JP6305930B2 - 回生制動する車両の電源装置 - Google Patents

回生制動する車両の電源装置 Download PDF

Info

Publication number
JP6305930B2
JP6305930B2 JP2014544244A JP2014544244A JP6305930B2 JP 6305930 B2 JP6305930 B2 JP 6305930B2 JP 2014544244 A JP2014544244 A JP 2014544244A JP 2014544244 A JP2014544244 A JP 2014544244A JP 6305930 B2 JP6305930 B2 JP 6305930B2
Authority
JP
Japan
Prior art keywords
battery
remaining capacity
metal hydride
vehicle
hydride battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014544244A
Other languages
English (en)
Other versions
JPWO2014068884A1 (ja
Inventor
中島 薫
薫 中島
昭伸 常定
昭伸 常定
坂田 英樹
英樹 坂田
大隅 信幸
信幸 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPWO2014068884A1 publication Critical patent/JPWO2014068884A1/ja
Application granted granted Critical
Publication of JP6305930B2 publication Critical patent/JP6305930B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車両の減速時に回生制動して燃費効率を改善する車両用の電源装置に関し、とくに、鉛バッテリと並列にニッケル水素電池を接続して、回生発電電力の充電効率を改善して優れた燃費効率を実現する車両用の電源装置に関する。
車両を回生制動してバッテリを充電して制動する車両は、走行している車両の運動のエネルギーをバッテリに蓄える。回生発電する車両は、減速するときに車両の運動のエネルギーでオルタネータを駆動してバッテリを充電する。ところで、車両は、スターターモータに電力を供給し、また種々の電装機器に電力を供給するために、定格電圧を12Vとする鉛バッテリを搭載している。この鉛バッテリは、オルタネータで発電される回生発電電力を蓄えることはできる。ただ、鉛バッテリは、充電時の内部抵抗、すなわち充電抵抗が大きいので、回生発電電力を効率よく充電できない欠点がある。また、車両を制動する度に、頻繁に回生発電して急速充電されることで、鉛バッテリの寿命は著しく短くなる欠点がある。
この欠点を解消するために、鉛バッテリと並列にサブバッテリを接続する電源装置が開発されている。(特許文献1及び2参照)
特開2011−208599号公報 特開2003−254208号公報
これ等の公報の電源装置は、鉛バッテリと並列にリチウムイオン二次電池をサブバッテリとして接続している。鉛バッテリにサブバッテリを並列に接続する電源装置は、回生発電電力の充電効率を改善して、燃費効率を改善できる。しかしながら、この電源装置は、鉛バッテリと並列にサブバッテリを接続して、鉛バッテリの電圧でオルタネータの充電を制御するので、サブバッテリを広い残容量の範囲で効率よく充電し、また放電できない欠点がある。それは、鉛バッテリとサブバッテリとの電圧−放電深度特性が異なるからである。車両のオルタネータは、鉛バッテリの劣化が少なくなるように出力をコントロールして、鉛バッテリを充電する。鉛バッテリは、残容量が低い状態となるまで放電されると著しく寿命が低下する特性があるため、残容量が80〜100%の範囲となるように制御される。具体的には、残容量と開放電圧には相関関係があるため、具体的な制御としては開放電圧が12.5〜12.8Vの範囲となるように充放電が制御される。鉛バッテリとサブバッテリは並列に接続されているため、鉛バッテリの充放電をこのように狭い電圧範囲でコントロールすると、サブバッテリの充放電も狭い電圧範囲でのみ使用されることとなる。従って、サブバッテリとして使用されるリチウムイオン二次電池やニッケル水素二次電池等は、鉛バッテリとは異なり、比較的広い範囲の電圧で使用できるにもかかわらず、鉛バッテリの電圧範囲に制限されることとなり、効率よく充放電されなくなる。また、鉛バッテリを狭い電圧範囲で充放電するので、オルタネータは頻繁に充電を繰り返す必要がある。オルタネータは、車両のエンジンで駆動されるので、頻繁に充電を繰り返すと、車両の燃費効率が低下する。
