JP2023077744A - Regeneration process for pure water production apparatus and pure water production apparatus - Google Patents
Regeneration process for pure water production apparatus and pure water production apparatus Download PDFInfo
- Publication number
- JP2023077744A JP2023077744A JP2021191152A JP2021191152A JP2023077744A JP 2023077744 A JP2023077744 A JP 2023077744A JP 2021191152 A JP2021191152 A JP 2021191152A JP 2021191152 A JP2021191152 A JP 2021191152A JP 2023077744 A JP2023077744 A JP 2023077744A
- Authority
- JP
- Japan
- Prior art keywords
- anion exchange
- exchange resin
- tower
- pure water
- regenerating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 112
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000011069 regeneration method Methods 0.000 title abstract description 37
- 230000008929 regeneration Effects 0.000 title abstract description 30
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 108
- 238000005349 anion exchange Methods 0.000 claims abstract description 40
- 239000002663 humin Substances 0.000 claims abstract description 37
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 230000001172 regenerating effect Effects 0.000 claims description 35
- 238000011001 backwashing Methods 0.000 claims description 25
- 239000003729 cation exchange resin Substances 0.000 claims description 19
- 238000005341 cation exchange Methods 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 150000001450 anions Chemical class 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 3
- 238000011282 treatment Methods 0.000 abstract description 18
- 239000003795 chemical substances by application Substances 0.000 abstract description 16
- 239000003456 ion exchange resin Substances 0.000 abstract description 13
- 229920003303 ion-exchange polymer Polymers 0.000 abstract description 13
- 239000007788 liquid Substances 0.000 abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000010410 layer Substances 0.000 description 16
- 230000002378 acidificating effect Effects 0.000 description 13
- 239000002253 acid Substances 0.000 description 11
- 229920001429 chelating resin Polymers 0.000 description 10
- 238000006114 decarboxylation reaction Methods 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 239000011707 mineral Substances 0.000 description 8
- 235000010755 mineral Nutrition 0.000 description 8
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 235000011121 sodium hydroxide Nutrition 0.000 description 6
- 229940023913 cation exchange resins Drugs 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- -1 polycyclic aromatic compounds Chemical class 0.000 description 4
- 125000000542 sulfonic acid group Chemical group 0.000 description 4
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000004021 humic acid Substances 0.000 description 3
- 239000008235 industrial water Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- PUKLDDOGISCFCP-JSQCKWNTSA-N 21-Deoxycortisone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2=O PUKLDDOGISCFCP-JSQCKWNTSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- FCYKAQOGGFGCMD-UHFFFAOYSA-N Fulvic acid Natural products O1C2=CC(O)=C(O)C(C(O)=O)=C2C(=O)C2=C1CC(C)(O)OC2 FCYKAQOGGFGCMD-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002509 fulvic acid Substances 0.000 description 2
- 229940095100 fulvic acid Drugs 0.000 description 2
- 239000003864 humus Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002349 well water Substances 0.000 description 2
- 235000020681 well water Nutrition 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
Images
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
本発明は、陰イオン交換樹脂を備えた純水製造装置の再生方法及び純水製造装置に関する。 TECHNICAL FIELD The present invention relates to a method for regenerating a water purifier equipped with an anion exchange resin and a water purifier.
一般に、市水又は相当するろ過水、井水等の原水から純水を製造する純水製造装置では、原水の精製手段として、設備費用負担が小さく、省エネルギーで、不純物を高度に除去し得るイオン交換樹脂を充填したイオン交換塔が設けられている。
イオン交換塔では、原水を一定量通水した後、イオン交換塔に充填されたイオン交換樹脂の再生処理が行われる(例えば、特許文献1参照)。
In general, in pure water production equipment that produces pure water from raw water such as city water, equivalent filtered water, and well water, ion An ion exchange tower filled with exchange resin is provided.
After a certain amount of raw water is passed through the ion exchange tower, the ion exchange resin packed in the ion exchange tower is regenerated (see, for example, Patent Document 1).
一方、イオン交換樹脂を用いた純水製造装置では、原水として、工業用水が用いられることが多い。工業用水には、一定量、フミンが含まれている。フミンを含む原水を通水後の純水製造装置を再生処理する際、通薬不良が発生するということが問題となっていた。
したがって、本発明の課題は、原水中にフミンが含まれている場合、純水製造装置におけるイオン交換樹脂を再生処理する際の、通薬不良を解消することにある。
On the other hand, industrial water is often used as raw water in a pure water production apparatus using an ion exchange resin. Industrial water contains a certain amount of humin. In the case of regenerating the water purifying apparatus after passing the raw water containing humin, there is a problem that the chemical passing failure occurs.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the problem of chemical feed failure during the regeneration treatment of the ion exchange resin in the water purifying apparatus when the raw water contains humin.
