JP6314808B2 - 排気センサ用ヒータ制御装置 - Google Patents

排気センサ用ヒータ制御装置 Download PDF

Info

Publication number
JP6314808B2
JP6314808B2 JP2014249895A JP2014249895A JP6314808B2 JP 6314808 B2 JP6314808 B2 JP 6314808B2 JP 2014249895 A JP2014249895 A JP 2014249895A JP 2014249895 A JP2014249895 A JP 2014249895A JP 6314808 B2 JP6314808 B2 JP 6314808B2
Authority
JP
Japan
Prior art keywords
engine
time
heater
temperature
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014249895A
Other languages
English (en)
Other versions
JP2016109098A (ja
Inventor
弛 張
弛 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014249895A priority Critical patent/JP6314808B2/ja
Publication of JP2016109098A publication Critical patent/JP2016109098A/ja
Application granted granted Critical
Publication of JP6314808B2 publication Critical patent/JP6314808B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、排気センサのヒータに対する通電を制御する装置に関する。
エンジンの空燃比フィードバック制御に用いられる排気センサ(排気ガスセンサとも呼ばれる)は、酸素濃度の検知素子を備える。検知素子は、所定の活性温度以上の場合に、活性化して正常に動作する。このため、排気センサにヒータを設け、そのヒータへの通電により検知素子を加熱することが行われている(例えば、特許文献1参照)。
エンジンの始動後において、検知素子の温度をできるだけ早く活性温度以上にするためには、ヒータによる検知素子の急速加熱が必要となる。しかし、検知素子に結露による水滴が付着している状態で、ヒータによる急速加熱を行うと、検知素子に加わる熱応力が大きくなる。その結果、検知素子にクラック、素子割れ等と称される不具合が生じて、酸素濃度を正しく検出することができなくなってしまうことがある。
そこで、従来の装置として、例えば特許文献1の装置では、エンジンの始動時において、エンジン停止前のエンジン回転数、負荷及び車速やエンジンの停止時間等から、排気管温度を推定し、その排気管温度の推定値を用いて、排気管内で生じる凝縮水量を推定している。そして、凝縮水量の推定値が被水耐力上限値以下になるまでは、ヒータへの通電を禁止又は制限することにより、検知素子の熱応力による損傷を防止している。
特開2013−163978号公報
上記従来の装置では、エンジンの始動時における排気管温度を、エンジンの始動時における排気センサの検知素子の温度(以下、センサ温度ともいう)として推定し、その推定したセンサ温度に基づいて、検知素子の結露状態を判断していると言える。しかし、エンジンの始動時おけるセンサ温度(排気管温度)に影響を与える条件は、不確定なものが多いため、エンジンの始動時におけるセンサ温度を正しく推定することは難しい。つまり、エンジンの始動時におけるセンサ温度の推定精度は低い。このため、従来の装置(特許文献1の装置)では、検知素子の損傷を確実に防止するという安全サイドの観点から、被水耐力上限値と大小比較する凝縮水量の推定値(即ち、結露により検知素子に付着していると推定される水量)として、ワースト条件での最大値を用いている。
よって、従来の装置では、エンジンの始動時から通常のヒータ制御を開始するまでの時間が長くなってしまう。通常のヒータ制御とは、検知素子の温度を活性温度以上に上昇させると共に、検知素子の温度を活性温度以上の目標温度に維持するためのヒータ制御である。このため、従来の装置では、検知素子の温度を活性温度まで高めるのが遅くなり、空燃比フィードバック制御の開始が遅れてしまう。その結果、エミッションや燃費の悪化を招くこととなる。
そこで、本発明は、エンジンが停止してから次に始動するまでの間に、排気センサの検知素子に結露が生じないようにすることで、エンジンの始動時において通常のヒータ制御を早期に開始できるようにすること、目的としている。
第1発明の排気センサ用ヒータ制御装置は、エンジンの排気管に設けられた排気センサのヒータへの通電を制御する。ヒータは、排気センサが備える検知素子を加熱するためのものである。そして、この排気センサ用ヒータ制御装置は、推定手段と、エンジン停止中通電手段と、を備える。
推定手段は、エンジンが停止すると、検知素子の温度であるセンサ温度が、検知素子に結露が発生する可能性がある所定の結露発生温度まで下がるのに要する時間を推定する。そして、エンジン停止中通電手段は、エンジンが停止してから、推定手段により推定された前記時間が経過すると、ヒータに対する通電を所定の通電時間だけ実施する。
