔10に弱塩基性アニオン交換樹
脂11を充填し、当該弱塩基性アニオン交換樹脂
11の上層部内に再生廃液排出用のコレクタ4′
を付設し、当該コレクタ4′に再生廃液流出管
5′を連通する。前述したように澱粉を原料とし
て生成させたブドウ糖などは原料澱粉の不純物に
起因する塩類が多量に含まれており、かつ澱粉糖
はアルカリに対して不安定なので、A塔10には
一般に再生効率が優れていて、さらに処理液のPH
をあまり上昇させない弱塩基性アニオン交換樹脂
を使用する。弱塩基性アニオン交換樹脂11の充
填量は、コレクタ4′の下部の樹脂量をK塔の場
合と同じように、サイクル当りのブドウ糖原液の
処理量とブドウ糖原液中に含まれるアニオンの量
により決定する。なおコレクタ4′上部の弱塩基
性アニオン交換樹脂11は上昇流再生における無
効樹脂であり、原液の組成あるいは処理量に無関
係に樹脂層高として300mm前後充填する。なお当
該コレクタ4′もK塔1の場合と同じように堅形
コレクタとしてもさしつかえない。さらにA塔1
0の上部に上昇流再生の際における支持水の流入
管7′を連通するとともに、A塔10の下部の処
理液流出管12を連通する。なお原液流入管6と
A塔10の入口付近の連結管9にそれぞれ水洗水
の流入管13および13′と、逆洗水の流出管1
4および14′を接続するとともに、K塔1出口
付近の連結管9に再生剤の流入管15、逆洗水の
流入管16およびブロー管17を接続する。さら
に処理液流出管12に、同じように再生剤の流入
管15′、逆洗水の流入管16′およびブロー管1
7′を接続する。また処理液流出管12に水洗水
の循環管18の一端を接続し、水洗水貯槽19、
循環ポンプ20を介して水洗水の循環管18の他
端を原液流入管6に接続し、洗浄水の閉鎖循環系
を構成する。なお21および21′はイオン交換
樹脂の支持板であり、支持板21,21′のほか
に強酸性カチオン交換樹脂2あるいは弱塩基性ア
ニオン交換樹脂11の下部に支持床として、たと
えば硅石などを充填してもよい。本実施態様にお
いてはA塔は上昇流再生のフローとなつている
が、本発明においてはA塔を特に上昇流再生とす
る必要がなく、下降流再生としてもさしつかえな
い。さらにK塔1およびA塔10とも、上昇流再
生時のイオン交換樹脂の流動化防止に、イオン交
換塔の上部から支持流体として水を流入するよう
になつているが、場合によつては空気を支持流体
として用いてもさしつかえない。
A raw solution inflow pipe 6 is connected to the upper part of the K tower 1, and an inflow pipe 7 for supporting water during upward flow regeneration is connected to the upper part of the K tower 1. Note that an acid injection pipe 8 is connected to the support water inflow pipe 7. Next, one end of the connecting pipe 9 is connected to the lower part of the K tower 1, and the other end of the connecting pipe 9 is connected to the upper part of the A tower 10. A column A 10 is filled with a weakly basic anion exchange resin 11, and a collector 4' for discharging recycled waste liquid is placed in the upper layer of the weakly basic anion exchange resin 11.
A recycled waste liquid outflow pipe 5' is connected to the collector 4'. As mentioned above, glucose produced from starch as a raw material contains a large amount of salts due to impurities in the raw material starch, and starch sugar is unstable to alkalis, so the A column 10 generally has a low regeneration efficiency. is excellent, and the PH of the processing solution is
Use a weakly basic anion exchange resin that does not significantly increase The filling amount of the weakly basic anion exchange resin 11 is determined by the amount of resin in the lower part of the collector 4', as in the case of the K tower, and the amount of glucose stock solution processed per cycle and the amount of anions contained in the glucose stock solution. do. Note that the weakly basic anion exchange resin 11 in the upper part of the collector 4' is an ineffective resin in upward flow regeneration, and is filled to a resin layer height of approximately 300 mm regardless of the composition of the stock solution or the amount of treatment. Note that the collector 4' may also be a rigid collector as in the case of the K tower 1. Furthermore, A tower 1
An inflow pipe 7' for supporting water during upward flow regeneration is connected to the upper part of the tower 0, and a treated liquid outflow pipe 12 at the lower part of the tower A 10 is connected to the upper part of the tower 0. In addition, washing water inflow pipes 13 and 13' and backwash water outflow pipe 1 are connected to the raw solution inflow pipe 6 and the connecting pipe 9 near the inlet of the A tower 10, respectively.
4 and 14' are connected, and a regenerant inflow pipe 15, a backwash water inflow pipe 16, and a blow pipe 17 are connected to the connecting pipe 9 near the outlet of the K tower 1. Further, in the same way, a regenerant inflow pipe 15', a backwash water inflow pipe 16' and a blow pipe 1 are connected to the processing liquid outflow pipe 12.
Connect 7'. In addition, one end of the washing water circulation pipe 18 is connected to the processing liquid outflow pipe 12, and a washing water storage tank 19,
The other end of the wash water circulation pipe 18 is connected to the stock solution inflow pipe 6 via the circulation pump 20, thereby forming a closed circulation system for the wash water. Note that 21 and 21' are support plates for the ion exchange resin, and in addition to the support plates 21 and 21', the lower part of the strongly acidic cation exchange resin 2 or the weakly basic anion exchange resin 11 is filled with, for example, silica stone as a support bed. You may. In this embodiment, the A column has an upward flow regeneration flow, but in the present invention, the A column does not particularly need to be an upward flow regeneration flow, and may be a down flow regeneration flow. Furthermore, in both the K tower 1 and the A tower 10, water is introduced from the upper part of the ion exchange tower as a supporting fluid in order to prevent fluidization of the ion exchange resin during upflow regeneration, but in some cases, water may be introduced as a supporting fluid. may be used as a supporting fluid.

