WO2019207717A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2019207717A1
WO2019207717A1 PCT/JP2018/017022 JP2018017022W WO2019207717A1 WO 2019207717 A1 WO2019207717 A1 WO 2019207717A1 JP 2018017022 W JP2018017022 W JP 2018017022W WO 2019207717 A1 WO2019207717 A1 WO 2019207717A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expansion valve
pipe
pressure pulsation
inner diameter
Prior art date
Application number
PCT/JP2018/017022
Other languages
English (en)
French (fr)
Inventor
雅之 渡邊
祥之 多田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/017022 priority Critical patent/WO2019207717A1/ja
Publication of WO2019207717A1 publication Critical patent/WO2019207717A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the present invention relates to an air conditioner that suppresses refrigerant noise generated from an expansion valve.
  • some air conditioners are composed of a compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit having an expansion valve, and an indoor unit having an indoor heat exchanger.
  • a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping to form a refrigeration cycle.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor passes through the four-way valve and is guided to the outdoor heat exchanger.
  • the gas refrigerant is condensed in the outdoor heat exchanger to become a liquid refrigerant.
  • the liquid refrigerant is decompressed by the expansion valve and guided to the indoor heat exchanger.
  • the liquid refrigerant evaporates and vaporizes in the indoor heat exchanger, passes through the four-way valve, and is sucked into the compressor.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor passes through the four-way valve and is led to the indoor heat exchanger.
  • the gas refrigerant is condensed in the indoor heat exchanger to become a liquid refrigerant.
  • the liquid refrigerant is decompressed by the expansion valve and guided to the outdoor heat exchanger.
  • the liquid refrigerant evaporates and vaporizes in the outdoor heat exchanger, passes through the four-way valve, and is sucked into the compressor.
  • the refrigerant flowing into the expansion valve may be in a gas-liquid two-phase state due to changes in environmental conditions and operating conditions.
  • the gas-liquid two-phase state is a state in which liquid refrigerant and gas refrigerant are mixed, that is, a state in which liquid-phase refrigerant and gas-phase refrigerant are mixed.
  • coolant of a gas-liquid two-phase state flows through the piping which comprises a refrigerating cycle, it may become a slag flow.
  • liquid-phase refrigerant and gas-phase refrigerant alternately flow into the expansion valve, and the pressure of the refrigerant fluctuates at the throttle portion of the expansion valve, causing pressure pulsation. As a result, refrigerant noise is generated.
  • the expansion valve described in Patent Document 1 has a configuration in which concave and convex portions are provided on the wall surface of the main valve body of the expansion valve or the valve chamber of the expansion valve, and the concave and convex portions are spiral grooves Or it has the structure formed with a screw-shaped groove
  • This expansion valve disturbs the flow of the refrigerant by the concavo-convex part and subdivides the bubbles in the gas-liquid two-phase refrigerant, thereby suppressing the fluctuation of the refrigerant pressure in the throttle part and suppressing the occurrence of pressure pulsation. This is to reduce the generation of sound.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner in which the accuracy of suppressing refrigerant noise is effectively maintained.
  • An air conditioner is an air conditioner in which a compressor, a flow path switching unit, a condenser, an expansion valve, and an evaporator are connected by piping and a refrigerant circuit is formed.
  • a pressure pulsation suppression mechanism that suppresses propagation of pressure pulsation generated in the expansion valve when flowing through the pipe, and the pressure pulsation suppression mechanism is connected to the expansion valve on the extension of the axis of the valve body of the expansion valve Of the second pipe connected to the expansion valve on the line intersecting the axis of the valve body and the valve body, the pressure pulsation is a member connected only to the first pipe.
  • the connection portion between the suppression mechanism and the first pipe is configured such that the inner diameter of the flow path of the refrigerant changes from small to large in the direction away from the expansion valve.
  • the change in the refrigerant pressure is reduced by the change from the small inner diameter of the refrigerant flow path at the connection portion between the pressure pulsation suppressing mechanism and the first pipe, and the pressure pulsation is reduced. Propagation is suppressed and generation of refrigerant noise is suppressed. Therefore, even if the shape of the refrigerant flow path changes due to adhesion of sludge or the like in the expansion valve with long-term use, the influence on the suppression of pressure pulsation propagation is low, and the accuracy of suppressing the refrigerant noise is significantly reduced. There is nothing. That is, according to the present invention, the accuracy of suppressing the refrigerant noise can be maintained.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes an outdoor unit 10 and an indoor unit 20.
  • the outdoor unit 10 includes a compressor 11, a flow path switching unit 12, an outdoor heat exchanger 13, a muffler 14, and an expansion valve 15.
  • the indoor unit 20 has an indoor heat exchanger 21.
  • the compressor 11, the flow path switching unit 12, the outdoor heat exchanger 13, the muffler 14, the expansion valve 15, and the indoor heat exchanger 21 are connected by piping, and a refrigerant circuit 30 is configured.
  • the outdoor unit 10 and the indoor unit 20 are connected by a gas extension pipe 31 and a liquid extension pipe 32.
  • the compressor 11 sucks the refrigerant and compresses the sucked refrigerant to be in a high temperature and high pressure state.
  • the flow path switching unit 12 switches the flow of the refrigerant in the refrigerant circuit 30 and is, for example, a four-way valve.
  • the outdoor heat exchanger 13 performs heat exchange between the refrigerant and the outdoor air, and functions as a condenser during cooling operation and functions as an evaporator during heating operation. Outdoor air is supplied to the outdoor heat exchanger 13 by a fan (not shown).