さらに、鉛バッテリと並列にサブバッテリを接続する電源装置は、イグニッションスイッチをオフ状態とする車両の停止状態において、車両の暗電流によって鉛バッテリが過放電されると、サブバッテリも一緒に放電される欠点がある。つまり、鉛バッテリと並列にサブバッテリを接続する電源装置は、鉛バッテリだけでなく、サブバッテリも過放電されるおそれがある。特に、ニッケル水素二次電池は、過放電されると、ニッケル水素二次電池の発電要素が変性して電池特性の劣化をまねき、サブバッテリとして使用できなくなるおそれがある。サブバッテリには、鉛バッテリに比較して高価な二次電池が使用されるので、サブバッテリの過放電は、これを交換するための出費が大きく、これを極力防止することが大切である。サブバッテリによって燃費効率が改善されても、その交換に多額の費用を必要とすれば、トータルでは経済的な効果は期待できないからである。
本発明は、さらに以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、鉛バッテリを一定の電圧範囲で充放電して劣化を少なくしながら、これと並列に接続するニッケル水素電池を広い残容量の範囲で充放電して、車両の燃費効率を改善し、さらにニッケル水素電池の過放電による劣化をも有効に防止してその寿命を長くできる回生制動する車両の電源装置を提供することにある。
課題を解決するための手段及び発明の効果
本発明の回生制動する車両の電源装置は、車両のオルタネータ23に接続されると共に、車両の電装機器20に動作電力を供給する鉛バッテリ1と、鉛バッテリ1に並列に接続されると共に、車両の電装機器20に動作電力を供給するニッケル水素電池2と、鉛バッテリ1と車両の電装機器20との間に接続してなるメインスイッチ3と、ニッケル水素電池2と車両の電装機器20との間に接続してなるサブスイッチ4と、鉛バッテリ1及びニッケル水素電池2から車両の電装機器20への動作電力の供給を制御する制御回路5とを備えている。ニッケル水素電池2は、サブスイッチ4とメインスイッチ3とを介して車両のオルタネータ23に接続されている。制御回路5は、ニッケル水素電池2の残容量を検出する残容量検出回路12と、サブスイッチ4とメインスイッチ3をオンオフに切り換える切換回路11とを備えている。制御回路5は、残容量検出回路12で検出するニッケル水素電池2の残容量によって、切換回路11でもってサブスイッチ4とメインスイッチ3とをオンオフに制御している。
以上の電源装置は、鉛バッテリを一定の電圧範囲で充放電して劣化を少なくしながら、これと並列に接続するニッケル水素電池を広い残容量の範囲で充放電して、車両の燃費効率を改善でき、しかもニッケル水素電池の過放電による劣化をも有効に防止して、ニッケル水素電池の寿命をも長くできる特徴がある。それは、以上の電源装置が、鉛バッテリをメインスイッチを介して電装機器に接続し、ニッケル水素電池をサブスイッチを介して電装機器に接続し、このメインスイッチとサブスイッチとをニッケル水素電池の残容量によってオンオフに制御するので、メインスイッチをオフ、サブスイッチをオンとして、ニッケル水素電池を鉛バッテリから切り離して、ニッケル水素電池のみから電装機器に動作電力を供給できるからである。すなわち、ニッケル水素電池の残容量が充分にある状態では、鉛バッテリから電装機器に動作電力を供給せず、ニッケル水素電池のみから電装機器に動作電力を供給して、鉛バッテリの放電を停止できる。この状態で、ニッケル水素電池は放電されて電圧は低下するが、鉛バッテリは放電されないので電圧は低下しない。したがって、電装機器に動作電力を供給しながら、鉛バッテリの電圧は低下しない。オルタネータは、鉛バッテリの電圧が低下することを検出して、鉛バッテリの充電を開始するので、鉛バッテリの電圧が低下しない状態では充電を開始しない。したがって、以上の電源装置は、電装機器に動作電力を供給しながら、オルタネータが頻繁に鉛バッテリを充電することはない。ニッケル水素電池は、放電されて残容量が次第に低下するが、車両の回生制動で充電される。回生発電電力は、鉛バッテリとニッケル水素電池の両方に蓄電される。とくに、ニッケル水素電池は回生発電電力をより効率よく蓄電するために鉛バッテリと並列に接続される。したがって、回生発電電力の蓄電量は、鉛バッテリよりもニッケル水素電池が大きくなる。回生制動は、車両の運動のエネルギーを電気エネルギーに変換してバッテリに蓄電する。たとえば、60Km/時で走行している1トンの車両の運動のエネルギーは40Whと相当に大きい。仮に運動のエネルギーの50%をバッテリに蓄電できるとれば、車両が1回停止するごとに、20Whもの電力を蓄電できる。この電力は消費電力を20Wとする電装機器を1時間動作状態にできる電力に相当する。