次に本発明における操作を説明すると、ブドウ
糖原液を脱塩する場合は、再生済みのK塔1およ
びA塔10の順に下降流でブドウ糖原液を通液す
る。すなわちK塔1に原液流入管6からブドウ糖
原液を流入し、K塔1の流出液を連結管9を用い
てA塔10に流入させ、ブドウ糖原液中の塩類お
よび色素成分等の有機物を除去したブドウ糖処理
液を処理液流出管12から流出させる。なお当該
処理液を更に高純度のものにするために処理液流
出管12に混床式脱塩塔(図示せず)を接続し、
当該処理液をさらに処理することもできる。
Next, the operation in the present invention will be described. When desalting a glucose stock solution, the glucose stock solution is passed through the regenerated K tower 1 and A tower 10 in this order in a downward flow. That is, the glucose stock solution was flowed into the K tower 1 from the stock solution inflow pipe 6, and the effluent from the K tower 1 was flowed into the A tower 10 using the connecting pipe 9 to remove organic substances such as salts and pigment components in the glucose stock solution. The glucose treatment liquid is made to flow out from the treatment liquid outflow pipe 12. In order to further improve the purity of the treated liquid, a mixed bed demineralization tower (not shown) is connected to the treated liquid outflow pipe 12.
The processing liquid can also be further processed.

規定量のブドウ糖原液の通液が終了したら、同
様の方法でK塔1およびA塔10内に水を流入さ
せ、塔内のブドウ糖を水で置換した後次のような
再生操作を行なう。
When the prescribed amount of the glucose stock solution has been passed, water is introduced into the K tower 1 and the A tower 10 in the same manner, and after replacing the glucose in the towers with water, the following regeneration operation is performed.

まずK塔1においては逆洗水の流入管16から
逆洗水を流入し、逆洗廃水を逆洗水の流出管14
から排出し、常法により逆洗を行ない、その後逆
洗水の流入を止め、強酸性カチオン交換樹脂2お
よび弱酸性カチオン交換樹脂3を沈整する。弱酸
性カチオン交換樹脂3の比重は強酸性カチオン交
換樹脂2のそれより小さいので逆洗を行なつても
両カチオン交換樹脂が混合することなく、図面に
示したように弱酸性カチオン交換樹脂3を上層部
に、強酸性カチオン交換樹脂2を下層部に形成す
ることができる。なおブドウ糖原液の通液の終了
時において、K塔1の圧力損失がそれ程大きくな
い場合は当該逆洗工程を省略することができる。
First, in the K tower 1, backwash water flows in from the backwash water inflow pipe 16, and backwash water is passed through the backwash water outflow pipe 16.
After that, backwashing is performed by a conventional method, and then the flow of backwash water is stopped, and the strongly acidic cation exchange resin 2 and the weakly acidic cation exchange resin 3 are settled. Since the specific gravity of the weakly acidic cation exchange resin 3 is smaller than that of the strongly acidic cation exchange resin 2, the two cation exchange resins do not mix even when backwashing is performed, and the weakly acidic cation exchange resin 3 is mixed as shown in the drawing. The strongly acidic cation exchange resin 2 can be formed in the upper layer part and the strongly acidic cation exchange resin 2 in the lower layer part. Note that if the pressure loss in the K tower 1 is not so large at the end of passing the glucose stock solution, the backwashing step can be omitted.

逆洗および沈整が終了した後、再生剤の流入管
15から5〜10%の塩酸を上昇流LV2m/H前後
で流入し、また塩酸の流入と同時に支持水の流入
管7から支持水を下降流LV2m/H前後で流入
し、再生廃液と支持水をコレクタ4を介して再生
廃液流出管5から流出させる。なお支持水を流入
するに際しては酸の流入管8より小量の塩酸を支
持水に注入し、支持水のPHを1前後の酸性にす
る。
After backwashing and settling are completed, 5 to 10% hydrochloric acid is flowed in from the regenerant inflow pipe 15 at an upward flow of LV2m/H, and at the same time as the hydrochloric acid is inflow, support water is injected from the support water inflow pipe 7. The downward flow flows in at around LV2m/H, and the regenerated waste liquid and supporting water are discharged from the regenerated waste liquid outflow pipe 5 via the collector 4. When the support water is introduced, a small amount of hydrochloric acid is injected into the support water through the acid inflow pipe 8 to make the pH of the support water acidic at around 1.

