JP6325681B2 - 膨張弁、および、膨張弁を用いる冷凍サイクル装置 - Google Patents

膨張弁、および、膨張弁を用いる冷凍サイクル装置 Download PDF

Info

Publication number
JP6325681B2
JP6325681B2 JP2016552745A JP2016552745A JP6325681B2 JP 6325681 B2 JP6325681 B2 JP 6325681B2 JP 2016552745 A JP2016552745 A JP 2016552745A JP 2016552745 A JP2016552745 A JP 2016552745A JP 6325681 B2 JP6325681 B2 JP 6325681B2
Authority
JP
Japan
Prior art keywords
expansion valve
refrigerant
valve
pipe
flow hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016552745A
Other languages
English (en)
Other versions
JPWO2016056077A1 (ja
Inventor
裕輔 島津
裕輔 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016056077A1 publication Critical patent/JPWO2016056077A1/ja
Application granted granted Critical
Publication of JP6325681B2 publication Critical patent/JP6325681B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/04Means in valves for absorbing fluid energy for decreasing pressure or noise level, the throttle being incorporated in the closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Details Of Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Lift Valve (AREA)

Description

本発明は、膨張弁、および、膨張弁を用いる冷凍サイクル装置に関するものである。
冷凍サイクル装置は、冷凍回路の構成要素として、少なくとも、圧縮機、凝縮器、膨張弁および蒸発器を備えている。例えば、特許文献1に開示されているように、従来、膨張弁としては、弁の流通孔をニードル弁で開閉して冷媒の流量を制御する電動弁が用いられていることがある。
特開2013−234726号公報
冷凍サイクル装置において、一般的に、膨張弁は、高圧の液冷媒を減圧して低圧の低乾き度の気液二相に状態変化させる。その内部では、流路断面積の変化を適切にすることでキャビテーションの破裂を抑制し、冷媒流れの安定化を図ることで、下流側の配管における騒音を抑制することが可能である。
しかし、通常の冷凍サイクルでは、膨張弁の下流側が二相状態であり、キャビテーションがなくても気泡状態の冷媒が存在するため、キャビテーションの破裂の抑制によっては、騒音の抑制効果があまり期待できない場合もある。
また、例えば外気状態などの運転条件や、冷媒回路の条件によっては、膨張弁出口側で低圧の液冷媒となる場合がある。その場合は、膨張弁内の移動速度より音速が大きいので、出口側の圧力脈動が、冷媒流れを逆行して上流側に伝搬し、膨張弁内で共鳴して、弁体やその他の構成部品が振動し、騒音を発生させる可能性がある。従来、このような圧力伝播による騒音に対する考慮はなく、十分な低減効果が得られないことが課題である。
本発明は、上記に鑑みてなされたものであり、膨張弁に流入する冷媒および膨張弁から流出する冷媒が共に液冷媒の場合において騒音を低減することができる、膨張弁を提供することを目的とする。