  • the expansion valve 15 adjusts the flow rate of the refrigerant flowing in the refrigerant circuit 30 and expands the refrigerant under reduced pressure.
  • the muffler 14 is a pressure pulsation suppressing mechanism for suppressing the propagation of pressure pulsation generated in the expansion valve 15.
  • the muffler 14 is provided in a pipe 33 that connects the outdoor heat exchanger 13 and the expansion valve.
  • the indoor heat exchanger 21 exchanges heat between the refrigerant and room air, and functions as an evaporator during cooling operation and as a condenser during heating operation. Indoor air is supplied to the indoor heat exchanger 21 by a fan (not shown).
  • the solid line arrows indicate the refrigerant flow during the cooling operation
  • the broken line arrows indicate the refrigerant flow during the heating operation.
  • the liquid refrigerant exchanges heat with room air and evaporates to become a gas refrigerant.
  • the gas refrigerant flowing out from the indoor heat exchanger 21 is guided to the flow path switching unit 12 via the gas extension pipe 31.
  • the gas refrigerant is sucked into the compressor 11 through the flow path switching unit 12.
  • the gas refrigerant passes through the flow path switching unit 12 and is guided to the indoor heat exchanger 21 via the gas extension pipe 31.
  • the indoor heat exchanger 21 the gas refrigerant exchanges heat with room air and is condensed to become a liquid refrigerant.
  • the liquid refrigerant flowing out of the indoor heat exchanger 21 is guided to the expansion valve 15 through the liquid extension pipe 32.
  • the liquid refrigerant decompressed by the expansion valve 15 passes through the muffler 14 and is guided to the outdoor heat exchanger 13.
  • the outdoor heat exchanger 13 the liquid refrigerant exchanges heat with outdoor air and evaporates into a gas refrigerant.
  • the gas refrigerant flowing out of the outdoor heat exchanger 13 is sucked into the compressor 11 through the flow path switching unit 12.
  • FIG. 2 is an enlarged view schematically showing the interior of the expansion valve according to Embodiment 1 of the present invention. Also in FIG. 2, the solid line arrows indicate the refrigerant flow during the cooling operation, and the broken line arrows indicate the refrigerant flow during the heating operation.
  • the expansion valve 15 has a cylindrical valve body 40 and a columnar valve body 41.
  • a valve chamber 42 is formed inside the valve body 40, and the valve body 41 is disposed in the valve chamber 42.
  • the valve body 41 is configured to move along the axis AX while rotating around the axis AX by a coil (not shown).
  • a first connection port 43 and a second connection port 44 are formed in the valve body 40.
  • the first connection port 43 is formed on the bottom surface 40 ⁇ / b> A of the valve main body 40 that is located on the axis AX of the valve body 41.
  • the second connection port 44 is formed on the side surface 40 ⁇ / b> B of the valve main body 40 located on a line orthogonal to the axis AX of the valve body 41.
  • a valve seat 45 is formed in the first connection port 43 on the bottom surface 40A.
  • the opening degree of the throttle portion 46 which is a gap formed between the valve body 41 and the opening of the valve seat 45 in the valve chamber 42, is adjusted, and the expansion is performed.
  • the pressure reduction amount of the refrigerant passing through the valve 15 is adjusted.
  • the piping 33 is connected to the first connection port 43.
  • the pipe 33 is connected to the expansion valve 15 on the extension of the axis AX of the valve body 41 of the expansion valve 15.
  • the liquid extension pipe 32 is connected to the second connection port 44.
  • the liquid extension pipe 32 is connected to the expansion valve 15 on a line that intersects the axis AX of the valve body 41.
  • the muffler 14 is connected to the pipe 33.
  • the muffler 14 is not connected to the liquid extension pipe 32. That is, in the first embodiment, the muffler 14 is only connected to the pipe 33 connected to the expansion valve 15 on the extension of the axis AX of the valve body 41 of the expansion valve 15 among the pipes connected to the expansion valve 15. Is provided.
  • the liquid refrigerant that has flowed into the expansion valve 15 from the pipe 33 is squeezed and depressurized by the throttle portion 46 constituted by the valve body 41 and the valve seat 45, and then is expanded from the liquid extension pipe 32. Out to the outside.
  • the liquid refrigerant that has flowed into the expansion valve 15 from the liquid extension pipe 32 is throttled and depressurized by the throttle 46, and then flows out of the expansion valve 15 from the pipe 33.
  • FIG. 3 is a diagram schematically showing the periphery of the expansion valve and the pressure pulsation suppressing mechanism according to Embodiment 1 of the present invention.
  • the solid line arrows indicate the refrigerant flow during the cooling operation
  • the broken line arrows indicate the refrigerant flow during the heating operation.
  • the inner diameter of the muffler 14 is larger than the inner diameter of the pipe 33, and a magnitude relationship is generated in the inner diameter of the refrigerant flow path at the connection portion with the pipe 33.
  • a location where the inner diameter of the refrigerant flow path changes from small to large in the direction away from the expansion valve 15 is set.
  • a muffler 14 having an inner diameter larger than the inner diameter of the pipe 33 is connected to the upstream side, and a portion where the inner diameter of the refrigerant flow path changes from small to large is formed at the connection portion between the pipe 33 and the muffler 14.