本発明者は、検討の結果、イオン交換樹脂を再生処理する際の、通薬不良が、原水中に含まれるフミン凝集物が陰イオン交換樹脂層の閉塞を起こすことが原因であることを見出した。
さらに、本発明者は、フミン凝集物による陰イオン交換樹脂層の閉塞を解消するために検討した結果、再生処理の薬剤の通薬前に逆洗水又は逆洗空気による逆洗処理を実施することにより、再生工程中のフミン凝集による陰イオン交換樹脂層の閉塞を最小限に抑えることに成功し、上記課題を解決するに至った。
具体的には、上記課題は、下記[1]ないし[7]により達成される。
[1] 陰イオン交換樹脂を充填した陰イオン交換塔を備えた純水製造装置の再生方法であって、
フミンを20μg/L以上含む原水を陰イオン交換塔頂部から底部へ通水した後の陰イオン交換樹脂を、逆洗水及び/又は逆洗空気を陰イオン交換塔底部から頂部へ通すことにより逆洗処理を行い、逆洗処理後の陰イオン交換樹脂を、再生薬液を陰イオン交換塔底部から頂部へ通水することにより再生処理することを特徴とする純水製造装置の再生方法。
[2] 陰イオン交換樹脂への通水は、陰イオン交換樹脂の総交換容量に対し、90%以下のアニオン負荷量となるような原水の通水を行うことを特徴とする前記[1]に記載の純水製造装置の再生方法。
[3] 陰イオン交換塔内において、陰イオン交換樹脂を充填した陰イオン交換樹脂充填層の上方に、陰イオン交換樹脂層の高さの20%以上100%以下の空間を有することを特徴とする前記[1]又は[2]に記載の純水装置の再生方法。
[4] 陰イオン交換樹脂として弱塩基性陰イオン交換樹脂を使用することを特徴とする前記[1]~[3]のいずれか1つに記載の純水製造装置の再生方法。
[5] 陰イオン交換塔の前段に、陽イオン交換樹脂を充填した陽イオン交換塔を有することを特徴とする前記[1]~[4]のいずれか1つに記載の純水製造装置の再生方法。
[6] 陰イオン交換樹脂を充填した陰イオン交換塔を備えた純水製造装置であって、
陰イオン交換塔は、フミンを20μg/L以上含む原水を塔頂部から塔底部へ通水する通水手段と、逆洗水及び/又は逆洗空気を塔底部から塔頂部へ通す逆洗手段と、再生薬液を塔底部から塔頂部へ通水する再生手段とを備えていることを特徴とする純水製造装置。
[7] 陰イオン交換塔内において、陰イオン交換樹脂を充填した陰イオン交換樹脂充填層の上方に、陰イオン交換樹脂層の高さの20%以上100%以下の空間を有することを特徴とする前記[6]に記載の純水装置。
[8] 陰イオン交換樹脂が弱塩基性陰イオン交換樹脂であることを特徴とする前記[6]又は[7]に記載の純水製造装置の再生方法。
[9] 陰イオン交換塔の前段に、陽イオン交換樹脂を充填した陽イオン交換塔を有することを特徴とする前記[6]~[8]のいずれか1つに記載の純水製造装置。
As a result of investigations, the present inventors found that the cause of poor chemical permeability during regeneration treatment of ion exchange resins is that humic aggregates contained in the raw water clog the anion exchange resin layer. rice field.
Furthermore, as a result of investigations to eliminate clogging of the anion exchange resin layer due to humin aggregates, the present inventors have found that backwashing with backwashing water or backwashing air is carried out prior to passing the chemical in the regeneration treatment. As a result, the present inventors have succeeded in minimizing clogging of the anion-exchange resin layer due to humin aggregation during the regeneration step, thereby solving the above problems.
Specifically, the above object is achieved by the following [1] to [7].
[1] A method for regenerating a pure water production apparatus equipped with an anion exchange tower filled with an anion exchange resin, comprising:
Backwash water and/or backwash air is passed through the anion exchange resin after passing raw water containing 20 μg/L or more of humin from the top to the bottom of the anion exchange tower. 1. A method for regenerating a pure water production system, comprising: regenerating an anion exchange resin after washing and backwashing by passing a regenerated chemical solution from the bottom to the top of an anion exchange column.
[2] The above [1], characterized in that the raw water is passed through the anion exchange resin such that the anion load amount is 90% or less with respect to the total exchange capacity of the anion exchange resin. The method for regenerating the pure water production device according to 1.
[3] Characterized by having a space of 20% or more and 100% or less of the height of the anion exchange resin layer above the anion exchange resin packed bed filled with the anion exchange resin in the anion exchange tower. The method for regenerating a water purifier according to the above [1] or [2].
[4] The method for regenerating a pure water production apparatus according to any one of [1] to [3], wherein a weakly basic anion exchange resin is used as the anion exchange resin.
[5] The pure water production apparatus according to any one of [1] to [4], characterized by having a cation exchange tower filled with a cation exchange resin in the front stage of the anion exchange tower. how to play.
[6] A pure water production apparatus comprising an anion exchange tower filled with an anion exchange resin,
The anion exchange tower comprises water passage means for passing raw water containing 20 μg/L or more of humin from the tower top to the tower bottom, and backwashing means for passing backwash water and/or backwash air from the tower bottom to the tower top. and regenerating means for passing a regenerating chemical solution from the bottom of the tower to the top of the tower.
[7] Characterized by having a space of 20% or more and 100% or less of the height of the anion exchange resin layer above the anion exchange resin packed bed filled with the anion exchange resin in the anion exchange tower. The pure water device according to [6] above.
[8] The method for regenerating a water purifier according to [6] or [7], wherein the anion exchange resin is a weakly basic anion exchange resin.
[9] The pure water production apparatus according to any one of [6] to [8], characterized by having a cation exchange tower filled with a cation exchange resin in the front stage of the anion exchange tower.
本発明の方法によれば、原水中にフミンが含まれている場合、純水製造装置におけるイオン交換樹脂の再生工程中のイオン交換樹脂層の閉塞を最小限に抑えることができ、運転費用の節減を図ることができる。また本発明によれば、イオン交換樹脂の再生不良が最低限に抑えられた純水製造装置を提供することができる。 According to the method of the present invention, when raw water contains humin, clogging of the ion-exchange resin layer during the regeneration process of the ion-exchange resin in the water purifier can be minimized, reducing operating costs. Savings can be achieved. Further, according to the present invention, it is possible to provide a pure water production apparatus in which regeneration failures of the ion exchange resin are minimized.
以下、本発明の実施形態について以下詳細に説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described in detail. This embodiment is an example of implementing the present invention, and the present invention is not limited to this embodiment.