上述した目的を達成するため、本発明の膨張弁は、弁室を有するケースと、前記弁室に配置された弁体とを備え、前記ケースは、第1配管が接続される側壁部と、第2配管が接続される端壁部とを含み、前記端壁部には、前記弁体によって開閉される流通孔が設けられており、前記流通孔は、該流通孔の軸方向長さをLとし、共鳴波長をλとしとき、L<λ/2を満たすように設けられている。
さらに、同目的を達成するための本発明の冷凍サイクル装置は、圧縮機、熱源熱交換器、膨張弁、室内熱交換器を備えた冷凍サイクル装置であって、前記膨張弁は、室内機に設けられており、上述した本発明の膨張弁である。
本発明によれば、膨張弁に流入する冷媒および膨張弁から流出する冷媒が共に液冷媒の場合において騒音を低減することができる。
本実施の形態1の冷凍サイクル装置の構成を示す図である。 冷凍サイクルの状態を表すモリエル線図である。 図2と比べ外気温が低い冷房運転を説明するモリエル線図である。 膨張弁の構成を示す図である。 冷媒種とサブクールとを変化させた場合の液音速を示すグラフである。 冷媒種とサブクールとを変化させた場合の液密度を示すグラフである。 冷媒種とサブクールとを変化させた場合の質量流速を示すグラフである。 流通孔での圧力伝搬の様子を示す図である。 本実施の形態2の冷凍サイクル装置の構成を示す図である。 本実施の形態3の冷凍サイクル装置の構成を示す図である。 本実施の形態3の冷凍サイクル装置に関する、図2と同態様の線図である。
以下、本発明の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。
実施の形態1.
図1は、本実施の形態1の冷凍サイクル装置の構成を示す図である。冷凍サイクル装置1は、圧縮機3、室外熱交換器としての熱源熱交換器5、膨張弁7および室内熱交換器9を備えている。あくまでも一例であるが、図1の具体的構成では、一つの室外機11と、複数の室内機13とが示されている。
室外機11と、室内機13のそれぞれとは、液管15およびガス管17によって接続されている。室外機11には、上述した圧縮機3、熱源熱交換器5および四方弁19が設けられている。室内機13のそれぞれには、上述した膨張弁7および室内熱交換器9が設けられている。
次に、上述した冷凍サイクル装置1の運転動作について説明する。
(冷房運転時)
図1において、四方弁19は、実線で示すような接続状態を提供する。冷媒は、圧縮機3に低圧ガスで入り、圧縮されて高圧ガスとなる。熱源熱交換器5は凝縮器であり、冷媒のエネルギーを熱源(空気や水)に伝達することで冷媒を凝縮し、冷媒は、高圧液冷媒となる。
熱源熱交換器5から流出した冷媒は、液管15を通り、膨張弁7を通過して低圧二相冷媒となり、室内熱交換器9に入る。室内熱交換器9は蒸発器であり、負荷側の水や空気のエネルギーを吸収して冷媒を蒸発させ、冷媒は、低圧ガスとなる。一方、熱交換された水や空気は冷却される。冷媒は、その後、ガス管17を通り、圧縮機3へ戻る。室内機13が複数あると、各室内機13への流量調整が必要であり、図示例では、膨張弁7も複数、設けられている。
(暖房運転時)
図1において、四方弁19は、破線で示すような接続状態を提供する。冷媒は、圧縮機3に低圧ガスで入り、圧縮されて高圧ガスとなる。冷媒は、ガス管17を通り、室内熱交換器9に至る。室内熱交換器9は凝縮器であり、冷媒のエネルギーを負荷側の空気や水に伝達することで冷媒を凝縮し、高圧液冷媒となる。熱交換された水や空気は加熱される。
さらに、冷媒は、膨張弁7で減圧され低圧二相となる。冷媒は、液管15を通過し、熱源熱交換器5に至る。熱源熱交換器5は蒸発器であり、熱源側の水や空気のエネルギーを吸収して冷媒を蒸発させ、冷媒は、低圧ガスとなる。熱交換された水や空気は冷却される。冷媒は、その後、圧縮機へ戻る。暖房運転においても、室内機13が複数あると、各室内機13への流量調整が必要であることは同様であり、図示例では、膨張弁7も複数、設けられている。
図2は、冷凍サイクルの状態を表すモリエル線図である。冷房運転時と暖房運転時で供給される水温が変化しても、また、室内側あるいは室外側で供給される水温が変化しても、基本的には、図2の状態である。膨張弁7の流入側で冷媒は高圧液であり、膨張弁7の流出側で冷媒は低圧二相である。
