以下、本発明の実施の形態を図面に基づき実施例によって説明する。なお、本実施例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略または簡略化する。
図1には、本発明に係る熱源装置の一実施例のシステム構成が、熱源装置に接続される負荷(暖房装置や浴槽)と共に模式的に示されている。同図に示されるように、熱源装置は器具ケース80を有し、熱源装置を操作するためのリモコン装置(図示せず)に接続されている。また、バーナ2と、バーナ2により発生された燃焼ガスの顕熱を回収する顕潜熱回収用給湯熱交換器としてのメインの給湯熱交換器3と、前記燃焼ガスの潜熱を回収する潜熱回収用給湯熱交換器4とを有する給湯回路5とを有しており、この例において、潜熱回収用給湯熱交換器4はメインの給湯熱交換器3と間隔を介した上部位置に設けられている。
給湯回路5は、潜熱回収用給湯熱交換器4の入水側に設けられた給水通路6とメインの給湯熱交換器3の出水側に設けられた給湯通路7とを有し、給水通路6から導入されて潜熱回収用給湯熱交換器4を通って加熱された水をメインの給湯熱交換器3に導入した後、該メインの給湯熱交換器3を通って加熱された水を、給湯通路7を介して給湯先に導く回路である。なお、本実施例において、潜熱回収用給湯熱交換器4の容量はメインの給湯熱交換器3の容量の約半分である。なお、この容量比は特に限定されるものではなく、適宜設定されるものである。
給水通路6には、該給水通路6を通る水の水量を検出する給水量検出手段としての水量センサ19と、給水温度を検出する入水温検出センサ47が設けられ、給湯通路7には、メインの給湯熱交換器3の出側の温度を検出する熱交出側サーミスタ23と、サーミスタ58と、給湯温度を検出する出湯サーミスタ24とが設けられている。
また、この熱源装置は、暖房装置70,71に外部通路72,73を介して供給される液体の熱媒体(例えば水)を循環する機能を備えた暖房用液体循環回路8を有しており、同図においては、液体の熱媒体の循環経路を分かりやすくするために、暖房用液体循環回路8を形成する器具ケース80内の液体通路に斜線を記している。暖房用液体循環回路8には、熱媒体を循環させる暖房用循環ポンプ9と、シスターン10と、熱媒体を加熱する暖房用熱交換器11と、低温能力制御弁36、暖房高温サーミスタ40、暖房ハイリミットスイッチ77、暖房低温サーミスタ41が設けられている。
暖房高温サーミスタ40は、暖房用熱交換器11の出側の熱媒体の温度を検出する暖房用熱交換器出側温度検出手段(暖房出側液体温度検出手段)として機能するものであり、暖房低温サーミスタ41は、暖房用熱交換器11の入側の熱媒体の温度を検出する暖房入側液体温度検出手段として機能するものである。シスターン10は、熱媒体が収容されている液層10aと該液層10a上の空気層10bとを有し、液層10aの容量は例えば1800ccであり、シスターン10には水位検出電極44とオーバーフロー通路66とが設けられている。なお、オーバーフロー通路66の先端側は大気解放と成している。
本実施例において、暖房用熱交換器11と前記メインの給湯熱交換器3とはフィン43を介して一体化された一缶二水路型の熱交換器1と成して、共にバーナ2により加熱され、バーナ2の燃焼ガスの顕熱を回収する熱交換器と成している。この一缶二水路型の熱交換器1には、図2(a)、(b)の断面図に示されるように、暖房用熱交換器11の液体流通用の管路(液体流通管路)12とメインの給湯熱交換器3の通水用の管路(通水管路)13とによって管路が上下方向に奇数段(ここでは3段)配列されて互いに近接している。
各段の管路12,13のうち一番下の段には暖房用熱交換器11の液体流通管路12が配設され、中央の段にはメインの給湯熱交換器3の通水管路13が配設されている。また、一番上の段には暖房用熱交換器11の液体流通管路12とメインの給湯熱交換器3の通水管路13の両方が配列されており、この配置構成は本実施例の特徴的な構成の一つである。
なお、図1は、システム構成図であり、上から1段目の管路は暖房用熱交換器11の液体流通用の管路12が示されているが、実際の配管態様は図2(a)、(b)にそれぞれ示される態様である。そして、通水管路13は図2(b)の実線矢印に示すような順に水が流れるように接続され、液体流通管路12は図2(b)の破線矢印に示すような順に水が流れるように接続されている。
つまり、図2に示されている最上段の右端の通水管路13とその下の中央段の右端の通水管路13とが連通する態様にしようとすると、通水管路13同士が近接配置されているので、例えば図6に示されるように通水管路13を曲げる必要が生じるが、実際にはこの図のように通水管路13を曲げることは困難である。そのため、図2(b)に示されるように、上下に近接して配置される通水管路13同士を連通する態様とするのではなく、斜め又は水平方向に配置される通水管路13同士が連通するようにして、実線矢印に示されるように水が流れるようにしている。