本発明者は、フミン凝集物による再生不良の原因を以下のように考えている。
フミンを含有する市水もしくはこれに相当するろ過水、井水等の原水を陰イオン交換樹脂に通水すると純水製造工程における原水の通水方向の上流側に塩化物イオン、硫酸イオン、硝酸イオンの鉱酸イオンが吸着し下流側にフミンが吸着する。
再生工程において、再生薬剤として、苛性ソーダなどのアルカリを、原水の通水とは逆方向に下流側から上流側に通水を行うと再生効率が向上することが知られている。
原水の通水とは逆方向からの再生薬剤の通薬により、陰イオン交換樹脂の最下流側に吸着されたフミンが脱着する。
脱着されたフミンは再生薬剤に溶解し、フミンが溶解した再生薬剤は、さらに、鉱酸イオンが吸着された陰イオン交換樹脂の上流側を通液する。
再生薬剤が陰イオン交換樹脂の上流側を通液すると、陰イオン交換樹脂の上流側に吸着された前述の鉱酸が一気に脱着することで周囲のpHが7以下の酸性まで低下する。
フミンは酸性で凝集する性質を有しており、このような条件下でフミンが凝集し陰イオン交換樹脂層の閉塞や再生不良が発生する。
そこで、本発明者は、再生処理時の陰イオン交換樹脂からの鉱酸イオンの脱着によるpHの急激な低下を抑制する方法について検討した結果、アルカリなどの再生薬剤の通薬による再生処理工程の前に、陰イオン交換樹脂を、逆洗水又は逆洗空気により逆洗することが有効であることを見出した。
再生薬剤の通薬前に、逆洗水又は逆洗空気による逆洗工程を実施すると、イオン交換樹脂に吸着された鉱酸が分散し、通薬時の急激なpH低下が抑制される。
The present inventor considers the cause of poor regeneration due to humin aggregates as follows.
When city water containing humic acid or equivalent filtered water or raw water such as well water is passed through an anion exchange resin, chloride ions, sulfate ions, and nitric acid are added to the upstream side of the raw water flow direction in the pure water manufacturing process. Mineral acid ions of ions are adsorbed and humin is adsorbed downstream.
In the regeneration process, it is known that the regeneration efficiency is improved by passing an alkali such as caustic soda as a regeneration agent from the downstream side to the upstream side in the opposite direction to the flow of the raw water.
Humine adsorbed on the most downstream side of the anion exchange resin is desorbed by feeding the regenerating agent in the direction opposite to the feeding of the raw water.
The desorbed humin is dissolved in the regenerating agent, and the regenerating agent in which the humin is dissolved is further passed through the upstream side of the anion exchange resin on which the mineral acid ions are adsorbed.
When the regenerating agent passes through the upstream side of the anion exchange resin, the above-mentioned mineral acid adsorbed on the upstream side of the anion exchange resin is desorbed at once, and the surrounding pH is lowered to an acidity of 7 or less.
Humin has the property of aggregating in an acidic environment, and under such conditions, humin agglomerates, causing clogging and poor regeneration of the anion-exchange resin layer.
Therefore, the present inventors investigated a method for suppressing a rapid decrease in pH due to desorption of mineral acid ions from the anion exchange resin during regeneration treatment, and found that the regeneration treatment process by passing a regeneration chemical such as an alkali is applied. Previously, it was found to be effective to backwash the anion exchange resin with backwash water or backwash air.
If the backwashing step with backwashing water or backwashing air is carried out before the regenerating chemical is passed through, the mineral acid adsorbed to the ion exchange resin is dispersed, and a rapid pH drop during feeding is suppressed.
本発明の再生方法では、フミンを含む原水を通水した後の陰イオン交換樹脂を対象とする。
原水に含まれるフミンとは、河川水や湖沼水を起源とする工業用水に含まれる土壌由来の有機物の総称である。このフミンは、地域によって組成が異なることが一般的に知られており、直鎖の炭化水素と多環芳香族化合物(分子量100~10万程度)の難分解性高分子化合物である。フミンには、土壌と同じ褐色のフミン酸やフルボ酸が含まれ、これらはフミン分解生成物(腐植質)とも呼ばれる。質といわれている。フミン質とは植物などが微生物によって分解されるときの最終分解生成物で、直鎖の炭化水素と多環芳香族化合物(分子量100~10万程度)の難分解性高分子化合物である。土壌と同じ褐色のフミン酸やフルボ酸があり腐植質ともいう。
原水に含まれるフミンの濃度は、20μg/L以上であれば特に制限されない。
In the regeneration method of the present invention, an anion exchange resin after passing raw water containing humin is targeted.
Humin contained in raw water is a general term for soil-derived organic matter contained in industrial water originating from river water and lake water. It is generally known that the composition of humin differs depending on the region, and it is a hard-to-decompose high-molecular compound of linear hydrocarbons and polycyclic aromatic compounds (molecular weight of about 100 to 100,000). Humin contains the same brown humic acid and fulvic acid as soil, and these are also called humic decomposition products (humus). called quality. Humic substances are the final decomposition products when plants and the like are degraded by microorganisms, and are hard-to-decompose high-molecular compounds of linear hydrocarbons and polycyclic aromatic compounds (molecular weight of about 100 to 100,000). It contains the same brown humic acid and fulvic acid as the soil, and is also called humus.
The concentration of humin contained in raw water is not particularly limited as long as it is 20 μg/L or more.
再生の対象となる陰イオン交換樹脂としては、特に制限されず、強塩基性陰イオン交換樹脂及び弱塩基性陰イオン交換樹脂等が挙げられ、再生効率の点から、弱塩基性陰イオン交換樹脂を使用することが好ましく、再生薬剤の使用量を削減できる点から、弱塩基性陰イオン交換樹脂と強塩基性陰イオン交換樹脂を併用することがより好ましい。 The anion exchange resin to be regenerated is not particularly limited, and includes strongly basic anion exchange resins and weakly basic anion exchange resins. is preferably used, and it is more preferable to use a combination of a weakly basic anion exchange resin and a strongly basic anion exchange resin from the viewpoint that the amount of regenerating agent used can be reduced.