しかし、図1に示した冷凍サイクル装置で、外気温が低い冷房運転の場合は、凝縮器出口温度が低下し、冷凍サイクルの状態は、図3に示すようになる。膨張弁の入口でのエンタルピが低下するため、膨張弁の出口でも冷媒は液相である。これはあくまで一例であり、冷凍サイクル装置が設置される状況に応じて、膨張弁の出口が液冷媒となる場合が存在する。
次に、上述した膨張弁について説明する。図4は、膨張弁の構成を示す図である。膨張弁7は、第1配管21と、第2配管23との間に配置されており、すなわち、膨張弁7には、第1配管21と第2配管23とが接続されている。
膨張弁7は、ケース31と、弁体33とを備えている。ケース31の内部には、弁室35が形成されている。第1配管21は、弁室35を画定しているケース31の側壁部31aに接続されている。側壁部31aには、弁室35と、第1配管21の内部空間とを連通する貫通孔が設けられている。
一方、第2配管23は、弁室35を画定しているケース31の端壁部31bに接続されている。端壁部31bには、弁室35と、第1配管21の内部空間とを連通する流通孔37が設けられている。
流通孔37、弁室35、弁体33および第2配管23の接続部は、共通の中心線CL2を有している。中心線CL2を基準として、流通孔37は、第2配管23の接続部および弁室35の径よりも、小径である。
一方、第2配管23の接続部の中心線CL1は、流通孔37、弁室35、弁体33および第2配管23の接続部の共通の中心線CL2に対して交差しており、図示する一例では、直交している。
弁体33は、中心線CL1に沿って、且つ、流通孔37に対して進入退出可能に、移動する。
第1配管21および第2配管23は、例えば銅管よりなり、ケース31と炉中ろう付けされている。ケース31は、真鍮製の鋳造品を切削加工し、側壁部31aの外面には、第1配管21との嵌合部が設けられ、端壁部31bの外面には、第2配管23との嵌合部が設けられている。
弁体33は、ケース31の上部に設けた図示しない公知の駆動装置により、上下方向(開閉方向)に移動する。弁体33が下方向(閉弁方向)に移動し、ケース31に接触すると、すなわち、端壁部31bに接触すると、それ以上は下方向に移動できない。このように弁体33が接触する端壁部31bの箇所が、弁座39である。
弁体33の流通孔側の端部33aは、第2配管23側に近い位置ほど径が小さくなっており(先細っており)、図示する一例では、円錐形に形成されている。
流通孔37は、円柱状の孔である。また、弁座39は、理想的な幾何学形状である≡円≡であっても良いし、オリフィスに面取りをしたような截頭円錐面形状であっても良いし、あるいは、弁体との接触により生じる、実在の曲面であっても良い。
このような弁体33の端部33aの形状と、流通孔37の形状とによって、弁体33が開閉方向に移動すると、円環状の微少通路の絞り部41の通路面積が変化する。
さらに、図5〜図8を用いて、流通孔について説明する。前述の構成において、第2配管23が膨張弁7からの流出側であり、第2配管23内の冷媒が液相であるものとする。第1配管21から、液冷媒が膨張弁7に流入する。冷媒は、弁室35、流通孔37さらに第2配管23へと移動するが、液相のままである。ただし、キャビテーションにより若干の気泡が発生する場合もあるが気体の比率はごく僅かである。流通孔37から第2配管23へ至る際に、不連続に流路面積が変化するため、渦が生じ、圧力脈動が発生する。
ここで、膨張弁出口での冷媒が気液二相である場合、膨張弁の弁体と弁座で形成される絞り流路で冷媒が減圧され、気液二相となる。気液二相では、液相よりも格段に低密度のガス冷媒のため、移動速度が大きい。気液二相での音速は、液冷媒の音速と比較すると格段に小さい。よって、「移動速度>音速」となる。既存技術に示されるような絞り部下流で発生するキャビテーションの破裂や流路面積の急拡大により発生する圧力脈動(音速で移動)が、弁座経路の冷媒流れを遡ることはなく、上流側の膨張弁の弁体や周辺構成部品が振動したり、騒音を発生させることがない。
これに対して、膨張弁出口での冷媒が液相である場合、膨張弁の弁体と弁座とで形成される絞り流路において冷媒が減圧されるが、液相である。液相では、気液二相よりも格段に高密度のため、移動速度が小さい。液相の音速は、気液二相の音速と比較すると格段に大きい。よって、「移動速度<音速」となる。既存技術の説明で述べたような、絞り部下流で発生するキャビテーションの破裂や流路面積の急拡大により発生する圧力脈動(音速で移動)が、弁座経路の冷媒流れを遡る。その際、弁座経路で共鳴すると、上流側の膨張弁の弁体や周辺構成部品を振動させ、騒音を発生させる可能性がある。このため、弁座経路で共鳴させないことが品質上重要である。