コレクタ4上部に弱酸性カチオン交換樹脂3を
充填し、かつK塔1の上部から支持水を流入させ
ることにより充填樹脂層に下向きに圧力が加わる
ので、再生剤を上昇流で通薬しても強酸性カチオ
ン交換樹脂2を流動化させることなく、上昇流で
再生することができ、また支持水に酸を添加して
いるので弱酸性カチオン交換樹脂3も再生するこ
とができる。再生剤の流入管15から規定量の塩
酸を流入させた後、再生剤の流入管15から押出
水を流入させて再生廃液流出管5より流出するこ
とによつて強酸性カチオン交換樹脂2に残留して
いる再生剤を押し出す。なお当該押し出し中にも
支持水の流入管7からの支持水の流入は続行する
が、ただし酸の注入管8からの塩酸の注入は規定
量の注入が済みしだい止めておく。
By filling the upper part of the collector 4 with the weakly acidic cation exchange resin 3 and letting supporting water flow in from the upper part of the K tower 1, downward pressure is applied to the packed resin layer, so even if the regenerant is passed in an upward flow. The strongly acidic cation exchange resin 2 can be regenerated by upward flow without being fluidized, and since the acid is added to the supporting water, the weakly acidic cation exchange resin 3 can also be regenerated. After a specified amount of hydrochloric acid is introduced from the regenerant inflow pipe 15, extruded water is introduced from the regenerant inflow pipe 15, and the recycled waste liquid is discharged from the regenerated waste liquid outflow pipe 5, thereby removing residual water from the strongly acidic cation exchange resin 2. Push out the regenerant that is present. Note that during the extrusion, the support water continues to flow in from the support water inflow pipe 7, but the injection of hydrochloric acid from the acid injection pipe 8 is stopped as soon as a specified amount has been injected.

強酸性カチオン交換樹脂2の充填容量とほぼ同
量の押出水の流入が終了した後、水洗水の流入管
13から水洗水を流入し、水洗排水をブロー管1
7から流出させる。なお当該水洗水量は強酸性カ
チオン交換樹脂2の充填容量の3倍程度で充分で
あるが、前述した押し出しの際に、押出水として
強酸性カチオン交換樹脂2の充填容量の4倍量程
度を用いれば当該水洗を省略することができる。
After the inflow of extruded water in an amount approximately equal to the filling capacity of the strongly acidic cation exchange resin 2 is completed, the washing water is introduced from the washing water inflow pipe 13 and the washing water is sent to the blow pipe 1.
Let it flow from 7. It should be noted that the amount of washing water is sufficient to be about three times the filling capacity of the strongly acidic cation exchange resin 2, but during the extrusion described above, an amount about four times the filling capacity of the strongly acidic cation exchange resin 2 is used as extrusion water. In this case, the washing with water can be omitted.

一方A塔10についても、K塔1の再生中ある
いは再生後に以上のように再生を行なう。すなわ
ち逆洗水の流入管16′から逆洗水を流入し、逆
洗廃水を逆洗水の流出管14′から排出し、常法
により逆洗を行なう。なお当該逆洗はK塔1で述
べたと同様の理由があれば、これを省略すること
ができる。弱塩基性アニオン交換樹脂11を沈整
後、再生剤の流入管15′から2〜4%のか性ソ
ーダ溶液を上昇流LV5m/H前後で流入し、また
か性ソーダ溶液の流入と同時に支持水の流入管
7′から支持水を下降流LV2m/H前後で流入
し、再生廃液と支持水をコレクタ4′を介して再
生廃液流出管5′から流出させる。K塔1で説明
したと同じようにA塔10においても充填樹脂層
に下向きの圧力が加わるので、再生剤を上昇流で
通薬しても弱塩基性アニオン交換樹脂11を流動
化させることなく上昇流で再生することができ
る。再生剤の流入管15′からの規定量のか性ソ
ーダ溶液を流入させた後、再生剤の流入管15′
から押出水を流入させて再生廃液流出管5′より
流出することによつて弱塩基性アニオン交換樹脂
11に残留している再生剤を押し出す。なお当該
押し出し中も支持水の流入管7′からの支持水の
流入は続行する。再生剤の流入管15′からコレ
クタ4′下部の弱塩基性アニオン交換樹脂11の
充填容量とほぼ同容量の押出水を流入した後、水
洗水の流入管13′から水洗水を流入し、水洗排
水をブロー管17′から流出させる。なお当該水
洗水量は弱塩基性アニオン交換樹脂11の充填容
量の3倍量程度で充分であるが、押し出しの際に
押出水として弱塩基性アニオン交換樹脂11の充
填容量の4倍量程度を用いれば当該水洗を省略す
ることができる。なお当該水洗水量では前述した
ごとく、アニオン交換樹脂の有機物汚染に起因し
て、その水洗排水中にはかなりの量のか性ソーダ
が残留しており、そのPHも高い。したがつて従来
では水洗排水のPHが10以下になるまで水洗を続行
していたが、本発明においては水洗排水のPHに関
係なく規定量の水洗が終了したら水洗を停止す
る。
On the other hand, the A tower 10 is also regenerated as described above during or after the K tower 1 is regenerated. That is, backwash water is introduced through the backwash water inflow pipe 16', backwash water is discharged from the backwash water outflow pipe 14', and backwashing is performed in a conventional manner. Note that this backwashing can be omitted if there is a reason similar to that described for K tower 1. After settling the weakly basic anion exchange resin 11, a 2 to 4% caustic soda solution flows in from the regenerant inflow pipe 15' at an upward flow of LV5m/H, and at the same time as the caustic soda solution flows in, the supporting water Support water flows in from the inlet pipe 7' at a downward flow rate of about LV2m/H, and the regenerated waste liquid and support water flow out from the regenerated waste liquid outflow pipe 5' via the collector 4'. In the same way as explained for K tower 1, downward pressure is applied to the packed resin bed in A tower 10, so even if the regenerant is passed in an upward flow, the weakly basic anion exchange resin 11 is not fluidized. Can be regenerated in upstream flow. After a predetermined amount of caustic soda solution is introduced from the regenerant inflow pipe 15', the regenerant inflow pipe 15'
The regenerant remaining in the weakly basic anion exchange resin 11 is pushed out by letting extrusion water flow in and flowing out from the regenerated waste liquid outflow pipe 5'. Note that even during the extrusion, the support water continues to flow in from the support water inflow pipe 7'. After a volume of extruded water approximately equal to the filling capacity of the weakly basic anion exchange resin 11 in the lower part of the collector 4' is injected from the regenerant inflow pipe 15', washing water is inflowed from the washing water inflow pipe 13' to complete the washing process. The waste water flows out from the blow pipe 17'. It should be noted that the amount of washing water is sufficient to be about 3 times the filling capacity of the weakly basic anion exchange resin 11, but during extrusion, about 4 times the filling capacity of the weakly basic anion exchange resin 11 is used as extrusion water. In this case, the washing with water can be omitted. As mentioned above, due to organic contamination of the anion exchange resin, a considerable amount of caustic soda remains in the washing water and its pH is high. Therefore, in the past, washing was continued until the pH of the washing waste water became 10 or less, but in the present invention, washing is stopped when a specified amount of water has been washed, regardless of the pH of the washing waste water.