弱塩基性陰イオン交換樹脂としては、アンバーライト(登録商標)IRA96SB(商品名、デュポン)、アンバーライト(登録商標)IRA98(商品名、デュポン)、アンバーライト(登録商標)FPA77UPS(商品名、デュポン)のほか、グルカミン基を官能基に持つホウ素選択性アニオン交換樹脂である、アンバーライト(登録商標)IRA743(デュポン社製社)が挙げられる。
強塩基性陰イオン交換樹脂としては、アンバーライト(登録商標)IRA400J(商品名、デュポン)、アンバージェット(登録商標)4002(商品名、デュポン)、アンバーライト(登録商標)IRA900J(商品名、デュポン)等が挙げられる。
Examples of weakly basic anion exchange resins include Amberlite (registered trademark) IRA96SB (trade name, DuPont), Amberlite (registered trademark) IRA98 (trade name, DuPont), and Amberlite (registered trademark) FPA77UPS (trade name, DuPont). ), and Amberlite (registered trademark) IRA743 (manufactured by DuPont), which is a boron-selective anion exchange resin having a glucamine group as a functional group.
Examples of strongly basic anion exchange resins include Amberlite (registered trademark) IRA400J (trade name, DuPont), Amberjet (registered trademark) 4002 (trade name, DuPont), and Amberlite (registered trademark) IRA900J (trade name, DuPont). ) and the like.
本発明の再生方法では、フミンを20μg/L以上含む原水を通水後の陰イオン交換樹脂に対し、再生処理を開始する前に、逆洗処理を行う。
逆洗処理は、陰イオン交換樹脂が充填されたイオン交換塔内において、陰イオン交換樹脂に、逆洗水及び/又は逆洗空気を塔底部から塔頂部へ通すことにより実施される。
逆洗処理の時間は、フミンの凝集が発生する陰イオン交換樹脂の体積以上の通水量となる時間とすることが好ましく、具体的には、好ましくは10秒以上、より好ましくは20秒以上、より一層好ましくは25秒以上行われることが好ましい。処理時間の上限は、600秒以下であることが好ましい。
また逆洗処理では、逆洗水及び逆洗空気の流速は、速すぎると、逆洗水及び逆洗空気による混合が不十分な状態で、陰イオン交換樹脂が、陰イオン交換塔の上部に圧密される状態になる可能性があることから、陰イオン交換樹脂の種類に適した流速を設定する必要があるが、逆洗水の流速は1m/h以上10m/h以下の範囲とし、逆洗空気は、陰イオン交換樹脂量の0.1倍/min以上10倍/min以下の空気量とすることが好ましい。
In the regeneration method of the present invention, the anion exchange resin after passing raw water containing 20 μg/L or more of humin is subjected to backwashing before starting the regeneration treatment.
The backwashing treatment is carried out by passing backwash water and/or backwash air through the anion exchange resin from the bottom to the top in the ion exchange tower filled with the anion exchange resin.
The time for the backwashing treatment is preferably a time at which the amount of water passing is equal to or greater than the volume of the anion exchange resin where humin aggregation occurs. More preferably, it is performed for 25 seconds or longer. The upper limit of the processing time is preferably 600 seconds or less.
In the backwashing process, if the flow rate of the backwashing water and the backwashing air is too high, the anion exchange resin will reach the upper part of the anion exchange tower in a state where the backwashing water and the backwashing air are not sufficiently mixed. Since there is a possibility of being compacted, it is necessary to set a flow rate suitable for the type of anion exchange resin. It is preferable that the amount of air for washing is 0.1 times/min or more and 10 times/min or less of the amount of anion exchange resin.
そして逆洗処理が行われる陰イオン交換塔内において、陰イオン交換樹脂を充填した陰イオン交換樹脂充填層の上方に、空間部(以下、これを「フリーボード」ともいう)を有することが好ましい。陰イオン交換塔内に、フリーボードを有することにより、逆洗による陰イオン交換樹脂の流動が円滑に行われる。フリーボードは、陰イオン交換樹脂層の高さの20%以上100%以下にあると、陰イオン交換樹脂の円滑な流動の点とイオン交換塔の設置スペースの点から好ましい。陰イオン交換樹脂は強塩基性陰イオン交換樹脂のみ充填されるケース、弱塩基性陰イオン交換樹脂と強塩基性陰イオン交換樹脂が目板等で仕切られ個別に充填されるケース、弱塩基性陰イオン交換樹脂と強塩基性陰イオン交換樹脂が仕切りなく一括で充填されるケースが考えられる。樹脂層高はそれぞれの陰イオン交換樹脂が再生された状態で強塩基性陰イオン交換樹脂のみ充填されるケースでは強塩基性陰イオン交換樹脂の、弱塩基性陰イオン交換樹脂と強塩基性陰イオン交換樹脂が目板等で仕切られ個別に充填されるケースでは弱塩基性陰イオン交換樹脂の、弱塩基性陰イオン交換樹脂と強塩基性陰イオン交換樹脂が仕切りなく一括で充填されるケースでは両方の樹脂の層高を基準にフリーボードの高さを計算する。 In the anion exchange tower where backwashing is performed, it is preferable to have a space (hereinafter also referred to as "free board") above the anion exchange resin packed bed filled with anion exchange resin. . By providing a freeboard in the anion exchange column, the anion exchange resin can be smoothly flowed by backwashing. It is preferable that the freeboard is 20% or more and 100% or less of the height of the anion exchange resin layer from the viewpoint of smooth flow of the anion exchange resin and installation space of the ion exchange tower. The anion exchange resin is filled with only the strongly basic anion exchange resin, the case where the weakly basic anion exchange resin and the strongly basic anion exchange resin are separated by a batten etc. and filled separately, the weakly basic A case is conceivable in which the anion exchange resin and the strongly basic anion exchange resin are filled together without partition. In the case where each anion exchange resin is regenerated and only the strongly basic anion exchange resin is packed, the height of the resin bed is the height of the strongly basic anion exchange resin, the weakly basic anion exchange resin and the strongly basic anion exchange resin. In the case where the ion-exchange resin is partitioned by a batten etc. and filled individually, the weakly basic anion-exchange resin and the strongly basic anion-exchange resin are filled together without partitions. Calculate the height of the freeboard based on the layer height of both resins.