図5、図6および図7にそれぞれ、冷媒種と、サブクール(=凝縮温度−凝縮器出口温度)とを変化させた場合の液音速、液密度、質量流速(=液音速×液密度)を示す。これら図5、図6および図7は、ソフトウェアREFPROP(Ver.9)より求めたものである。図5〜図7により、液音速、液密度、質量流速がそれぞれ、冷媒種およびサブクールが異なる態様にわたって、全体としてみると、どのような値の範囲を有しているかが分かる。例えば、液冷媒の音速は、図6より、200〜1000[m/s]の範囲を有している。
図7から分かるように、質量流速は、最低でも2×10^5[kg/m2h]であるが、仮に流通孔内径Dを1mmとすると、断面積は7.85×10^−7であり、冷媒循環量は565[kg/h]となる。通常の冷凍サイクル装置で、流通孔内径が1mmの膨張弁が565[kg/h]もの冷媒流量をながすことは到底不可能であり、膨張弁の流通孔を流れる冷媒の移動速度は音速より小さい。つまり、流通孔下流で発生した圧力脈動が、冷媒流れを逆行して弁体へ至る。
図8に、流通孔での圧力伝搬の様子について示す。流通孔内径をD、軸方向長さ(中心線CL2方向の寸法)をLとする。流通孔は、入口側および出口側の両側が開口しており、定在波が発生する場合の状況を、図8の中央部に示す。共鳴波長(膨張弁の固有振動数近傍で液冷媒を伝播する場合の波長)をλとすると、流通孔長さLと、正の整数nとを用いて、
(λ/2)×n=L
となる。
よって、
L<λ/2・・・(式1)
であれば、定在波がなく共鳴しない。圧力脈動の周波数が膨張弁の固有振動数の近傍であれば、膨張弁から騒音が発生しやすいが、流通孔で共鳴していないように流通孔を構成するので、膨張弁からの騒音が抑制される。
さらに、冷媒の音速a、脈動の周波数fから、
L<{a/(2f)}×n
である。
図5より、液冷媒の音速は、200〜1000[m/s]であり、聴感で気になる周波数帯は1〜20[kHz]であるので、流通孔で共鳴する条件は、
200/(2・20000) < L ≦{1000/(2・1000)}×n
であり、上限は無いが、下限は、
L≧0.005[m]
である。逆に、流通孔長さが、
L<0.005[m]・・・(式2)
であれば、定在波がなく、共鳴しない。流通孔下流で圧力脈動が発生して、弁体に到達しても、加振源としては小さく、膨張弁の騒音となりえない。本実施の形態1では、流通孔37は、L<λ/2を満たすように設けられている。
以上、繰り返しになるが、流通孔で圧力脈動が共鳴しないので、流通孔下流で圧力脈動が発生して、弁体に到達しても、加振源としては小さく、膨張弁の騒音が抑制される。そして、膨張弁を室内機内部やその近傍に配置しているので、騒音低減の効果が、聴感では増大される。
基本的には共鳴する条件は、流通孔長さに依存するが、流通孔内径の影響を受ける。一般的に開口端補正と呼ばれ、0.4×Dを加えるのが一般的である(Rayleigh,
J.W S.,「Theory of Sound」)。ただし、流通孔上流側は、弁体の影響で、ほぼ開口しておらず、流通孔下流側のみ補正すればよく、
L+0.4×D<λ/2・・・(式3)
L+0.4×D<5[mm]・・・(式4)
とすれば、定在波がなく、共鳴しない。流通孔下流で圧力脈動が発生して、弁体に到達しても、加振源としては小さく、膨張弁の騒音となりえない。流通孔内径を考慮しており、流通孔内径が大きい場合も確実に騒音を抑制する効果がある。
さらに、D<Lであれば、流通孔内部の圧力伝搬を平面波として扱うことができる。そのため(式1)から(式4)のいずれかを満たしていれば、膨張弁の騒音を抑制することができる。逆に、D≧Lであれば、流通孔内部の圧力伝搬が、集約される形で弁体に到達するため、騒音が増大するおそれがある。膨張弁出口側が液冷媒となる場合に、出口側を第1配管となるように接続しておけば、冷媒は、弁座と弁体で形成される円環状の微少通路の絞り部41を通過すると共に弁室内に拡散するので、定在波が生じる可能性が少ない。すなわち、弁座39が流通孔37の上流側に位置することとなり、流速が低下するため、振動・騒音の発生源となる圧力変動が生じにくい。よって騒音を抑制することができる。