  • the change in the refrigerant pressure is mitigated by the change in the inner diameter of the refrigerant flow path from small to large, and the propagation of pressure pulsation is suppressed. As a result, the generation of refrigerant noise is suppressed on the upstream side.
  • a muffler 14 having an inner diameter larger than the inner diameter of the pipe 33 is connected to the downstream side.
  • the change in the refrigerant pressure is mitigated by the change from the small inner diameter to the large inner diameter, and the propagation of pressure pulsation is suppressed.
  • the generation of refrigerant noise is suppressed on the downstream side.
  • the muffler 14 having an inner diameter larger than the inner diameter of the pipe 33 to which the expansion valve 15 is connected is provided in the pipe 33, and the refrigerant flow is changed by changing the inner diameter of the refrigerant flow path from small to large.
  • Pressure fluctuations are alleviated, propagation of pressure pulsation is suppressed, and generation of refrigerant noise is suppressed. Therefore, even if the shape near the throttle portion 46 is changed due to adhesion of sludge or the like in the expansion valve 15 with use for many years, the influence on suppression of pressure pulsation propagation is low, and the accuracy of suppression of refrigerant noise is low. Is not significantly reduced. That is, according to the first embodiment, it is possible to maintain the accuracy of suppressing the refrigerant noise.
  • the productivity of the air conditioner 1 in which the generation of refrigerant noise is suppressed can be improved.
  • the muffler 14 is provided only on the pipe 33 and is not provided on the liquid extension pipe 32. That is, the muffler 14 is not provided on the side where there is a portion where the inner diameter of the flow path changes from small to large, such as a flow path from the throttle 46 through the valve chamber 42. Therefore, the manufacturing cost of the air conditioner 1 can be kept low.
  • a sound absorbing material may be disposed around the valve body 41. By disposing the sound absorbing material, the refrigerant noise on the second connection port 44 side can be more efficiently suppressed.
  • FIG. 4 is a refrigerant circuit diagram of an air conditioner according to a modification of the first embodiment of the present invention.
  • FIG. 5 is an enlarged view schematically showing the inside of the expansion valve in the modification of the first embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing the periphery of an expansion valve and a pressure suppression mechanism in a modification of the first embodiment of the present invention.
  • FIG. 6 the same components as those shown in FIG. 3 are denoted by the same reference numerals. The difference from the air conditioner described with reference to FIGS.
  • the muffler 14 is connected to the liquid extension pipe 32.
  • the liquid extension pipe 32 is connected to the first connection port 43.
  • a pipe 33 is connected to the second connection port 44.
  • the muffler 14 is connected to the liquid extension pipe 32.
  • the muffler 14 is not connected to the pipe 33. That is, also in this modification, it is provided only in the liquid extension pipe 32 connected to the expansion valve 15 on the extension of the axis AX of the valve body 41 of the expansion valve 15 among the pipes constituting the refrigerant circuit 30. . Accordingly, the same effect as described above can be obtained.
  • FIG. FIG. 7 is a refrigerant circuit diagram of the air conditioner according to Embodiment 2 of the present invention.
  • the difference between the air conditioner 2 of the second embodiment and the air conditioner 1 of the first embodiment is that, in the pipe 33, between the outdoor heat exchanger 13 and the expansion valve 15, a narrow tube as a pressure pulsation suppressing mechanism. 50 is connected.
  • the inner diameter of the thin tube 50 is smaller than the inner diameter of the pipe 33.
  • the thin tube 50 is, for example, a capillary tube.
  • Other configurations are the same as those of the air conditioner 1 of the first embodiment.
  • the inner diameter of the thin tube 50 is smaller than the inner diameter of the pipe 33, and a magnitude relationship is generated in the inner diameter of the refrigerant flow path at the connecting portion between the both ends of the thin pipe 50 and the pipe 33.
  • a portion where the inner diameter of the refrigerant flow path becomes smaller in the direction away from the expansion valve 15 is set. Yes.
  • a portion where the inner diameter of the refrigerant flow path increases in the direction away from the expansion valve 15 is set. Yes.
  • a narrow tube 50 having an inner diameter smaller than the inner diameter of the pipe 33 is connected to the downstream side, and the connection portion between the pipe 33 and the second end 50B of the thin tube 50 is connected as described above.
  • FIG. 3 a portion where the inner diameter of the flow path of the refrigerant changes from small to large is formed.
  • the change in the refrigerant pressure is mitigated by the change in the inner diameter of the refrigerant flow path from small to large, and the propagation of pressure pulsation is suppressed.
  • the generation of refrigerant noise is suppressed on the downstream side.
  • a thin tube 50 having an inner diameter smaller than the inner diameter of the pipe 33 to which the expansion valve 15 is connected is provided in the pipe 33, and the refrigerant flow is changed by changing the inner diameter of the refrigerant flow path from small to large.
  • Pressure fluctuations are alleviated, propagation of pressure pulsation is suppressed, and generation of refrigerant noise is suppressed. Therefore, as in the first embodiment, the accuracy of suppressing the refrigerant noise due to aging deterioration does not occur. That is, also in the second embodiment, it is possible to maintain the accuracy of suppressing the refrigerant noise.
  • the thin tube 50 is provided only in the pipe 33 and is not provided in the liquid extension pipe 32. That is, the narrow tube 50 is not provided on the side where the portion where the inner diameter of the flow path changes from small to large, such as the flow path from the throttle 46 to the valve chamber 42 shown in FIG. Therefore, the manufacturing cost of the air conditioner 2 can be kept low.