K塔1およびA塔10の規定量の水洗が終了し
たら、本発明においては循環ポンプ20を駆動さ
せ、連結管9および水洗水の循環管18による閉
鎖循環配管を用いて循環洗浄を行なう。すなわち
水洗水貯槽19の水洗水を循環管18を用いてK
塔1の上部に供給し、K塔下部からの流出水を連
結管9を用いてA塔10の上部に供給し、A塔下
部からの流出水を水洗水貯槽19にもどし、これ
を繰り返す。
After washing the K tower 1 and the A tower 10 with a specified amount of water, in the present invention, the circulation pump 20 is driven to carry out circulation washing using the closed circulation piping formed by the connecting pipe 9 and the washing water circulation pipe 18. That is, the washing water in the washing water storage tank 19 is transferred to K using the circulation pipe 18.
The water is supplied to the upper part of the tower 1, the water flowing out from the lower part of the tower K is supplied to the upper part of the tower A 10 using the connecting pipe 9, the water flowing out from the lower part of the tower A is returned to the washing water storage tank 19, and this process is repeated.

本操作によつてA塔10の流出水中に含まれて
いるナトリウムイオンをK塔1の上部に充填した
弱酸性カチオン交換樹脂3で効果的に除去するこ
とができる。なお当該循環を続行しているうちに
A塔流出水のPHは徐々に低下し、当該PHが10以下
になつた時点でこの循環洗浄を終了する。当該循
環洗浄が終了した後、ブドウ糖原液を通液してK
塔1およびA塔10の水をブドウ糖原液と置換
し、次いでブドウ糖原液の通液を行なう。
By this operation, sodium ions contained in the outflow water from the A tower 10 can be effectively removed by the weakly acidic cation exchange resin 3 packed in the upper part of the K tower 1. Note that while the circulation continues, the pH of the water flowing out of tower A gradually decreases, and when the pH reaches 10 or less, this circulation cleaning is terminated. After the circulation cleaning is completed, the glucose stock solution is passed through and the K
The water in tower 1 and A tower 10 is replaced with a glucose stock solution, and then the glucose stock solution is passed through.