エンジンが停止した後、センサ温度が急に下がるときに、検知素子に結露が発生し易い。そこで、この排気センサ用ヒータ制御装置では、エンジンが停止してから、センサ温度が結露発生温度まで下がると推定した時間が経過すると、ヒータへの通電を所定の通電時間だけ実施することにより、センサ温度が低下する傾きを緩やかにして結露の発生を防いでいる。
この排気センサ用ヒータ制御装置によれば、検知素子に結露が生じることを防ぐことができる。このため、エンジンの始動時においては、検知素子に結露による水滴が付着していることを考慮することなく、通常のヒータ制御を早期に開始することができる。よって、検知素子を早期に活性化させることができ、延いては、空燃比フィードバック制御を早期に開始することができるようになる。
尚、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
実施形態の電子制御装置(ECU)を表す構成図である。 エンジン停止時処理を表すフローチャートである。 ソークタイマの動作を説明するフローチャートである。 エンジン停止中処理を表すフローチャートである。 エンジン始動時処理を表すフローチャートである。 実施形態の作用を説明する説明図である。
本発明が適用された実施形態の電子制御装置について説明する。以下では、電子制御装置のことを、ECUという。ECUは、「Electronic Control Unit」の略である。
図1に示す実施形態のECU1は、車両に搭載されたエンジンの排気管に設けられている排気センサ3を制御する。
排気センサ3は、例えば、エンジンの排気中の酸素濃度をリニアに検出できる空燃比センサである。排気センサ3としては、セルを1つだけ有した1セルタイプの空燃比センサでも良いし、起電力セルと酸素ポンプセルとを有した2セルタイプの空燃比センサでも良い。また、排気センサ3としては、例えば、排気中の酸素濃度に応じて電圧を生じる酸素センサでも良い。
そして、排気センサ3は、酸素濃度を検出するためのセルである検知素子5と、検知素子5を加熱するためのヒータ7とを備える。検知素子5は、所定の活性温度(例えば600℃)以上で正常に機能するため、ヒータ7が備えられている。
ECU1は、当該ECU1の動作を司るマイクロコンピュータ(以下、マイコンという)11と、エンジンの停止中においてマイコン11を自動的に起動させるためのタイマICであるソークタイマ13と、電源部15と、を備える。
マイコン11は、プログラムを実行するCPU17と、CPU17によって実行されるプログラムや固定のデータが記憶されたROM18と、CPU17による演算結果が記憶されるRAM19と、を備える。以下に説明するマイコン11の動作は、CPU17がROM18内のプログラムを実行することによって実現される。
電源部15は、マイコン11を動作させるための主電源電圧Vmを出力する主電源回路15mと、ソークタイマ13を動作させるための副電源電圧Vsを出力する副電源回路15sと、を備える。
副電源回路15sには、車両のバッテリ21のプラス端子の電圧(以下、バッテリ電圧という)VBが常時供給されている。そして、副電源回路15sは、そのバッテリ電圧VBから副電源電圧Vsを常時生成して出力する。
また、主電源回路15mには、ECU1の外部に設けられた給電用のメインリレー(ML)23を介して、バッテリ電圧VBが供給される。
メインリレー23は、車両のイグニッションスイッチ(以下、IGSWと記載する)25がオンしている場合、或いは、ソークタイマ13からの電源起動信号Si2がハイの場合、或いは、マイコン11からの電源保持信号Shがハイの場合に、オンするようになっている。IGSW25は、エンジンの電源スイッチであり、車両の使用者によってオンとオフとに操作される。
尚、以下の説明では、バッテリ21のプラス端子からメインリレー23を介してECU1に供給されるバッテリ電圧を、改めて、バッテリ電圧VPという。そして、主電源回路15mは、メインリレー23を介して供給されるバッテリ電圧VPから主電源電圧Vmを生成して出力する。
具体的に説明すると、ECU1には、IGSW25を介して、そのIGSW25のオン/オフを示すIGSW信号Si1が入力される。IGSW信号Si1は、IGSW25がオンされるとハイになり、オフされるとローになる。そして、ECU1には、メインリレー23をオンさせるための駆動回路27が備えられている。駆動回路27は、IGSW信号Si1と、ソークタイマ13からの電源起動信号Si2と、マイコン11からの電源保持信号Shとの、少なくとも1つがハイである場合に、メインリレー23のコイルに通電して該メインリレー23をオンさせる。尚、駆動回路27もソークタイマ13と同様に、副電源電圧Vsを受けて動作する。
よって、IGSW信号Si1と電源起動信号Si2と電源保持信号Shとの何れかがハイである場合に、メインリレー23がオンして、主電源回路15mにバッテリ電圧VPが供給され、主電源回路15mからマイコン11へ主電源電圧Vmが出力される。
また、電源部15は、主電源回路15mが主電源電圧Vmの出力を開始した時に、その主電源電圧Vmが安定すると見なされる微少時間だけマイコン11にリセット信号を出力する、所謂パワーオンリセット機能も備えている。このため、主電源回路15mが主電源電圧Vmの出力を開始すると、マイコン11が起動することとなる。
一方、ソークタイマ13は、時間を計測するためのカウンタ28と、カウンタ28のカウント値と比較されるタイマ値が記憶されるレジスタ29と、を備える。