  • FIG. 8 is a refrigerant circuit diagram of an air conditioner according to a modification of the second embodiment of the present invention.
  • the same components as those shown in FIG. 7 are denoted by the same reference numerals.
  • the difference from the air conditioner described with reference to FIG. 7 described above is that the thin tube 50 is connected to the liquid extension pipe 32.
  • the liquid extension pipe 32 is connected to the first connection port 43 and the pipe 33 is connected to the second connection port 44 as in FIG.
  • a thin tube 50 is connected to the liquid extension pipe 32.
  • the thin tube 50 is not connected to the pipe 33.
  • pressure pulsation suppression is applied only to the liquid extension pipe 32 connected to the expansion valve 15 on the extension of the axis AX of the valve body 41 of the expansion valve 15 among the pipes constituting the refrigerant circuit 30.
  • a thin tube 50 is provided as a mechanism. Accordingly, the same effect as described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Valves (AREA)

Abstract

空気調和機は、圧縮機と、流路切替部と、凝縮器と、膨張弁と、蒸発器が配管で接続され、冷媒回路が形成されている。空気調和機は、冷媒が配管を流れるとき膨張弁で発生する圧力脈動の伝搬を抑制する圧力脈動抑制機構を備えている。圧力脈動抑制機構は、膨張弁の弁体の軸線の延長上において膨張弁に接続されている第1配管と、弁体の軸線と交差する線上において膨張弁に接続されている第2配管のうち、第1配管にのみ接続されている部材である。圧力脈動抑制機構と第1配管との接続部分は、膨張弁から離れる方向へ向かって、冷媒の流路の内径が小から大へ変化するよう構成されている。

Description

空気調和機
 本発明は、膨張弁から発生する冷媒音を抑制する空気調和機に関するものである。
 従来、空気調和機には、圧縮機と、四方弁と、室外熱交換器と、膨張弁を有する室外側ユニットと、室内熱交換器を有する室内側ユニットとで構成されたものがある。圧縮機、四方弁、室外熱交換器、膨張弁、及び室内熱交換器が配管で接続され、冷凍サイクルが構成されている。
 冷房運転時、圧縮機から吐出された高温高圧のガス冷媒は四方弁を通過し、室外熱交換器へ導かれる。ガス冷媒は室外熱交換器で凝縮されて液冷媒となる。液冷媒は膨張弁で減圧され、室内熱交換器へ導かれる。液冷媒は室内熱交換器で蒸発して気化し、四方弁を通過して、圧縮機に吸入される。暖房運転時、圧縮機から吐出された高温高圧のガス冷媒は四方弁を通過し、室内熱交換器へ導かれる。ガス冷媒は室内熱交換器で凝縮されて液冷媒となる。液冷媒は膨張弁で減圧され、室外熱交換器へ導かれる。液冷媒は室外熱交換器で蒸発して気化し、四方弁を通過して圧縮機に吸入される。
 このような冷凍サイクルにおいて、環境条件、及び運転条件等の変化により、膨張弁に流入する冷媒が気液二相の状態になることがある。気液二相の状態とは、液冷媒とガス冷媒が混在した状態であり、すなわち液相の冷媒と気相の冷媒が混在した状態である。そして、気液二相の状態の冷媒が冷凍サイクルを構成する配管内を流れると、スラグ流となる場合がある。そうすると、膨張弁には液相の冷媒と気相の冷媒が交互に流入することになり、膨張弁の絞り部で冷媒の圧力が変動し、圧力脈動が発生する。その結果、冷媒音が発生する。
 このような冷媒音を低減するために、特許文献1に記載の膨張弁は、膨張弁の主弁体若しくは膨張弁の弁室の壁面に凹凸部を設ける構成、これらの凹凸部を螺旋状溝、又は螺子状溝で形成する構成を有している。この膨張弁は、冷媒の流れを凹凸部により乱し、気液二相冷媒中の気泡を細分化することにより、絞り部における冷媒の圧力の変動を抑制し、圧力脈動の発生を抑え、冷媒音の発生を低減する、というものである。
特開2005-226846号公報
 しかしながら、特許文献1に記載の膨張弁の使用を続けると、主弁体若しくは弁室の壁面の凹凸部の溝にスラッジが付着する。スラッジが付着すると凹凸部の形状が変化し、気泡の細分化の精度が低下してしまう。それに伴い、絞り部における冷媒の圧力の変動の抑制の精度が低下し、その結果、圧力脈動の発生が抑制されず、冷媒音の抑制の精度が低下するという問題がある。すなわち、特許文献1に記載の膨張弁は、冷媒音の抑制に関して経年劣化するという問題がある。
 本発明は、上記のような課題を解決するためになされたものであり、冷媒音の抑制の精度が効果的に維持される空気調和機を提供することを目的とする。