以上のように本発明では規定量の水洗を終了し
た後、循環洗浄を行なうので、たとえアニオン交
換樹脂が有機物汚染を受けて水洗効果が低下して
いても、その水洗排水量はK塔・A塔ともに充填
イオン交換樹脂量の3倍量程度しか発生せず、か
つ循環洗浄中におけるA塔10の流出水中のナト
リウムイオンはK塔1の上部に充填した弱酸性カ
チオン交換樹脂3で効果的に除去することがで
き、したがつて再生済みの強酸性カチオン交換樹
脂2にイオン的負荷を全く与えず、糖液の脱塩操
作時にK塔の容量が不足するというような従来の
欠点を解決することができる。また弱酸性カチオ
ン交換樹脂は強酸性カチオン交換樹脂と比較して
そのイオン交換容量が大きく、かつ再生効率がよ
いので、コレクタ4の上部に弱酸性カチオン交換
樹脂を用いることにより、たとえば本発明と同じ
目的で強酸性カチオン交換樹脂を用いる場合と比
較して同一の充填容量当たりの、ナトリウムイオ
ンの除去容量を大とすることができ、さらに簡便
な再生方法で当該弱酸性カチオン交換樹脂を再生
することができる。すなわち本実施態様では支持
水に小量の塩酸を注入して希薄な酸性水を通過さ
せることによつて弱酸性カチオン交換樹脂を再生
したが、その他の方法として支持水を流入中にス
ポツト的に比較的多量の塩酸を酸の注入管8から
注入しても再生することができ、したがつて装置
の構造の簡素化を可能とし、再生時間が延長する
こともない。これに対してコレクタ4上部の充填
樹脂として強酸性カチオン交換樹脂を用いるとそ
の再生効率が悪いので希薄な酸性水では再生する
ことがきず、また塩酸をスポツト的に注入するこ
とでは再生が不完全となり、したがつて通常用い
られるような再生設備で再生せねばならず、装置
を複雑とし、かつ再生時間を延長させてしまうこ
ととなる。
As described above, in the present invention, circulation cleaning is performed after a specified amount of water washing is completed, so even if the anion exchange resin is contaminated with organic matter and the washing effect is reduced, the amount of water drained from the K tower and A tower will be reduced. In both cases, only about three times the amount of filled ion exchange resin is generated, and the sodium ions in the outflow water of the A column 10 during circulation cleaning are effectively removed by the weakly acidic cation exchange resin 3 packed in the upper part of the K column 1. To solve the conventional drawbacks such as the insufficient capacity of the K tower during the desalting operation of the sugar solution by applying no ionic load to the regenerated strongly acidic cation exchange resin 2. Can be done. In addition, a weakly acidic cation exchange resin has a larger ion exchange capacity and a higher regeneration efficiency than a strongly acidic cation exchange resin. Therefore, by using a weakly acidic cation exchange resin in the upper part of the collector 4, Compared to the case where a strongly acidic cation exchange resin is used for the purpose, the removal capacity of sodium ions can be increased per the same filling capacity, and the weakly acidic cation exchange resin can be regenerated by a simpler regeneration method. Can be done. That is, in this embodiment, the weakly acidic cation exchange resin was regenerated by injecting a small amount of hydrochloric acid into the support water and passing dilute acidic water through it. Regeneration can be carried out even if a relatively large amount of hydrochloric acid is injected from the acid injection pipe 8. Therefore, the structure of the apparatus can be simplified and the regeneration time will not be extended. On the other hand, if a strongly acidic cation exchange resin is used as the filler resin in the upper part of the collector 4, its regeneration efficiency is poor, so it cannot be regenerated with dilute acidic water, and if hydrochloric acid is injected in spots, the regeneration is incomplete. Therefore, it is necessary to use a commonly used reproducing equipment, which complicates the apparatus and lengthens the reproducing time.

なお、本発明における弱酸性カチオン交換樹脂
の再生のために使用する酸の量は、循環洗浄中に
除去すべきナトリウムイオンの量によつて決定
し、当該ナトリウムイオンの総当量とほぼ等しい
当量の酸を用いればよく、通常のコレクタ4上部
の弱酸性カチオン交換樹脂1当たり1当量の塩
酸を用いれば充分である。
The amount of acid used for regenerating the weakly acidic cation exchange resin in the present invention is determined depending on the amount of sodium ions to be removed during circulation cleaning, and the amount of acid used is approximately equal to the total equivalent of the sodium ions. It is sufficient to use an acid, and it is sufficient to use 1 equivalent of hydrochloric acid per weakly acidic cation exchange resin in the upper part of the ordinary collector 4.

また当該弱酸性カチオン交換樹脂の再生につい
ては、前述したような再生方法のほかに、場合に
よつては強酸性カチオン交換樹脂の再生の前ある
いは後に単独に再生してもさしつかえない。なお
強酸性カチオン交換樹脂の再生廃液を貯留してお
き、この再生廃液で弱酸性カチオン交換樹脂を再
生することもできる。
Regarding the regeneration of the weakly acidic cation exchange resin, in addition to the above-mentioned regeneration method, depending on the case, it may be possible to regenerate it alone before or after regenerating the strongly acidic cation exchange resin. Note that it is also possible to store the recycled waste liquid of the strongly acidic cation exchange resin, and to regenerate the weakly acidic cation exchange resin with this recycled waste liquid.

なお本発明は実施態様で説明したブドウ糖液な
どの澱粉糖の糖液の精製にかぎらず、原液にアニ
オン交換樹脂を汚染するような有機物を含有する
あらゆる糖液の精製に適用することができる。
The present invention is not limited to the purification of starch sugar solutions such as the glucose solution described in the embodiments, but can be applied to the purification of any sugar solution whose stock solution contains organic substances that may contaminate an anion exchange resin.

以上のように本発明はK塔を上昇流再生するこ
とにより処理水の純度を上昇させ、かつ従来の上
昇流再生では再生中における流動化防止の目的に
だけ充填されていたコレクタ上部のカチオン交換
樹脂を積極的に再生し、さらに再生後にK塔およ
びA塔を循環洗浄することにより、コレクタ下部
の再生済みの強酸性カチオン交換樹脂のイオン交
換容量を減少させることなく、再生用水および洗
浄排水量を大幅に減少させることを可能とし、さ
らにコレクタ上部の充填カチオン交換樹脂に弱酸
性カチオン交換樹脂を用いることによりナトリウ
ム除去容量を増大させ、かつ装置を簡便にするこ
とができるなど種々の効果を奏するので、産業に
与える利益は大きいものである。
As described above, the present invention improves the purity of treated water by upstream regeneration of the K tower, and exchanges cations in the upper part of the collector, which in conventional upstream regeneration was filled only for the purpose of preventing fluidization during regeneration. By actively regenerating the resin and circulating and cleaning the K and A towers after regeneration, the amount of regeneration water and washing water can be reduced without reducing the ion exchange capacity of the regenerated strongly acidic cation exchange resin at the bottom of the collector. In addition, by using a weakly acidic cation exchange resin as the cation exchange resin filled in the upper part of the collector, the sodium removal capacity can be increased and the device can be simplified. , the benefits to industry are significant.