なお、上述した四方弁19は、膨張弁7への冷媒の流れ方向を切り替える流れ方向切替部の一例である。第1の流れ態様では、冷媒は、第1配管21から膨張弁7に流入し、膨張弁7から第2配管23へ流出する。第2の流れ態様では、冷媒は、第2配管23から膨張弁7に流入し、膨張弁7から第1配管21へ流出する。流れ方向切替部は、かかる第1の流れ態様と第2の流れ態様との切り替えを実現する部分である。
冷媒は特定する必要がないが、R32、R1234yf、R1123など微燃性冷媒であれば、振動が要因で配管が疲労破壊する可能性を低減するので、燃焼リスクを低減することができる。
上述した実施の形態1によれば、第2配管が接続される端壁部に設けられ、弁体によって開閉される流通孔を、流通孔の軸方向長さをLとし、共鳴波長をλとしとき、L<λ/2を満たすように設けたので、次のような優れた利点が得られる。第1配管から液冷媒が流入し、第2配管から液冷媒が流出する場合は、流通孔を通過する液の移動速度より、液冷媒の音速の方が大きい。このため、流通孔から第2配管での不連続な経路で発生する渦による圧力脈動が、流通孔内部の冷媒流れに逆行して弁体に至る。逆行する経路である流通孔の軸方向長さが、両方が開口端である定在波波長より短ければ、共鳴が生じず、膨張弁の固有振動数と共振して、騒音を発生するのを抑制することができる。
また、流通孔がL+0.4×D<λ/2を満たすように設けられている場合、流通孔内径が大きい場合にも、きめ細かく騒音を抑制する事ができる。さらに、流通孔が、L+0.4×D<5[mm]を満たすように設けられている場合、膨張弁のような剛性の高い部材は固有振動数が高いので、聴感に影響する1から20kHzの範囲の共鳴による騒音を抑制する効果も得られる。さらに、流通孔が、L≧Dを満たすように設けられている場合にも、同様に、聴感に影響する1から20kHzの範囲の共鳴による騒音を抑制する効果が得られる。
また、第2配管から流通孔を介して冷媒が弁室に流入し、弁室から第1配管へと冷媒が流出する場合には、弁座が流通孔の上流側に位置することとなり、流速が低下するため、振動・騒音の発生源となる圧力変動が生じにくい。よって騒音を抑制することができる。
また、室内機や、室内機近傍は人から近い位置にあるので、室内機や、室内機近傍に騒音発生源があると、その騒音が気づかれやすい。よって、本実施の形態は、上述した膨張弁を室内機に設けた場合でこそ、より優れた効果を享受できるといえる。
実施の形態2.
次に、本発明の実施の形態2について説明する。図9は、本実施の形態2の冷凍サイクル装置の構成を示す図である。冷凍サイクル装置101は、圧縮機3、熱源熱交換器5、膨張弁7および室内熱交換器9を備えている。あくまでも一例であるが、図9の具体的構成では、一つの室外機11と、複数の室内機13とが示されている。
室外機11と、室内機13のそれぞれとは、液管15およびガス管17によって接続されている。室外機11には、圧縮機3、熱源熱交換器5、四方弁19、冷媒熱交換器151およびバイパス調整弁153が設けられている。室内機13のそれぞれには、室内熱交換器9が設けられている。また、室内機13の近傍に、膨張弁7が設けられている。
冷房運転時における圧縮機3の入口側と液管15との間には、バイパス管155が設けられている。バイパス調整弁153は、かかるバイパス管155に設けられている。冷媒熱交換器151は、冷房運転時における熱源熱交換器5の出口側から膨張弁7の入口側までの冷媒と、バイパス管155の冷媒との間で、熱交換を行う。
図9の冷凍サイクル装置1においては、室内機13内部には膨張弁7がないが、分岐した後の液管15に膨張弁7が接続されている。室内機13の状態、例えば吸込み空気温度と設定温度との差(大きければ流量を多く流す必要がある)や、室内熱交換器9の飽和温度と熱交換器出口温度差(室内熱交換器をどの程度有効に使用しているかを示す指標)とに応じて膨張弁7を制御して、流量を調整する必要があるので、大抵の場合、膨張弁7は室内機に近い位置に存在する。