カウンタ28は、ソークタイマ13内で発生されるクロックによってカウントアップする。カウンタ28のカウント値は、当該ソークタイマ13が計測する時間の値に相当し、以下では、ソークタイムともいう。
そして、ソークタイマ13は、ソークタイムとレジスタ29内のタイマ値とを比較し、ソークタイムが増加してタイマ値と一致したときに、電源起動信号Si2の出力レベルをローからハイに変化させ、その出力状態を保持する。
更に、ソークタイマ13は、以下の(A),(B)の機能を有している。
(A)マイコン11から通信線31を介して与えられる指令(コマンド)に応じて、ソークタイムのリセットと、電源起動信号Si2のリセットと、カウンタ28のカウント動作のスタートとが、実施される。尚、電源起動信号Si2のリセットとは、ローへのリセットである。
(B)レジスタ29へは、マイコン11から通信線31を介して任意のタイマ値が書き込まれる。
一方更に、ECU1は、データの書き換えが可能な不揮発性メモリ33と、IGSW信号Si1をマイコン11に入力させるためのバッファ回路35と、排気センサ3のヒータ7に通電するためのトランジスタ37と、センサ制御回路39と、を備えている。
トランジスタ37は、マイコン11によってオン/オフが制御される。そして、トランジスタ37がオンすることで、バッテリ21からヒータ7に通電される。尚、ヒータ7の電源として、図1の例ではバッテリ電圧VBを用いているが、メインリレー23を介して供給されるバッテリ電圧VPでも良い。何れにしても、ヒータ7に対する通電の電力源はバッテリ21である。
センサ制御回路39は、排気センサ3の検知素子5に印加する電圧又は電流を制御して、検知素子5により検出された排気中の酸素濃度を表す検出信号を、マイコン11に出力する。その酸素濃度の検出信号は、エンジンの空燃比制御に用いられる。
更に、センサ制御回路39は、検知素子5のインピーダンスを検出する機能も有している。例えば、センサ制御回路39は、検知素子5に、インピーダンス測定用電流を印加すると共に、インピーダンス測定用電流を印加する前と後との各々における検知素子5の両端電圧の差分から、検知素子5のインピーダンスを検出する。
そして、センサ制御回路39によるインピーダンスの検出結果は、マイコン11に入力される。検知素子5のインピーダンスは、検知素子5の温度(以下、センサ温度という)と相関がある。このため、マイコン11は、検知素子5のインピーダンスの検出結果をセンサ温度に換算することにより、センサ温度を検出する。尚、変形例として、例えば、センサ制御回路39は、検知素子5にインピーダンス測定用電流を印加する前と後との各々における検知素子5の両端電圧の情報を、マイコン11に出力しても良い。その場合、マイコン11が、センサ制御回路39から入力される情報に基づいて、検知素子5のインピーダンスを算出すれば良い。
また、ECU1には、エンジンの冷却水温を表す信号や外気温を表す信号など、エンジンの制御に関係する様々な信号が入力される。そして、それらの信号は、図示しない入力回路を介して、マイコン11に入力される。尚、外気温は、排気管の外部の大気温度であり、例えば、車両に設けられている外気温センサによって検出される。また例えば、エンジンの吸気温度を検出する吸気温センサによる検出結果を、外気温として扱っても良い。
ECU1では、車両の使用者によってIGSW25がオンされると、メインリレー23がオンして、マイコン11が起動する。そして、マイコン11は、IGSW25のオンに伴い起動すると、電源保持信号Shをハイにする。よって、その後にIGSW25がオフされても、メインリレー23はオンし続け、その結果、マイコン11は動作し続けることができる。
そして、マイコン11は、IGSW25がオフされたことを検知すると、動作を停止するまでに実施すべきシャットダウン処理を行い、そのシャットダウン処理の最後で、電源保持信号Shをローにする。すると、メインリレー23がオフして、マイコン11は動作を停止することとなる。
また、マイコン11が、IGSW25のオフを検知してから電源保持信号Shをローにするまでの間に、ソークタイマ13のレジスタ29に任意のタイマ値を書き込むと共に、ソークタイマ13のスタートを実施したとする。尚、ソークタイマ13のスタートとは、ソークタイマ13におけるソークタイムを0にし、且つ、電源起動信号Si2をローにさせた状態で、カウンタ28のカウント動作をスタートさせることである。
その場合には、IGSW25のオフによりエンジンが停止してから(厳密にはソークタイマ13のスタートが実施されてから)、レジスタ29内のタイマ値に相当するタイマ時間が経過すると、ソークタイマ13からの電源起動信号Si2がハイになり、メインリレー23がオンする。よって、マイコン11は、IGSW23がオフでエンジンが停止している期間であっても、ソークタイマ13からの電源起動信号Si2がハイになることで、起動する。尚、カウンタ28をカウント動作させるクロックの周期を「Tc」とし、レジスタ29内のタイマ値を「Nt」とすると、上記タイマ時間は、「Tc×Nt」となる。
次に、マイコン11が実行する処理について説明する。
マイコン11は、IGSW25がオフされたことを検出すると、図2のエンジン停止時処理を実行する。IGSW25がオフされるとエンジンは停止するため、図2のエンジン停止時処理は、エンジンが停止すると実行されることとなる。また、マイコン11は、IGSW25のオン/オフ状態をIGSW信号Si1に基づいて検出する。