すなわち、電装機器の消費電力を20Wとする車両は、1時間に1回の割合で、60Km/時の速度から信号待ちなどで停止して、オルタネータで充電することなく電装機器を動作状態にできる。同じ速度で、1時間に5回の割合で停止する車両は、回生制動の充電電力が100Wとなるので、100Wの電装機器を、オルタネータで充電することなく動作状態に維持できる。したがって、信号待ちなどで頻繁に停止を繰り返す車両にあっては、ほとんどオルタネータで充電することなく、回生制動の電力で電装機器を動作状態に保持できる。回生制動による発電電力が、電装機器の消費電力よりも大きく、すなわち、回生制動する頻度が少なくなって、ニッケル水素電池の残容量が設定残容量よりも低下すると、メインスイッチをオン状態に切り換えて鉛バッテリから充電する。この状態で鉛バッテリはニッケル水素電池を充電する。ニッケル水素電池を充電すると鉛バッテリの電圧は低下するので、電圧の低下した鉛バッテリがオルタネータで充電される。ニッケル水素電池を充電した鉛バッテリは、電圧低下が大きくなる。オルタネータは、鉛バッテリの電圧が低いほど、充電電流を大きくするので、この状態でオルタネータの充電電流は大きく、高い充電効率で鉛バッテリを充電する。鉛バッテリが充電されて電圧が充電停止電圧まで上昇すると、オルタネータは発電を停止する。この状態で鉛バッテリと一緒にニッケル水素電池も充電されて残容量が大きくなるので、メインスイッチはオフ状態に切り換えられて、電装機器には再びニッケル水素電池のみから動作電力が供給される。以上の動作をして、ニッケル水素電池は、広い残容量範囲で効率よく充放電され、鉛バッテリは狭い電圧範囲で充放電される。
本発明の回生制動する車両の電源装置は、切換回路11が、ニッケル水素電池2の残容量が減少して、メインスイッチ3をオフ状態からオン状態に切り換えるメインスイッチ切換残容量を記憶するメモリ13を備え、ニッケル水素電池2の残容量がメインスイッチ切換残容量以下になる状態で、切換回路11がメインスイッチ3をオン状態に切り換えることができる。
以上の電源装置は、ニッケル水素電池が放電されて残容量がメインスイッチ切換残容量まで低下すると、メインスイッチがオン状態に切り換えられて鉛バッテリから充電される。したがって、ニッケル水素電池が、過充電状態となり、あるいは過充電に近づくのを防止してニッケル水素電池の劣化を防止できる。
本発明の回生制動する車両の電源装置は、切換回路11が、車両のイグニッションスイッチ26のオフ状態において、ニッケル水素電池2の残容量が減少して、サブスイッチ4をオン状態からオフ状態に切り換える最低残容量記憶するメモリ13を備え、ニッケル水素電池2の残容量が最低残容量以下になると、切換回路11がサブスイッチ4をオン状態からオフ状態に切り換えて、ニッケル水素電池2を放電しない状態とすることができる。
以上の電源装置は、ドライバーが長い期間、車両を使用しない状態において、ニッケル水素電池の過充電を防止できる。それは、車両を使用しない状態において、車両のわずかな暗電流によるニッケル水素電池の過放電を防止できるからである。車両は、イグニッションスイッチのオフ状態においてもわずかな暗電流を消費する。この暗電流をニッケル水素電池から供給し続けると、ニッケル水素電池の残容量は次第に低下するが、以上の電源装置は、ニッケル水素電池の残容量が最低残容量より小さくなると、サブスイッチをオフ状態に切り換えてニッケル水素電池の放電を停止するので、ニッケル水素電池の過放電を確実に防止して、過放電による劣化を有効に阻止できる。
本発明の回生制動する車両の電源装置は、切換回路11が、ニッケル水素電池2が充電されて残容量が増加して、サブスイッチ4をオン状態からオフ状態に切り換える最大残容量を記憶するメモリ13を備え、ニッケル水素電池2の残容量が最大残容量以上となる状態で、切換回路11がサブスイッチ4をオンからオフに切り換えてニッケル水素電池2の充電を停止することができる。
以上の電源装置は、ニッケル水素電池が回生制動などで充電されて、その残容量が最大残容量を越えると、サブスイッチをオフ状態に切り換えて充電を停止するので、ニッケル水素電池の過充電による劣化を防止できる。
本発明の回生制動する車両の電源装置は、残容量検出回路12が、ニッケル水素電池2の充放電の電流を演算して残容量を検出することができる。
以上の電源装置は、ニッケル水素電池の残容量を正確に演算して、メインスイッチやサブスイッチを切り換えして、ニッケル水素電池の劣化をより有効に防止できる。
本発明の回生制動する車両の電源装置は、残容量検出回路12が、ニッケル水素電池2の電圧から残容量を検出することができる。
以上の電源装置は、簡単にニッケル水素電池2の残容量を検出できる。