 本発明に係る空気調和機は、圧縮機と、流路切替部と、凝縮器と、膨張弁と、蒸発器が配管で接続され、冷媒回路が形成されている空気調和機であって、冷媒が前記配管を流れるとき前記膨張弁で発生する圧力脈動の伝搬を抑制する圧力脈動抑制機構を備え、前記圧力脈動抑制機構は、前記膨張弁の弁体の軸線の延長上において前記膨張弁に接続されている第1配管と、前記弁体の前記軸線と交差する線上において前記膨張弁に接続されている第2配管のうち、前記第1配管にのみ接続されている部材であり、前記圧力脈動抑制機構と前記第1配管との接続部分は、前記膨張弁から離れる方向へ向かって、前記冷媒の流路の内径が小から大へ変化するよう構成されている。
 本発明に係る空気調和機によると、圧力脈動抑制機構と第1配管との接続部分における冷媒の流路の内径の小から大への変化により、冷媒の圧力の変動が緩和され、圧力脈動の伝搬が抑制され、冷媒音の発生が抑制される。従って、長年の使用に伴い、膨張弁内においてスラッジ等の付着により冷媒流路の形状に変化が生じても、圧力脈動伝搬の抑制に与える影響は低く、冷媒音の抑制の精度が著しく低下することはない。すなわち、本発明によれば、冷媒音の抑制の精度を維持することができる。
本発明の実施の形態1に係る空気調和機の冷媒回路図である。 本発明の実施の形態1における膨張弁の内部を拡大して模式的に示す図である。 本発明の実施の形態1における膨張弁と圧力脈動抑制機構の周辺を模式的に示す図である。 本発明の実施の形態1の変形例の空気調和機の冷媒回路図である。 本発明の実施の形態1の変形例における膨張弁の内部を拡大して模式的に示す図である。 本発明の実施の形態1の変形例における膨張弁と圧力脈動抑制機構の周辺を模式的に示す図である。 本発明の実施の形態2に係る空気調和機の冷媒回路図である。 本発明の実施の形態2の変形例の空気調和機の冷媒回路図である。
 以下に、本発明における空気調和機の実施の形態を図面に基づいて詳細に説明する。尚、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさ及び形状は実際の装置とは異なる場合がある。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和機の冷媒回路図である。空気調和機1は、室外ユニット10と室内ユニット20とを有している。室外ユニット10は、圧縮機11と、流路切替部12と、室外熱交換器13と、マフラ14と、膨張弁15と、を有している。室内ユニット20は、室内熱交換器21を有している。圧縮機11、流路切替部12、室外熱交換器13、マフラ14、膨張弁15、及び室内熱交換器21は、配管で接続され、冷媒回路30が構成されている。室外ユニット10と室内ユニット20は、ガス延長配管31と液延長配管32で接続されている。
 圧縮機11は、冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態にするものである。
 流路切替部12は、冷媒回路30内の冷媒の流れを切り替えるものであり、例えば四方弁である。
 室外熱交換器13は、冷媒と室外空気との間で熱交換を行うものであり、冷房運転時は凝縮器として機能し、暖房運転時は蒸発器として機能する。室外熱交換器13には、不図示のファンにより室外空気が供給される。
 膨張弁15は、冷媒回路30内を流れる冷媒の流量の調整等を行うものであり、冷媒を減圧して膨張させる。
 マフラ14は、膨張弁15で発生する圧力脈動の伝搬を抑制するための圧力脈動抑制機構である。マフラ14は、室外熱交換器13と膨張弁とを接続する配管33に設けられている。
 室内熱交換器21は、冷媒と室内空気との間で熱交換を行うものであり、冷房運転時は蒸発器として機能し、暖房運転時は凝縮器として機能する。室内熱交換器21には、不図示のファンにより室内空気が供給される。
 図1において、実線の矢印は冷房運転時の冷媒の流れを示し、破線の矢印は暖房運転時の冷媒の流れを示している。冷房運転時、圧縮機11から高温高圧のガス冷媒が吐出されると、ガス冷媒は流路切替部12を通過し、室外熱交換器13へ導かれる。室外熱交換器13で、ガス冷媒は室外空気と熱交換し凝縮され、液冷媒となる。室外熱交換器13から流出した液冷媒はマフラ14を通過し、膨張弁15へ導かれる。膨張弁15で減圧された液冷媒は、液延長配管32を介して室内熱交換器21へ導かれる。室内熱交換器21において、液冷媒は室内空気と熱交換し、蒸発しガス冷媒となる。室内熱交換器21から流出したガス冷媒は、ガス延長配管31を介して、流路切替部12に導かれる。ガス冷媒は流路切替部12を経て、圧縮機11に吸入される。
 暖房運転時、圧縮機11から高温高圧のガス冷媒が吐出されると、ガス冷媒は流路切替部12を通過し、ガス延長配管31を介して室内熱交換器21へ導かれる。室内熱交換器21で、ガス冷媒は室内空気と熱交換し凝縮され、液冷媒となる。室内熱交換器21から流出した液冷媒は、液延長配管32を介して膨張弁15へ導かれる。膨張弁15で減圧された液冷媒は、マフラ14を通過し、室外熱交換器13へ導かれる。室外熱交換器13において、液冷媒は室外空気と熱交換し、蒸発しガス冷媒となる。室外熱交換器13から流出したガス冷媒は、流路切替部12を経て、圧縮機11に吸入される。
 図2は、本発明の実施の形態1における膨張弁の内部を拡大して模式的に示す図である。図2においても、実線の矢印は冷房運転時の冷媒の流れを示し、破線の矢印は暖房運転時の冷媒の流れを示している。膨張弁15は、円筒状の弁本体40と柱状の弁体41を有している。弁本体40の内部に弁室42が形成されており、弁体41は弁室42内に配置されている。弁体41は、不図示のコイルにより、軸線AX周りに回転しながら、軸線AXに沿って移動するよう構成されている。弁本体40には、第1接続口43と第2接続口44が形成されている。第1接続口43は、弁体41の軸線AX上に位置する、弁本体40の底面40Aに形成されている。第2接続口44は、弁体41の軸線AXとの直交線上に位置する弁本体40の側面40Bに形成されている。底面40Aにおいて、第1接続口43には弁座45が形成されている。