以下に本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例 (1) 本発明方法 上昇流再生用のカチオン樹脂カラム(塔径50
mm、高さ3000mm)に強酸性カチオン交換樹脂アン
バーライト(登録商標(以下同じ))IR―120B
2.6と弱酸性カチオン交換樹脂アンバーライト
IRC―50 390mlを充填した。なお、コレクタは両
カチオン交換樹脂の境界面に付設した。また上昇
流再生用のアニオン樹脂カラム(塔径65mm、高さ
2500mm)にブドウ糖精製の実装置で240サイクル
使用した弱塩基性アニオン交換樹脂アンバーライ
トIRA―934(ただし、コレクタ下部の樹脂量
は3.33である。)を充填し、以下の再生を行な
つた。すなわちカチオン樹脂カラムにおいてはカ
ラム下部から8%塩酸を流速LV2m/Hで注入
し、カラム上部から35%塩酸30gを小量ずつ注入
した支持水を流速LV1.5m/Hで通水した。なお
再生廃液と支持水はコレクタから排出した。
Example (1) Method of the present invention Cation resin column for upflow regeneration (column diameter 50
mm, height 3000mm) strongly acidic cation exchange resin Amberlite (registered trademark (hereinafter the same)) IR-120B
2.6 and weakly acidic cation exchange resin Amberlite
Filled with 390ml of IRC-50. Note that the collector was attached to the interface between both cation exchange resins. In addition, an anion resin column for upstream regeneration (column diameter 65 mm, height
2500 mm) was filled with weakly basic anion exchange resin Amberlite IRA-934 (however, the amount of resin at the bottom of the collector was 3.33), which had been used for 240 cycles in an actual glucose refining device, and the following regeneration was performed. That is, in the cation resin column, 8% hydrochloric acid was injected from the bottom of the column at a flow rate of LV2 m/H, and supporting water containing 30 g of 35% hydrochloric acid was injected in small portions from the top of the column at a flow rate of LV1.5 m/H. The recycled waste liquid and supporting water were discharged from the collector.

次に水量1/―樹脂でコレクタ下部の再生
剤を押し出した後、下降流で流速SV12、水量3
/―樹脂の洗浄を行なつた。一方、アニオン
樹脂カラムにおいてはカラム下部から3%水酸化
ナトリウムを流速LV6m/Hで注入し、カラム上
部から支持水を流速LV1.5m/Hで通水した。な
お再生廃液と支持水はコレクタから排出した。次
に水量1/―樹脂でコレクタ下部の再生剤を
押し出した後、下降流で流速SV15、水量3/
―樹脂の洗浄を行なつた。
Next, after pushing out the regenerating agent at the bottom of the collector with the water volume 1/- resin, the flow rate is SV12 with a downward flow, and the water volume is 3.
/--Cleaned the resin. On the other hand, in the anion resin column, 3% sodium hydroxide was injected from the bottom of the column at a flow rate of LV6 m/H, and supporting water was passed from the top of the column at a flow rate of LV1.5 m/H. The recycled waste liquid and supporting water were discharged from the collector. Next, after pushing out the regenerating agent at the bottom of the collector with the water amount 1/- resin, the flow rate is SV15 with a downward flow, and the water amount 3/-
-Cleaned the resin.

なお再生剤使用量はアンバーライトIR―120B
は35%塩酸442gを使用し、アンバーライトIRA
―93は100%水酸化ナトリウム167gとした。
The amount of regenerating agent used is Amberlite IR-120B.
uses 442g of 35% hydrochloric acid, Amberlite IRA
-93 was 167g of 100% sodium hydroxide.

次に図面に示したような閉鎖循環系を用いて、
アニオン樹脂カラムの流出水のPHが10になるまで
カチオン樹脂カラムとアニオン樹脂カラムの循環
洗浄を行なつた。
Next, using a closed circulatory system as shown in the drawing,
The cation resin column and anion resin column were circulated and washed until the pH of the water flowing out of the anion resin column reached 10.

なお循環洗浄の流速はアニオン樹脂カラムに対
してSV15とした。
Note that the flow rate of circulation washing was set to SV15 for the anion resin column.

次いで、全カチオン2000mg as CaCO3/、
全アニオン2580mg as CaCO3/、糖濃度46%
(重量%)のブドウ糖原液をアニオン樹脂カラム
に対してSV4で通液したところ、平均導電率3μ
υ/cmの被処理水が得られた。
Then 2000mg of total cations as CaCO 3 /,
Total anions 2580mg as CaCO 3 /, sugar concentration 46%
(wt%) of glucose stock solution was passed through an anion resin column at SV4, and the average conductivity was 3μ.
Treated water of υ/cm was obtained.