本発明の再生方法の対象は、フミンを20μg/L以上含む原水を通水後の陰イオン交換樹脂であるが、陰イオン交換樹脂への原水の通水は、陰イオン交換樹脂の総交換容量に対し、90%以下のアニオン負荷量となるような原水の通水を行うことが好ましい。
フミンを含む原水の通水後、陰イオン交換樹脂では、通水方向の上流側に塩化物イオン、硫酸イオン、硝酸イオンの鉱酸イオンが吸着し、下流側にフミンが吸着している。
陰イオン交換樹脂に再生薬剤の通薬による再生処理を行うと、フミン凝集の原因となる鉱酸イオンの脱着による急激なpHの低下が起こるが、陰イオン交換樹脂に、原水に含まれるイオンが吸着していない未使用の領域が存在すると、脱着した鉱酸イオンの一部が再吸着され、急激なpHの低下が抑制される。
なお、陰イオン交換樹脂の総交換容量に対するアニオン負荷量の下限値は好ましくは20%である。
The object of the regeneration method of the present invention is the anion exchange resin after passing the raw water containing 20 μg/L or more of humin. On the other hand, it is preferable to pass the raw water so that the anion load is 90% or less.
After the raw water containing humin is passed through, the anion exchange resin adsorbs mineral acid ions such as chloride ions, sulfate ions, and nitrate ions on the upstream side in the direction of water flow, and humins on the downstream side.
When the anion exchange resin is regenerated by passing a regenerating agent through it, a rapid drop in pH occurs due to the desorption of mineral acid ions that cause humin aggregation. If there is an unused region that is not adsorbed, some of the desorbed mineral acid ions are re-adsorbed, suppressing a rapid drop in pH.
The lower limit of the anion load amount to the total exchange capacity of the anion exchange resin is preferably 20%.
本発明の再生方法では、逆洗処理の後に、再生薬剤による再生処理を行う。
再生処理に使用される再生薬剤としては、苛性ソーダ、水酸化カリウムもしくはアンモニア等が挙げられる。
また再生薬剤の濃度は、1重量%以上25重量%以下の範囲にあることが好ましい。再生薬剤の濃度が1重量%以上であると、コストや作業時間を増大させることなく、陰イオン交換樹脂の再生処理を十分に行うことができ、また25重量%以下であると、再生薬剤による陰イオン交換樹脂の化学劣化が起こりにくくなり、また再生薬剤が接液するタンク、配管、弁類等の材質選定の制約が少なくなり、より低コストでの実施が可能となる。
In the regeneration method of the present invention, the regeneration treatment with the regeneration chemical is performed after the backwashing treatment.
Caustic soda, potassium hydroxide, ammonia, or the like can be used as the regenerating agent used in the regenerating treatment.
Moreover, the concentration of the regenerating agent is preferably in the range of 1% by weight or more and 25% by weight or less. When the concentration of the regenerating agent is 1% by weight or more, the anion exchange resin can be sufficiently regenerated without increasing the cost or working time. Chemical deterioration of the anion exchange resin is less likely to occur, and restrictions on the selection of materials for tanks, pipes, valves, etc. that are in contact with the regenerative agent are reduced, enabling implementation at a lower cost.
再生薬剤による再生処理の条件は、特に制限されず水酸化ナトリウム、水酸化カリウム、アンモニアが用いられ通薬濃度は1%以上10%以下の範囲にあることが好ましい。通薬の流速はイオン交換樹脂の体積比で1m3/h/m3-樹脂以上10m3/h/m3-樹脂の範囲にあることが好ましい。通薬量はイオン交換樹脂の体積比で10g/L-樹脂以上1000g/L-樹脂の範囲にあることが好ましい。 Conditions for the regeneration treatment with the regeneration agent are not particularly limited, and it is preferable that sodium hydroxide, potassium hydroxide, and ammonia are used and the permeable concentration is in the range of 1% or more and 10% or less. The flow rate of the chemical is preferably in the range of 1 m 3 /h/m 3 -resin to 10 m 3 /h/m 3 -resin in terms of volume ratio of the ion exchange resin. It is preferable that the volume ratio of the ion exchange resin is in the range of 10 g/L-resin to 1000 g/L-resin.
本発明の再生処理では、陰イオン交換塔を備えた純水製造装置において、陰イオン交換塔内に充填された陰イオン交換樹脂の再生を行うが、この純水製造装置は、陰イオン交換塔の前段に、陽イオン交換樹脂を充填した陽イオン交換塔を有することが好ましく、さらに、陰イオン交換塔と、陽イオン交換塔の間に、脱炭酸塔を有することがより好ましい。
純水製造装置が、原水の通水方向の上流から、陽イオン交換塔、脱炭酸塔及び陰イオン交換塔の順で配列される構成を有すると、陽イオン交換塔に、原水を通水することで、陽イオン交換樹脂に陽イオンが吸着させる代わりに、水素イオンH+が原水中に放出され、pHが1~2程度に下がる。pHが下がることで原水中の炭酸水素イオンHCO3
-が遊離炭酸CO2に変化する。CO2は脱炭酸塔で空気中に90%程度放散されるため、陰イオン交換塔の負荷が低減されることから好ましい。
In the regeneration treatment of the present invention, the anion exchange resin packed in the anion exchange tower is regenerated in a pure water production apparatus equipped with an anion exchange tower. It is preferable to have a cation exchange tower filled with a cation exchange resin in the preceding stage, and more preferably have a decarboxylation tower between the anion exchange tower and the cation exchange tower.