凝縮器を出た冷媒は、冷媒間熱交換器の高圧側を通過するが、その通過後に、冷媒の一部は、バイパス調整弁で減圧され低温となり、さらに、冷媒間熱交換器の低圧側を通過する。これにより、温度が異なる高圧側と低圧側との間で熱交換が行われ、その結果、高圧側は冷却され、低圧側は加熱されることとなる。よって、膨張弁7に流入する冷媒のエンタルピは低下し、同じく図3に示すようなサイクル状態となる。この場合、膨張弁流出側の冷媒は、液冷媒である。
このような冷凍サイクル装置1においても、上記実施の形態1で説明した膨張弁7が用いられることで、上記実施の形態1と同様な作用効果が得られる。
実施の形態3.
次に、本発明の実施の形態3について説明する。図10は、本実施の形態3の冷凍サイクル装置の構成を示す図である。冷凍サイクル装置201は、圧縮機3、熱源熱交換器205、膨張弁207a、207bおよび室内熱交換器9を備えている。
全体的構成としては、冷凍サイクル装置201は、熱源機261と、複数の室内機213と、中継機263とを備えている。
熱源機261には、圧縮機3、熱源熱交換器205、四方弁219およびアキュムレータ271が設けられている。室内機213のそれぞれには、室内熱交換器9および膨張弁(第1流量制御弁)207aが設けられており、これら室内熱交換器9および膨張弁207bは直列に接続されている。中継機263には、第1分岐部273、第2分岐部275および膨張弁(第2流量制御弁)207bが設けられている。
熱源機261と、中継機263とは、熱源機側第1接続配管277および熱源機側第2接続配管279によって接続されている。室内機213と、中継機263とは、室外機側第1接続配管281および室外機側第2接続配管283によって接続されている。
膨張弁207bは、第1分岐部273と、第2分岐部275との間に配置されている。また、第2分岐部275には、複数の三方切替弁285が設けられている。
なお、図示例では、3つの室内機213が設けられており、かかる室内機213の設置数に対応して、3つの室外機側第1接続配管281、3つの室外機側第2接続配管283および3つの三方切替弁285が設けられている。
第1分岐部273の流路の一方側(合流側)は、膨張弁207bの流路の他方側に接続されており、第1分岐部273の流路の他方側(分岐側)は、室外機側第2接続配管283を介して、室内機213の流路の一方側に接続されている。
室内機213の流路の他方側は、室外機側第1接続配管281を介して、三方切替弁285の第1流路端に接続されている。三方切替弁285の第2流路端は、熱源機側第1接続配管277に接続されており、熱源機側第1接続配管277を介して、熱源機261の流路の一方側に接続されている。
熱源機261の流路の他方側は、熱源機側第2接続配管279を介して、膨張弁207bの流路の一方側に接続されている。また、かかる熱源機側第2接続配管279には、三方切替弁285の第3流路端が接続されている。
図10に示すような冷凍サイクル装置の場合、一部の室内機が冷房運転を、他の室内機が暖房運転を、同時に実現することができる。暖房運転を行う室内機は、高圧ガスが流入し、室内熱交換器が凝縮器として機能するため、膨張弁には、高圧液の冷媒が流入する。膨張弁を流出する冷媒は、さらに、冷房運転を行う室内機の膨張弁に至り、室内熱交換器を通過して低圧ガスとなるため、2つの膨張弁を通過する。そのため、図11に示されるように、暖房運転を行う室内機の膨張弁を出た冷媒は、高圧と低圧との中間である中圧である。よって、図1の冷凍サイクル装置で空気温度が変化する場合と比べて、図10の冷凍サイクル装置で空気温度が変化する場合のほうがその変化が小さくても、膨張弁の流出側の冷媒が液相となり得る。
本実施の形態3は、このような冷凍サイクル装置201において、中継機263内に設けられた膨張弁207aおよび室内機213内に設けられた膨張弁207bの、一部または全部に、上記実施の形態1で説明した膨張弁7が用いられることで、上記実施の形態1と同様な作用効果が得られる。
以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
1、101、201 冷凍サイクル装置、3 圧縮機、5、205 熱源熱交換器、7、207a、207b 膨張弁、9 室内熱交換器、13、213 室内機、21 第1配管、23 第2配管、31 ケース、31a 側壁部、31b 端壁部、33 弁体、35 弁室、37 流通孔。