図2に示すように、マイコン11は、エンジン停止時処理を開始すると、S110にて、第1時間T1を推定して算出する。
第1時間T1は、図6に示すように、センサ温度が結露発生温度まで下がるのに要する時間(図6における時刻t1から時刻t2までの時間)である。結露発生温度は、排気センサ3の検知素子5に結露が発生する可能性がある温度であり、本実施形態では例えば100℃を想定しているが、それよりも低い温度(例えば80℃等)でも良い。
例えば、ROM18には、第1時間T1を推定して算出するための第1時間推定用マップとして、エンジン停止時のセンサ温度及び外気温と、第1時間T1との関係を表すデータマップが記憶されている。その第1時間推定用マップは、実験結果または理論計算に基づいて設定されている。
そして、マイコン11は、S110では、第1時間推定用マップから、現在のセンサ温度及び外気温(即ち、今回のエンジン停止時におけるセンサ温度及び外気温)に対応する第1時間T1を、例えば補間演算等によって算出する。第1時間T1を算出するのに用いる現在のセンサ温度及び外気温としては、例えば、当該エンジン停止時処理が開始される前の最新の検出値でも良いし、マイコン11がS110でセンサ温度及び外気温を検出して、その各検出値を用いても良い。
また、第1時間推定用マップの特性としては、外気温が同じであれば、センサ温度が高いほど、第1時間T1が大きい値に算出されるようになっている。また、外気温が高いほど、センサ温度の低下速度が下がるため、第1時間推定用マップの特性としては、センサ温度が同じであれば、外気温が高いほど、第1時間T1が大きい値に算出されるようになっている。
つまり、マイコン11は、S110では、エンジン停止時のセンサ温度及び外気温に基づいて、第1時間T1を推定している。エンジン停止時のセンサ温度は、通常は活性温度以上の高温であるため、検知素子5のインピーダンスから精度良く検出することができる。また、エンジン停止時の外気温も、外気温センサや吸気温センサ等の温度センサによって精度良く検出することができる。そして、エンジン停止後のセンサ温度の低下速度は、外気度から簡易に推定することが可能である。よって、第1時間T1は精度良く推定することができる。
尚、第1時間T1を推定するための情報として、センサ温度及び外気温だけでなく、他の情報も加えれば、更に推定精度を上げることができる。例えば、エンジンの冷却水が通る流路が排気センサ3の近くにある場合など、エンジンの冷却水温がセンサ温度に影響するのであれば、マイコン11はエンジン停止時の冷却水温も用いて第1時間T1を推定するように構成しても良い。その場合、例えば、第1時間推定用マップを、エンジン停止時のセンサ温度、外気温、及び冷却水温と、第1時間T1との関係を表すデータマップにしておく。そして、マイコン11は、その第1時間推定用マップから、現在のセンサ温度、外気温、及び冷却水温に対応する第1時間T1を、補間演算等によって算出すれば良い。
図2の説明に戻る。マイコン11は、次のS120にて、第2時間T2と、エンジン停止中デューティDsとを、例えば現在の外気温(即ち、今回のエンジン停止時における外気温)に基づいて算出する。尚、現在の外気温としては、例えばS110で第1時間T1を算出するのに用いた外気温と同じ値を用いる。また、マイコン11は、算出した第2時間T2及びエンジン停止中デューティDsを、例えば不揮発性メモリ33に格納する。
第2時間T2は、図6に示すように、IGSW25がオフになっているエンジン停止中において、排気センサ3のヒータ7に通電する通電時間(図6における時刻t2から時刻t3までの時間)である。尚、図6及び以下の説明において「ヒータ制御デューティ」とは、ヒータ7に流す電流をデューティ制御する際のデューティであり、具体的には、トランジスタ37をデューティ制御する際のデューティである。「デューティ」とは、詳しくは「デューティ比」のことである。このため、図6において、ヒータ制御デューティが0でない期間は、ヒータ7への通電を実施している期間である。
エンジン停止中デューティDsは、図6に示すように、エンジン停止中において、ヒータ7に第2時間T2だけ通電する際のヒータ制御デューティである。
そして、第2時間T2とエンジン停止中デューティDsは、図6に示すように、センサ温度が前述の結露発生温度から、それよりも低い所定温度(この例ではエンジン停止時の外気温)まで下がる際の低下傾きが、緩やかな所定値となるように決定される。換言すれば、第2時間T2とエンジン停止中デューティDsは、センサ温度が結露発生温度から上記所定温度まで下がる時間が、一定となるように決定される。尚、図6では、センサ温度が結露発生温度から外気温まで下がる時間と、第2時間T2とが、同じのように図示しているが、必ずしもそうではない。
例えば、ROM18には、第2時間T2とエンジン停止中デューティDsとからなる通電実施情報を算出するための通電実施情報算出用マップが記憶されている。その通電実施情報算出用マップは、エンジン停止時の外気温と、第2時間T2及びエンジン停止中デューティDsとの関係を表すデータマップであり、実験結果または理論計算に基づいて設定されている。そして、マイコン11は、S120では、通電実施情報算出用マップから、現在の外気温に対応する第2時間T2とエンジン停止中デューティDsとを、例えば補間演算等によって算出する。また、通電実施情報算出用マップの特性としては、例えば、外気温が高いほど、第2時間T2が小さい値に算出され、エンジン停止中デューティDsも小さい値に算出されるようになっている。