また、本実施例に適用されている一缶二水路型の熱交換器1は、メインの給湯熱交換器3の通水用の管路13の吸熱量が暖房用熱交換器の液体流通用の管路12の吸熱量の約1.08倍となるように形成されている。つまり、一缶二水路型の熱交換器1を形成する3段の管路12,13のそれぞれと潜熱回収用給湯熱交換器4の管路との吸熱比が、下段側から例えば9:8:7:4であるとするとして、暖房用熱交換器11の液体流通管路12とメインの給湯熱交換器3の通水管路13とが接している所においては、例えば比率にして2:1または3:5の熱が移動することから、図2に示される一缶二水路型の熱交換器1におけるメインの給湯熱交換器3の通水管路13の平均の吸熱量は、48.1%となり、暖房用熱交換器11の液体流通管路12の平均の吸熱量は、51.9%となる。したがって、メインの給湯熱交換器3の通水管路13の吸熱量は、暖房用熱交換器11の液体流通管路12の吸熱量の約1.08倍となる。
なお、本実施例においては、暖房用の熱交換器側はバーナ2の顕熱を回収する暖房用熱交換器11のみを設けて形成し、潜熱回収用の暖房用の熱交換器は設けず、温かい熱媒体(例えば温水)が戻ってくる暖房系統を潜熱回収スペース(潜熱回収用給湯熱交換器4が配設されている領域やその近傍領域)に入れない点も特色の一つとしている。つまり、潜熱回収スペースを、回収効率の低い潜熱回収用暖房用熱交換器に代えて回収効率の高い潜熱回収用給湯熱交換器4で占めることで、高効率化、小型化、低コスト化している。
つまり、潜熱回収熱交換器は、熱交換器内を通過する液体の温度と熱交換器の外を通過する気体との温度差によって回収効率が変わり、この温度差の大きい方が潜熱の回収効率が高くなる。潜熱回収用給湯熱交換器に導入される液体である水の入水温度と暖房用液体循環回路を循環して潜熱回収用暖房用熱交換器に導入される(戻ってくる)液体の戻り温度とを比較した場合、潜熱回収用給湯熱交換器への入水温度の方が潜熱回収用暖房用熱交換器への戻り温度よりも低いため潜熱の回収効率が高く、潜熱回収用暖房用熱交換器よりも潜熱回収用給湯熱交換器を設ける方が高効率化を実現できる。
また、本実施例において、給湯回路5には該給湯回路5内の水抜き(主に給湯熱交換器3,4内の水抜き)を行う水抜き栓(図1には図示せず)が、潜熱回収用給湯熱交換器4への水導入側とメインの給湯熱交換器3からの水導出側とにそれぞれ設けられており、図1に示されるように、メインの給湯熱交換器3の通水管路13の途中部には通路(接続通路)65が接続されている。この通路65は、暖房用液体循環回路8内に設けられた前記シスターン10の空気層10bに接続されて、通路65とシスターン10との接続部には通路開閉弁42が設けられている。
なお、通路開閉弁42は、パイロット式の弁によっても形成できるが、本実施例では、ギアモータの駆動によって開閉を行う弁により形成されており、それにより、弁の開閉動作を制御信号に基づいて迅速に行うことができる。さらに、停電になって通電停止になったり、利用者がコンセントを抜いて電力提供停止になったりしても、開位置を維持できる。また、通路65には通路開閉弁42の近傍位置に、通路65内を通る水の凍結防止用の加熱手段としてのヒータ56が設けられている。
前記水抜き栓の開状態で通路開閉弁42が開かれるとシスターン10の空気層から通路65を通してメインの給湯熱交換器3の通水用の管路13に空気が導入されるように構成されており、通路65は、潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水の導出に要する時間とメインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水の導出に要する時間とができるだけ近い値になる位置(好ましくは同じ値またはほぼ同じ値となる位置)に設けられている。
また、通路65は、シスターンの液層の液位が予め定められる下限基準値以下になったときに通路開閉弁42が開かれたときに、給水圧によって、メインの給湯熱交換器3側からの水をシスターン10に送り、水を補給するための通路としても機能する。
さらに、通路65は、給湯運転が行われずに暖房運転が行われているときに、暖房高温サーミスタ40により検出される検出温度が予め定められた沸騰抑制基準温度以上になったときに通路開閉弁42が開かれると、前記沸騰抑制基準温度以上になって圧力も高くなったメインの給湯熱交換器3の通水管路13内の水を通路65側に逃がす機能も有している。
また、本実施例では、図1に示されるように、前記潜熱回収用給湯熱交換器4とメインの給湯熱交換器3との間には、潜熱回収用給湯熱交換器4からメインの給湯熱交換器3に導入される水の流通管路と暖房用液体循環回路8の液体流通管路とを熱的に接続する液−水熱交換器33が設けられている。
この液−水熱交換器33には、流路切り替え制御弁35の開状態での暖房用循環ポンプ9の駆動によって、暖房用熱交換器11の液体流通管路12から出た熱い熱媒体(液体)が液−水熱交換器33の液体流通管路に導入されて図1の矢印Bに示すように流通し、給湯動作時に、潜熱回収用給湯熱交換器4から液−水熱交換器33における水の流通管路に導入される水が熱媒体の出口から流入して矢印Bとは逆方向に流通する。つまり、液体流通管路12側から液−水熱交換器33に導入される熱媒体は液−水熱交換器33の給水側出口から流入し、潜熱回収用給湯熱交換器4から液−水熱交換器33に導入される水は液−水熱交換器33の熱媒体出口から流入して、この水と前記熱媒体とが互いに逆方向に流通するという対向熱交換器により形成されている。