 弁体41を軸線AXに沿って移動させることにより、弁室42において弁体41と弁座45の開口部との間に形成されている隙間である絞り部46の開度が調節され、膨張弁15を通過する冷媒の減圧量が調節される。
 第1接続口43には、配管33が接続されている。配管33は、膨張弁15の弁体41の軸線AXの延長上において、膨張弁15に接続されている。第2接続口44には、液延長配管32が接続されている。液延長配管32は、弁体41の軸線AXと交差する線上において、膨張弁15に接続されている。上述のように、配管33にはマフラ14が接続されている。一方、液延長配管32にはマフラ14は接続されていない。すなわち、本実施の形態1では、膨張弁15に接続されている配管のうち、膨張弁15の弁体41の軸線AXの延長上において膨張弁15に接続されている配管33にのみ、マフラ14が設けられている。
 冷房運転時、配管33から膨張弁15の内部に流入した液冷媒は、弁体41と弁座45とで構成された絞り部46で絞られ減圧された後、液延長配管32から膨張弁15の外部へ流出する。暖房運転時、液延長配管32から膨張弁15の内部に流入した液冷媒は、絞り部46で絞られ減圧された後、配管33から膨張弁15の外部へ流出する。
 図3は、本発明の実施の形態1における膨張弁と圧力脈動抑制機構の周辺を模式的に示す図である。図3においても、実線の矢印は冷房運転時の冷媒の流れを示し、破線の矢印は暖房運転時の冷媒の流れを示している。本実施の形態1において、マフラ14の内径は配管33の内径よりも大きくなっており、配管33との接続部分において冷媒の流路の内径に大小関係が生じている。換言すると、冷媒回路30の一部を構成している配管33において、膨張弁15から離れる方向へ向かって、冷媒の流路の内径が小から大へ変化する箇所が設定されている。
 冷房運転において、気液二相の冷媒が配管33から流入し、絞り部46で絞られたとき、冷媒の圧力の変動による圧力脈動が生じる。この圧力脈動は、絞り部46から、冷媒運転時の冷媒回路30における上流側と下流側へ、冷媒を介して伝搬する。このとき、下流側には、絞り部46により形成されている流路より大きい径を有する弁室42が位置している。この内径の変化により冷媒の圧力の変動が緩和され、圧力脈動の伝搬が抑制される。その結果、下流側において冷媒音の発生が抑制される。上流側には、配管33の内径よりも大きい内径を有するマフラ14が接続されており、配管33とマフラ14との接続部分において、冷媒の流路の内径が小から大へ変化する箇所が形成されている。この冷媒の流路の内径の小から大へ変化により冷媒の圧力の変動が緩和され、圧力脈動の伝搬が抑制される。その結果、上流側において冷媒音の発生が抑制される。
 暖房運転において、気液二相の冷媒が液延長配管32から流入し、絞り部46で絞られたとき、冷媒の圧力の変動による圧力脈動が生じる。この圧力脈動は、絞り部46から、暖房運転時の冷媒回路30における上流側と下流側へ、冷媒を介して伝搬する。このとき、上流側には、絞り部46により形成されている流路より大きい径を有する弁室42が位置している。この内径の変化により冷媒の圧力の変動が緩和され、圧力脈動の伝搬が抑制される。その結果、上流側において冷媒音の発生が抑制される。下流側には、配管33の内径よりも大きい内径を有するマフラ14が接続されている。配管33とマフラ14との接続部分において、内径の小から大へ変化により冷媒の圧力の変動が緩和され、圧力脈動の伝搬が抑制される。その結果、下流側において冷媒音の発生が抑制される。
 本実施の形態1によれば、膨張弁15が接続されている配管33の内径より大きい内径を有するマフラ14を配管33に設け、冷媒の流路の内径の小から大への変化により冷媒の圧力の変動を緩和し、圧力脈動の伝搬を抑制し、冷媒音の発生を抑制している。従って、長年の使用に伴い、膨張弁15内において、スラッジ等の付着により絞り部46近辺の形状に変化が生じたとしても、圧力脈動伝搬の抑制に与える影響は低く、冷媒音の抑制の精度が著しく低下することはない。すなわち、本実施の形態1によれば、冷媒音の抑制の精度を維持することができる。
 本実施の形態1では、膨張弁15の構成要素である弁体41及び弁室42等に複雑な加工を施す必要がない。従って、冷媒音の発生が抑制される空気調和機1の生産性を良好なものとすることができる。
 本実施の形態1では、マフラ14を配管33にのみ設け、液延長配管32には設けていない。すなわち、絞り部46から弁室42を経る流路のように、流路の内径が小から大へ変化する部分が存在する側にはマフラ14を設けていない。従って、空気調和機1の製造コストを低く抑えることができる。
 尚、弁室42において、弁体41の周囲に吸音材を配置してもよい。吸音材に配置により、第2接続口44の側における冷媒音の抑制をより効率よく実行することができる。
 図4は、本発明の実施の形態1の変形例の空気調和機の冷媒回路図である。図4において、図1に示す構成要素と同一の構成要素には同一の符号が付されている。図5は、本発明の実施の形態1の変形例における膨張弁の内部を拡大して模式的に示す図である。図5において、図2に示す構成要素と同一の構成要素には同一の符号が付されている。図6は、本発明の実施の形態1の変形例における膨張弁と圧力抑制機構の周辺を模式的に示す図である。図6において、図3に示す構成要素と同一の構成要素には同一の符号が付されている。上述の図1~図3を用いて説明した空気調和機との相違点は、マフラ14が液延長配管32に接続されている点である。本変形例においては、第1接続口43には、液延長配管32が接続されている。第2接続口44には、配管33が接続されている。そして、液延長配管32には、マフラ14が接続されている。一方、配管33には、マフラ14は接続されていない。すなわち、本変形例においても、冷媒回路30を構成する配管のうち、膨張弁15の弁体41の軸線AXの延長上において膨張弁15に接続されている液延長配管32にのみ設けられている。従って、上述の効果と同様の効果が得られる。
実施の形態2.