尚、第2時間T2とエンジン停止中デューティDsとを算出するための情報としては、外気温だけでなく、他の情報を加えても良い。例えば、前述したようにエンジンの冷却水温がセンサ温度に影響するのであれば、マイコン11はエンジン停止時の冷却水温も用いて第2時間T2及びエンジン停止中デューティDsを算出するように構成しても良い。その場合、例えば、通電実施情報算出用マップを、エンジン停止時の外気温及び冷却水温と、第2時間T2及びエンジン停止中デューティDsとの関係を表すデータマップにしておく。そして、マイコン11は、その通電実施情報算出用マップから、現在の外気温及び冷却水温に対応する第2時間T2及びエンジン停止中デューティDsを、補間演算等によって算出すれば良い。
図2の説明に戻る。マイコン11は、次のS130にて、エンジン停止中にヒータ7への通電を実施することに関して、バッテリ21の電力が足りるか否かを判定する。
具体的には、マイコン11は、ヒータ7への通電を、S120で算出したエンジン停止中デューティDsで、且つ、S120で算出した第2時間T2だけ、実施するのに必要な電力量W1を算出する。尚、電力量W1は、例えば、ROM18内に用意されたデータマップあるいは計算式に基づいて算出されるように構成することができる。更に、マイコン11は、その算出した電力量W1と、スタータによってエンジンを始動させるのに必要な電力量W2とを、加算した合計電力量W3を算出する。尚、合計電力量W3は所定のマージン分だけ大きく算出される。そして、マイコン11は、現在バッテリ21に蓄積されている電力量W4を、例えば、バッテリ21の充放電収支を管理している他のECUから取得し、「W4≧W3」であるか否かを判定する。つまり、マイコン11は、合計電力量W3がバッテリ21に蓄積されている否かを判定する。そして、マイコン11は、「W4≧W3」であって、バッテリ21に合計電力量W3が蓄積されていれば、バッテリ21の電力が足りると判定して、S140に進む。
マイコン11は、S140では、S110で算出した第1時間T1をソークタイマ13にセットして、ソークタイマ13をスタートさせる。具体的には、マイコン11は、ソークタイマ13のレジスタ29に、タイマ値として、S110で算出した第1時間T1に相当する値(即ち「T1/Tc」)を書き込む。そして、マイコン11は、ソークタイマ13に指令を与えることにより、ソークタイムのリセットと、電源起動信号Si2のリセットと、カウンタ28のカウント動作のスタートとを行う。尚、ソークタイムと電源起動信号Si2のリセットが、IGSW25のオン中に行われているのであれば、S140では、カウンタ28のカウント動作のスタートだけを行えば良い。
そして、マイコン11は、次のS150にて、IGSW25のオフ後に実施すべきシャットダウン処理を行う。シャットダウン処理としては、例えば、保存が必要な所定のデータを不揮発性メモリ33に退避させるデータ退避処理等があるが、マイコン11は、そのシャットダウン処理における最後で、電源保持信号Shをハイからローにする。すると、メインリレー23がオフして、マイコン11は動作を停止することなる。尚、S120で算出した第2時間T2及びエンジン停止中デューティDsは、シャットダウン処理の一部をなす上記データ退避処理によって不揮発性メモリ33に格納しても良い。
ここで、マイコン11が上記S140でソークタイマ13をスタートさせると、ソークタイマ13では、図3に示すように、カウンタ28がカウントアップする(S210)。そして、上記S110で算出された第1時間T1が経過すると(S220:YES)、カウンタ28のカウント値(ソークタイム)がレジスタ29内のタイマ値と一致して、ソークタイマ13は電源起動信号Si2をハイにする(S230)。すると、IGSW25がオフ中であっても、メインリレー23がオンして、マイコン11が起動することとなる。
一方、マイコン11は、図2のS130にて、バッテリ21の電力が足りないと判定した場合(即ち「W4<W3」であり、合計電力量W3がバッテリ21に蓄積されていないと判定した場合)には、S140の処理を行うことなく、S150に進む。この場合には、IGSW25のオフ中において、ソークタイマ13からの電源起動信号Si2がハイにならない。よって、マイコン11は、IGSW25が次にオンされるまで起動しない。
次に、マイコン11が、IGSW25のオフ中において、ソークタイマ13によって起動した場合に行うエンジン停止中処理について、図4を用い説明する。尚、マイコン11は、起動した直後に、IGSW信号Si1あるいは電源起動信号Si2を参照して、今回の起動要因を判定する。そして、マイコン11は、例えばIGSW信号Si1がローであれば、ソークタイマ13によって起動したと判定して、図4のエンジン停止中処理を実行する。
図4に示すように、マイコン11は、エンジン停止中処理を開始すると、S310にて、不揮発性メモリ33から、図2のS120で算出した第2時間T2とエンジン停止中デューティDsとを読み出す。そして、その読み出したエンジン停止中デューティDsでのヒータ7への通電を開始する。つまり、ヒータ制御デューティを、エンジン停止中デューティDsに設定して、ヒータ7への通電を開始する。
マイコン11は、次のS320にて、上記S310で読み出した第2時間T2が経過するまで待ち、第2時間T2が経過したと判定すると(S320:YES)、S330に進み、ヒータ7への通電を停止する。
マイコン11は、次のS340にて、エンジン停止中にヒータ7への通電を実施したことを示すヒータ通電履歴を、例えば不揮発性メモリ33に書き込む。