Claims (5)

  1. 弁室を有するケースと、前記弁室に配置された弁体とを備え、
    前記ケースは、第1配管が接続される側壁部と、第2配管が接続される端壁部とを含み、
    前記端壁部には、前記弁体によって開閉される流通孔が設けられており、
    前記流通孔は、該流通孔の軸方向長さをLとし、共鳴波長をλとしとき、
    L<λ/2
    を満たすように設けられており、
    前記流通孔は、流通孔内径をDとしたとき、
    L+0.4×D<λ/2
    を満たすように設けられている、
    膨張弁。
  2. 前記流通孔は、
    L+0.4×D<5mm
    を満たすように設けられている、
    請求項の膨張弁。
  3. 前記流通孔は、
    L≧D
    を満たすように設けられている、
    請求項の膨張弁。
  4. 前記第2配管から前記流通孔を介して冷媒が前記弁室に流入し、該弁室から前記第1配管へと冷媒が流出する、
    請求項1〜の何れか一項の膨張弁。
  5. 圧縮機、熱源熱交換器、膨張弁、室内熱交換器を備えた冷凍サイクル装置であって、
    前記膨張弁は、室内機に設けられており、請求項1〜の何れか一項の膨張弁である、
    冷凍サイクル装置。
JP2016552745A 2014-10-08 2014-10-08 膨張弁、および、膨張弁を用いる冷凍サイクル装置 Active JP6325681B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076918 WO2016056077A1 (ja) 2014-10-08 2014-10-08 膨張弁、および、膨張弁を用いる冷凍サイクル装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018076766A Division JP6633121B2 (ja) 2018-04-12 2018-04-12 膨張弁、および、膨張弁を用いる冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2016056077A1 JPWO2016056077A1 (ja) 2017-04-27
JP6325681B2 true JP6325681B2 (ja) 2018-05-16