また、暖房用液体循環回路8には、暖房用液体循環回路8を循環する液体を液−水熱交換器33の液体流通管路に通さずに循環させるためのバイパス通路34が設けられ、流路切り替え制御弁35は、このバイパス通路34側へと液−水熱交換器33側への液体流量可変可能な流量可変制御弁として機能するものである。
なお、流路切り替え制御弁35による液体流量可変動作は、例えば液−水熱交換器33側への液体流量を例えばほぼ100%として、通路を閉塞しなくても実質上バイパス通路34側への液体流量をほぼ0とするか、その逆に、液−水熱交換器33側への液体流量を例えばほぼ0としてバイパス通路34側への液体流量をほぼ100%とするかの切り替え(液体の流れの有無の切り替え)でもよいが、本実施例においては、液−水熱交換器33側への液体流量とバイパス通路34側への液体流量の比率を0〜100%との間で適宜、連続的に可変できる構成を有している。
また、本実施例の熱源装置において、暖房用液体循環回路8は、液−水熱交換器により形成された風呂熱交換器25を介して風呂の追い焚き循環通路26と熱的に接続されている。追い焚き循環通路26には、追い焚き循環ポンプ27と風呂サーミスタ28、流水スイッチ29、水位センサ30、風呂往きサーミスタ31が設けられており、追い焚き循環通路26は、循環金具74を介して浴槽75に接続されている。暖房用液体循環回路8には、風呂熱交換器25において追い焚き循環通路26を循環する水と熱交換を行う際に暖房用液体循環回路8から風呂熱交換器25側に通す液体流量を制御する追い焚き用液体流量制御弁32が設けられており、この追い焚き用液体流量制御弁32の制御と追い焚き循環ポンプ27の制御とによって風呂の追い焚きが制御される。
なお、図1の図中、符号14は燃焼室、符号15はバーナ2の給排気を行う燃焼ファン、符号16はバーナ2に供給される燃料ガスの通路、符号17はガス電磁弁、符号18はガス比例弁、符号20は給湯回路5を通って給湯される給湯の総水量を可変調節するための水量サーボ、符号21はバイパスサーボ、符号22は給湯バイパス路、符号49は注湯通路、符号50は注湯電磁弁、符号79は注湯量センサ、符号37はドレン回収手段、符号38はドレン通路、符号39はドレン中和器、符号76は熱動弁をそれぞれ示している。
また、図1にはリモコン装置が図示されていないが、前記の如く、熱源装置の制御装置にはリモコン装置が信号接続されており、以下の説明において、リモコン装置には、適宜、符号46を付して説明する。また、家庭等の住居において、給湯を行う台所や浴室には、給湯温度設定、追い焚きスイッチ、自動スイッチ(自動湯張りのための操作スイッチ)等の付いたリモコン装置46が設けられ、洗面所には浴室乾燥(暖房装置)を行うスイッチ等の付いたリモコン装置46が設けられ、居間には床暖房(暖房装置)スイッチ等の付いたリモコン装置46が設けられる等、異なる機能をもったリモコンが複数設けられることが多いが、それらを総称してリモコン装置46と称する。
本実施例において、給湯動作は例えば以下のようにして行われる。つまり、前記リモコン装置46の運転がオンの状態において、例えば熱源装置の利用者によって、給湯通路7の先端側に設けられている給湯栓(図示せず)が開かれると、給水通路6から導入される水が、潜熱回収用給湯熱交換器4とメインの給湯熱交換器3とを通って給湯通路7に導入され、水量センサ19が予め定められている給湯の作動流量に達するとバーナ2の燃焼制御および燃焼ファン15の回転制御等が制御手段によって適宜行われ、予めリモコン装置46に設定されている給湯設定温度の湯が形成されて給湯先に供給される。
また、リモコン装置46に設けられている自動スイッチがオンとなると、前記給湯動作時と同様にして、予めリモコン装置46に設定されている給湯設定温度の湯が形成され、その湯が、注湯電磁弁50が開かれることにより、給湯通路7から注湯通路49を通して浴槽75への注湯による湯張りが行われる。
一方、給湯は行わずに、暖房用液体循環回路8から暖房装置70、71に暖房用の熱媒体(液体)を供給する際(例えば衣類乾燥機、浴室暖房乾燥機、床暖房等の運転による暖房単独動作時)には、暖房用液体循環ポンプ9の駆動によって、液体(例えば温水)を循環させるものであり、暖房用液体循環ポンプ9の吐出側から吐出される液体が、図1の矢印Aに示されるように、通路59を通って暖房用熱交換器11に導入される。このときにもバーナ2の燃焼および燃焼ファン15の回転制御等が適宜行われて液体の加熱が行われる。
暖房用熱交換器11で加熱された液体は、流路切り替え制御弁35の制御に応じ、矢印Bに示されるように液−水熱交換器33に導入されたり、矢印B’に示されるようにバイパス通路34に導入されたりする。なお、暖房用熱交換器11で加熱された液体の液−水熱交換器33への導入は、必要に応じて適宜行われる。
バイパス通路34または液−水熱交換器33を通った液体は、その後、矢印Cに示されるように、通路60を通り、その後、分岐して、その一方は、矢印Dに示されるように、例えば暖房用液体循環回路8に接続されている高温側の暖房装置70が作動する際には高温側の暖房装置に供給され、高温側の暖房装置70を通った後に、矢印D’に示されるように通路61側に戻ってくる。このとき、例えば浴室暖房乾燥機の暖房スイッチ(SW)がオン(ON)されると、それに対応する高温側の暖房装置70内の熱動弁76が開弁され、高温側の暖房装置10内の制御装置からの信号を受けて暖房用の熱媒体の往き温度は(例えば80℃といった)高温に維持される。
なお、高温側の暖房装置が作動していないときには、高温側の暖房装置70内の熱動弁76が閉弁され、矢印D、D’に示されるような液体の流れは停止される。また、例えば浴室で追い焚きスイッチ(SW)がオン(ON)されると、それに対応する追い焚き用液体流量制御弁32が開状態となり、通路60を通った後に分岐された他方は、矢印Eに示されるように風呂熱交換器25を通り、矢印E’に示されるように通路61側に向かう。このように、高温に維持される液体を風呂熱交換器25に通しながら、追い焚き循環通路26において浴槽の湯水を循環させることにより、風呂の追い焚きが適宜行われる。
また、前記通路61を通った液体はシスターン10を通り、矢印Gに示されるように通路62を通って暖房用液体循環ポンプ9の吸入側に戻ってくる。なお、暖房用液体循環ポンプ9の吐出側には、例えば温水マット等の低温側の暖房装置71に液体を供給するための通路63も接続されており、例えば居室にあるリモコン装置46で床暖房がONされると、それに対応する熱動弁ヘッダ48の開閉に応じて適宜の低温側暖房装置71(例えば温水マット等)に暖房用の(例えば往き温度60℃といった)低温に維持された液体が供給される。また、通路60と通路61とは通路64を介して接続されており、低温能力制御弁36が開状態に制御されると、矢印Hに示されるように、通路60から通路64を通して通路61に高温の液体が積極的に(低温能力制御弁36が閉じられているときに比べて多くの流量で)導入される。
なお、高温側の暖房装置70に液体を供給する際の温度制御と低温側の暖房装置71に液体を供給する際の温度制御、暖房用液体循環回路8の通路が冷えている状態で作動するコールドスタート時の温度制御、風呂の追い焚き時の制御等、必要に応じてバーナ2の燃焼制御や燃焼ファン15の回転制御等の適宜の制御が行われ、これらの制御方法については公知であるために、その詳細説明は省略するが、本発明においては、公知の適宜の制御方法および、今後提案される適宜の制御方法が適用されるものである。
図3には、本実施例の熱源装置の特徴的な制御構成がブロック図により示されている。同図に示されるように、熱源装置の制御手段45は、水抜き制御手段51、水補給手段52、沸騰防止制御手段54、ヒータ制御手段53を有しており、リモコン装置46と、水量センサ(流量センサ)19、水抜き栓55、通路開閉弁42、ヒータ56、水位検出手段44、熱交出側サーミスタ23、暖房高温サーミスタ40、に信号接続されている。
なお、水抜き栓55は、前記の如く、図1には図示されていないが、潜熱回収用給湯熱交換器4への水導入側とメインの給湯熱交換器3からの水導出側とにそれぞれ設けられているものである。
水抜き制御手段51は、水抜き栓55の開状態で通路開閉弁42を開くことにより、シスターン10の空気層10bから通路65を通してメインの給湯熱交換器3の通水用の管路13に空気を導入することによって、給湯回路5内の水抜き動作を行う。
水補給手段52は、水位検出電極44の検出信号を適宜取り込み、シスターン10の液層の液位が予め定められる下限基準値以下になったときには、通路開閉弁42を開いてメインの給湯熱交換器3側から通路65を通してシスターン10に水を補給する。
ヒータ制御手段53は、例えば燃焼装置1が配設されている場所の外気温度を外気温検出手段(図示せず)の検出温度に基づいて検出し、その検出温度が予め定められるヒータ駆動基準温度以下になったときにヒータ56を駆動させ、前記検出温度がヒータ駆動基準温度より高いときにはヒータ56の駆動を停止する等、適宜の制御により、通路65内を通る水の凍結防止を行うものである。なお、外気温検出手段を設けずに、例えば制御装置45にカレンダー機能を持たせ、そのカレンダー機能に基づき、前記外気温度がヒータ駆動基準温度以下になると推定される期間(燃焼装置1が配設されている場所に応じて、例えば11月〜3月といったように予め定められて入力される期間)にヒータ56を駆動させる等、ヒータ56の駆動方法は適宜設定される。
沸騰防止制御手段54は、給湯運転が行われずに暖房運転が行われていて熱交出側サーミスタ23により検出される検出温度が予め定められた沸騰抑制基準温度(例えば85℃)以上になったときに、メインの給湯熱交換器3内の湯の温度がそれ以上高くならないようにする。その制御の一例として、熱交出側サーミスタ23により検出される検出温度が前記沸騰抑制基準温度(例えば85℃)以上になったときに、通路開閉弁42を開くことによってメインの給湯熱交換器3側から前記沸騰抑制基準温度以上になった水を接続通路側に逃がすことにより、メインの給湯熱交換器3内の水の沸騰を防止する。
なお、沸騰防止制御手段54は、給湯運転が行われずに暖房運転が行われているときに熱交出側サーミスタ23により検出される検出温度が沸騰抑制基準温度以上にならないようにする制御として、燃焼制御手段に指令を加えてバーナ2の加熱量を減らすか、燃焼を停止したまま、ポンプ駆動制御手段に指令を加えて暖房用液体循環ポンプ9の運転を続けて高温側、または低温側の暖房装置70,71からの放熱により熱媒体温度が下がるのを待つことにより、メインの給湯熱交換器3内の水の沸騰を防止するようにしてもよい。また、この動作と、前記のように通路開閉弁42を開くことによってメインの給湯熱交換器3内の水の沸騰を防止する動作とを適宜行うようにしてもよい。
本実施例の熱源装置は、一缶二水路型の熱交換器1の構成を図2(a)、(b)の断面図に示されるようにしていることから、一缶二水路型の熱交換器1にメインの給湯熱交換器3の通水用の管路(通水管路)13が上下方向に高低差を介して接続される部位が形成されることになるため、通水管路13の水抜き用の構成を適切に設けないと、通水管路13の水抜きが十分に行えず、例えば冬に通水管路13の凍結防止を行うことができないといった不具合が生じるが、水抜き栓の開状態で通路65から通水管路13に空気を導入して通水管路13の水を前記水抜き栓から導出することにより、簡単な構成で、容易に、かつ、迅速に通水管路13の水抜きを行うことができる。
そして、一缶二水路型の熱交換器1の構成を図2(a)、(b)の断面図に示されるようにして、暖房用熱交換器11の液体流通用の管路12と前記顕潜熱回収用給湯熱交換器の通水用の管路13とによって管路が上下方向に3段配列し、管路12,13を互いに近接させ、上から1段目には暖房用熱交換器11の液体流通用の管路12とメインの給湯熱交換器3の通水用の管路13の両方を配列しており、この配列によって、メインの給湯熱交換器3の通水管路13の吸熱量を暖房用熱交換器11の液体流通管路12の吸熱量の約1.08倍とすることができている。そして、このようにすることで、本実施例は、給湯側も暖房側も十分な能力を発揮できる熱源装置を実現でき、特に利用者の満足度を大きく左右しやすい給湯側の能力を高めることができ、使い勝手がよくて利用満足度の高い熱源装置を実現できる。
なお、このように、本実施例では給湯側の能力を高めることができる構成としているが、例えば冬に気温が低くて給水温度も低いとき等に、給湯と暖房の需要が大きくて給湯側の能力が不足しそうな事態が生じた場合には、バーナ2の燃焼量を増大させる燃焼制御を行うとともに、暖房用液体循環ポンプ9を駆動させ、流路切り替え制御弁35を開いて、暖房用液体循環回路8を循環する液体を前記液−水熱交換器33の液体流通管路に通して循環させて、暖房側の熱を給湯側に加えて給湯能力の不足を補充させることができる。
ただし、このような機能を有する液−水熱交換器33は必ずしも設けなくてもよいものであり、また、液−水熱交換器33を設けるとしても、本実施例のように、メインの給湯熱交換器3の通水管路13の吸熱量を暖房用熱交換器11の液体流通管路12の吸熱量の約1.08倍(あるいは1倍以上1.6倍以下)とすることによって、給湯能力が不足する事態が生じる頻度を非常に少なくでき、不足したとしてもその不足量を小さくできるので、容量の小さい液−水熱交換器3ですむ。
また、本実施例では、缶二水路型の熱交換器1の構成を図2(a)、(b)の断面図に示されるようにし、給湯用の湯を作るのに、燃焼ガスから直接熱を取る水管は最下段ではない点も特色の一つとしている。つまり、特許文献1に提案されているように最下段に配置された給湯用伝熱管141の一端側から水を導入する構成の一缶二水路風呂給湯器を用いると、その導入部においては、例えば冬場のコールドスタート時等に冷たい水が導入されるので、例えば図7の斜線部に示される部位等が結露しやすいといった問題があったが、本実施例ではこのような問題を回避できる。
さらに、本実施例によれば、前記水抜き栓を潜熱回収用給湯熱交換器4への水導入側とメインの給湯熱交換器3からの水導出側とにそれぞれ設け、水抜き制御手段51による水抜き動作時に、通路65の接続位置よりも潜熱回収用給湯熱交換器4への水導入側寄りの管路内の水は該潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出し、通路65の接続位置よりもメインの給湯熱交換器3の水導出側寄りの管路内の水は該メインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出するようにし、それぞれの水抜き栓側から導出される水の導出に要する時間が互いにできるだけ近い値になるように(好ましくは同じ値またはほぼ同じ値となるように)、通路65の接続位置を設定していることから、以下に述べるような効果を奏することができる。
なお、以下、通路65の接続位置と水抜き動作との関係について説明する。本実施例において、メインの給湯熱交換器3を形成する通水管路13の配設態様は、図4(a)’の模式的な断面図に示される態様であり、その高低差をさらに模式的に示すと図4(a)に示すような態様となる。なお、図4では、説明の都合上、各通水管路13にA〜Fの符号を付してあり、図4(a)’に示されるように、符号A,Fで示す通水管路13の配設高さは互いに等しく、符号B,C,D,Eで示す通水管路13の配設高さは互いに等しいが、図4(a)では、図を分かりやすくするために多少高低差を設けて示してある。
また、図4(a)に示されるように、メインの給湯熱交換器3の上側には潜熱回収用給湯熱交換器4が上下に2段配設されており、これらの潜熱回収用給湯熱交換器4は、実際には、図5(a)に示されるように、同じ高さに並列に配設された3本ずつの管路を有して、これらの管路が折り返し配設されて上下に2段に形成されている。このように、同じ高さの並列の管路が2段に配設されている潜熱回収用給湯熱交換器4の場合は、水抜き時の管路抵抗は2本分となる(水抜き時の管路抵抗は、管路の高低差が無くて同方向に同時に水が通過する場合は、複数本でも1本分となるため、同じ高さに並列に配設されている場合は、このようになる)。また、水抜き時の管路抵抗が大きいほど、水抜き速度は遅くなり、水の導出に要する時間は長くなる。
図4(a)、(a)’に示される本実施例の態様において、通路65の接続位置はA1に示す位置であり、この位置において空気が導入されて(エアパージが行われて)水抜きが行われると、図4(a)の実線矢印に示されるようにして潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水には、通水管路13のうちC、B、Aの3本の管路と潜熱回収用給湯熱交換器4の2本の管路分を合わせて管路5本分の管路抵抗が生じる。一方、図4(a)の破線矢印に示されるようにしてメインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水には、通水管路13のうちD、E、Fの3本の管路分の管路抵抗が生じる。
したがって、潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水の水抜きに要する時間:メインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水の水抜きに要する時間=約5:3となる。なお、より詳細に述べれば、水は、通水管路13と潜熱回収用給湯熱交換器4とを接続する管路等も通って導出され、また、通水管路13も直線部分同士を接続する部分の長さが位置により異なるが、それらの量は通水管路13等を通る量よりもかなり少ないので、ここでは通水管路13と潜熱回収用給湯熱交換器4の管路を通る水の通水抵抗についてのみ述べる。
一方、図4(b)、(b)’に示されるように、従来例の態様においては、メインの給湯熱交換器3の通水管路13は、例えば通水管路13の合計が本実施例と同じ本数で6本であるとすると、A〜Fのような態様で設けられることになり、このような配設態様の通水管路13と潜熱回収用給湯熱交換器4(潜熱回収用給湯熱交換器4の通水管路)の間に通路65を接続すると、図4(b)のA2に示す位置に接続されることになる。
この位置において空気が導入されて(エアパージが行われて)水抜きが行われると、図4(b)の実線矢印に示されるようにして潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水には、潜熱回収用給湯熱交換器4の2本の管路の管路抵抗が生じ、図4(b)の破線矢印に示されるようにしてメインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水には、通水管路13のA〜Fの6本の管路分の管路抵抗が生じることになる。
したがって、潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水の水抜きに要する時間:メインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水の水抜きに要する時間=約2:6(約1:3)となり、水抜きに要する時間の比が本実施例の態様の場合よりも格段に異なる。
つまり、図4(a)、(a)’に示される本実施例の態様において、通路65の接続位置をA1に示す位置にして水抜きを行うことにより、図4(b)、(b)’に示されるような態様において通路65の接続位置をA2に示す位置とする場合に比べ、潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水の水抜きに要する時間とメインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水の水抜きに要する時間の差を小さくできるので、全体としての水抜きに要する時間を短くできる。
なお、従来は、図7に示したように、潜熱回収用給湯熱交換器4の通水管路13によって追い焚き用の熱交換器の通水管路(あるいは暖房用熱交換器の液体流通管路)を上下に挟む態様と成っており、このような態様を図1に当てはめて1段に4本ずつ潜熱回収用給湯熱交換器4の通水管路13を配設すると、通水管路13の本数は合計8本となる。
そのため、実際は、このような構成が従来例の構成に当てはまり、この場合は、潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水の水抜きに要する時間:メインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水の水抜きに要する時間=約2:8(約1:4)となり、本実施例の態様における水抜きに要する時間の比は、このような従来例の態様に比べて格段に均等に近い値であることが分かる。そして、このような実質的に従来例の態様に比べると、本実施例では、さらに全体としての水抜きに要する時間を短く(水抜きを早く)できる。
また、図4(a)または図4(b)の実線矢印に示されるように、潜熱回収用給湯熱交換器4の水導入側から水抜きされる水は、潜熱回収用給湯熱交換器4の配置態様の下側から上側に向かって流れていって導出されることになるが、潜熱回収用給湯熱交換器4の通水用の管路は断面が略円形状の管路で径の大きさが例えば10mm程度で比較的大きいことから、図5(b)の断面図に示されるように、略水平方向に配置されている通水用の管路の下側に、例えば管路の略円形状の断面における下から3分の1の高さ辺りまでに溜まっていた水は、潜熱回収用給湯熱交換器4の水導入側に設けられている水抜き栓側には流れずに留まる。
そして、この水は、潜熱回収用給湯熱交換器4の水導入側の水抜き栓からの水の導出が終了した後に、潜熱回収用給湯熱交換器4の水導出側に向けて流れていく。したがって、潜熱回収用給湯熱交換器4の水導入側の水抜き栓からの水の導出がメインの給湯熱交換器3からの水抜きに比べて早く済むと、図5(b)に示したように潜熱回収用熱交換器4の管路の下側に残った水が、メインの給湯熱交換器3からの水抜きが終了する前に潜熱回収用給湯熱交換器4の水導出側に向けて流れていって通路65をふさいでしまうおそれがある。
それに対し、本実施例では、潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水の水抜きに要する時間がメインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水の水抜きに要する時間よりも長くなるようにしており(前記の如く、時間比が約5:3)、しかも、潜熱回収用熱交換器4の水導出側から空気導入位置までの距離も従来例に比べて長いので、潜熱回収用熱交換器4の管路の下側に残った水がメインの給湯熱交換器3からの水抜きが終了する前に潜熱回収用給湯熱交換器4の水導出側に向けて流れていって潜熱回収用給湯熱交換器4の途中に設けられている通路65の配設位置まで達して、通路65をふさいでしまうことを防止できる。
したがって、本実施例では、前記のように、水抜き動作途中に通路65がふさがれることによってメインの給湯熱交換器3からの水抜きが途中で停止してしまい、良好に行われなくなるといった問題が発生することを防止できる。
なお、図4(a)、(a)’に示される本実施例の態様において、通路65の接続位置をA0に示す位置にして水抜きを行うようにすると、潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水には、通水管路13のうちB、Aの2本の管路と潜熱回収用給湯熱交換器4の2本の管路分を合わせて管路4本分の管路抵抗が生じ、メインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水には、通水管路13のうちC、D、E、Fの4本の管路分の管路抵抗が生じることになる。
したがって、潜熱回収用給湯熱交換器4への水導入側に設けられた水抜き栓側から導出される水の水抜きに要する時間:メインの給湯熱交換器3の水導出側に設けられた水抜き栓側から導出される水の水抜きに要する時間=約1:1となり、両者をほぼ等しくできることから、より全体としての水抜き時間に要する時間を少なくでき、より好ましい態様となる。ただし、図4(a)’に示される態様において、通水管路13のBとCの直線部分はU字型の部分を介して接続される態様となり、このU字型の部分への通路65の接続はしにくいため、本実施例では、通水管路13のCとDとの間に設けられる水平部分の長い管路(この管路の水平部分)に通路65を接続している。
なお、本実施例では、通路65の接続位置をA1に示す位置にしているが、U字型の管路への通路65の接続はしにくいものの、例えばその接続態様を工夫する等して通路65の接続位置をA0に示す位置にしてもよい。
さらに、本実施例では、通路65における通路開閉弁42の近傍位置に通路65内を通る水の凍結防止用のヒータ56を設けることによって、例えば通路65に水が多少滞留した場合でも、その水が凍結することにより通路開閉弁42が破損するといったことを確実に防ぐことができる。
さらに、本実施例では、通路65を設けた簡単な構成で、シスターン10の液層の液位が前記下限基準値以下になったときに、水補給手段52によって通路開閉弁42を開いてシスターン10への水の補給も行えるし、暖房単独運転動作中にメインの給湯熱交換器3の出側の温度が前記沸騰抑制基準温度以上になったときに、沸騰防止手段54によって通路開閉弁42を開くことによりメインの給湯熱交換器3側から沸騰抑制基準温度以上になった水を通路65側に逃がしてメインの給湯熱交換器3側の沸騰防止を行うこともできる。
なお、本発明は、前記各実施例に限定されるものでなく適宜設定されるものである。例えば、前記実施例では、一缶二水路型の熱交換器1には、図2(a)、(b)の断面図に示したように、暖房用熱交換器11の液体流通用の管路(液体流通管路)12とメインの給湯熱交換器3の通水用の管路(通水管路)13とによって管路が上下方向に3段配列し、上から1段目に暖房用熱交換器11の液体流通管路12とメインの給湯熱交換器3の通水用管路13の両方を配列したが、一缶二水路型の熱交換器1の構成は特に限定されるものでなく、適宜設定されるものである。
なお、前記実施例のように、一缶二水路型の熱交換器1は管路12,13を奇数段配列して形成し、そのなくとも一つの段には液体流通用管路12と通水用管路13の両方が配列されているようにすると、熱源装置における給湯と暖房の能力の調整を行いやすくなるため好ましい。
また、前記実施例では、メインの給湯熱交換器3の通水管路13の吸熱量が暖房用熱交換器11の液体流通管路12の吸熱量の約1.08倍となるようにしたが、メインの給湯熱交換器3の通水管路13との吸熱量が暖房用熱交換器11の液体流通管路12の吸熱量の約1.08倍となるようにするとは限らず、適宜設定されるものであり、例えば通水用管路13の吸熱量が液体流通用管路12の吸熱量の1倍以上1.6倍以下になるように形成するとよい。
さらに、前記実施例では、潜熱回収用給湯熱交換器4は同じ高さ位置に3本ずつ並列に配設して形成したが、潜熱回収用給湯熱交換器4の形成態様は限定されるものではなく、適宜設定されるものである。
潜熱回収用給湯熱交換器4が例えば1本の管路を折り返して配列するだけの構成の場合であれば(潜熱回収用給湯熱交換器4の単位長さ当たりの通水の管路抵抗とメインの給湯熱交換器3の単位長さ当たりの通水の管路抵抗とは等しいまたはほぼ等しいとして)、潜熱回収用給湯熱交換器4への水導入側の水抜き栓から導出される水の量とメインの給湯熱交換器の水導出側の水抜き栓から導出される水の量とが同じ量またはほぼ同じ量となる位置に通路65を接続することにより、それぞれの水抜き栓側から導出される水の導出に要する時間が同じ値またはほぼ同じ値となるようにできるため、このような位置に通路65を接続することもできる。
さらに、本発明の熱源装置のシステム構成は前記実施例の構成に限定されるものでなく、適宜設定されるものである。つまり、メインの給湯熱交換器3と暖房用熱交換器11とにより形成される一缶二水路型の熱交換器1を設け、メインの給湯熱交換器3の通水管路13と暖房用液体循環回路8に設けられるシスターン10の空気層10b側とを接続する通路65と通路開閉弁42を設け、シスターン10の液層10aの液位が下限基準値以下になったときに通路開閉弁42を開いてメインの給湯熱交換器3側から通路65を通してシスターン10に水を補給する水補給手段と、給湯回路5に設けた水抜き栓の開状態で通路開閉弁42を開くことによりシスターン10の空気層10bから通路65を通してメインの給湯熱交換器3の通水管路13に空気を導入することによって給湯回路5内の水抜き動作を行う水抜き制御手段とが設けられていればよい。
また、前記実施例では、潜熱回収用給湯熱交換器4を設けて熱源装置を形成したが、潜熱回収用給湯熱交換器4を設けない構成としてもよい。その場合、例えば給湯回路5内の水抜きを行う水抜き栓をメインの給湯熱交換器3への水導入側とメインの熱交換器3からの水導出側とにそれぞれ設け、メインの給湯熱交換器3の通水管路13の途中部に、該通水管路13に空気を導入する空気導入手段(例えば前記実施例における通路65等)を接続し、前記水抜き栓の開状態で前記空気導入手段から空気を導入することによってメインの給湯熱交換器3の通水管路13の水を前記水抜き栓から導出して水抜きを行う水抜き制御手段を設けるとよい。
さらに、前記実施例では入水温検出センサ47が設けられていたが、入水温検出センサ47を設けずに、入水温度をリアルタイムで検出せずに演算によって求める方式を適用してもよい。つまり、安定燃焼時に燃焼量と水量と出湯温度から入水温度を逆算し、これを記憶することで、前記実施例に設けたような入水温検出センサ47をなくしてもよい。なお、このような演算により入水温度を求める方式の熱源装置については周知であるので、その説明は省略する。
さらに、前記実施例では、暖房用液体循環回路8と風呂の追い焚き循環通路26とを熱的に接続して、風呂の追い焚き機能も有する構成としたが、図1に示されるような構成において、風呂の追い焚き機能は設けずに、給湯と煖房の機能を有する熱源装置としてもよい。さらに、太陽熱を集熱する集熱機能等の他の機能や、貯湯槽等の構成を有していてもよい。
さらに、本発明の熱源装置は、例えば前記実施例で設けたガス燃焼を行うバーナの代わりに、石油燃焼用のバーナを設けてもよい。