そして、マイコン11は、次のS350にて、ソークタイマ13に指令を与えて、電源起動信号Si2のリセットを行うことにより、メインリレー23をオフさせる。すると、マイコン11は動作を停止することとなる。尚、マイコン11がソークタイマ13によって起動した場合にも、電源保持信号Shをハイにするのであれば、マイコン11は、S350にて、メインリレー23をオフさせるために、電源保持信号Shをハイからローにする処理も行えば良い。
次に、マイコン11が行うエンジン始動時処理について、図5を用い説明する。
マイコン11は、起動した後、今回の起動要因がIGSW25のオンであると判定した場合には、図5のエンジン始動時処理を実行する。図5のエンジン始動時処理は、エンジンが始動される毎に実行され、この例では、スタータへの通電が開始されると実行される。また例えば、図5のエンジン始動時処理は、IGSW25のオンによってマイコン11が起動した直後に実行されるようになっていても良い。
図5に示すように、マイコン11は、エンジン始動時処理を開始すると、S410にて、不揮発性メモリ33にヒータ通電履歴が記憶されているか否かを判定し、ヒータ通電履歴が記憶されていれば、検知素子5に結露は生じていないと判断して、S420に進む。そして、マイコン11は、S420では、ヒータ制御ディレイ時間Tdを0に設定すると共に、不揮発性メモリ33内のヒータ通電履歴を消去し、その後、S440に進む。
また、マイコン11は、上記S410にて、ヒータ通電履歴が記憶されていないと判定した場合には、検知素子5に結露が生じている可能性があると判断して、S430に進む。そして、マイコン11は、S430では、ヒータ制御ディレイ時間Tdを、0よりも大きい所定時間Txに設定し、その後、S440に進む。
マイコン11は、S440では、現在設定されているヒータ制御ディレイ時間Tdだけ待ち、そのヒータ制御ディレイ時間Tdが経過したならば、ヒータ7に通電する制御として、通常のヒータ制御を開始する。そして、その後、当該エンジン始動時処理を終了する。
通常のヒータ制御とは、センサ温度を活性温度以上に上昇させると共に、センサ温度を活性温度以上の目標温度(例えば750℃)に維持するためのヒータ制御である。例えば、通常のヒータ制御では、ヒータ7への通電開始時から所定の時間はヒータ制御デューティを100%あるいは100%に近い値にして、センサ温度を活性温度以上に迅速に上昇させる。そして、その後は、検知素子5のインピーダンスの検出結果から算出されるセンサ温度が目標温度となるように、ヒータ制御デューティを調節する。
また、上記S430にて、ヒータ制御ディレイ時間Tdとして設定する所定時間Txは、例えば、検知素子5に付着している結露による水滴が、ヒータ7への通電を実施しなくても、エンジンの排気温度によって蒸発すると推定される時間である。そして、その所定時間Txは、固定値でも良いし、例えば、エンジン始動時におけるセンサ温度及び結露状態等の推定結果に基づいて設定されても良い。
以上のようなECU1では、IGSW25がオフしてエンジンが停止すると、マイコン11は、センサ温度が結露発生温度まで下がるのに要する時間である第1時間T1を推定する。そして、マイコン11は、ソークタイマ13のレジスタ29に、タイマ値として、第1時間T1に相当する値(T1/Tc)を書き込み、ソークタイマ13をスタートさせた後、メインリレー23をオフして自身の動作を停止する。
このため、図6に示すように、エンジンの停止時(時刻t1)から第1時間T1が経過した時刻t2になると、ソークタイムがタイマ値(T1/Tc)と一致して、マイコン11が起動する。そして、マイコン11は、図4のエンジン停止中処理を行うことにより、ヒータ7に対する通電を、図2のS120で算出した第2時間T2だけ実施する。また、マイコン11は、その第2時間T2の通電では、ヒータ制御デューティを、図2のS120で算出したエンジン停止中デューティDsとする。
このように、エンジンが停止してから第1時間T1が経過すると、ヒータ7への通電が第2時間T2だけ実施される。そして、このようなヒータ7への通電により、エンジンの停止中においてセンサ温度が結露発生温度から低下する傾きが緩やかとなり、検知素子5に結露が生じることが防止される。
その後、図6の時刻t4でIGSW25が再びオンされ、時刻t5でエンジンの始動が開始されたとすると、マイコン11は、図5のエンジン始動時処理を実行する。そして、マイコン11は、エンジン停止中にヒータ7に通電したことを、前述のヒータ通電履歴によって確認した場合には、ヒータ制御ディレイ時間Tdを0に設定することにより、通常のヒータ制御を即座に開始する(S410:YES→S420→S440)。つまり、マイコン11は、前述の通り、エンジン停止中に第2時間T2だけヒータ7への通電を実施することで、検知素子5での結露を防止する。このため、次のエンジン始動時には、検知素子5に結露による水滴が付着していることを考慮することなく、即座に通常のヒータ制御を開始することができる。尚、図6の例では、マイコン11は、図5のエンジン始動時処理のなかで、ソークタイムのリセットを行っている。
よって、ECU1によれば、エンジン始動時において、検知素子5を早期に活性化させることができ、延いては、排気センサ3を用いた空燃比フィードバック制御を早期に開始することができるようになる。