When the pure water production apparatus has a configuration in which a cation exchange tower, a decarboxylation tower, and an anion exchange tower are arranged in this order from the upstream in the flow direction of the raw water, the raw water is passed through the cation exchange tower. As a result, hydrogen ions H 2 + are released into the raw water instead of adsorbing cations to the cation exchange resin, and the pH drops to about 1-2. As the pH drops, the hydrogen carbonate ions HCO 3 - in the raw water change to free carbonic acid CO 2 . About 90% of CO 2 is diffused into the air in the decarboxylation tower, which is preferable because the load on the anion exchange tower is reduced.
なお、陽イオン交換塔に充填される陽イオン交換樹脂としては、強酸性陽イオン交換樹脂及び弱酸性陽イオン交換樹脂が挙げられ、強酸性陽イオン交換樹脂としては、スルホン酸基等の官能基を有するもの、例えば、アンバーライト(登録商標)IR124(官能基:スルホン酸基)(デュポン社製社)、アンバーライト(登録商標)200CT(官能基:スルホン酸基)(デュポン社製社)、オルライト(登録商標)DS-1(商品名、オルガノ(株)製)(官能基:スルホン酸基)、オルライト(登録商標)IDS-4(商品名、オルガノ(株)製)(官能基:スルホン酸基)等を用いることができる。
また弱酸性陽イオン交換樹脂としては、カルボキシル基等の官能基を有するもの、例えば、アンバーライト(登録商標)IRC76(官能基.カルボン酸基)(デュポン社製社)、アンバーライト(登録商標)FPC3500(官能基.カルボン酸基)(デュポン社製社)等を用いることができる。
The cation exchange resins packed in the cation exchange tower include strongly acidic cation exchange resins and weakly acidic cation exchange resins. As strongly acidic cation exchange resins, functional groups such as sulfonic acid groups For example, Amberlite (registered trademark) IR124 (functional group: sulfonic acid group) (manufactured by DuPont), Amberlite (registered trademark) 200CT (functional group: sulfonic acid group) (manufactured by DuPont), Orlyte (registered trademark) DS-1 (trade name, manufactured by Organo Corporation) (functional group: sulfonic acid group), Orlyte (registered trademark) IDS-4 (trade name, manufactured by Organo Corporation) (functional group: sulfone acid group) and the like can be used.
Examples of weakly acidic cation exchange resins include those having a functional group such as a carboxyl group. FPC3500 (functional group: carboxylic acid group) (manufactured by DuPont) or the like can be used.
以下、本発明の再生方法の実施形態について、図面に基づいて具体的に説明するが、本発明は以下の説明に限定されるものではない。
図1は、複層床式陽イオン交換塔および複層床式陰イオン交換塔に脱炭酸塔を組合せた2床3塔式の純水製造装置の一実施形態を示す系統図である。
フミンを含む原水(A)は上部には弱酸性陽イオン交換樹脂(WC)を、下部には強酸性陽イオン交換樹脂(SC)を夫々充填した複層床式陽イオン交換塔(C)の頂部より送入され下降流通水方式でWC層、次いでSC層を通過して塔(C)の底部より含有陽イオンが除かれた原水が送出され、脱炭酸塔(D)に送られる。ここでCO2を除去してから残存陰イオンを含む原水を上部には弱塩基性陰イオン交換樹脂(WA)を、下部には強塩基性陰イオン交換樹脂(SA)を夫々充填した複層床式陰イオン交換塔(E)の頂部より送入し下降流通水方式でWA層、次いでSA層を通過して塔(E)の底部より更に含有アニオンの除かれた処理水(F)が得られる。
Hereinafter, embodiments of the regeneration method of the present invention will be specifically described based on the drawings, but the present invention is not limited to the following description.
FIG. 1 is a system diagram showing an embodiment of a two-bed, three-tower pure water production system in which a double-bed cation exchange tower and a double-bed anion exchange tower are combined with a decarboxylation tower.
Raw water (A) containing humin is placed in a multi-bed cation exchange column (C) filled with a weakly acidic cation exchange resin (WC) in the upper part and a strongly acidic cation exchange resin (SC) in the lower part. Raw water from which cations have been removed is sent from the bottom of the tower (C) through the WC layer and then the SC layer in a descending flow system, and sent to the decarboxylation tower (D). Here, CO 2 is removed and raw water containing residual anions is placed in multiple layers in which the upper portion is filled with a weakly basic anion exchange resin (WA) and the lower portion is filled with a strongly basic anion exchange resin (SA). Introduced from the top of the bed type anion exchange tower (E), it passes through the WA layer and then the SA layer in a descending flow system, and the treated water (F) from which the contained anions are further removed from the bottom of the tower (E). can get.