(2) 従来方法 本発明方法と同じ寸法の下降流再生用のカチオ
ン樹脂カラム、およびアニオン樹脂カラムの各々
に同じ強酸性カチオン交換樹脂アンバーライト
IR―120B2.6および同じ弱塩基性アニオン交換
樹脂アンバーライトIRA―933・33を充填し、
以下の再生を行なつた。カチオン樹脂カラムにお
いては10%塩酸(再生剤の使用量は本発明方法と
同様)を流速SV4で通した後、水量1/―樹
脂で押し出し、水洗を下降流で流速SV12で3
/―樹脂で行なつた。またアニオン樹脂カラ
ムにおいては4%水酸化ナトリウム(再生剤の使
用量は本発明方法と同様)を流速SV4で通した
後、水量1/―樹脂で押し出し、水洗を下降
流で流速SV15で洗浄排水のPHが10になるまで行
なつた。その結果アニオン樹脂カラムから60の
水洗排水が流出した。次に本発明と同じブドウ糖
原液をアニオン樹脂カラムに対してSV4で通液し
たところ、平均導電率60μυ/cmの被処理水が得
られた。
(2) Conventional method The same strongly acidic cation exchange resin Amberlite is used in each of the cation resin column and anion resin column for downflow regeneration with the same dimensions as in the method of the present invention.
Filled with IR-120B2.6 and the same weakly basic anion exchange resin Amberlite IRA-933/33,
I performed the following playback. In the cation resin column, after passing 10% hydrochloric acid (the amount of regenerant used is the same as in the method of the present invention) at a flow rate of SV4, it is extruded with a water volume of 1/- resin, and water washing is performed in a downward flow at a flow rate of SV12 for 3
/--Done with resin. In addition, in the anion resin column, after passing 4% sodium hydroxide (the amount of regenerant used is the same as in the method of the present invention) at a flow rate of SV4, it is extruded with a water volume of 1/- resin, and water is washed with a downward flow at a flow rate of SV15. This was done until the pH of the water reached 10. As a result, 60 ml of washing waste water flowed out from the anion resin column. Next, when the same glucose stock solution as in the present invention was passed through an anion resin column at SV4, treated water with an average conductivity of 60 μυ/cm was obtained.

以上の実施例で明らかなごとく、従来方法にお
いてはアニオン樹脂カラムから60の水洗排水が
流出するのに対して、本発明の方法では充填樹脂
容量に対してわずか3/―樹脂、すなわち10
の水洗排水しか流出せず、水洗排水量を大幅に
減少させることができた。さらに被処理液の純度
も大幅に増加させることができた。
As is clear from the above examples, in the conventional method, 60 ml of washing waste water flows out from the anion resin column, whereas in the method of the present invention, only 3/- resin flows out from the packed resin volume, that is, 10
This resulted in a significant reduction in the amount of water used for washing. Furthermore, the purity of the liquid to be treated was also significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様のフローを示す説明図
である。 1…カチオン塔(K塔)、2…強酸性カチオン
交換樹脂、3…弱酸性カチオン交換樹脂、4…コ
レクタ、5…再生廃液流出管、6…原液流入管、
7…支持水の流入管、8…酸の注入管、9…連結
管、10…アニオン塔(A塔)、11…弱塩基性
アニオン交換樹脂、12…処理液流出管、13…
水洗水の流入管、14…逆洗水の流出管、15…
再生剤の流入管、16…逆洗水の流入管、17…
ブロー管、18…水洗水の循環管、19…水洗水
貯槽、20…循環ポンプ、21…支持板。
The drawing is an explanatory diagram showing a flow of an embodiment of the present invention. 1... Cation tower (K tower), 2... Strongly acidic cation exchange resin, 3... Weakly acidic cation exchange resin, 4... Collector, 5... Regenerated waste liquid outflow pipe, 6... Raw solution inflow pipe,
7... Support water inflow pipe, 8... Acid injection pipe, 9... Connecting pipe, 10... Anion tower (A tower), 11... Weakly basic anion exchange resin, 12... Processing liquid outflow pipe, 13...
Washing water inflow pipe, 14... Backwash water outflow pipe, 15...
Regenerant inflow pipe, 16... Backwash water inflow pipe, 17...
Blow pipe, 18... Rinsing water circulation pipe, 19... Rinsing water storage tank, 20... Circulation pump, 21... Support plate.

Claims (1)