比較例として、図6における点線の波形で示すように、エンジン停止中にヒータ7への通電を実施しない構成では、エンジン始動時において、検知素子5に結露による水滴が付着している可能性がある。このため、エンジン始動時(時刻t5)から、検知素子5に付着している水滴が蒸発すると推定される時間が経過した時刻t6になると、通常のヒータ制御を開始することとなる。よって、この比較例では、検知素子5の温度を活性温度以上にすることが遅れ、その結果、空燃比フィードバック制御の開始が遅れて、エミッションや燃費の悪化という不具合を招く。これに対して、本実施形態のECU1によれば、そのような不具合を防止することができる。
また、ECU1において、マイコン11は、エンジンが停止してもヒータ7への通電を継続するのではなく、エンジンが停止してから第1時間T1が経過したときにヒータ7への通電を実施するため、結露防止のために使用する電力を非常に小さく抑えることができる。
また、マイコン11は、精度良く検出可能なエンジン停止時のセンサ温度及び外気温に基づいて、第1時間T1を推定するため、その第1時間T1を精度良く推定することができる。推定精度が低いエンジン始動時のセンサ温度を用いて結露対策を行う技術と比較すると、制御精度が高く非常に有利である。
また、マイコン11は、第2時間T2とエンジン停止中デューティDsとを、エンジン停止時における外気温に基づいて算出するため、その第2時間T2とエンジン停止中デューティDsとを、最適な値に可変設定することができる。最適な値とは、検知素子5に結露が生じることを、できるだけ少ない電力で防止できる値、ということである。
また、マイコン11は、図2のエンジン停止時処理におけるS130では、エンジンが停止したときにバッテリ21に蓄積されている電力量W4に基づいて、ソークタイマ13を機能させるか否か、即ち、エンジン停止中にヒータ7への通電を実施するか否かを決定している。このため、バッテリ21の電力量が不足してエンジンの再始動ができなくなることを防止することができる。
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく、種々の形態を採り得る。また、前述の数値も一例であり他の値でも良い。
例えば、第2時間T2とエンジン停止中デューティDsとの、一方または両方を、固定値にしても良い。また例えば、エンジン停止中デューティDsを、ヒータ7への通電実施期間中(つまり第2時間T2の間)に、変化させるように構成しても良い。また、上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。なお、特許請求の範囲に記載した文言によって特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。また、上述したECUの他、当該ECUを構成要素とするシステム、当該ECUとしてコンピュータを機能させるためのプログラム、このプログラムを記録した媒体、排気センサのヒータ制御方法など、種々の形態で本発明を実現することもできる。
1…ECU、3…排気センサ、5…ヒータ、7…検知素子、11…マイコン、T1…第1時間、T2…第2時間

Claims (6)

  1. エンジンの排気管に設けられた排気センサ(3)が備える検知素子(5)を加熱するための、ヒータ(7)への通電を制御する、排気センサ用ヒータ制御装置(1)であって、
    前記エンジンが停止すると、前記検知素子の温度であるセンサ温度が、前記検知素子に結露が発生する可能性がある所定の結露発生温度まで下がるのに要する時間(T1)を推定する推定手段(11,S110)と、
    前記エンジンが停止してから、前記推定手段により推定された前記時間が経過すると、前記ヒータに対する通電を所定の通電時間(T2)だけ実施するエンジン停止中通電手段(11,S310〜S330)と、
    を備えること、を特徴とする排気センサ用ヒータ制御装置。
  2. 請求項1に記載の排気センサ用ヒータ制御装置において、
    前記推定手段は、前記エンジンの停止時における前記センサ温度及び外気温に基づいて、前記時間を推定すること、
    を特徴とする排気センサ用ヒータ制御装置。
  3. 請求項1又は請求項2に記載の排気センサ用ヒータ制御装置において、
    前記エンジンが停止すると、前記通電時間を前記エンジンの停止時における外気温に基づいて算出する算出手段(11,S120)を備え、
    前記エンジン停止中通電手段は、前記ヒータに対する通電を、前記算出手段により算出された通電時間だけ実施すること、
    を特徴とする排気センサ用ヒータ制御装置。
  4. 請求項3に記載の排気センサ用ヒータ制御装置において、
    前記算出手段は、前記エンジン停止中通電手段が前記ヒータに通電する際のデューティ比も、前記外気温に基づいて算出し、
    前記エンジン停止中通電手段は、前記ヒータに対する通電を、前記算出手段により算出されたデューティ比で前記通電時間だけ実施すること、
    を特徴とする排気センサ用ヒータ制御装置。
  5. 請求項1ないし請求項4の何れか1項に記載の排気センサ用ヒータ制御装置において、
    前記ヒータに対する通電の電力源は、前記エンジンが搭載された車両のバッテリ(21)であり、
    当該排気センサ用ヒータ制御装置は、
    前記エンジンが停止したときに前記バッテリに蓄積されている電力量に基づいて、前記エンジン停止中通電手段を作動させるか否かを決定する通電可否決定手段(11,S130)、を備えること、
    を特徴とする排気センサ用ヒータ制御装置。
  6. 請求項5に記載の排気センサ用ヒータ制御装置において、