フミンを含む原水(A)の通水後、複層床式陰イオン交換塔(E)の弱塩基性陰イオン交換樹脂(WA)及び強塩基性陰イオン交換樹脂(SA)の逆洗を、逆洗水又は逆洗空気(B)を、塔(E)の底部より送入して頂部より排出する上昇流逆洗方式で行い、その後、複層床式陰イオン交換塔(E)の弱塩基性陰イオン交換樹脂(WA)及び強塩基性陰イオン交換樹脂(SA)の再生を、再生薬剤(H)を、塔(E)の底部より送入して頂部より排出する上昇流再生方式で行う。
尚、塔(C)の弱酸性陽イオン交換樹脂(WC)及び強酸性陽イオン交換樹脂(SC)の再生も、同様に、再生液(G)を塔(C)の底部より送入して頂部より排出する上昇流再生方式で行う。
After passing the raw water (A) containing humin, backwashing the weakly basic anion exchange resin (WA) and the strongly basic anion exchange resin (SA) of the multi-layer anion exchange tower (E), Backwash water or backwash air (B) is fed from the bottom of the tower (E) and discharged from the top by an upward flow backwash method. Regeneration of the basic anion exchange resin (WA) and the strongly basic anion exchange resin (SA) is performed by an upward flow regeneration method in which the regeneration agent (H) is fed from the bottom of the tower (E) and discharged from the top. do in
The weakly acidic cation exchange resin (WC) and the strongly acidic cation exchange resin (SC) in the tower (C) are similarly regenerated by feeding the regenerated liquid (G) from the bottom of the tower (C). It is performed by an upward flow regeneration method that discharges from the top.
なお、純水製造装置の構成としては、単層床式の各強酸、弱酸陽イオン交換塔および単層床式の各強塩基、弱塩基陰イオン交換塔を用いた4床4塔式もしくはこれに脱炭酸塔を組合せた4床5塔式の構成であってもよい。 The configuration of the pure water production system is a four-bed four-tower system using single-layer bed type strong acid and weak acid cation exchange towers and single layer bed type strong base and weak base anion exchange towers, or A 4-bed 5-tower structure in which a decarboxylation tower is combined with the decarboxylation tower may be used.
実施例1
純水製造装置は、図1に示す複層床式陽イオン交換塔(C)及び複層床式陽陰イオン交換塔(E)と両塔(C)及び(E)との間に設けたCO2を除去するための脱炭酸塔(D)からなる2床3塔式の構成とした。
複層式陰イオン交換塔(E)内には、弱塩基性陰イオン交換樹脂(WA)としてアンバーライト96SBを1300L、強塩基性陰イオン交換樹脂(SA)としてアンバージェット4002を1050L充填した。
なお、複層式陰イオン交換塔(E)内には、フリーボードとして、弱塩基性陰イオン交換樹脂(WA)の上方に、陰イオン交換樹脂層の高さの23%の空間を設けた。
一方、複層床式陽イオン交換塔(C)内には、弱酸性陽イオン交換樹脂(WC)としてアンバーライトIRC76を650L充填し、強酸性陽イオン交換樹脂(SC)としてアンバージェット4002を1525L充填した。
Example 1
The pure water production apparatus was provided between the double-bed cation exchange tower (C) and the double-bed cation exchange tower (E) shown in FIG. 1 and both towers (C) and (E). A 2-bed, 3-tower configuration consisting of a decarboxylation tower (D) for removing CO 2 was adopted.
The multilayer anion exchange column (E) was filled with 1300 L of Amberlite 96SB as a weakly basic anion exchange resin (WA) and 1050 L of Amberjet 4002 as a strongly basic anion exchange resin (SA).
In the multilayer anion exchange tower (E), a space of 23% of the height of the anion exchange resin layer was provided above the weakly basic anion exchange resin (WA) as a freeboard. .
On the other hand, in the multi-bed cation exchange column (C), 650 L of Amberlite IRC76 was packed as a weakly acidic cation exchange resin (WC), and 1525 L of Amberjet 4002 was packed as a strongly acidic cation exchange resin (SC). filled.
フミンとフミン分解生成物を530μg/L含む原水を、上記構成を有する純水製造装置に通水し、原水から純水の製造を行った。
通水は、上記陽イオン交換塔(C)と陰イオン交換塔(E)には、それぞれ52m/h及び50m/hの流速で上記原水を下降流で通水した。
通水は、陰イオン交換樹脂の交換容量の88%に達するまで行った。
その後、陰イオン交換樹脂の逆洗処理を5分間、逆洗水を、流速3m/hにて、陰イオン交換塔(E)の底部より送入して頂部より排出する上昇流逆洗方式で行った。
続いて、陰イオン交換樹脂の再生処理を16分間、再生薬剤として、濃度1.5重量%の苛性ソーダを、11m/hの流速で陰イオン交換塔(E)の底部より送入して頂部より排出する上昇流再生方式で行ったところ、苛性ソーダの通薬流量は、12%の低下で抑えられた。
Raw water containing 530 μg/L of humin and humin decomposition products was passed through the pure water production apparatus having the above configuration to produce pure water from the raw water.
The raw water was passed through the cation exchange tower (C) and the anion exchange tower (E) at flow velocities of 52 m/h and 50 m/h, respectively, in a downward flow.
Water flow was continued until reaching 88% of the exchange capacity of the anion exchange resin.
After that, the anion exchange resin is backwashed for 5 minutes, and the backwash water is fed from the bottom of the anion exchange column (E) at a flow rate of 3 m / h and discharged from the top. gone.
Subsequently, the anion exchange resin was regenerated for 16 minutes, and caustic soda having a concentration of 1.5% by weight was fed as a regenerating agent from the bottom of the anion exchange column (E) at a flow rate of 11 m/h and then from the top. When the discharge ascending flow regeneration system was used, the flow rate of caustic soda was suppressed by a drop of 12%.
比較例1
実施例1において、陰イオン交換樹脂の逆洗処理を行わない以外は、実施例1と同様にして、フミンを含む原水の通水後、陰イオン交換樹脂の最初処理を行ったところ、苛性ソーダの通薬流量は、87%低下した。
Comparative example 1
In Example 1, in the same manner as in Example 1, except that the anion exchange resin was not backwashed, after the raw water containing humin was passed through, the anion exchange resin was first treated. The flow rate was reduced by 87%.