 図7は、本発明の実施の形態2に係る空気調和機の冷媒回路図である。図7において、図1及び図4に示す構成要素と同一の構成要素には同一の符号が付されている。本実施の形態2の空気調和機2と実施の形態1の空気調和機1との相違点は、配管33において、室外熱交換器13と膨張弁15との間に、圧力脈動抑制機構として細管50が接続されている点である。細管50の内径は、配管33の内径より小さい。細管50は、例えば毛細管である。その他の構成は、実施の形態1の空気調和機1と同様である。
 細管50の内径は配管33の内径よりも小さくなっており、細管50の両端部と配管33との接続部分において冷媒の流路の内径に大小関係が生じている。細管50の両端部のうち膨張弁15に近い第1端部50Aと配管33との接続部分では、膨張弁15から離れる方向へ向かって、冷媒の流路の内径が小さくなる箇所が設定されている。細管50の両端部のうち膨張弁15から遠い第2端部50Bと配管33との接続部分では、膨張弁15から離れる方向へ向かって、冷媒の流路の内径が大きくなる箇所が設定されている。
 冷房運転において、気液二相の冷媒が配管33から流入し、図2に示す膨張弁15の絞り部46で絞られたとき、冷媒の圧力の変動による圧力脈動が生じる。この圧力脈動は、絞り部46から、冷媒運転時の冷媒回路30における上流側と下流側へ、冷媒を介して伝搬する。このとき、下流側には、実施の形態1において説明したように、絞り部46により形成されている流路より大きい径を有する弁室42が位置しているため、下流側において冷媒音の発生が抑制される。本実施の形態2では、上流側には、配管33の内径よりも小さい内径を有する細管50が接続されている。配管33と細管50の第2端部50Bとの接続部分において、冷媒の流路の内径が小から大へ変化する箇所が形成されている。この冷媒の流路の内径の小から大へ変化により冷媒の圧力の変動が緩和され、圧力脈動の伝搬が抑制される。その結果、上流側において冷媒音の発生が抑制される。
 暖房運転において、気液二相の冷媒が液延長配管32から流入し、図2に示す膨張弁15の絞り部46で絞られたとき、冷媒の圧力の変動による圧力脈動が生じる。この圧力脈動は、絞り部46から、暖房運転時の冷媒回路30における上流側と下流側へ、冷媒を介して伝搬する。このとき、上流側には、実施の形態1において説明したように、絞り部46により形成されている流路より大きい径を有する弁室42が位置しているため、上流側において冷媒音の発生が抑制される。本実施の形態2では、下流側には、配管33の内径よりも小さい内径を有する細管50が接続されており、上述のように、配管33と細管50の第2端部50Bとの接続部分において、冷媒の流路の内径が小から大へ変化する箇所が形成されている。この冷媒の流路の内径の小から大へ変化により冷媒の圧力の変動が緩和され、圧力脈動の伝搬が抑制される。その結果、下流側において冷媒音の発生が抑制される。
 本実施の形態2によれば、膨張弁15が接続されている配管33の内径より小さい内径を有する細管50を配管33に設け、冷媒の流路の内径の小から大への変化により冷媒の圧力の変動を緩和し、圧力脈動の伝搬を抑制し、冷媒音の発生を抑制している。従って、実施の形態1と同様、経年劣化による冷媒音の抑制の精度の低下は発生しない。すなわち、本実施の形態2においても、冷媒音の抑制の精度を維持することができる。
 また、本実施の形態2においても、膨張弁15の構成要素である弁体41及び弁室42等に複雑な加工を施す必要がない。従って、冷媒音の発生が抑制される空気調和機2の生産性を良好なものとすることができる。
 本実施の形態2においても、細管50を配管33にのみ設け、液延長配管32には設けていない。すなわち、図2に示す絞り部46から弁室42を経る流路のように、流路の内径が小から大へ変化する部分が存在する側には細管50を設けていない。従って、空気調和機2の製造コストを低く抑えることができる。
 図8は、本発明の実施の形態2の変形例の空気調和機の冷媒回路図である。図8において、図7に示す構成要素と同一の構成要素には同一の符号が付されている。上述の図7を用いて説明した空気調和機との相違点は、細管50が液延長配管32に接続されている点である。本変形例においては、図5と同様、第1接続口43には、液延長配管32が接続され、第2接続口44には、配管33が接続されている。そして、液延長配管32には、細管50が接続されている。一方、配管33には、細管50は接続されていない。すなわち、本変形例においても、冷媒回路30を構成する配管のうち、膨張弁15の弁体41の軸線AXの延長上において膨張弁15に接続されている液延長配管32にのみ、圧力脈動抑制機構として細管50が設けられている。従って、上述の効果と同様の効果が得られる。
 1 空気調和機、2 空気調和機、10 室外ユニット、11 圧縮機、12 流路切替部、13 室外熱交換器、14 マフラ、15 膨張弁、20 室内ユニット、21 室内熱交換器、30 冷媒回路、31 ガス延長配管、32 液延長配管、33 配管、40 弁本体、40A 底面、40B 側面、41 弁体、42 弁室、43 第1接続口、44 第2接続口、45 弁座、46 絞り部、50 細管、50A 第1端部、50B 第2端部、AX 軸線。

Claims (4)

  1.  圧縮機と、流路切替部と、凝縮器と、膨張弁と、蒸発器が配管で接続され、冷媒回路が形成されている空気調和機であって、
     冷媒が前記配管を流れるとき前記膨張弁で発生する圧力脈動の伝搬を抑制する圧力脈動抑制機構を備え、
     前記圧力脈動抑制機構は、前記膨張弁の弁体の軸線の延長上において前記膨張弁に接続されている第1配管と、前記弁体の前記軸線と交差する線上において前記膨張弁に接続されている第2配管のうち、前記第1配管にのみ接続されている部材であり、前記圧力脈動抑制機構と前記第1配管との接続部分は、前記膨張弁から離れる方向へ向かって、前記冷媒の流路の内径が小から大へ変化するよう構成されている空気調和機。