【特許請求の範囲】 1 強酸性カチオン交換樹脂の上部に小量の弱酸
性カチオン交換樹脂を充填して、両カチオン交換
樹脂の境界面付近にコレクタを付設したカチオン
塔と、弱塩基性アニオン交換樹脂あるいは強塩基
性アニオン交換樹脂を充填したアニオン塔とによ
つて糖液脱塩装置を構成し、カチオン塔およびア
ニオン塔の順に糖液を下降流で通液し、カチオン
塔のカチオン交換樹脂の再生にあたつてはカチオ
ン塔の下部より再生剤を流入させると同時にカチ
オン塔の上部より空気、水などの支持流体を流入
させて、再生廃液と当該支持流体を前記コレクタ
より流出させて強酸性カチオン交換樹脂を押圧保
持して上昇流で再生するとともに、当該強酸性カ
チオン交換樹脂の再生の前後あるいは再生中に弱
酸性カチオン交換樹脂を再生し、またアニオン塔
の再生にあたつては再生剤を下降流あるいは上昇
流で流入させてアニオン交換樹脂を再生し、カチ
オン塔およびアニオン塔の再生後の洗浄にあたつ
ては、カチオン塔とアニオン塔を洗浄水の閉鎖循
環配管で連通して洗浄水をそれぞれ下降流で循環
し、アニオン塔の洗浄排水中に含まれているナト
リウムイオンをカチオン塔の弱酸性カチオン交換
樹脂で除去することを特徴とする糖液脱塩装置の
イオン交換樹脂の再生方法。 2 糖液が澱粉糖の糖液である特許請求の範囲第
1項記載の糖液脱塩装置のイオン交換樹脂の再生
方法。 3 カチオン塔の再生においてカチオン塔の下部
より再生剤を流入させると同時にカチオン塔の上
部より酸を添加した酸性水である支持流体を流入
させ、再生廃液と当該支持流体を前記コレクタよ
り流出させて強酸性カチオン交換樹脂を保持して
再生するとともに、当該強酸性カチオン交換樹脂
の再生中に弱酸性カチオン交換樹脂を下降流で再
生する特許請求の範囲第1項または第2項記載の
糖液脱塩装置のイオン交換樹脂の再生方法。
[Claims] 1. A cation tower in which a small amount of weakly acidic cation exchange resin is filled above a strongly acidic cation exchange resin and a collector is attached near the interface between both cation exchange resins, and a weakly basic anion exchange resin. A sugar solution desalting device is composed of an anion column filled with a resin or a strong basic anion exchange resin, and the sugar solution is passed downstream through the cation column and the anion column in order, and the cation exchange resin in the cation column is drained. During regeneration, a regenerating agent is introduced from the lower part of the cation tower, and at the same time a supporting fluid such as air or water is introduced from the upper part of the cation tower, and the regenerated waste liquid and the supporting fluid are discharged from the collector to form a strong acid. The cation exchange resin is held under pressure and regenerated by upward flow, and the weakly acidic cation exchange resin is regenerated before, during or after the regeneration of the strongly acidic cation exchange resin, and when the anion column is regenerated, a regenerating agent is used. The anion exchange resin is regenerated by flowing the water in a downward or upward flow, and when cleaning the cation and anion towers after regeneration, the cation and anion towers are connected through closed circulation pipes for cleaning water. Regeneration of ion exchange resin in a sugar solution desalting equipment characterized by circulating water in a downward flow and removing sodium ions contained in the washing wastewater from the anion tower using a weakly acidic cation exchange resin in the cation tower. Method. 2. A method for regenerating an ion exchange resin in a sugar solution desalting device according to claim 1, wherein the sugar solution is a starch sugar solution. 3. In regenerating the cation column, a regenerating agent is introduced from the lower part of the cation column, and at the same time, a supporting fluid, which is acidic water to which an acid has been added, is introduced from the upper part of the cation column, and the recycled waste liquid and the supporting fluid are allowed to flow out from the collector. The sugar solution removal method according to claim 1 or 2, wherein the strongly acidic cation exchange resin is retained and regenerated, and the weakly acidic cation exchange resin is regenerated in a downward flow while the strongly acidic cation exchange resin is being regenerated. Method for regenerating ion exchange resin in salt equipment.
JP4353080A 1980-04-04 1980-04-04 Regeneration method for ion exchange resin of sugar solution desalting apparatus Granted JPS56141844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4353080A JPS56141844A (en) 1980-04-04 1980-04-04 Regeneration method for ion exchange resin of sugar solution desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4353080A JPS56141844A (en) 1980-04-04 1980-04-04 Regeneration method for ion exchange resin of sugar solution desalting apparatus

Publications (2)

Publication Number Publication Date
JPS56141844A JPS56141844A (en) 1981-11-05
JPS6259630B2 true JPS6259630B2 (en) 1987-12-11

Family

ID=12666292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4353080A Granted JPS56141844A (en) 1980-04-04 1980-04-04 Regeneration method for ion exchange resin of sugar solution desalting apparatus

Country Status (1)

Country Link
JP (1) JPS56141844A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069606B2 (en) * 2008-05-20 2012-11-07 オルガノ株式会社 Sugar liquid decolorization equipment
CN105905981A (en) * 2016-04-20 2016-08-31 夏夷虎 Noble metal automatic activation ion exchange resin column set system
JP7446155B2 (en) * 2020-05-18 2024-03-08 三菱ケミカルアクア・ソリューションズ株式会社 ion exchange equipment

Also Published As

Publication number Publication date
JPS56141844A (en) 1981-11-05

Similar Documents

Publication Publication Date Title
KR100463268B1 (en) Mixed-bed type sugar solution refining system and regeneration method for such apparatus
US5955510A (en) Process for the regeneration of ion exchange resins in a fixed double-bed type apparatus
JP5069606B2 (en) Sugar liquid decolorization equipment
JPS6259630B2 (en)
JP4192557B2 (en) Purification method of sugar solution
US3975267A (en) Liquid treating system
JP4522133B2 (en) Purification method of sugar-containing solution
JP4245745B2 (en) Mixed bed type sugar liquid purification equipment
US3642616A (en) Continuous method for treating liquids
JP4193432B2 (en) Purification method of sugar solution
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JPS621307B2 (en)
JP2654053B2 (en) Condensate desalination equipment
JPS6329993B2 (en)
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
JPS582431Y2 (en) Ion exchange tower used for upstream regeneration
JPS5940064B2 (en) How to regenerate ion exchange resin layer
JP4210408B2 (en) Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment
JP2001232217A (en) Method for regenerating ion exchange resin
JP3147396B2 (en) Method for regenerating cation exchange resin in mixed bed type desalination equipment
JPH0243541B2 (en)
JPS6133623B2 (en)
JP2002102721A (en) Method for regenerating mixed bed type ion exchange column
JP2000184900A (en) Method and device for purifying starch sugar solution