    前記通電可否決定手段は、前記エンジン停止中通電手段が前記ヒータに対する通電を前記通電時間だけ実施するのに必要な電力量と、前記エンジンを始動させるのに必要な電力量との、合計の電力量が、前記バッテリに蓄積されている否かを判定し、前記合計の電力量が前記バッテリに蓄積されていないと判定した場合には、前記エンジン停止中通電手段を作動させないこと、
    を特徴とする排気センサ用ヒータ制御装置。
JP2014249895A 2014-12-10 2014-12-10 排気センサ用ヒータ制御装置 Active JP6314808B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249895A JP6314808B2 (ja) 2014-12-10 2014-12-10 排気センサ用ヒータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249895A JP6314808B2 (ja) 2014-12-10 2014-12-10 排気センサ用ヒータ制御装置

Publications (2)

Publication Number Publication Date
JP2016109098A JP2016109098A (ja) 2016-06-20
JP6314808B2 true JP6314808B2 (ja) 2018-04-25

Family

ID=56121955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249895A Active JP6314808B2 (ja) 2014-12-10 2014-12-10 排気センサ用ヒータ制御装置

Country Status (1)

Country Link
JP (1) JP6314808B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113073B2 (ja) * 1992-07-03 2000-11-27 マツダ株式会社 エンジンの排気浄化装置
JP3878466B2 (ja) * 2001-11-30 2007-02-07 日本特殊陶業株式会社 湿度センサの制御装置及び湿度センサの制御方法
JP2010032275A (ja) * 2008-07-25 2010-02-12 Toyota Motor Corp ガスセンサの制御装置
JP2010202012A (ja) * 2009-03-02 2010-09-16 Toyota Motor Corp ハイブリッド車両の制御装置
JP5798059B2 (ja) * 2012-02-09 2015-10-21 日立オートモティブシステムズ株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
JP2016109098A (ja) 2016-06-20

Similar Documents

Publication Publication Date Title
EP2187028B1 (en) Electronic control apparatus
JP2007017154A (ja) 排出ガスセンサの劣化検出装置
JP2008145349A (ja) バッテリ充電率推定方法、バッテリ充電率推定装置及びバッテリ電源システム
CN105319009B (zh) 用于校正压力传感器偏移的系统和方法
JP6550689B2 (ja) 排出ガスセンサのヒータ制御装置
JP2010058635A (ja) バッテリ冷却装置
JP6276172B2 (ja) 負荷駆動装置
JP2020533522A (ja) 内燃機関の触媒装置を作動させる方法および触媒装置
JP2016125960A (ja) 車両用モータ温度センサの異常検出装置及び異常検出方法
JP6314808B2 (ja) 排気センサ用ヒータ制御装置
JP2010025755A (ja) 液面レベル検出装置
JP5851333B2 (ja) 内燃機関の制御装置
KR101240984B1 (ko) 수소 압력 센서 오작동 추정을 통한 연료전지 시스템 제어 방법
JP2013053578A (ja) アイドルストップ制御装置
JP2013076483A (ja) 燃焼装置
JP6112619B2 (ja) O2センサの故障診断装置
JP4396534B2 (ja) ヒータ制御装置
JP2018071363A (ja) センサ制御システム及びセンサの制御方法
JP6223818B2 (ja) インテークヒーターの温度推定装置及びエンジンの始動補助システム
JP5831697B2 (ja) 燃焼装置
JP2016100995A (ja) バッテリ劣化判定装置
JP4518261B2 (ja) 車両のバッテリ電流検出装置
JP5648644B2 (ja) 電子制御装置
JP2013234573A (ja) 内燃機関の制御装置
KR102571630B1 (ko) 축열식 보일러의 가동 대수 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R151 Written notification of patent or utility model registration

Ref document number: 6314808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250