  2.  前記圧力脈動抑制機構は、前記第1配管の内径より大きい内径を有するマフラである請求項1に記載の空気調和機。
  3.  前記圧力脈動抑制機構は、前記第1配管の内径より小さい内径を有する細管である請求項1に記載の空気調和機。
  4.  前記細管の両端部のうち、前記膨張弁から遠い方の端部と前記第1配管との接続部分において、前記膨張弁で発生する圧力脈動の伝搬が抑制される請求項3に記載の空気調和機。
PCT/JP2018/017022 2018-04-26 2018-04-26 空気調和機 WO2019207717A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017022 WO2019207717A1 (ja) 2018-04-26 2018-04-26 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017022 WO2019207717A1 (ja) 2018-04-26 2018-04-26 空気調和機

Publications (1)

Publication Number Publication Date
WO2019207717A1 true WO2019207717A1 (ja) 2019-10-31

Family

ID=68295204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017022 WO2019207717A1 (ja) 2018-04-26 2018-04-26 空気調和機

Country Status (1)

Country Link
WO (1) WO2019207717A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113250A (ja) * 1989-09-28 1991-05-14 Mitsubishi Electric Corp 空気調和機
JPH0626738A (ja) * 1992-07-08 1994-02-04 Hitachi Ltd 空気調和装置
JPH1019420A (ja) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd 空気調和装置
JP2003202160A (ja) * 2002-01-07 2003-07-18 Taiheiyo Seiko Kk 冷媒回路
JP2011047610A (ja) * 2009-08-28 2011-03-10 Panasonic Corp 多室形空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113250A (ja) * 1989-09-28 1991-05-14 Mitsubishi Electric Corp 空気調和機
JPH0626738A (ja) * 1992-07-08 1994-02-04 Hitachi Ltd 空気調和装置
JPH1019420A (ja) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd 空気調和装置
JP2003202160A (ja) * 2002-01-07 2003-07-18 Taiheiyo Seiko Kk 冷媒回路
JP2011047610A (ja) * 2009-08-28 2011-03-10 Panasonic Corp 多室形空気調和機

Similar Documents

Publication Publication Date Title
JP4831808B2 (ja) 膨張弁および空気調和機
EP2006617A2 (en) Expansion valve and air conditioner
JP5452367B2 (ja) 気液分離器および冷凍サイクル装置
US10054344B2 (en) Expansion valve and refrigeration cycle apparatus
US11428239B2 (en) Compressor suction pipe, compression unit, and chiller
KR100474908B1 (ko) 공기조화기의 냉난방 시스템
JP2007032979A (ja) 冷凍サイクル装置
JP2006284088A (ja) 膨張弁及び冷凍装置
JP2017025975A (ja) 圧力作動弁及び冷凍サイクル
JP2007032980A (ja) 膨張弁
JP5535098B2 (ja) 冷凍サイクル装置
WO2019102728A1 (ja) 冷凍機
JP4465122B2 (ja) 空気調和機
JP6755331B2 (ja) プロペラファン及び冷凍サイクル装置
JP6650335B2 (ja) 冷媒分流器結合型膨張弁及びこれを用いた冷凍サイクル装置及び空気調和装置
WO2019207717A1 (ja) 空気調和機
JP2015124992A (ja) 熱交換器
KR100441058B1 (ko) 양 방향 박판 적층형 팽창밸브
US10401065B2 (en) Expansion valve, and refrigeration cycle system using expansion valve
JP2017072352A (ja) 冷凍装置
JPWO2018016012A1 (ja) 熱源機及び冷凍サイクル装置
WO2023238234A1 (ja) 熱交換器
JP6633121B2 (ja) 膨張弁、および、膨張弁を用いる冷凍サイクル装置
KR101956177B1 (ko) 차량용 공조장치의 머플러
JP7362558B2 (ja) 逆止弁および冷凍サイクルシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP