JP6308323B1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP6308323B1
JP6308323B1 JP2017153286A JP2017153286A JP6308323B1 JP 6308323 B1 JP6308323 B1 JP 6308323B1 JP 2017153286 A JP2017153286 A JP 2017153286A JP 2017153286 A JP2017153286 A JP 2017153286A JP 6308323 B1 JP6308323 B1 JP 6308323B1
Authority
JP
Japan
Prior art keywords
optical
display device
shape
optical sheet
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153286A
Other languages
English (en)
Other versions
JP2019032434A (ja
Inventor
後藤 正浩
正浩 後藤
一信 小川
一信 小川
龍児 橋本
龍児 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2017153286A priority Critical patent/JP6308323B1/ja
Application granted granted Critical
Publication of JP6308323B1 publication Critical patent/JP6308323B1/ja
Priority to PCT/JP2018/017033 priority patent/WO2018199252A1/ja
Publication of JP2019032434A publication Critical patent/JP2019032434A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】映像源の画素領域間に存在する非画素領域が起因となる非映像領域が視認されてしまうことを抑制することができる表示装置を提供する。【解決手段】表示装置1は、複数の画素が配列され映像光を出射する映像源11と、映像光Vを拡大して観察者側へ出射するレンズ12と、映像源11とレンズ12との間、又は、レンズ12の観察者側に配置される光学シート20とを備える。光学シート20は、その内部又は表面に、シート面に沿って延在する凸状又は凹状の単位形状がその延在方向に直交する方向に配列された光学形状面を少なくとも1つ備えるものとした。【選択図】図1

Description

本発明は、観察者に映像を表示する表示装置に関するものである。
従来、LCD(Liquid Crystal Display)や有機ELディスプレイ等の映像源による映像を、光学系を介して観察者に観察させる頭部装着型の表示装置、いわゆるヘッドマウントディスプレイ(HMD)が提案されている(例えば、特許文献1)。このような頭部装着型の表示装置は、レンズ等の光学系によって映像源から投射される映像光を拡大して鮮明な映像を観察者に表示している。
このような表示装置に用いられる映像源は、映像を構成する複数の画素領域と、各画素領域間に設けられ、映像の表示に寄与しない非画素領域とが設けられている。このような映像源から出射された映像光をレンズにより拡大した場合、画素領域により構成される映像だけでなく、非画素領域が起因となる非映像領域も拡大されてしまうこととなり、映像だけでなく非映像領域も観察者に視認されてしまう場合があり、鮮明な映像の表示の妨げとなる場合があった。
特表2011−509417号公報
本発明の課題は、映像源の画素領域間に存在する非画素領域が起因となる非映像領域が視認されてしまうことを抑制することができる表示装置を提供することである。
本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
第1の発明は、複数の画素(G)が配列され映像光(V)を出射する映像源(11)と、前記映像源よりも観察者側に配置される光学シート(20,40,60)と、を備え、前記光学シートは、その内部又は表面に、シート面に沿って延在する凸状又は凹状の単位形状がその延在方向に直交する方向に配列された光学形状面(201,202,401,402,601)を少なくとも1つ備え、前記光学形状面において屈折率差により、光が屈折すること、を特徴とする表示装置(1)である。
第2の発明は、第1の発明の表示装置において、前記映像源(11)及び前記光学シート(20,40,60)を配置した状態で表示される映像において、前記光学シートの拡散作用によって1つの前記画素からの光が広がる範囲を発光エリア(EA)とし、前記発光エリアにおいて前記単位形状の配列方向における光量の最大値の1/5となる最も離れた2点の間隔をその配列方向における広がり幅とし、1つ以上の前記広がり幅のうち最大値となるものを最大広がり幅(SW)とするとき、前記最大広がり幅は、前記映像において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離(S)の0.5倍以上5倍以下となること、を特徴とする表示装置(1)である。
第3の発明は、第1の発明又は第2の発明の表示装置において、前記映像源(11)及び前記光学シート(20,40,60)を配置した状態で表示される映像において、前記光学シートの拡散作用によって1つの前記画素からの光が広がる範囲を発光エリア(EA)とし、前記発光エリアにおいて前記単位形状の配列方向における光量の最大値の1/5となる最も離れた2点の間隔をその配列方向における広がり幅とし、1つ以上の前記広がり幅のうち最大値となるものを最大広がり幅(SW)とし、前記画素と前記画素との中心距離が最も近接している方向を第1近接配列方向(DL1)とし、前記第1近接配列方向とは異なる方向であって、前記第1近接配列方向の次に前記画素と前記画素との中心距離が近接している方向を第2近接配列方向(DL2)とするとき、1つ以上の前記単位形状の配列方向のうち、前記広がり幅が前記最大広がり幅となる配列方向は、前記第1近接配列方向及び前記第2近接配列方向に対して5度以上の角度をなすこと、を特徴とする表示装置(1)である。
第4の発明は、第1の発明から第3の発明までのいずれかの表示装置において、前記光学シート(20,40)は、2層以上の光学層(21,22,41,42,43)が積層され、隣接する前記光学層の間の界面であって凸状又は凹状の第1単位形状(21a,41a)が複数形成された第1光学形状面(201,401)と、隣接する前記光学層の間の他の界面又は前記光学層と空気との界面であって凸状又は凹状の第2単位形状(22a,42)が複数形成された第2光学形状面(202.402)と、を備え、前記第1単位形状は、前記光学シートの厚み方向に直交するシート面内の第1の方向(SZ方向)に延在し、前記シート面内の前記第1の方向に直交する第2の方向(SX方向)に配列され、前記第2単位形状は、前記光学シートの厚み方向に直交するシート面内の第2の方向に延在し、前記シート面内の前記第2の方向に直交する第1の方向に配列され、前記光学シートの厚み方向から見て、前記第1単位形状と前記第2単位形状は、その配列方向が直交すること、を特徴とする表示装置(1)である。
第5の発明は、第4の発明の表示装置において、前記映像源(11)と前記光学シート(20,40)との間、又は、前記光学シートの観察者側に配置され、前記映像光を拡大して観察者側へ出射するレンズ(12)を備え、前記第1単位形状(21a,41a)の拡散角θにおける輝度をI(θ)とし、前記レンズ(12)と前記第1単位形状が形成された前記第1光学形状面(201,401)との間の距離をK1とし、前記レンズの有効半径をR3としたとき、前記第1単位形状の平均拡散角θave1を、
Figure 0006308323
と定義し、前記第1光学形状面と前記映像源の表示層との間の距離をL1とし、前記映像源(11)において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、15≦θave1×L1/S≦300を満たし、さらに、前記第2単位形状(22a,42a)の拡散角θにおける輝度をI(θ)とし、前記レンズと前記第2単位形状が形成された前記第2光学形状面との間の距離をK2とし、前記レンズの有効半径をR3としたとき、前記第2単位形状の平均拡散角θave2を、
Figure 0006308323
と定義し、前記第2光学形状面と前記映像源の表示層との間の距離をL2とし、前記映像源において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、15≦θave2×L2/S≦300を満たすこと、を特徴とする表示装置(1)である。
第6の発明は、第5の発明の表示装置において、23≦θave1×L1/S≦175、23≦θave2×L2/S≦175をともに満たすこと、を特徴とする表示装置(1)である。
第7の発明は、第4の発明から第6の発明までのいずれかの表示装置において、前記第1単位形状(21a,41a)は、前記光学シート(20,40)の厚み方向に平行であって前記第2の方向(SX方向)に平行な断面における断面形状が略円弧状に形成され、前記第2単位形状(22a,42a)は、前記光学シートの厚み方向に平行であって前記第1の方向(SZ方向)に平行な断面における断面形状が略円弧状に形成されており、前記第1単位形状が配列されるピッチをP1とし、前記第1単位形状の前記断面形状の円弧状の形状の曲率半径をR1とし、前記第1光学形状面を介して互いに隣接する領域の屈折率のうち屈折率が高い方の屈折率をnaとし、屈折率がnaよりも低い方の屈折率をnbとし、前記第1光学形状面と前記映像源(11)の表示層(11e)との間の距離をL1として、前記第1単位形状によって前記映像光が拡散される程度を表す指標としての拡散度D1を、D1=(P1/R1)×(1−(nb/na))×L1と定義し、前記第2単位形状(22a,42a)が配列されるピッチをP2とし、前記第2単位形状の前記断面形状の円弧状の形状の曲率半径をR2とし、前記第2光学形状面を介して互いに隣接する領域の屈折率のうち屈折率が高い方の屈折率をncとし、屈折率がncよりも低い方の屈折率をndとし、前記第2光学形状面と前記映像源の表示層との間の距離をL2として、前記第2単位形状によって前記映像光が拡散される程度を表す指標としての拡散度D2を、D2=(P2/R2)×(1−(nd/nc))×L1と定義し、前記映像源において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、1.0≦D1/S≦10.0、1.0≦D2/S≦10.0をともに満たすこと、を特徴とする表示装置(1)である。
第8の発明は、第7の発明の表示装置において、2.0≦D1/S≦6.0、2.0≦D2/S≦6.0をともに満たすこと、を特徴とする表示装置(1)である。
第9の発明は、第4の発明から第8の発明までのいずれかの表示装置において、前記第1単位形状(21a,41a)が配列されるピッチをP1とし、前記第1光学形状面(201,401)と前記映像源(11)の表示層(11e)との間の距離をL1とし、前記第2単位形状が配列されるピッチをP2とし、前記第2光学形状面(202,402)と前記映像源の表示層との間の距離をL2とするとき、0.005≦P1/L1≦0.05、0.005≦P2/L2≦0.05をともに満たすこと、を特徴とする表示装置(1)である。
第10の発明は、第4の発明から第9の発明までのいずれかの表示装置において、前記光学シート(40)は、3層以上の前記光学層(41,42,43)を有し、前記第1単位形状(41a)及び前記第2単位形状(42a)は、隣接する前記光学層の間の異なる界面(401,402)にそれぞれ複数設けられていること、を特徴とする表示装置(1)である。
第11の発明は、第4の発明から第9の発明までのいずれかの表示装置において、前記光学シート(20)は、2層の前記光学層(21,22)が積層されており、前記第1単位形状(21a)は、2層の前記光学層の間の界面(201)に複数設けられ、前記第2単位形状(22a)は、2層のうち一方の前記光学層と空気との界面(202)に複数設けられていること、を特徴とする表示装置(1)である。
第12の発明は、第1の発明から第3の発明のいずれかの表示装置において、前記映像源(11)と前記光学シート(60)との間、又は、前記光学シートの観察者側に配置され、前記映像光を拡大して観察者側へ出射するレンズ(12)を備え、前記光学シート(60)は、前記光学形状面(601)を1つ備え、前記単位形状(61a)の拡散角θにおける輝度をI(θ)とし、前記レンズ(12)と前記光学形状面との間の距離をK1とし、前記レンズの有効半径をR3としたとき、前記第1単位形状の平均拡散角θave1を、
Figure 0006308323
と定義し、前記光学形状面と前記映像源(11)の表示層(11e)との間の距離をL1とし、前記映像源(11)において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、5≦θave1×L1/S≦300を満たすこと、を特徴とする表示装置(1)である。
第13の発明は、第12の発明の表示装置において、23≦θave1×L1/S≦175を満たすこと、を特徴とする表示装置(1)である。
第14の発明は、第12の発明又は第13の発明の表示装置において、前記単位形状(61a)は、前記光学シート(60)の厚み方向に平行であってその配列方向に平行な断面における断面形状が略円弧状に形成され、前記単位形状が配列されるピッチをP1とし、前記単位形状の前記断面形状の円弧状の形状の曲率半径をR1とし、前記光学形状面を介して互いに隣接する領域の屈折率のうち屈折率が高い方の屈折率をnaとし、屈折率がnaよりも低い方の屈折率をnbとし、前記光学形状面と前記映像源の表示層との間の距離をL1として、前記単位形状によって前記映像光が拡散される程度を表す指標としての拡散度D1を、D1=(P1/R1)×(1−(nb/na))×L1と定義し、前記映像源(11)において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、1.0≦D1/S≦10.0を満たすこと、を特徴とする表示装置(1)である。
第15の発明は、第14の発明の表示装置において、2.0≦D1/S≦6.0を満たすこと、を特徴とする表示装置(1)である。
第16の発明は、第12の発明から第15の発明までのいずれかの表示装置において、前記単位形状(61a)が配列されるピッチをP1とし、前記光学形状面(601)と前記映像源(11)の表示層(11e)との間の距離をL1とするとき、0.005≦P1/L1≦0.05を満たすこと、を特徴とする表示装置(1)である。
第17の発明は、第12の発明から第16の発明までのいずれかの表示装置において、前記光学シート(60)は、少なくとも2層以上の光学層(61,62)が互いに隣接して設けられ、前記光学形状面(601)は、隣接する前記光学層の間の界面に形成されていること、を特徴とする表示装置(1)である。
第18の発明は、請求項1から請求項17までのいずれかの表示装置において、前記光学シートは、少なくとも2層以上の光学層(21,22,41,42,43,61,62)が互いに隣接して設けられ、隣接する前記光学層の間の界面において、該界面に隣接する領域の屈折率差は、0.005以上0.2以下であること、を特徴とする表示装置(1)である。
第19の発明は、第1の発明から第18の発明のいずれかの表示装置において、前記光学シート(40,60)は、その両面が平面状であること、を特徴とする表示装置(1)である。
第20の発明は、第1の発明から第19の発明までのいずれかの表示装置において、前記映像源(11)の表示面(11a)から前記光学シート(20,40,60)の観察者側の面までの間であって、少なくとも前記映像光(V)のうち観察者に到達する光が透過する領域には、空気層が存在していないこと、を特徴とする表示装置(1)である。
第21の発明は、第1の発明から第20の発明までのいずれかの表示装置において、前記映像源(11)の表示面(11a)から前記光学シート(20,40,60)の観察者側の面までの間であって、少なくとも前記映像光(V)のうち観察者に到達する光が透過する領域における部材間の界面における屈折率差は、0.3未満であること、を特徴とする表示装置(1)である。
第22の発明は、第1の発明から第21の発明までのいずれかの表示装置において、前記光学シート(20,40,60)は、映像源側の面から入射角度0°で入射して観察者側に出射した透過光の半値角αとし、この透過光の輝度が最大輝度の1/20となる角度を視野角βとするとき、β≦5×αを満たすこと、を特徴とする表示装置(1)である。
第23の発明は、第1の発明から第22の発明までのいずれかの表示装置において、前記光学シート(20,40,60)と前記映像源(11)との距離は、変更可能であり、所定の位置で固定可能であること、を特徴とする表示装置(1)である。
本発明によれば、映像源の画素領域間に存在する非画素領域が起因となる非映像領域が視認されてしまうことを抑制することができる表示装置を提供することができる。
第1実施形態の頭部装着型の表示装置1を説明する図である。図1は、表示装置1を鉛直方向上側から見た図である。 第1実施形態の表示装置1に用いられる光学シート20と保持部32と映像源11とを観察者側(−Y側)から見た図である。 第1実施形態の表示装置1に用いられる光学シート20の詳細を説明する図である。 第1実施形態の表示装置1によって表示された画像の例を示す図である。 比較例の表示装置5を説明する図である。 1つの画素の発光エリアを説明する図である。 発光エリアの広がり幅を説明する図である。 第1実施形態の映像源11の画素配置の一例における第1近接配列方向DL1、第2近接配列方向DL2と、光学シート20の単位形状21a,22aの配列方向(SX方向、SZ方向)とを説明する図である。 第1実施形態の光学シート20の単位形状による拡散角と輝度との関係の一例を示す図である。 距離K1,K2と距離L1,L2とレンズ12の有効半径R3を示す図である。 光学シート20の製造工程の一例を示す図である。 第2実施形態の光学シート40を説明する図である。 第3実施形態の光学シート60を説明する図である。 光学シート20の変形形態を説明する図である。 表示装置1の変形形態を説明する図である。 光学シート20の別の固定形態を説明する図である。
以下、図面等を参照して、本発明の実施形態について説明する。なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張している。
本明細書中において、記載する各部材の寸法等の数値及び材料名等は、実施形態としての一例であり、これに限定されるものではなく、適宜選択して使用してよい。
本明細書中において、形状や幾何学的条件を特定する用語、例えば、平行や直交等の用語については、厳密に意味するところに加え、同様の光学的機能を奏し、平行や直交と見なせる程度の誤差を有する状態も含むものとする。
本明細書中において、シート面とは、シート状の部材において、そのシート全体として見たときにおける、シートの平面方向となる面を示すものであるとする。
本明細書中において、板、シート等の言葉を使用しているが、これらは、一般的な使い方として、厚さの厚い順に、板、シート、フィルムの順で使用されており、本明細書中でもそれに倣って使用している。しかし、このような使い分けには、技術的な意味は無いので、これらの文言は、適宜置き換えることができるものとする。
(第1実施形態)
図1は、第1実施形態の頭部装着型の表示装置1を説明する図である。図1では、表示装置1を鉛直方向上側から見た様子を示している。
なお、図1を含め以下に示す図中及び以下の説明において、理解を容易にするために、観察者がその頭部に表示装置1を装着した状態において、鉛直方向(上下方向)をZ方向とし、水平方向をX方向及びY方向とする。また、この水平方向のうち、光学シート20の厚み方向をY方向とし、その厚み方向に直交する左右方向をX方向とする。このY方向の−Y側を観察者側とし、+Y側を映像源側(背面側)とする。
図2は、第1実施形態の表示装置1に用いられる光学シート20と保持部32と映像源11とを観察者側(−Y側)から見た図である。
図2中には、上述したX−Y−Zの方向に加えて、Y軸まわりで(X−Z平面内で)角度δだけ回転した(傾いた)第2の方向を示す記号として、SX−SY(Y)−SZを示している。なお、SY方向は、上述のY方向と一致している。このSX−SY−SZの方向は、後述する光学シート20の単位形状の配列方向を示すために設けている。
図3は、第1実施形態の表示装置1に用いられる光学シート20の詳細を説明する図である。図3(a)は、光学シート20の単位形状21aの配列方向及び厚み方向に平行な断面における断面図であり、図3(b)は、図3(a)のb部断面図である。図3(c)は、図3(a)のc部詳細を示す図であり、図3(d)は、図2(b)のd部詳細を示す図である。
図4は、第1実施形態の表示装置1によって表示された画像の例を示す図である。
図5は、比較例の表示装置5を説明する図である。図5(a)は、比較例の表示装置5の構成を説明する図であり、図1に対応する図である。図5(a)では、理解を容易にするために、表示装置5として、映像源51とレンズ52のみを示している。図5(b)は、比較例の表示装置5によって表示された画像の例を示す図である。
表示装置1は、観察者がその頭部に装着し、観察者の眼前に映像を表示する、いわゆるヘッドマウントディスプレイ(HMD)である。図1に示すように、本実施形態の頭部装着型の表示装置1は、筐体30の内側に、映像源11と、レンズ12と、光学シート20とを備えており、筐体30が観察者の眼前となるようにその頭部に装着することによって、映像源11に表示された映像を光学シート20、レンズ12を介して観察者の眼Eに視認させることができる。
なお、図1において、表示装置1は、観察者の両眼E1,E2に対して映像を表示する例を挙げて説明するが、これに限定されるものでなく、例えば、観察者の片側の眼E1に対して配置され、その眼E1に対して映像を表示する形態としてもよい。
筐体30は、左右方向に横長の矩形の箱型の筐体であり、その内側に、映像源11を保持する保持部31、光学シート20(20A,20B)を保持する保持部32、レンズ12(12A,12B)を保持する保持部33を備えている。この筐体30は、例えば、不図示のベルト等により、観察者の頭部に装着可能である。
保持部31は、映像源11を保持する部材であり、その映像源11の表示面11a側の面に、観察者の眼E(E1,E2)及びレンズ12(12A,12B)に対応する位置に開口部311(311A,311B)を有している。本実施形態では、映像源11は、この保持部31(すなわち、表示装置1)に着脱可能に保持される。映像源11から出射した映像光Vは、この開口部311(311A,311B)を通って光学シート20(20A,20B)へ入射する。
保持部32は、保持部31及び映像源11よりも観察者側(−Y側)に位置し、光学シート20を保持する部材である。保持部32は、開口部311(311A,311B)に対応する位置に設けられた開口部321(321A,321B)内に、光学シート20(20A,20B)が嵌めこまれ、保持されている。
この保持部32と前述の保持部31とは、一体となってY方向に移動可能であり、Y方向において所望の位置で固定可能である。したがって、観察者の視力等に応じて、映像源11及び光学シート20とレンズ12との間の距離(レンズ12に対するY方向における位置)を調節可能(ピント調節可能)である。また、保持部32と保持部31とが、それぞれ独立してY方向に移動可能であり、Y方向において所望の位置で固定可能であり、映像源11と光学シート20との間の距離(映像源11と光学シート20とのY方向における距離)を調整可能である。
なお、これに限らず、保持部31及び保持部32は、Y方向の位置が固定された形態としてもよい。
保持部33は、保持部32及び光学シート20よりも観察者側(−Y側)に位置し、レンズ12(12A,12B)を保持する部材である。この保持部33は、光学シート20(20A,20B)に対応する位置に開口部331(331A,331B)を有し、その開口部331(331A,331B)内にレンズ12(12A,12B)が嵌めこまれ、保持されている。
映像源11は、映像光Vを出射し、表示面11aに映像を表示する表示素子(マイクロディスプレイ)であり、例えば、透過型の液晶表示デバイスや、反射型の液晶表示デバイス、有機EL等を使用することができる。本実施形態の映像源11は、例えば、対角が5インチの有機ELディスプレイが使用される。
映像源11は、その表示面11aが観察者側(−Y側)となるようにして、保持部31に保持されている。
なお、本実施形態では、この表示装置1は、映像源11を1つ備える例を示したが、これに限らず、例えば、後述するレンズ12A,12B及び観察者の眼E1,E2にそれぞれ対応する2台の映像源を備える形態としてもよい。
レンズ12(12A,12B)は、映像源11から出射された映像光Vを拡大して観察者側に出射する凸レンズである。本実施形態では、映像源11及び光学シート20(20A,20B)よりも観察者側(−Y側)に配置されている。レンズ12は、透光性の高いガラス製又は樹脂製である。
レンズ12の映像源側(背面側、+Y側)の表面には、反射抑制層12aが形成されている。この反射抑制層12aは、例えば、汎用の反射防止機能を有する材料(例えば、フッ化マグネシウム(MgF)、二酸化ケイ素(SiO)、フッ素系光学用コーティング剤等)を所定の膜厚でコーティングする等により設けてもよいし、光の波長より小さなピッチで形成された微小な凹凸形状を有するモスアイ構造を光の入射側の面に有することにより反射抑制機能を奏する層をレンズ12の映像源側に一体に積層して設けてもよい。また、反射抑制層12aは、高屈折率層と低屈折率層とが複数積層された多層膜により形成されたものを用いてもよい。
このような反射抑制層12aを設けることにより、レンズ12に入射する光がレンズ12の映像源側で反射して光学シート20側へ向かい、光学シート20の表面で再度反射する等により迷光となることを抑制し、映像のコントラストや明るさの向上を図ることができる。
また、反射抑制層12aは、さらに、レンズ12の観察者側(−Y側)の面に設けてもよい。この位置にさらに反射抑制層12aを設けることにより、レンズ12から映像光が出射する際に、レンズ12と空気との界面で反射し、レンズ12内で迷光となることを抑制でき、映像のコントラスト等を向上できる。
本実施形態では、光学シート20は、図1に示すように、映像源11とレンズ12との間に配置されている。光学シート20は、映像源11から出射した映像光Vを微少に拡散する拡散機能を有する光透過性のあるシートである。
本実施形態では、観察者の両眼E1,E2に対応して、それぞれ、レンズ12A,12B及び光学シート20A,20Bが設けられている。しかし、これに限らず、例えば、レンズ12A,12Bの領域をカバーできる程度に大きい1枚の光学シート20を、レンズ12よりも映像源側(背面側、−Y側)に配置する形態としてもよい。
図1では、光学シート20と映像源11の表示面11aとが所定の寸法だけ離間している形態を示しているが、これに限らず、光学シート20と映像源11の表示面11aとの間に、中間層が位置する形態とし、映像源11の表示面11aから光学シート20の観察者側の面までの間であって少なくとも映像光Vのうち観察者の眼Eに到達する光(観察者が視認する光)が透過する領域に、空気層が存在していない形態としてもよい。この場合、映像源11の表示面11aから光学シート20の観察者側の面までの間であって少なくとも映像光Vのうち観察者の眼Eに到達する光(観察者が視認する光)が透過する領域における各部材間の界面における屈折率差は、0.3未満とすることが好ましい。このような形態とすることにより、界面反射による映像光Vの光量損失の低減や迷光の抑制等を図ることができる。
このような中間層としては、所望する光学性能等に応じて適宜採用可能であるが、例えば、インデックスマッチング用の樹脂等が挙げられる。
従来、主に使用されている頭部装着型の表示装置5(以下、比較例の表示装置5という)は、図5(a)に示すように、上述の光学シート20を備えていない形態であり、映像源51から出射された映像光Vをレンズ52により拡大して、その映像を観察者に表示していた。
映像源51及び映像源11に用いられる有機EL等のディスプレイは、その表示部に映像を形成する画素が複数配列されており、また、各画素間には映像の形成に寄与しない非画素領域G2が設けられている。そのため、比較例の表示装置5では、映像源51から出射する映像光Vにより表示される映像は、レンズ52を介して拡大された場合に、図4(b)に示すように、画素の発する映像光による映像領域F1だけでなく、非画素領域G2が起因となる非映像領域F2も拡大されてしまう。そして、非映像領域F2も明瞭に観察者に視認され、鮮明な映像表示の妨げとなってしまう場合があった。
これに対して、本実施形態の表示装置1では、上述の光学シート20を設けることにより、映像源11から出射した映像光を微少に拡散させ、図4に示すように、その拡散された映像光によって、非画素領域G2が起因となる非映像領域F2が観察者に視認されてしまうことを抑制することができる。
本実施形態の光学シート20は、図3に示すように、映像源側(背面側、+Y側)から順に、第1光学層21、第2光学層22が積層されている。光学シート20は、この第1光学層21及び第2光学層22の界面201と、第2光学層22と空気との界面202とに、それぞれ単位形状21a、単位形状22aが複数形成され配列されている。すなわち、界面201,202は、いずれも光学形状面であり、光学シート20は、光学形状面を2つ備えている。
図2中には、光学シート20のシート面に平行な方向であって互いに直交するSX方向及びSZ方向を記載している。この2つの方向は、光学シート20に設けられた各単位形状の配列方向とそれぞれ一致している。図2の例では、角度δだけ光学シート20の各単位形状の配列方向がX方向及びZ方向に対して傾いて(回転して)配置されている。
光学シート20は、X方向及びZ方向に対してSX方向、SZ方向が角度δだけ傾いて保持部32に取り付け可能なように、位置決め形状としての凸部20aが保持部32の開口部321に設けられた位置決め形状としての凹部321aに嵌め込まれている。
なお、本実施形態では、光学シート20の外形形状を図2のような円形を基本としたが、例えば、光学シート20の形状を多角形形状として、装着される向き(XY面内での回転方向の位置)を規定するようにしてもよい。
第1光学層21は、光学シート20の厚み方向(Y方向)において、第2光学層22よりも映像源側(+Y側)に位置し、光透過性を有する層である。第1光学層21の映像源側の面は、略平坦に形成されている。第1光学層21の観察者側(−Y側)の面、すなわち、第1光学層21と第2光学層22との界面201には、図2(a)に示すように、凸状の単位形状21aが複数形成されている。この界面201は、光学形状面である。本実施形態では、単位形状21aは、観察者側に凸となっている。
単位形状21aは、第1光学層21の観察者側(−Y側)の面に沿って、SZ方向に延在し、この延在方向に直交するSX方向に複数配列されている。また、単位形状21aは、配列方向(SX方向)及び光学シート20の厚み方向(Y方向)に平行な面における断面形状が略円弧状に形成されたレンチキュラーレンズ形状である。ここで、略円弧状とは、真円の円弧だけでなく、楕円や長円等の一部を含む曲線状の形状を含むものをいう。なお、本実施形態では、単位形状21aの断面形状を上記のように略円弧状としたが、これは一例であって、これに限定されるものではない。
本実施形態の単位形状21aの配列ピッチは、P1であり、円弧状の曲率半径はR1である。また、単位形状21aの配列方向における幅W1は、配列ピッチP1に等しい。
第2光学層22は、第1光学層21の観察者側(−Y側)に位置する光透過性を有する層である。第2光学層22の観察者側の面は、光学シート20を透過した映像光が出射する面(空気との界面202)であり、図3(b)に示すように、凸状の単位形状22aが複数形成されている。この界面202は、光学形状面である。本実施形態では、単位形状22aは、観察者側(−Y側)に凸となっている。
この単位形状22aは、第2光学層22の観察者側の面に沿って、SX方向に延在し、この延在方向に直交するSZ方向に複数配列されており、配列方向及び光学シート20の厚み方向に平行な面における断面形状が略円弧状に形成されたレンチキュラーレンズ形状である。なお、本実施形態では、単位形状22aの断面形状を上記のように略円弧状としたが、単位形状21aと同様に、これは一例であって、これに限定されるものではない。
本実施形態の単位形状22aの配列ピッチは、P2であり、円弧状の曲率半径はR2である。また、単位形状22aの配列方向における幅W2は、配列ピッチP2に等しい。
本実施形態では、光学シート20の厚み方向(シート面の法線方向、Y方向、SY方向)から見て、単位形状21aの配列方向(SX方向)と単位形状22aの配列方向(SZ方向)とは、直交している。また、光学シート20の厚み方向から見て、単位形状21aの延在方向(SZ方向)と単位形状22aの延在方向(SX方向)とは、直交している。
また、本実施形態では、一例として、単位形状21aと単位形状22aとは、その配列ピッチが等しく、P1=P2であるが、曲率半径が異なっており、R1<R2となっている。なお、これに限らず、単位形状の配列ピッチが異なっていてもよいし、曲率半径が等しくてもよい。
なお、本実施形態では、光学シート20の厚み方向(Y方向、SY方向)から見て、単位形状22aの配列方向(SX方向)と単位形状21aの配列方向(SZ方向)とが直交する例を示したが、これに限らず、単位形状22aの配列方向(SX方向)と単位形状21aの配列方向(SZ方向)とが交差する形態としてもよい。
第1光学層21は、光透過性の高いPC(ポリカーボネート)樹脂、MS(メチルメタクリレート・スチレン)樹脂、PET(ポリエチレンテレフタレート)樹脂、アクリル系樹脂等により形成された基材層の片面に、光透過性の高いウレタンアクリレート樹脂やエポキシアクリレート樹脂等の紫外線硬化型樹脂等によって、複数の単位形状21aが賦形されて形成されている。
第2光学層22は、光透過性の高いウレタンアクリレート樹脂や、エポキシアクリレート樹脂等の紫外線硬化型樹脂等により形成されている。
本実施形態では、第1光学層21の単位形状21aは、第2光学層22よりも屈折率が高い材料で形成されている。
また、本実施形態の光学シート20では、界面201(光学形状面)を介して互いに隣接する領域の屈折率差、すなわち、単位形状21aと第2光学層22との屈折率差Δn1は、0.005≦Δn1≦0.2を満たすように形成されている。
この屈折率差Δn1が0.005未満である場合、界面201(光学形状面)での屈折率差が小さくなりすぎ、界面201における映像光の屈折が生じ難くなってしまい、十分な拡散作用が発揮されなくなるため望ましくない。また、屈折率差Δn1が0.005未満である場合、その界面201で隣接する領域の樹脂の屈折率のバラツキが拡散特性に影響が大きくなったり、波長分散の影響が大きくなったりするため好ましくない。
屈折率差Δn1が0.2よりも大きい場合、界面201(光学形状面)における光の屈折が大きくなりすぎてしまい、拡散作用が大きくなり過ぎ、映像が不鮮明になるので望ましくない。また、屈折率差Δn1が0.2よりも大きい場合、そのような屈折率差を有する層構成を実現するための材料コストが嵩むため、好ましくない。
さらに、本実施形態の光学シート20は、第1光学層21の映像源側(+Y側)及び観察者側(−Y側)に、不図示の反射抑制層が設けられている。
光学シート20の両面に設けられた反射抑制層は、レンズ12の映像源側に設けられた反射抑制層12aと同様に、例えば、汎用の反射防止機能を有する材料(例えば、フッ化マグネシウム(MgF)、二酸化ケイ素(SiO)、フッ素系光学用コーティング剤等)を所定の膜厚でコーティングする等により設けてもよい。
また、映像源11が表示装置に固定されて着脱不可能である場合等には、光の波長より小さなピッチで形成された微小な凹凸形状を有するモスアイ構造を光の入射側の面に有することにより反射抑制機能を奏する層を、光学シート20の映像源側に一体に積層して設けてもよい。
反射抑制層を光学シート20の映像源側(+Y側)に設けることにより、光学シート20に入射する光が光学シート20の映像源側の面で反射して映像源11側へ向かうことによる映像の明るさの低下を抑制できる。
また、反射抑制層を光学シート20の映像源側(+Y側)に設けることにより、光学シート20に入射する光が光学シート20の映像源側の面で反射して映像源11側へ向かい、映像源11の表示面11aで再度反射する等により迷光となることを抑制し、映像のコントラスト向上を図ることができる。
また、反射抑制層を光学シート20の観察者側(−Y側)の面に設けることにより、光学シート20から映像光が出射する際に、光学シート20と空気との界面で反射し、光学シート20内で迷光となる光を低減でき、映像のコントラストや明るさ等を向上できる。
なお、反射抑制層は、上記の例に限らず、光学シート20のどちらか片面だけ、例えば、映像源側のみに設けられる形態としてもよい。
また、光学シート20の映像源側(+Y側)や観察者側(−Y側)の面に、ハードコート機能や、防汚機能、帯電防止機能等を有する層を適宜設けてもよい。
このような層を設けることにより、例えば、映像源11が筐体30に着脱可能である場合に、映像源11を筐体30から外したときに、光学シート20が傷ついたり、汚れが付着したりや、埃やごみ等が付着したりして、映像の視認の妨げになることを抑制できる。
次に、光学シート20の映像光Vを拡散する作用等について説明する。
光学シート20は、上述したように、映像光Vを拡散する作用によって、非画素領域G2に起因する非映像領域F2が観察者に視認されてしまうことを抑制する。
光学シート20による拡散作用が強すぎると、映像光Vが必要以上に拡散されてしまい、映像がぼやける等してその質が劣化してしまう。一方、光学シート20による拡散作用が弱すぎると、非映像領域F2が観察者に視認されてしまう。したがって、光学シート20は、適切な拡散作用を備えるものとしなければならない。
また、この光学シート20による拡散作用の最適な強さは、映像源11やレンズ12との位置関係によっても変化する。また、光学シート20には、単位形状が所定の方向に配列されていることから、その配列方向と画素との位置関係等も、非映像領域F2を観察者に視認させにくくする効果に影響を与える。
映像源11からの映像光Vは、光学シート20により拡散され、さらにレンズ12により拡大して、観察者が観察するので、レンズ12により実際に観察される範囲において拡散される光の成分が重要である。また、光学シート20は、複数の単位形状21aが配列された界面201(光学形状面)と、複数の単位形状22aが配列された界面202(光学形状面)とを備えており、各界面において拡散される。
(光の広がり幅に関して)
次に、光学シート20の映像光を拡散する拡散作用について、画素が発する光の広がりの観点から説明する。
映像源11に設けられた1つの画素が発する光は、主に光学シート20の拡散作用により、その光の範囲(以下、発光エリアという)が広げられる。
図6は、1つの画素の発光エリアを説明する図である。図6(a)は、レンズ12及び光学シート20を用いず、映像源11が表示する映像をデジタルマイクロスコープ等で拡大した観察像であり、1つの画素が発した光の様子を示している。図6(b)は、レンズ12を用いず、映像源11と光学シート20とを組み合わせて配置した状態で表示される映像をデジタルマイクロスコープ等で拡大した観察像であり、1つの画素が発した光の様子を示している。
画素から発せられた光は、光学シート20等を透過しない場合には、図6(a)に示すように、その発光エリアEA0が画素の発光部の形状(例えば円形形状)に近い形状として観察される。そして、光学シート20の拡散作用を受けることにより、画素から発せられた光は、主に単位形状21a,22aの配列方向となるSX方向、SZ方向に沿って広げられ、図6(b)に示すように、その発光エリアEAが矩形形状に広がった形状として観察される。
また、光学シート20と映像源11の画素(後述する図10に示す表示層11e)との距離や、光学シート20の単位形状21a,22aの配列ピッチP1,P2との関係から、光学シート20からの出射光において、単位形状21a,22aでの回折によって拡散されて出射する光量が占める割合が大きくなる場合がある。その場合、発光エリアEAは、拡散によって単位形状21a,22aの配列方向(SX方向、SZ方向)に広がり、かつ、回折光によっても広げられ、回折によって生じる光量の大きな領域(明るい領域)が発光アリアEA内に複数粒状に観察される。
この発光エリアEAは、単位形状21a,22aが形成された2つの光学形状面(界面201,202)での拡散作用の大きさが等しい場合は、正方形に近い形状となる。また、2つの光学形状面での拡散作用の大きさが等しくない場合には、2つの対角線のうち、拡散作用が大きい方の単位形状の配列方向に平行な方がもう一方より長い菱形形状に近い形となる。
本実施形態では、単位形状22aが形成された光学形状面(界面202)での拡散作用が、単位形状21aが形成された光学形状面(界面201)での拡散作用よりもやや大きく、発光エリアEAは、2本の対角線のうちSZ方向に平行な対角線が他方より長い菱形形状となっているものとする。なお、これに限らず、単位形状21aが形成された光学形状面(界面201)での拡散作用が、単位形状22aが形成された光学形状面(界面202)での拡散作用よりも大きく、発光エリアEAが、SX方向に平行な対角線が他方より長い菱形形状であってもよいし、2つの光学形状面(2つの界面201,202)での拡散作用の大きさが等しく、発光エリアEAが正方形形状である形態としてもよい。
図7は、発光エリアの広がり幅を説明する図である。図7に示す各グラフは、一例として、単位形状22aの配列方向であるSZ方向における光量の分布を示し、縦軸は光量、横軸はSZ方向での位置を示している。
図7(a)に示すグラフは、レンズ12及び光学シート20を用いず、映像源11が表示する映像をデジタルマイクロスコープ等で拡大した観察像における1つの発光エリアEA0の光量の分布の一例を示している。図7(b)に示す各グラフは、レンズ12を用いず、映像源11と光学シート20とを組み合わせて配置した状態で表示される映像をデジタルマイクロスコープ等で拡大した観察像における1つの発光エリアEAの光量の分布の一例を示している。なお、図7(b)に示すグラフは、光学シート20からの出射光において、単位形状21a,22aでの屈折による拡散作用の比率が高い場合の一例である。
ここで、1つの画素の発光エリアEAにおいて、単位形状21a,22aの配列方向であるSX方向、SZ方向における発光エリアEAの広がり幅をSW1,SW2とする。この広がり幅SW1,SW2は、映像源11と光学シート20とを組み合わせて配置した状態で表示される映像において、発光エリアEAのSZ方向における光量の最大値の1/5の値となる最も離れた2点(図7(b)においては点t1と点t2)の間隔として規定される。
本実施形態では、前述のように単位形状22aが形成された光学形状面(界面202)での拡散作用が、単位形状21aが形成された光学形状面(界面201)での拡散作用よりも大きい。従って、単位形状22aの配列方向であるSZ方向での広がり幅SW2を、最大広がり幅SWとする。
なお、上記説明では、単位形状22aの配列方向となるSZ方向での拡散作用が大きい例をについて説明したが、単位形状21a,22aの配列方向における拡散作用の大きさが等しい場合(発光エリアEAが正方形状である場合)には、単位形状21aの配列方向となるSX方向における広がり幅SW1も最大広がり幅SWとなる。
この発光エリアEAの最大広がり幅SWは、前述の映像において、最も近接している画素と画素との中心距離である画素の最近接距離S(後述する第1近接配列方向DL1における画素と画素との中心距離)の0.5倍以上5倍以下であることが好ましい。
この最大広がり幅SWが、上記範囲未満である場合、隣り合う画素の発光エリアEAの間の非映像領域F2が大きくなり、表示装置1の使用状態において非映像領域F2が視認されやすくなるため、好ましくない。
また、最大広がり幅SWが上記範囲よりも大きい場合、隣り合う画素の発光エリアが大きく重複し、映像のぼけが大きくなり、映像の鮮明度が大幅に低下するため、好ましくない。したがって、最大広がり幅SWは、上記範囲とすることが望ましい。
なお、映像源11と光学シート20とを組み合わせて配置した状態で表示される映像における、各単位形状の配列方向での発光エリアEAの光量の最大値や最大値の1/5となる値、2点t1,t2の位置や2点t1,t2間の距離は、その映像をデジタルマイクロスコープ等により拡大し、CCDカメラ等で拡大して撮像した発光エリアEAの観察画像において、映像信号(画像中の座標情報及び信号強度)から、発光エリアEA中における位置と明るさの相関関係を検出し、算出可能である。
また、映像源11と光学シート20とを組み合わせて配置した状態で表示される映像における画素の最近接距離Sは、レンズ12及び光学シート20を用いない状態で映像源11が表示する映像を同様に拡大して撮像した観察画像から算出可能であり、この最近接距離Sは、映像源11の映像表示領域(後述する表示層11e)において最も近接している画素と画素との中心距離である。なお、画素の最近接距離Sは、映像源11と光学シート20とを組み合わせて配置した状態で表示される映像を同様に拡大して撮影した観察画像からも算出可能であるが、正確性を期すためには、映像源11が表示する映像を同様に拡大して撮像した観察画像から算出することが望ましい。
(画素の配置と光学シートの単位形状の配列方向に関して)
次に、映像源11の画素配置と、光学シート20の単位形状21a,22aの配列方向(SX方向、SZ方向)との関係について説明する。
図8は、第1実施形態の映像源11の画素配置の一例における第1近接配列方向DL1、第2近接配列方向DL2と、光学シート20の単位形状21a,22aの配列方向(SX方向、SZ方向)とを説明する図である。
光学シート20を設ける主な目的は、前述のように、映像源11が拡大観察されることにより、画素間の非画素領域G2に起因する非映像領域F2が目立って見えてしまうことを抑制することである。映像源11の種類によっては、映像源11の映像表示領域において画素が占める面積の割合が小さい(すなわち、非画素領域G2が占める割合が大きい)場合、光学シート20の単位形状21a,22aの配列方向(SX方向、SZ方向)が映像源11の画素の配列方向に対してなす角度によっては、画素の発した映像光が十分に非画素領域G2領域側へ拡散されず、非映像領域F2が目立ちやすくなる。
図8では、本実施形態の映像源11の画素配置の一例として、映像源11の矩形の映像表示領域の上下左右方向(X方向,Z方向)に正方格子状に画素Gが配列されている例を示している。ここでは、画素Gの発光色(R,G,B)の違いに関わらず、各画素Gの中心位置間の距離に着目しているため、各画素Gはすべ同形状で示し、その色の違いについては示していない。また、図8では、各画素Gは、矩形の表示領域の上下左右方向に等間隔で配列されているものとした。なお、画素Gの形状は、図8では一例として円形形状である例を示したが、これに限らず、例えば、矩形形状等としてもよい。
図8において、一例として、図中の下方にある任意の画素G0を基準とし、画素中心間の距離(中心距離)(以下、画素間の距離に関しては、中心間の距離とする)によって、以下の方向を規定した。なお、この基準の画素G0は、理解を容易にするための説明のために設定したものであって、基準として特定の1つの画素を決める必要はない。
(第1近接配列方向DL1)
適宜選択した基準の画素から、画素中心間の距離が最も近接している方向を第1近接配列方向DL1として規定する。本実施形態では、第1近接配列方向DL1がZ方向となす角度は、0度である。
(第2近接配列方向DL2)
第1近接配列方向DL1とは異なる方向であって、第1近接配列方向DL1の次に画素と画素との中心距離が近接している方向を第2近接配列方向DL2として規定する。本実施形態では、第2近接配列方向DL2がZ方向となす角度は、45度である。
仮に、単位形状21a,22aの配列方向(SX方向、SZ方向)のうち、前述の発光エリアEAの広がりが大きい方に相当する配列方向(本実施形態では、SZ方向)と、第1近接配列方向DL1とが一致する場合、映像源11の非画素領域G2への映像光の広がりが小さく、非映像領域F2が視認されてしまう領域が大きくなる。
これは、単位形状21a,22aの配列方向(SX方向、SZ方向)のうち、前述の発光エリアEAの広がりが大きい方に相当する配列方向(本実施形態では、SZ方向)と、第2近接配列方向DL2とが一致する場合についても同様である。
よって、光学シート20の単位形状21a,22aの配列方向(SX方向,SZ方向)のうち、前述の発光エリアEAの広がりが大きい方に相当する配列方向(本実施形態では、SZ方向)は、第1近接配列方向DL1及び第2近接配列方向DL2に対して5度以上の角度をなすように、光学シート20が配置されることが望ましい。
映像源11の画素に対してこのように各単位形状の配列方向が上述のような方向となるように光学シート20を配置することにより、映像源11の非映像領域F2が視認されることを抑制することができる。
以上のことから、表示装置1は、映像源11及び光学シート20を組み合わせて配置した状態で表示される映像において、発光エリアEAの最大広がり幅SWの大きさを、画素の最近接距離S(第1近接配列方向DL1における画素と画素との中心距離)の0.5倍以上5倍以下とし、かつ、光学シート20の単位形状21a,22aの配列方向(SX方向,SZ方向)のうち、前述の発光エリアEAの広がりが大きい方に相当する配列方向(本実施形態では、SZ方向)が、第1近接配列方向DL1、第2近接配列方向DL2に対して5度以上をなすように光学シート20を配置することにより、非映像領域F2が視認され、映像領域F1が独立して見えることを抑制し、良好な画像を表示することができる。
なお、本実施形態では、矩形の表示領域の上下左右方向に正方格子状に配列される形態を示したが、これに限らず、矩形の表示領域の上下左右方向に対して45度傾いた方向において、正方格子状に画素が配列されている形態等としてもよい。また、映像源11の画素の配置は、適宜選択してよい。
次に、光学シート20の拡散作用について、別の観点からその好ましい範囲等を説明する。
(拡散作用に関する指標1)
図9は、第1実施形態の光学シート20の単位形状による拡散角と輝度との関係の一例を示す図である。
光学シート20の単位形状が複数配列された界面(光学形状面)のどちらかを通過した光の輝度と拡散角との関係が、例えば、図9のようになったとし、このうち、レンズ12を通して観察者に届く成分は、拡散角θが−φから+φの範囲の成分であるとする。この範囲に拡散される光の成分をその界面の拡散度合いの指標として用いれば、単位形状が複数配列された光学形状面として適切な光の拡散作用を評価できる。
また、映像源11において最も近接している画素と画素との中心距離である画素の最近接距離S等も光学シート20の光の拡散作用に関する重要な映像表示領域に配列されているパラメータとなる。
さらに、レンズ12と光学シート20の単位形状が複数形成された界面との間の距離が変化すれば、単位形状が複数形成された界面が映像光Vを拡散させる効果も変化する。
そこで、単位形状21a,22aが形成された各光学形状面(界面201,202)による拡散角θにおける輝度を、それぞれI(θ),I(θ)とし、レンズ12と各光学形状面(界面201,202)と間の距離をK1,K2とし、レンズ12の有効半径をR3としたとき、−φから+φの範囲の成分に関して各光学形状面(界面201,202)の平均拡散角θave1,θave2を、それぞれ、以下の式で定義する。
Figure 0006308323
Figure 0006308323
単位形状21a,22aが形成された各光学形状面(界面201,202)と映像源11の画素(後述する図11の表示層11e)との間の距離をL1,L2とし、映像源11の表示領域における最も近接している画素と画素との中心距離である画素の最近接距離をSとし、θave1×L1/S、θave2×L2/Sを単位形状21a,22aによる映像光Vを拡散する作用によって、非画素領域G2の起因となる非映像領域F2が観察者に視認されてしまうことを抑制する程度を示す指標、すなわち、ぼかし度合いの指標として設定する。
なお、表示装置1に用いられる映像源11の画素の最近接距離Sは、映像源11の種類や画素の配列形態によっても変化する。本実施形態では、一例として、S=20μmであるが、これに限定されるものではない。
図10は、距離K1,K2と距離L1,L2とレンズ12の有効半径R3を示す図である。
単位形状21a,22aは、いずれも光学シート20の厚み方向(Y方向)に凸となる形状である。また、レンズ12についても、複数のレンズを用いることが可能である。よって、レンズ12と単位形状21a,22aが複数形成された各光学形状面(界面201,202)との間の距離K1,K2については、単位形状21a,22aの平均高さとなる位置から、レンズ12の中央(単一のレンズであれば主点)までの距離とする。
また、映像源11は、例えば、有機ELディスプレイである場合には、図10に例示するように、観察者側から、透明基板11b、透明電極11c、有機正孔輸送層11d、有機発光層(表示層)11e、有機電子輸送層11f、金属電極11gのように、複数の層が積層されている。非画素領域G2は、表示層11eに形成されている。
よって、上述の距離L1,L2は、表示層11eから、単位形状21a,22aの高さの平均高さとなる位置までとするとよい。
各種パラメータを変化させて複数種類の光学シート20を作成し、実際の見え方を評価したところ、非映像領域F2が観察者に視認されてしまうことを抑制する程度とθave1×L1/S、θave2×L2/Sとの間には、よい相関関係があり、下記2式をともに満たす場合、非映像領域F2が観察者に視認されにくく、映像領域F1が独立して見えず、かつ、映像がぼけ過ぎずない、良好な画像を観察することができた。
15≦θave1×L1/S≦300 ・・・(式1)
15≦θave2×L2/S≦300 ・・・(式2)
また、より厳しい条件、すなわち、下記2式をともに満たす場合、最適な画像を観察することが可能であった。
23≦θave1×L1/S≦175 ・・・(式3)
23≦θave2×L2/S≦175 ・・・(式4)
θave1×L1/S、θave2×L2/Sの少なくとも一方が15未満である場合、観察者に各画素による映像領域F1が独立して見え、また、非映像領域F2が目立って見えてしまう。θave1×L1/S、θave2×L2/Sがともに15以上となると、映像領域F1が拡散作用により独立して見えず、かつ、非映像領域F2が視認し難くなる効果が認められる。θave1×L1/S、θave2×L2/Sがともに23以上であると、映像領域F1が最適にぼかされ、観察者が非映像領域F2を殆ど確認できなくなる。
また、θave1×L1/S、θave2×L2/Sの少なくとも一方が175を超えると、映像領域F1が独立して見えないが、双方が23以上175以下を満たす場合に比べて、映像の鮮明度が若干低下する。そして、θave1×L1/S、θave2×L2/Sの少なくとも一方が300より大きい場合、観察者に、映像領域F1が目立って見えることはないが、映像の解像度が低下して、その鮮明度が著しく損なわれ、詳細が確認不可となる。
したがって、上記(式1),(式2)をともに満たすことが好ましく、(式3),(式4)をともに満たすことがより好ましい。
(拡散作用に関する指標2)
また、光学シート20と映像源11とレンズ12との相対的な位置関係を考慮することにより、光学シート20による映像光Vを拡散する作用によって、非画素領域G2が起因となる非映像領域F2が観察者に視認されてしまうことを抑制する程度を示す指標を設定可能である。
ここで、単位形状21aが形成された界面201(光学形状面)を介して互いに隣接する領域(単位形状21a及び第2光学層22)の屈折率のうち屈折率が高い方の屈折率をnaとし、屈折率がnaよりも低い方の屈折率をnbとする。また、単位形状22aが形成された界面202(光学形状面)を介して互いに隣接する領域(第2光学層22及び空気)の屈折率のうち屈折率が高い方の屈折率をncとし、屈折率がncよりも低い方の屈折率をndとする。このとき、単位形状21a,22aによって映像光Vが拡散される程度を表す指標としての拡散度D1,D2を、
D1=(P1/R1)×(1−(nb/na))×L1
D2=(P2/R2)×(1−(nd/nc))×L2
と定義することができる。
なお、本実施形態では、単位形状21aの屈折率n1は、第2光学層22の屈折率n2よりも大きく、na=n1、nb=n2であり、nc=n2、nd=1である。
この拡散度D1,D2は、単位形状21a,22aが形成された各光学形状面(界面201,202)において光を拡散する程度を表す。この拡散度D1,D2と最も近接している画素と画素との中心距離である画素の最近接距離Sとの比、すなわち、D1/S,D2/Sを求めれば、各光学形状面(界面201,202)が、観察者に非画素領域G2に起因する非映像領域F2が視認されてしまうことを抑制する程度を表す指標として用いることが可能である。
次に、各種パラメータを変化させて複数種類の光学シート20を作成し実際の見え方を評価したところ、非映像領域F2が観察者に視認されてしまうことを抑制する程度とD1/S,D2/Sとの間には、よい相関関係があり、下記2式をともに満たす場合に、観察者に非映像領域F2が視認されにくく、映像領域F1が独立して見えず、かつ、映像がぼけ過ぎずない、良好な画像を観察することができるとわかった。
1.0≦D1/S≦10.0 ・・・(式5)
1.0≦D2/S≦10.0 ・・・(式6)
仮に、D1/S,D2/Sの少なくとも一方が1.0未満である場合、観察者に映像領域F1が独立して見え、非映像領域F2も観察者に視認されてしまう。また、D1/S,D2/Sの少なくとも一方が10.0よりも大きい場合、観察者に映像がぼやけて視認される。したがって、上記(式5),(式6)をともに満たすことが好ましい。
また、より厳しい条件、すなわち、
2.0≦D1/S≦6.0 ・・・(式7)
2.0≦D2/S≦6.0 ・・・(式8)
上記2式をともに満たすならば、非映像領域F2が殆ど視認されず、各画素による映像領域F1が独立して見えず、かつ、映像がぼけ過ぎない、最適な画像を観察することが可能であった。
このように、光学シート20に関して、光学形状面(界面201,202)におけるD1/S,D2/Sの好ましい範囲を満たすことにより、表示装置1は、映像源11から出射した映像光Vを、光学シート20により単位形状21aの配列方向(SX方向)や単位形状22aの配列方向(SZ方向)に微少に拡散でき、観察者に鮮明な映像を表示するとともに、映像光Vの微少な拡散によって映像源11の非映像領域F2が視認されることを抑制することができる。
なお、単位形状21a,22aの断面形状が楕円形状や長円の一部形状であって、完全な円弧ではない場合には、その形状を円弧で近似して、その円弧形状の半径をR1,R2として演算すればよい。
(拡散作用を得るための指標)
次に、単位形状21a,22aが形成された界面201,202において、単位形状の配列ピッチP1,P2と、各界面と表示層11eとの距離L1,L2との関係について説明する。
光学シート20は、映像源11の画素(表示層11e)との距離L1,L2に応じて、単位形状21a,22aの好ましい配列ピッチP1,P2が異なる。これは、光学シート20が表示層11eに近いと画素と単位形状との間でモアレが生じやすくなり、光学シート20が表示層11eから遠いと回折が生じやすくなるためである。
単位形状21a,22aの配列ピッチP1,P2と距離L1,L2とは、下記2式をともに満たすことが好ましい。
0.005≦P1/L1≦0.05 ・・・(式9)
0.005≦P2/L2≦0.05 ・・・(式10)
また、単位形状21a,22aの配列ピッチP1,P2と距離L1,L2とは、下記2式をともに満たすことがより好ましい。
0.01≦P1/L1≦0.03 ・・・(式11)
0.01≦P2/L2≦0.03 ・・・(式12)
P1/L1、P2/L2が0.005よりも小さい場合、単位形状21a,22aと画素(表示層11e)との距離が離れすぎて光学シート20に入光する光の平行度が高くなったり、単位形状21a,22aのピッチが小さくなり過ぎたりして、単位形状21a,22aによる光の回折現象が生じやすくなって回折光の影響が大きくなりすぎ、十分な拡散度合が得られなかったり、映像が不鮮明になったりする場合がある。また、配列ピッチP1,P2が小さすぎる場合には、単位形状21a,22aを製造するのが困難となる。
また、P1/L1、P2/L2が0.05より大きい場合、単位形状21a,22aと画素(表示層11e)との距離が近すぎて、画素と単位形状21a,22aとの間でモアレが生じやすくなる。
従って、P1/L1、P2/L2が、ともに上記範囲を満たすことが好ましい。
(視野角と半値角に関して)
さらに、本実施形態の光学シート20は、映像源側の面から入射角度0°で入射して観察者側に出射した透過光の半値角をαとし、透過光の輝度が最大輝度の1/20となる視野角をβとするとき、β≦5×αを満たすようにして形成されることが好ましい。
ここで、光学シート20の半値角αとは、光の輝度が最大値となる光学シート20のシート面の観察位置から、単位形状の配列方向及び延在方向において、光の輝度が最大値の半分の値になる観察角度のうち絶対値が最も大きい角度をいう。また、視野角βは、光の輝度が最大値となる光学シート20のシート面の観察位置から、単位形状の配列方向及び延在方向において、光の輝度が最大値の1/20の値になる観察角度のうち絶対値が最も大きい角度をいう。
仮に、視野角βが5×αよりも大きい場合、輝度の低い映像光の拡散される範囲が広くなりすぎてしまい、映像の鮮明さが低下してしまうので望ましくない。
また、非画素領域G2が起因となる非映像領域F2を目立たなくする効果をより効果的に奏する観点から、この視野角βは、半値角αに略等しいか、それに近い値であることがより望ましい。
次に、映像源11から出射された映像光Vが観察者の眼E(E1,E2)に届くまでの動作について説明する。
図1に示すように、映像源11から出射した映像光Vは、光学シート20(20A,20B)の映像源側(+Y側)の面に入射する。
そして、光学シート20に入射した映像光Vは、第1光学層21を透過して、第1光学層21及び第2光学層22との界面201(光学形状面)に形成された複数の単位形状21aによって、単位形状21aの配列方向(SX方向)に微少に拡散して第2光学層22内を透過する。
第2光学層22を透過した映像光Vは、第2光学層22空気との界面202(光学形状面)に複数形成された単位形状22aによって、単位形状22aの配列方向(SZ方向)に微少に拡散して光学シート20の観察者側(−Y側)の面から出射する。
光学シート20を透過した映像光Vは、レンズ12(12A,12B)へ入射する。そして、レンズ12により、映像光Vが拡大され、観察者側(−Y側)へ出射する。
映像光Vは、光学シート20により単位形状21a,22aの配列方向(SX方向、SZ方向)に微少に拡散させられる。そのため、レンズ12により画像が拡大されても、観察者の眼Eによって視認される画像としては、図4に示すように、比較例の表示装置5の場合に比して(図5(b)参照)、映像源11の非画素領域G2に起因する非映像領域F2が観察者に目立って視認されてしまうことを極力抑制することができ、鮮明な映像を表示することができる。
光学シート20が好ましい拡散作用を得るためには、前述の(式9)及び(式10)をともに満たすことが好ましく、(式11)及び(式12)をともに満たすことがより好ましい。これにより、モアレや回折等を生じることなく、光学シート20は、映像光Vを拡散することができる。
また、光学シート20の拡散作用を好ましい範囲とするためには、指標1の(式1)及び(式2)、又は、指標2の(式5)及び(式6)の少なくとも一方の組み合わせを満たすことが好ましく、双方を満たすことがより好ましい。これにより、映像領域F1(画素)が独立して見えずに、かつ、映像がぼけ過ぎずない、良好な画像を観察することができる。
さらに、光学シート20の拡散作用をより最適なものとするためには、より厳しい条件である指標1の(式3)及び(式4)、又は、指標2の(式7)及び(式8)の少なくとも一方の組み合わせを満たすことがより好ましい。
また、光学シート20は、前述の半値角αと視野角βとが、β≦5×αを満たすようにして形成されることが好ましい。
また、光学シート20の拡散作用をより最適なものとするためには、表示装置1は、映像源11及び光学シート20を組み合わせて配置した状態で表示される映像において、発光エリアEAの最大広がり幅SWの大きさを画素の最近接距離S(第1近接配列方向DL1における画素と画素との中心距離)の0.5倍以上5倍以下とし、かつ、光学シート20の単位形状21a,22aの配列方向(SX方向,SZ方向)のうち、前述の発光エリアEAの最大広がり幅SWとなる方に相当する配列方向(最大広がり幅を本実施形態では、SZ方向)が、第1近接配列方向DL1、第2近接配列方向DL2に対して5度以上をなすように光学シート20を配置することが好ましい。これにより、非映像領域F2が視認され、映像領域F1が独立して見えることを抑制し、良好な画像を表示することができる。
次に、本実施形態の表示装置1に用いられる光学シート20の製造方法について説明する。
図11は、光学シート20の製造工程の一例を示す図である。図11では、光学シート20の製造装置の一部を示している。
光学シート20の製造装置700は、ロール状に巻き取られたシート状の基材21Aを供給するロール70と、第1ロール71、第2ロール72、第3ロール73、第4ロール74、第5ロール75、第6ロール76、ダイ77,78、紫外線照射器79,80を有している。
第1ロール71及び第4ロール74は、押圧ロールである。第2ロール72と第5ロール75とは、その外周面に単位形状21a,22aを賦形する凹形状が複数形成された成形型(ロール版)である。第3ロール73及び第6ロール76は、剥離ロールである。
光学シート20の第1光学層21は、シート状の基材21Aの片面に、単位形状21aを形成する紫外線硬化型樹脂をダイ77から塗布し、単位形状21aに対応する凹形状が設けられた成形型である第2ロール72を第1ロールにより押圧し、紫外線照射器79により紫外線を照射して紫外線硬化型樹脂を硬化させる。そして、第3ロール73により、第2ロール72から離型し、第1光学層21が形成される。
続いて、第1光学層21の単位形状21aの上に、ダイ78から第2光学層22を形成する紫外線硬化型樹脂を塗布し、単位形状22aに対応する凹形状を有する成形型である第5ロール75を第4ロール74により押圧し、紫外線照射器80により紫外線を照射して紫外線硬化型樹脂を硬化させる。そして、第6ロール76により、第5ロール75から離型し、複数の単位形状22aが賦型された第2光学層22が形成される。
このとき、第2光学層22は、単位形状22aの延在方向が、第1光学層21の単位形状21aの延在方向と互いに直交するように、その成形型が配置される。すなわち、上述の第2ロール72と第5ロール75とは、各単位形状を賦形する凹形状の配列方向(延在方向)が、流方向から見て直交するように形成されている。
これにより、第1光学層21、第2光学層22が積層された状態となり、さらに、不図示の反射抑制層等を適宜設けたのち、所定の形状及び大きさに裁断することにより、光学シート20が完成する。
このような製法を採用することにより、例えば、片面に単位形状21aが形成されたシート状の部材と、片面に単位形状22aが形成されたシート状とを、各単位形状の延在方向が直交するように配置して、光透過性を有する接着剤等を貼合する場合に比べて、部材数が少なく、光学シートの製造が容易である。また、このような製法を採用することにより、光学シート20の層数も低減でき、層間での不要な反射損失等を低減できる。
以上のことから、本実施形態によれば、表示装置1は、映像源11から出射した映像光Vを微少に拡散することができ、観察者に鮮明な映像を表示するとともに、映像領域F1(画素)が独立して見えず、かつ、映像源11の非画素領域G2が起因となる非映像領域F2が観察者に視認されてしまうことを抑制することができる。
また、本実施形態の表示装置1は、光学シート20の厚み方向(シート面の法線方向、Y方向)から見て、単位形状21aの配列方向(SX方向)と単位形状22aの配列方向(SZ方向)とが直交しているので、映像源11から出射した映像光を複数の方向(単位形状21a,22aの配列方向であるSX方向,SZ方向)に拡散させることができ、非映像領域F2をより効果的に目立たなくすることができる。
また、本実施形態の表示装置1は、上述のように、レンズ12よりも映像源側(+Y側)に光学シート20が位置するので、映像源11が表示装置1(筐体30)から外された状態であったとしても、侵入した埃やごみ等の異物からレンズ12を保護することができ、異物によってレンズ12が破損したり汚れたりするがなく、光学シート20の映像源側表面が汚れたり曇ったりした場合等も、単位形状を傷つけることなく、ふき取ることが可能である。
また、本実施形態の表示装置1は、光学シート20の両面に反射抑制層を備え、レンズ12の映像源側の面に反射抑制層12aを備えているので、迷光を抑制し、映像の明るさやコントラストを向上できる。
特に、モスアイ構造を有する反射抑制層については、高い反射抑制効果を有しているが、破損しやすいために観察者の指等が触れない位置に設けることが重要となる。本実施形態の表示装置1では、レンズ12よりも映像源側(+Y側)に光学シート20が位置するので、そのような反射抑制層を光学シート20の観察者側やレンズ12の映像源側等に設けることができ、より高い反射抑制効果が得られ、映像のコントラストや明るさの向上を図ることができる。
(第2実施形態)
第2実施形態の光学シート40は、第3光学層43を第2光学層22の観察者側(−Y側)に備え、単位形状42aが、第2光学層42と第3光学層43との界面402に形成されている点が、第1実施形態の光学シート20とは異なる。したがって、以下の第2実施形態に関する説明において、前述した第1実施形態と同様の機能を果たす部分には、同一の符号又は末尾に同一の符号を付して、重複する説明を適宜省略する。
図12は、第2実施形態の光学シート40を説明する図である。図12(a)は、光学シート40の単位形状41aの配列方向及び厚み方向に平行な断面における断面図であり、図12(b)は、図12(a)のb部断面図である。図12(c)は、図12(a)のc部詳細を示す図であり、図12(d)は、図12(b)のd部詳細を示す図である。
第2実施形態の光学シート40は、図12に示すように、映像源側(背面側、+Y側)から順に、第1光学層41、第2光学層42、第3光学層43が積層されている。また、光学シート40は、その両面に不図示の反射抑制層を有している。
この光学シート40は、第1光学層41及び第2光学層42の界面401と、第2光学層42及び第3光学層43の界面402とに、それぞれ単位形状41a、単位形状42aが複数形成されている。すなわち、界面401,402は、光学形状面であり、光学シート40は、2つの光学形状面を備えている。また、光学シート40は、第1実施形態に示した表示装置1に適用可能である。
第1光学層41は、前述の第1実施形態の第1光学層21に相当する層である。第1光学層41は、観察者側(−Y側)の面(第1光学層41及び第2光学層42の界面401)に、図8(a)に示すように、観察者側に凸となる凸状の単位形状41aが複数形成されている。
単位形状41aは、第1光学層41の観察者側の面に沿ってSZ方向に延在し、延在方向に直交するSX方向に複数配列されている。また、単位形状41aは、配列方向(SX方向)及び厚み方向(Y方向)に平行な面における断面形状が略円弧状に形成されたレンチキュラーレンズ形状である。
第2光学層42は、第1光学層21の観察者側(−Y側)に設けられた光透過性を有する層である。第2光学層42は、観察者側(−Y側)の面(第2光学層42及び第3光学層43の界面402)に、図12(b)に示すように、観察者側に凸となる凸状の単位形状42aが複数形成されている。
この単位形状42aは、第2光学層42の観察者側の面に沿ってSZ方向に延在し、延在方向に直交するSX方向に複数配列されており、配列方向(SZ方向)及び厚み方向(Y方向)に平行な面における断面形状が略円弧状に形成されたレンチキュラーレンズ形状である。
第3光学層43は、第2光学層42の観察者側(−Y側)に設けられた光透過性を有する層である。第3光学層43の観察者側の面は、光学シート40を透過した映像光が出射する面であり、略平坦に形成されている。
第1実施形態の光学シート20と同様に、光学シート40の厚み方向(シート面の法線方向、Y方向、SY方向)から見て、単位形状41aの配列方向(SX方向)と単位形状42aの配列方向(SZ方向)とは、直交している。また、光学シート40の厚み方向から見て、単位形状42aの延在方向(SX方向)と単位形状41aの延在方向(SZ方向)とは、直交している。
本実施形態では、一例として、単位形状41aと単位形状42aとは、その配列ピッチ及び曲率半径が等しく、P1=P2であり、R1=R2である。なお、これに限らず、例えば、単位形状の配列ピッチが異なっていたり、曲率半径が異なっていたりしてもよい。
本実施形態において、第1光学層41の屈折率n1及び第3光学層43の屈折率n3は、第2光学層42の屈折率n2よりも高い。
また、本実施形態では、界面401,402を介して互いに隣接する領域の屈折率差、すなわち、第1光学層41の単位形状41aと第2光学層42との屈折率差Δn1と、第2光学層42と第3光学層43との屈折率差Δn2とは、前述の第1実施形態と同様に、それぞれ0.005≦Δn1≦0.2、0.005≦Δn2≦0.2を満たすように形成されている。
第1光学層41,第2光学層42は、前述の第1実施形態の第1光学層21,第2光学層22と同様の材料によって形成されている。
第3光学層43は、光透過性が高く、第2光学層42よりも屈折率が高い樹脂により形成されている。本実施形態の第3光学層43は、光透過性の高いウレタンアクリレート樹脂や、エポキシアクリレート樹脂等の紫外線硬化型樹脂等であって、第2光学層42よりも屈折率が高い樹脂により形成されている。
本実施形態では、第2光学層42の屈折率n2は、単位形状41a及び第3光学層43の屈折n1,n3よりも低い屈折率となっている。
本実施形態の光学シート40は、前述の第1実施形態の光学シート20と同様に、その両面に、不図示の反射抑制層を有している。
また、本実施形態の光学シート40は、前述の第1実施形態の光学シート20と同様に、映像源側(+Y側)や観察者側(−Y側)の面に、ハードコート機能、防汚機能、帯電防止機能等を有する層を適宜設けてもよいし、第3光学層43が、ハードコート機能や防汚機能、帯電防止機能等を有していてもよい。
また、表示装置1において、映像光Vを十分拡散し、回折やモアレを抑制するという観点から、本実施形態においても、(式9)及び(式10)をともに満たすことが好ましく、(式11)及び(式12)をともに満たすことがより好ましい。これにより、モアレや回折等を生じることなく、光学シート40は、映像光Vを良好に拡散することができる。
また、本実施形態においても、表示装置1において、非映像領域F2が視認されにくく、映像領域F1が独立して見えず、かつ、映像がぼけ過ぎず、良好な画像を提供するという観点から、前述の指標1の(式1)及び(式2)、又は、指標2の(式5)及び(式6)の少なくとも一方の組み合わせを満たすことが好ましく、双方を満たすことがより好ましい。
さらに、光学シート40の拡散作用をより最適なものとするためには、より厳しい条件である指標1の(式3)及び(式4)、又は、指標2の(式7)及び(式8)の少なくとも一方の組み合わせを満たすことがより好ましい。
さらにまた、光学シート40は、前述の半値角α及び視野角βが、β≦5×αを満たすようにして形成されることが好ましい。
また、本実施形態においても、表示装置1において、非映像領域F2が視認されにくく、映像領域F1が独立して見えず、かつ、映像がぼけ過ぎず、良好な画像を提供するという観点から、光学シート20による発光エリアEAの最大広がり幅SWは、レンズ12を用いず、映像源11と光学シート20とを組み合わせて配置した状態で表示される映像において、画素の最近接距離Sの0.5倍以上5倍以下であることが好ましい。この最大広がり幅SWは、前述の第1実施形態に示したように、単位形状21a,22aの配列方向SX方向、SZ方向における広がり幅SW1,SW2のうち、大きい方に相当する。
また、上記観点から、本実施形態においても、光学シート20の単位形状21a,22aの配列方向(SX方向,SZ方向)のうち最大広がり幅SWとなる配列方向は、第1近接配列方向DL1及び第2近接配列方向DL2に対して5度以上の角度をなすように、光学シート20が映像源11に対して配置されることが望ましい。
本実施形態の光学シート40の製造方法としては、例えば、以下の例が挙げられる。
前述の第1実施形態の光学シート20の製造方法と同様に、第1光学層41上に第2光学層42が積層された積層体を形成する。そして、第2光学層42の単位形状42aによる凹凸を埋めて平面となるように、第2光学層42の単位形状42a側の面に、第3光学層43を形成する樹脂を塗布し硬化する。そして、反射抑制層をこの積層体の両面に適宜設け、所定の形状及び大きさに裁断することにより、光学シート40を製造することができる。
なお、光学シート40の製造方法は、上記の例に限らず、適宜選択して採用してよい。
以上のことから、本実施形態によれば、第1実施形態と同様に、表示装置1は、映像源11から出射した映像光Vを微少に拡散することができ、観察者に鮮明な映像を表示するとともに、映像領域F1が独立して見えず、映像源11の非画素領域G2に起因する非映像領域F2が観察者に視認されてしまうことを抑制することができる。
また、本実施形態によれば、第3光学層43を備えることにより、光学シート40の両面が平面となるので、ハンドリングがしやすく、表示装置1の製造が容易となる。
また、本実施形態によれば、第3光学層43を第2光学層42の観察者側に備えるので、第3光学層43を、反射抑制機能や、ハードコート機能、帯電防止機能等を備えた層とすることができ、その場合には、層数を低減することができる。
(第3実施形態)
第3実施形態の光学シート60は、第1光学層61と、その観察者側(−Y側)に積層される第2光学層62とを備え、この2層の界面に単位形状61aが複数配列されて形成されており、光学形状面が1つである点が、第1実施形態の光学シート20とは異なる。したがって、以下の第3実施形態に関する説明において、前述した第1実施形態と同様の機能を果たす部分には、同一の符号又は末尾に同一の符号を付して、重複する説明を適宜省略する。
図13は、第3実施形態の光学シート60を説明する図である。図13(a)は、光学シート60の厚み方向及び単位形状61aの長手方向に平行な断面における断面図であり、図13(b)は、光学シート60の厚み方向及び単位形状61aの配列方向に平行な断面における断面図である。図13(c)は、図13(a)のc部詳細を示す図であり、図13(d)は、図13(b)のd部詳細を示す図である。
第3実施形態の光学シート60は、図13に示すように、映像源側(背面側、+Y側)から順に、第1光学層61、第2光学層62が積層されている。また、光学シート60は、その両面に不図示の反射抑制層を有している。
この光学シート60は、第1光学層61及び第2光学層62の界面601に単位形状61aが複数配列されて形成されており、この界面601が光学形状面となっている。単位形状61aは、SX方向を長手方向とし、SZ方向に配列されている点以外は、前述の第1実施形態の単位形状21aと同様である。また、第1光学層61及び第2光学層62は、前述の第1実施形態の第1光学層21及び第2光学層22と同様の材料により形成されている。
本実施形態においても、光学シート60の互いに隣接する光学層の屈折率差、すなわち、第1光学層61及び第2光学層62の屈折率差である第1の屈折率差Δn1は、0.005≦Δn1≦0.2を満たすことが好ましい。
また、本実施形態においても、光学シート60による発光エリアEAの最大広がり幅SWは、レンズ12を用いず、映像源11と光学シート20とを組み合わせて配置した状態で表示される映像において、画素の最近接距離Sの0.5倍以上5倍以下であることが好ましい。この最大広がり幅SWは、本実施形態では、単位形状61aの配列方向(SZ方向)におけるものである。
また、本実施形態においても、光学シート60の単位形状61aの配列方向(SZ方向)は、第1近接配列方向DL1及び第2近接配列方向DL2に対して5度以上の角度をなすように、光学シート60が映像源11に対して配置されることが望ましい。
さらに、本実施形態において、表示装置1は、下記式を満たすことが好ましい。
5≦θave1×L1/S≦300 ・・・(式13)
また、下記式を満たすことがより好ましい。
23≦θave1×L1/S≦175 ・・・(式14)
これにより、非映像領域F2が観察者に視認されにくく、映像領域F1が独立して見えず、かつ、映像がぼけ過ぎず、良好な画像を提供するという観点から、下記式を満たすことが好ましい。
なお、平均拡散角θave1は、単位形状61aが形成された光学形状面(界面601)による拡散角θにおける輝度を、それぞれI(θ)とし、レンズ12と光学形状面(界面601)と間の距離をK1とし、レンズ12の有効半径をR3としたとき、−φから+φの範囲の成分に関して各光学形状面(界面601)の平均拡散角であり、以下の式で定義する。
Figure 0006308323
また、本実施形態において、非映像領域F2が観察者に視認されにくく、映像領域F1が独立して見えず、かつ、映像がぼけ過ぎず、良好な画像を提供するという観点から、下記式を満たすことが好ましい。
1.0≦D1/S≦15.0 ・・・(式15)
また、下記式を満たすことがより好ましい。
2.0≦D1/S≦6.0 ・・・(式16)
これにより、非映像領域F2が殆ど視認されず、映像領域F1が独立して見えず、かつ、映像がぼけ過ぎない、最適な画像を観察することができる。
また、本実施形態においても、単位形状61aの配列ピッチP1と距離L1とは、以下の式を満たすことが好ましい。
0.005≦P1/L1≦0.05 ・・・(式17)
また、以下の式を満たすことがより好ましい。
0.01≦P1/L1≦0.03 ・・・(式18)
これにより、画素と単位形状21aとの間でモアレを低減し、かつ、回折作用の影響を十分なものとし、十分な拡散作用を奏することができる。
さらにまた、本実施形態においても、光学シート60は、前述の半値角α及び視野角βが、β≦5×αを満たすようにして形成されることが好ましい。
これにより、映像光が拡散される範囲が広がり過ぎて、映像の鮮明さが低下してしまうことを抑制できる。
本実施形態によれば、第1実施形態と同様に、表示装置1は、映像源11から出射した映像光Vを微少に拡散することができ、観察者に鮮明な映像を表示するとともに、映像領域F1が独立して見えず、映像源11の非画素領域G2に起因する非映像領域F2が観察者に視認されてしまうことを抑制することができる。
また、本実施形態によれば、光学シート60において、光学形状面は1つのみとなるので、製造が容易であり、光学シート60及び表示装置1の生産コストを抑制することができる。
また、本実施形態によれば、光学シート60の両面を図13に示すように平面とした場合には、ハンドリングがしやすく、表示装置1の製造が容易となる。
なお、本実施形態では、単位形状が複数配列される光学形状面は、第1光学層61と第2光学層62との界面601である例を挙げたが、これに限らず、光学形状面は、第2光学層62と空気との界面602としてもよい。
また、本実施形態では、単位形状61aは、SZ方向に配列される例を示したが、これに限らず、SX方向に配列される形態としてもよい。
(変形形態)
以上説明した各実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。
(1)第1、第2実施形態において、例えば、単位形状の配列ピッチP1、P2とその配列方向における形状幅W1,W2とが等しく、単位形状が互いに隣接して配列される例を示したが、これに限らず、単位形状の配列ピッチP1、P2が形状幅W1,W2より大きく、単位形状間に平面部が位置する形態としてもよい。
図14は、光学シート20の変形形態を説明する図である。図14(a)は、変形形態の光学シート20の単位形状21aの配列方向及び厚み方向に平行な断面を示し、図14(b)は、図14(a)のb部断面図である。図14(c)は、図14(a)のc部詳細を示す図であり、図14(d)は、図14(b)のd部詳細を示す図である。
図14に示す光学シート20の変形形態では、第1光学層21の観察者側(−Y側)の面には、図14(a)に示すように、単位形状21aと平坦部21bとが交互に設けられている。この単位形状21a及び平坦部21bは、第1光学層21の観察者側の面に沿ってSZ方向に延在し、SX方向に複数配列されている。
また、第2光学層22の観察者側の面は、図14(b)に示すように、単位形状22aと平坦部22bとが交互に複数形成されている。この単位形状22a及び平坦部22bは、第2光学層22の観察者側の面に沿ってSX方向に延在し、SZ方向に複数配列されている。
図14では、第1光学層21及び第2光学層22に設けられた各単位形状及び各平坦部は、それぞれ同等の寸法に形成されており、一例として、W1=W2、W3=W4、P1=P2であるが、曲率半径に関してのみ、R1<R2である例を示している。なお、これに限らず、例えば、単位形状の形状幅や平坦部の幅、配列ピッチ等が異なっていてもよいし、曲率半径が同じであってもよい。
この図14に示す光学シート20の変形形態は、単位形状21aの配列ピッチP1及び単位形状22aの配列ピッチP2、及び、界面201で隣接する単位形状21aと第2光学層22との屈折率差Δn1は、前述の第1実施形態と同じ範囲である。
図14に示す光学シート20の変形形態は、映像源11から出射され、光学シート20の映像源側の面から入射した光のうち、平坦部21b、平坦部22bを透過した光を直接観察者側に出射させるとともに、単位形状21aに入射した光を単位形状21aの配列方向であるSX方向へ拡散させ、また、単位形状22aに入射した光を単位形状22aの配列方向であるSZ方向へ拡散させて、レンズ12側へ出射させることができる。さらに、平坦部21b、平坦部22bを透過した光は、殆ど拡散されないため、観察者に届く映像光をより鮮明に表示することができる。
このような形態とすることにより、前述の第1実施形態に示した非映像領域F2が観察者に視認されてしまうことを抑制する効果に加えて、表示装置1は、観察者にぼやけの少ない鮮明な映像を表示することができる。また、表示装置1の仕様(画素の最近接距離Sや、観察者の眼Eと映像源11との距離)に合わせて、平坦部21b,22bの寸法等を調節することによって、適宜、特定の拡散角の範囲を規定することができるので、より効率よく鮮明な映像の表示と、非映像領域F2の視認の抑制とを実現することができる。
なお、第1実施形態の光学シート20の変形形態を例に挙げて説明したが、これに限らず、この変形形態は、第2実施形態の光学シート40や、第3実施形態の光学シート60にも適用可能である。
(2)各実施形態において、光学シート20,40,60は、映像源11とレンズ12との間に配置される例を示したが、これに限らず、レンズ12の観察者側(−Y側)に配置してもよい。
図15は、表示装置1の変形形態を説明する図である。
図15に示すように、光学シート20をレンズ12よりも観察者側(−Y側)に配置してもよい。このような配置を採用しても、表示装置1は、観察者に、映像領域F1(画素)が独立して見えず、非映像領域F2が視認されにくく、ぼやけの少ない鮮明な映像を表示することができる。
このような位置に光学シート20を配置した場合にも、前述の屈折率差Δn1の範囲や、各指標に示す各式の数値範囲等は、第1実施形態に示した範囲を満たすとよい。
なお、図15に示す表示装置1の変形形態では、第1実施形態の光学シート20を用いる例を示したが、これに限らず、第2実施形態の光学シート40や第3実施形態の光学シート60を用いてもよい。
(3)第1、第3実施形態において、第1光学層21の単位形状21aの屈折率は、第2光学層22の屈折率よりも高く、第2実施形態において、第1光学層41の単位形状41a及び第3光学層43の屈折率が、第2光学層42の屈折率よりも高い例を示したが、これに限定されるものでなく、例えば、第1、第3実施形態において、第1光学層21,61の屈折率が第2光学層22,62の屈折率よりも低い形態や、第2実施形態において、第1光学層41及び第3光学層43の屈折率が、第2光学層42の屈折率よりも低くなる形態としてもよい。
また、第1光学層21,41は、基材層の片面に複数の単位形状が賦形される形態を示したが、これに限らず、単層である形態としてもよい。
(4)第1、第2実施形態において、各単位形状は、いずれも映像源側に凸となる形態としてもよいし、一方が観察者側に凸であって他方が映像源側に凸となる形態としてもよい。また、第3実施形態において、単位形状61aは、映像源側に凸となる形態としてもよい。
なお、より好ましくは、単位形状が複数形成された光学形状面(界面)において、単位形状は、屈折率が低い光学層側へ凸となるように形成されることが好ましいが、これに限定されるものではない。
(5)各実施形態において、光学シート20,40,60と表示面11aとの間であって少なくとも映像光Vのうち観察者の眼Eに到達する光(観察者が視認する光)が透過する領域には空気層が存在しない形態としてもよい。
このような形態としては、例えば、表示面11a上に光学シート20,40,60が一体に積層された形態や、映像源11の表示面11aと光学シート20,40,60との間に、インデックスマッチング用の樹脂層等が充填された形態等が挙げられる。なお、このインデックスマッチング用の樹脂は、光学シート20,40,60の位置を決め、その位置を支持する機能を有してもよい。
このような形態とする場合、映像源11の表示面11aから光学シート20,40,60の観察者側の面までの間であって少なくとも映像光Vのうち観察者の眼Eに到達する光(観察者が視認する光)が透過する領域における部材間の界面における屈折率差は、0.3未満とすることが好ましい。このような形態とすることにより、映像光が透過する界面が減少し、界面での反射による光量損失等を低減できる。
(6)各実施形態において、光学シート20,40,60の厚み方向(シート面の法線方向、Y方向)から見て、単位形状21a,41a,61aの延在方向は、上下方向(鉛直方向、Z方向)に対して、10°以上80°以下の角度をなす形態としてもよい。このような角度をなすように配置することにより、例えば、図4に示すように上下方向(Z方向)及び左右方向(X方向)に配列された画素と、単位形状21aの延在方向とが10°以上80°以下の角度をなす。これにより、画素とのモアレを低減したり、色ムラを効果的に抑制したりすることができる。
(7)第2実施形態において、光学シート40は、第1光学層41、第2光学層42、第3光学層43の3つの光学層が順次積層された形態を示したが、これに限定されるものでなく、所望する光学性能等に応じて、4層以上の光学層を備える形態としてもよい。
また、第2実施形態において、光学形状面は、1つ以上であればよく、例えば、3つの光学形状面を備える光学シート40としてもよい。
(8)各実施形態において、光学シート20,40,60は、保持部32に保持される形態を示したがこれに限らず、例えば、映像源11を保持する保持部31の開口部311の観察者側等に開口部311を塞ぐように接合される形態等としてもよいし、レンズ12を保持する保持部33の開口部331の映像源側に開口部331を塞ぐように貼り付けられる形態としてもよい。
(9)各実施形態において、光学シート20は、左右の目それぞれに対応して独立して設ける例を示したが、これに限らない。
図16は、光学シート20の別の固定形態を説明する図である。図16は、図2と同様な方向から見た図である。
図16(a)に示すように、光学シート20は、左右それぞれの領域の間を繋げた異形の形状としてもよい。また、光学シート20は、図16(b)に示したように長方形形状としてもよい。このような形状とすれば、光学シート20のSX方向及びSZ方向をX方向及びZ方向に対して所定の角度δだけ傾けて配置することが容易になる。なお、図16のような形態において、組立時におけるミスを防ぐために光学シート20の方向を示す指標を設けたり、光学シートの形状を非対称形状にしたりしてもよい。なお、第2実施形態の光学シート40、第3実施形態の光学シート60についても同様である。
(10)各実施形態において、映像源11は、表示装置1に予め固定され、着脱不可能である形態としてもよい。
なお、本実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は、以上説明した各実施形態等によって限定されることはない。
1 表示装置
11 映像源
11a 表示面
11e 表示層
12 レンズ
12a 反射抑制層
20,40,60 光学シート
21,41,61 第1光学層
21a,41a,61a 単位形状
22,42,62 第2光学層
22a,42a 単位形状
43 第3光学層
201,202,401,402,601 光学形状面
30 筐体

Claims (22)

  1. 複数の画素が配列され映像光を出射する映像源と、
    前記映像源よりも観察者側に配置される光学シートと、
    を備え、
    前記光学シートは、その内部又は表面に、シート面に沿って延在する凸状又は凹状の単位形状がその延在方向に直交する方向に配列された光学形状面を少なくとも1つ備え、
    前記光学形状面において屈折率差により、光が屈折し、
    前記映像源及び前記光学シートを配置した状態で表示される映像において、前記光学シートの拡散作用によって1つの前記画素からの光が広がる範囲を発光エリアとし、
    前記発光エリアにおいて前記単位形状の配列方向における光量の最大値の1/5となる最も離れた2点の間隔をその配列方向における広がり幅とし、
    1つ以上の前記広がり幅のうち最大値となるものを最大広がり幅とするとき、
    前記最大広がり幅は、前記映像において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離の0.5倍以上5倍以下となること、
    を特徴とする表示装置。
  2. 請求項1に記載の表示装置において、
    前記映像源及び前記光学シートを配置した状態で表示される映像において、前記光学シートの拡散作用によって1つの前記画素からの光が広がる範囲を発光エリアとし、
    前記発光エリアにおいて前記単位形状の配列方向における光量の最大値の1/5となる最も離れた2点の間隔をその配列方向における広がり幅とし、
    1つ以上の前記広がり幅のうち最大値となるものを最大広がり幅とし、
    前記画素と前記画素との中心距離が最も近接している方向を第1近接配列方向とし、
    前記第1近接配列方向とは異なる方向であって、前記第1近接配列方向の次に前記画素と前記画素との中心距離が近接している方向を第2近接配列方向とするとき、
    1つ以上の前記単位形状の配列方向のうち、前記広がり幅が前記最大広がり幅となる配列方向は、前記第1近接配列方向及び前記第2近接配列方向に対して5度以上の角度をなすこと、
    を特徴とする表示装置。
  3. 請求項1又は請求項2に記載の表示装置において、
    前記光学シートは、
    2層以上の光学層が積層され、
    隣接する前記光学層の間の界面であって凸状又は凹状の第1単位形状が複数形成された第1光学形状面と、
    隣接する前記光学層の間の他の界面又は前記光学層と空気との界面であって凸状又は凹状の第2単位形状が複数形成された第2光学形状面と、
    を備え、
    前記第1単位形状は、前記光学シートの厚み方向に直交するシート面内の第1の方向に延在し、前記シート面内の前記第1の方向に直交する第2の方向に配列され、
    前記第2単位形状は、前記光学シートの厚み方向に直交するシート面内の第2の方向に延在し、前記シート面内の前記第2の方向に直交する第1の方向に配列され、
    前記光学シートの厚み方向から見て、前記第1単位形状と前記第2単位形状は、その配列方向が直交すること、
    を特徴とする表示装置。
  4. 請求項に記載の表示装置において、
    前記映像源と前記光学シートとの間、又は、前記光学シートの観察者側に配置され、前記映像光を拡大して観察者側へ出射するレンズを備え、
    前記第1単位形状の拡散角θにおける輝度をI(θ)とし、前記レンズと前記第1光学形状面との間の距離をK1とし、前記レンズの有効半径をR3としたとき、前記第1単位形状の平均拡散角θave1を、
    Figure 0006308323
    と定義し、前記第1光学形状面と前記映像源の表示層との間の距離をL1とし、前記映像源において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、
    15≦θave1×L1/S≦300
    を満たし、さらに、
    前記第2単位形状の拡散角θにおける輝度をI(θ)とし、前記レンズと前記第2光学形状面との間の距離をK2とし、前記レンズの有効半径をR3としたとき、前記第2単位形状の平均拡散角θave2を、
    Figure 0006308323
    と定義し、前記第2光学形状面と前記映像源の表示層との間の距離をL2とし、前記映像源において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、
    15≦θave2×L2/S≦300
    を満たすこと、
    を特徴とする表示装置。
  5. 請求項に記載の表示装置において、
    23≦θave1×L1/S≦175
    23≦θave2×L2/S≦175
    をともに満たすこと、
    を特徴とする表示装置。
  6. 請求項3から請求項5までのいずれか1項に記載の表示装置において、
    前記第1単位形状は、前記光学シートの厚み方向に平行であって前記第2の方向に平行な断面における断面形状が略円弧状に形成され、
    前記第2単位形状は、前記光学シートの厚み方向に平行であって前記第1の方向に平行な断面における断面形状が略円弧状に形成されており、
    前記第1単位形状が配列されるピッチをP1とし、前記第1単位形状の前記断面形状の円弧状の形状の曲率半径をR1とし、前記第1光学形状面を介して互いに隣接する領域の屈折率のうち屈折率が高い方の屈折率をnaとし、屈折率がnaよりも低い方の屈折率をnbとし、前記第1光学形状面と前記映像源の表示層との間の距離をL1として、前記第1単位形状によって前記映像光が拡散される程度を表す指標としての拡散度D1を、
    D1=(P1/R1)×(1−(nb/na))×L1
    と定義し、
    前記第2単位形状が配列されるピッチをP2とし、前記第2単位形状の前記断面形状の円弧状の形状の曲率半径をR2とし、前記第2光学形状面を介して互いに隣接する領域の屈折率のうち屈折率が高い方の屈折率をncとし、屈折率がncよりも低い方の屈折率をndとし、前記第2光学形状面と前記映像源の表示層との間の距離をL2として、前記第2単位形状によって前記映像光が拡散される程度を表す指標としての拡散度D2を、
    D2=(P2/R2)×(1−(nd/nc))×L1
    と定義し、
    前記映像源において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、
    1.0≦D1/S≦10.0
    1.0≦D2/S≦10.0
    をともに満たすこと、
    を特徴とする表示装置。
  7. 請求項に記載の表示装置において、
    2.0≦D1/S≦6.0
    2.0≦D2/S≦6.0
    をともに満たすこと、
    を特徴とする表示装置。
  8. 請求項3から請求項7までのいずれか1項に記載の表示装置において、
    前記第1単位形状が配列されるピッチをP1とし、前記第1光学形状面と前記映像源の表示層との間の距離をL1とし、
    前記第2単位形状が配列されるピッチをP2とし、前記第2光学形状面と前記映像源の表示層との間の距離をL2とするとき、
    0.005≦P1/L1≦0.05
    0.005≦P2/L2≦0.05
    をともに満たすこと、
    を特徴とする表示装置。
  9. 請求項3から請求項8までのいずれか1項に記載の表示装置において、
    前記光学シートは、3層以上の前記光学層を有し、
    前記第1単位形状及び前記第2単位形状は、隣接する前記光学層の間の異なる界面にそれぞれ複数設けられていること、
    を特徴とする表示装置。
  10. 請求項3から請求項8までのいずれか1項に記載の表示装置において、
    前記光学シートは、2層の前記光学層が積層されており、
    前記第1単位形状は、2層の前記光学層の間の界面に複数設けられ、
    前記第2単位形状は、2層のうち一方の前記光学層と空気との界面に複数設けられていること、
    を特徴とする表示装置。
  11. 請求項1又は請求項2に記載の表示装置において、
    前記映像源と前記光学シートとの間、又は、前記光学シートの観察者側に配置され、前記映像光を拡大して観察者側へ出射するレンズを備え、
    前記光学シートは、前記光学形状面を1つ備え、
    前記単位形状の配列方向における拡散角θにおける輝度をI(θ)とし、前記レンズと前記光学形状面との間の距離をK1とし、前記レンズの有効半径をR3としたとき、前記単位形状の平均拡散角θave1を、
    Figure 0006308323
    と定義し、前記光学形状面と前記映像源の表示層との間の距離をL1とし、前記映像源において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、
    5≦θave1×L1/S≦300
    を満たすこと、
    を特徴とする表示装置。
  12. 請求項11に記載の表示装置において、
    23≦θave1×L1/S≦175
    を満たすこと、
    を特徴とする表示装置。
  13. 請求項11又は請求項12に記載の表示装置において、
    前記単位形状は、前記光学シートの厚み方向に平行であってその配列方向に平行な断面における断面形状が略円弧状に形成され、
    前記単位形状が配列されるピッチをP1とし、前記単位形状の前記断面形状の円弧状の形状の曲率半径をR1とし、前記光学形状面を介して互いに隣接する領域の屈折率のうち屈折率が高い方の屈折率をnaとし、屈折率がnaよりも低い方の屈折率をnbとし、前記光学形状面と前記映像源の表示層との間の距離をL1として、前記第1単位形状によって前記映像光が拡散される程度を表す指標としての拡散度D1を、
    D1=(P1/R1)×(1−(nb/na))×L1
    と定義し、
    前記映像源において最も近接して配置された前記画素と前記画素との中心距離である画素の最近接距離をSとしたとき、
    1.0≦D1/S≦15.0
    を満たすこと、
    を特徴とする表示装置。
  14. 請求項13に記載の表示装置において、
    2.0≦D1/S≦6.0
    を満たすこと、
    を特徴とする表示装置。
  15. 請求項11から請求項14までのいずれか1項に記載の表示装置において、
    前記単位形状が配列されるピッチをP1とし、前記光学形状面と前記映像源の表示層との間の距離をL1とするとき、
    0.005≦P1/L1≦0.05
    を満たすこと、
    を特徴とする表示装置。
  16. 請求項11から請求項15までのいずれか1項に記載の表示装置において、
    前記光学シートは、少なくとも2層以上の光学層が互いに隣接して設けられ、
    前記光学形状面は、隣接する前記光学層の間の界面に形成されていること、
    を特徴とする表示装置。
  17. 請求項1から請求項16までのいずれか1項に記載の表示装置において、
    前記光学シートは、少なくとも2層以上の光学層が互いに隣接して設けられ、隣接する光学層の間の界面において、該界面に隣接する領域の屈折率差は、0.005以上0.2以下であること、
    を特徴とする表示装置。
  18. 請求項1から請求項17に記載の表示装置において、
    前記光学シートは、その両面が平面状であること、
    を特徴とする表示装置。
  19. 請求項1から請求項18までのいずれか1項に記載の表示装置において、
    前記映像源の表示面から前記光学シートの観察者側の面までの間であって、少なくとも前記映像光のうち観察者に到達する光が透過する領域には、空気層が存在していないこと、
    を特徴とする表示装置。
  20. 請求項1から請求項19までのいずれか1項に記載の表示装置において、
    前記映像源の表示面から前記光学シートの観察者側の面までの間であって、少なくとも前記映像光のうち観察者に到達する光が透過する領域における部材間の界面における屈折率差は、0.3未満であること、
    を特徴とする表示装置。
  21. 請求項1から請求項20までのいずれか1項に記載の表示装置において、
    前記光学シートは、映像源側の面から入射角度0°で入射して観察者側に出射した透過光の半値角αとし、この透過光の輝度が最大輝度の1/20となる角度を視野角βとするとき、
    β≦5×αを満たすこと、
    を特徴とする表示装置。
  22. 請求項1から請求項21までのいずれか1項に記載の表示装置において、
    前記光学シートと前記映像源との距離は、変更可能であり、所定の位置で固定可能であること、
    を特徴とする表示装置。
JP2017153286A 2017-04-28 2017-08-08 表示装置 Active JP6308323B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017153286A JP6308323B1 (ja) 2017-08-08 2017-08-08 表示装置
PCT/JP2018/017033 WO2018199252A1 (ja) 2017-04-28 2018-04-26 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017153286A JP6308323B1 (ja) 2017-08-08 2017-08-08 表示装置

Publications (2)

Publication Number Publication Date
JP6308323B1 true JP6308323B1 (ja) 2018-04-11
JP2019032434A JP2019032434A (ja) 2019-02-28

Family

ID=61901927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153286A Active JP6308323B1 (ja) 2017-04-28 2017-08-08 表示装置

Country Status (1)

Country Link
JP (1) JP6308323B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054142A1 (ja) 2021-09-29 2023-04-06 富士フイルム株式会社 組成物、樹脂、膜および光センサ

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328261A (ja) * 1992-05-26 1993-12-10 Olympus Optical Co Ltd 映像表示装置
JPH08122709A (ja) * 1994-08-31 1996-05-17 Omron Corp 画像表示装置および光学的ローパスフィルタ
JPH09244010A (ja) * 1996-03-12 1997-09-19 Olympus Optical Co Ltd 液晶表示装置及び頭部搭載型映像表示装置
US20040004584A1 (en) * 2002-03-20 2004-01-08 Raymond Hebert Head-mounted viewing system for single electronic displays using biocular lens with binocular folding mirrors
JP2011085790A (ja) * 2009-10-16 2011-04-28 Seiko Epson Corp 電気光学装置及び電子機器
WO2013047271A1 (ja) * 2011-09-27 2013-04-04 Necカシオモバイルコミュニケーションズ株式会社 携帯型電子機器、タッチ領域設定方法およびタッチ領域設定プログラム
JP2013205749A (ja) * 2012-03-29 2013-10-07 Fujitsu Ltd 立体画像表示装置及び方法
JP2016042689A (ja) * 2014-08-18 2016-03-31 三星電子株式会社Samsung Electronics Co.,Ltd. 映像処理方法及び装置
JP2016139112A (ja) * 2015-01-21 2016-08-04 ソニー株式会社 ウェアラブルディスプレイ装置および画像表示方法
JP2016224364A (ja) * 2015-06-03 2016-12-28 大日本印刷株式会社 表示装置
JP2017032785A (ja) * 2015-07-31 2017-02-09 大日本印刷株式会社 表示装置
WO2017090315A1 (ja) * 2015-11-27 2017-06-01 大日本印刷株式会社 表示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328261A (ja) * 1992-05-26 1993-12-10 Olympus Optical Co Ltd 映像表示装置
JPH08122709A (ja) * 1994-08-31 1996-05-17 Omron Corp 画像表示装置および光学的ローパスフィルタ
JPH09244010A (ja) * 1996-03-12 1997-09-19 Olympus Optical Co Ltd 液晶表示装置及び頭部搭載型映像表示装置
US20040004584A1 (en) * 2002-03-20 2004-01-08 Raymond Hebert Head-mounted viewing system for single electronic displays using biocular lens with binocular folding mirrors
JP2011085790A (ja) * 2009-10-16 2011-04-28 Seiko Epson Corp 電気光学装置及び電子機器
WO2013047271A1 (ja) * 2011-09-27 2013-04-04 Necカシオモバイルコミュニケーションズ株式会社 携帯型電子機器、タッチ領域設定方法およびタッチ領域設定プログラム
JP2013205749A (ja) * 2012-03-29 2013-10-07 Fujitsu Ltd 立体画像表示装置及び方法
JP2016042689A (ja) * 2014-08-18 2016-03-31 三星電子株式会社Samsung Electronics Co.,Ltd. 映像処理方法及び装置
JP2016139112A (ja) * 2015-01-21 2016-08-04 ソニー株式会社 ウェアラブルディスプレイ装置および画像表示方法
JP2016224364A (ja) * 2015-06-03 2016-12-28 大日本印刷株式会社 表示装置
JP2017032785A (ja) * 2015-07-31 2017-02-09 大日本印刷株式会社 表示装置
WO2017090315A1 (ja) * 2015-11-27 2017-06-01 大日本印刷株式会社 表示装置

Also Published As

Publication number Publication date
JP2019032434A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP7215612B2 (ja) 表示装置
JP6852414B2 (ja) スクリーン、映像表示装置
JP6183413B2 (ja) 表示装置
US10466393B2 (en) Display device
JP6972642B2 (ja) 表示装置
JP2017134195A (ja) 反射スクリーン、映像表示装置
JP2017032785A (ja) 表示装置
JP6308323B1 (ja) 表示装置
JP6593201B2 (ja) スクリーン、映像表示装置
JP2018109687A (ja) 反射スクリーン、映像表示装置
JP6565458B2 (ja) 光学シート、表示装置
JP6805756B2 (ja) 表示装置
JP6848376B2 (ja) 表示装置
JP6747132B2 (ja) 透過型スクリーン、背面投射型表示装置
JP6957869B2 (ja) 表示装置
JP6859655B2 (ja) 表示装置
JP7001132B2 (ja) 透過型スクリーン、背面投射型表示装置
WO2018199252A1 (ja) 表示装置
JP2018087893A (ja) 表示装置
JP6354896B2 (ja) 表示装置
JP2018100998A (ja) 表示装置
JP2018055035A (ja) 表示装置
JP2017187701A (ja) 透過型スクリーン、背面投射型表示装置
JP2018055034A (ja) 表示装置
JP2018066884A (ja) 表示装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180226

R150 Certificate of patent or registration of utility model

Ref document number: 6308323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150