Family

ID=55652737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016552745A Active JP6325681B2 (ja) 2014-10-08 2014-10-08 膨張弁、および、膨張弁を用いる冷凍サイクル装置

Country Status (5)

Country Link
US (1) US10401065B2 (ja)
EP (1) EP3205916A4 (ja)
JP (1) JP6325681B2 (ja)
CN (1) CN106795981A (ja)
WO (1) WO2016056077A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6304330B2 (ja) * 2016-09-02 2018-04-04 ダイキン工業株式会社 冷凍装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081163A (ja) * 1998-07-01 2000-03-21 Shinkawa Denki Kk 調節弁を含む流体機器
JP2000356120A (ja) 1999-06-14 2000-12-26 Isuzu Motors Ltd 管の定在波防止装置
JP4079177B2 (ja) * 2006-04-07 2008-04-23 ダイキン工業株式会社 膨張弁及びこれを用いた空気調和機
JP2008045778A (ja) * 2006-08-11 2008-02-28 Daikin Ind Ltd 空気調和装置
JP2008232290A (ja) * 2007-03-20 2008-10-02 Saginomiya Seisakusho Inc ニードル弁及びこのニードル弁を有する冷凍サイクル装置
JP2010019406A (ja) * 2008-07-14 2010-01-28 Fuji Koki Corp 電動弁
JP5178842B2 (ja) * 2008-10-29 2013-04-10 三菱電機株式会社 空気調和装置
JP5563940B2 (ja) 2010-09-24 2014-07-30 ダイキン工業株式会社 膨張弁
JP4993014B2 (ja) * 2010-09-30 2012-08-08 ダイキン工業株式会社 コントローラおよび空調処理システム
EP2722616B1 (en) * 2011-06-14 2020-04-22 Mitsubishi Electric Corporation Air conditioner
JP2013108647A (ja) * 2011-11-18 2013-06-06 Daikin Industries Ltd 電子膨張弁および空気調和機
JP5696093B2 (ja) 2012-05-10 2015-04-08 株式会社鷺宮製作所 電動弁

Also Published As

Publication number Publication date
JPWO2016056077A1 (ja) 2017-04-27
EP3205916A4 (en) 2018-05-09
CN106795981A (zh) 2017-05-31
US20170307268A1 (en) 2017-10-26
WO2016056077A1 (ja) 2016-04-14
US10401065B2 (en) 2019-09-03
EP3205916A1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP4079177B2 (ja) 膨張弁及びこれを用いた空気調和機
CN106461092B (zh) 膨胀阀及制冷循环装置
JP5535098B2 (ja) 冷凍サイクル装置
JP6325681B2 (ja) 膨張弁、および、膨張弁を用いる冷凍サイクル装置
JP2005083732A (ja) エアコン配管装置
JP2008008604A (ja) 冷媒配管構造及び空気調和装置
JP2008145030A (ja) 多室形空気調和機
JP6633121B2 (ja) 膨張弁、および、膨張弁を用いる冷凍サイクル装置
JP2006336992A (ja) 空気調和機
US20200355422A1 (en) Refrigeration machine
JP2009180419A (ja) 膨張弁
JP6587017B2 (ja) 空調機
JP6138271B2 (ja) 膨張弁及びそれを搭載した冷凍サイクル装置
WO2019207717A1 (ja) 空気調和機
JP2007225163A (ja) 空気調和機
JP6791235B2 (ja) 冷凍装置
JP2005147463A (ja) 空気調和機
JP2010223470A (ja) 空気調和装置
JP2016166714A (ja) 熱生成ユニット
KR101039290B1 (ko) 이중관 열교환기
CN105318615B (zh) 节流阀及制冷设备
JP2020106129A (ja) 脈動減衰装置およびこれを備えた空気調和装置
JP2020106131A (ja) 脈動減衰装置およびこれを備えた空気調和装置
WO2016143302A1 (ja) 空気調和装置
JPH0849881A (ja) 空気調和機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180412

R150 Certificate of patent or registration of utility model

Ref document number: 6325681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250