実施例2
実施例1において、陰イオン交換樹脂の逆洗処理を、4.8倍/minの空気量の逆洗空気で行う以外は、実施例1と同様にして、フミンを含む原水の通水後、陰イオン交換樹脂の最初処理を行ったところ、苛性ソーダの通薬流量は、12%の低下で抑えられた。
Example 2
In Example 1, in the same manner as in Example 1, except that the backwashing treatment of the anion exchange resin is performed with backwashing air at an air volume of 4.8 times/min, after passing the raw water containing humin, Initial treatment of the anion exchange resin reduced the caustic soda flow rate by 12%.
以上の結果から、再生工程の通薬前に逆洗を実施することが、フミンを含む原水を用いた陰イオン交換樹脂による純水の製造工程において、フミンの凝集を抑制し、陰イオン交換樹脂の再生時の通薬不良や汚染劣化の低減に効果があることが実証された。 From the above results, it was found that backwashing before the chemical treatment in the regeneration process suppresses the aggregation of humin in the pure water production process using an anion exchange resin using raw water containing humin, and the anion exchange resin It was demonstrated that it is effective in reducing poor chemical penetration and contamination deterioration during regeneration.
A 原水
B 逆洗水又は逆洗空気
WC 弱酸性陽イオン交換樹脂
SC 強酸性陽イオン交換樹脂
C 複層床式陽イオン交換塔
D 脱炭酸塔
WA 弱塩基性陰イオン交換樹脂
SA 強塩基性陰イオン交換樹脂
E 複層床式陰イオン交換塔
F 処理水
G、H 再生薬剤
A Raw water B Backwash water or backwash air WC Weakly acidic cation exchange resin SC Strongly acidic cation exchange resin C Multilayer bed type cation exchange tower D Decarboxylation tower WA Weakly basic anion exchange resin SA Strongly basic anion Ion exchange resin E Multi-layer anion exchange tower F Treated water G, H Regenerating agent
Claims (9)
フミンを20μg/L以上含む原水を陰イオン交換塔頂部から底部へ通水した後の陰イオン交換樹脂を、逆洗水及び/又は逆洗空気を陰イオン交換塔底部から頂部へ通すことにより逆洗処理を行い、逆洗処理後の陰イオン交換樹脂を、再生薬液を陰イオン交換塔底部から頂部へ通水することにより再生処理することを特徴とする純水製造装置の再生方法。 A method for regenerating a pure water production apparatus comprising an anion exchange tower filled with an anion exchange resin,
Backwash water and/or backwash air is passed through the anion exchange resin after passing raw water containing 20 μg/L or more of humin from the top to the bottom of the anion exchange tower. 1. A method for regenerating a pure water production system, comprising: regenerating an anion exchange resin after washing and backwashing by passing a regenerated chemical solution from the bottom to the top of an anion exchange column.
陰イオン交換塔は、フミンを20μg/L以上含む原水を塔頂部から塔底部へ通水する通水手段と、逆洗水及び/又は逆洗空気を塔底部から塔頂部へ通す逆洗手段と、再生薬液を塔底部から塔頂部へ通水する再生手段とを備えていることを特徴とする純水製造装置。 A pure water production apparatus comprising an anion exchange tower filled with an anion exchange resin,
The anion exchange tower comprises water passage means for passing raw water containing humin of 20 μg/L or more from the tower top to the tower bottom, and backwashing means for passing backwash water and/or backwash air from the tower bottom to the tower top. and regenerating means for passing a regenerating chemical solution from the bottom of the tower to the top of the tower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021191152A JP2023077744A (en) | 2021-11-25 | 2021-11-25 | Regeneration process for pure water production apparatus and pure water production apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021191152A JP2023077744A (en) | 2021-11-25 | 2021-11-25 | Regeneration process for pure water production apparatus and pure water production apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023077744A true JP2023077744A (en) | 2023-06-06 |
Family
ID=86622516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021191152A Pending JP2023077744A (en) | 2021-11-25 | 2021-11-25 | Regeneration process for pure water production apparatus and pure water production apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023077744A (en) |
-
2021
- 2021-11-25 JP JP2021191152A patent/JP2023077744A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI808053B (en) | Ultrapure water production system and ultrapure water production method | |
JP4869881B2 (en) | Ion exchange apparatus and ion exchange method | |
JP4931178B2 (en) | Condensate desalination method and apparatus | |
JP6265750B2 (en) | Method and apparatus for purifying sucrose solution | |
JP3632331B2 (en) | Ion exchange method and ion exchange column used in this ion exchange method | |
WO2018037870A1 (en) | Regenerative ion exchange device and operation method therefor | |
JP2023077744A (en) | Regeneration process for pure water production apparatus and pure water production apparatus | |
JP7225544B2 (en) | Method for producing pure water or ultrapure water | |
JP3632343B2 (en) | Pure water production method and ion exchange tower | |
JP2940651B2 (en) | Pure water production equipment | |
JP2941121B2 (en) | Ultrapure water production equipment | |
JP2016150275A (en) | Method and device for producing purified water | |
JP2742976B2 (en) | Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus | |
RU2205692C2 (en) | Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials | |
JP3951456B2 (en) | Pure water production equipment | |
JP2940648B2 (en) | Pure water production equipment | |
JPH11165168A (en) | Pure water producing apparatus | |
WO2024014104A1 (en) | Device for removing hard components, and system for producing pure water | |
JP2742975B2 (en) | Regeneration method of ion exchange device | |
JP4356987B2 (en) | Condensate demineralization treatment method and apparatus and method for forming packed bed thereof | |
JPH0363439B2 (en) | ||
JPH1147744A (en) | Condensed water treatment | |
JPH11221561A (en) | Water purifying device | |
KR960008757B1 (en) | Procedure of removing ammonium ion by use of zeolite column & its apparatus of purifying water | |
JP2022124773A (en) | Water treatment system and water treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240821 |