本発明の回生制動する車両の電源装置は、鉛バッテリ1がメインスイッチ3を介することなくスターターモータ22に接続されて、スターターモータ22に電力を供給する状態で、切換回路11がメインスイッチ3とサブスイッチ4の何れか又は両方をオフ状態として、鉛バッテリ1のみからスターターモータ22に電力を供給することができる。
以上の電源装置は、スターターモータに電力を供給する状態において、ニッケル水素電池から安定して電装機器に動作電力を供給できる。それは、ニッケル水素電池がスターターモータに大電流を供給して、電圧降下することがないからである。
本発明の一実施例にかかる電源装置を車両に搭載する状態を示すブロック図である。 切換回路がサブスイッチとメインスイッチをオンオフに切り換える状態を示す図である。
以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための回生制動する車両の電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。さらに、この明細書は、請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。
本発明の電源装置は、回生制動する車両に搭載されて、電装機器やスターターモータに電力を供給する。この車両は、減速するときの運動のエネルギーでオルタネータを回転して鉛バッテリとニッケル水素電池を充電する。回生制動状態において、車輪がエンジンを回転し、エンジンがオルタネータを回転する。ただ、車輪でオルタネータを回転して回生制動することもできる。オルタネータの回転トルクは、エンジンを介して車両を制動して減速する。オルタネータが回生制動して発電する電力は、車両の運動のエネルギーに比例して大きくなる。車両の運動のエネルギーは、車両の重量と速度の自乗の積に比例して大きくなる。たとえば、60Km/時で走行する1トンの車両は、約40Whの運動のエネルギーを有する。運動のエネルギーの50%で鉛バッテリとニッケル水素電池を充電できると仮定すれば、60Km/時で走行している普通車は、1回の信号待ちで停止する毎に、20Whもの電力を蓄電できる。
ところで、回生制動せず、またアイドリングストップもしない従来の車両は、バッテリ電圧を常に所定の電圧、たとえば、13.5Vとするように、オルタネータの出力をコントロールしている。このオルタネータの出力電流は、バッテリの電圧が低下する状態では、バッテリの充電電流と電装機器の消費電流のトータル電流となる。ただ、バッテリは充電されて所定の電圧となるので、その後のオルタネータの出力は、電装機器の消費電流となり、この状態が継続する。したがって、オルタネータの出力は、ほとんどの時間帯において電装機器の消費電流となる。オルタネータの定格出力電流は、全ての電装機器に同時に電力を供給できるように、たとえば100Aと相当に大きく設定される。車両を走行させる状態で、全ての電装機器を使用する確率は極めて低く、たとえばエアコンを使用しないで昼間に車両を走行させる状態にあっては、ほとんどの電装機器がオフ状態にあるので、電装機器の消費電流は相当に小さくなって10A以下となることが多い。この状態で、オルタネータの出力は、定格出力電流の1/10以下となる。このような軽負荷で運転されるオルタネータは、発電効率が極めて低く、エンジンの燃費効率を相当に悪化させる原因となる。
以上の欠点は、回生制動し、かつアイドリングストップすると共に、バッテリの電圧が充電開始電圧まで低下すると、オルタネータでバッテリを充電し、充電されて電圧が充電停止電圧まで上昇すると、オルタネータによるバッテリの充電を中断することで解消できる。オルタネータが、出力電流を大きくしてバッテリを充電することで、充電効率を改善できるからである。
ところで、鉛バッテリは、残容量が小さくなって過放電に近づくにしたがって劣化しやすい特性がある。この鉛バッテリは、劣化を少なくするために、充電開始電圧と充電停止電圧を、残容量を大きくする狭い範囲に設定する必要がある。たとえば、鉛バッテリは開放電圧を12.5Vとする状態で残容量が80%、開放電圧を12.8Vとする状態で、残容量はほぼ100%となるので、開放電圧をこの電圧範囲に制御して劣化を少なくできる。したがって、車両のオルタネータは、鉛バッテリの開放電圧範囲をこの電圧範囲とするように、充電開始電圧と充電停止電圧とを狭い電圧範囲に設定している。このように狭い電圧範囲で鉛バッテリを充放電する電源装置にあっても、鉛バッテリと並列にニッケル水素電池を接続することで、回生制動の発電電力を効率よく蓄電することはできる。しかしながら、この電源装置は、鉛バッテリを狭い電圧範囲で使用するために、これに並列に接続するニッケル水素電池を効率よく充放電できない欠点がある。
図1の電源装置は、鉛バッテリ1を狭い電圧範囲で充放電しながら、効率よくニッケル水素電池2を充放電して、車両の燃費効率をより改善できる。この電源装置は、車両のオルタネータ23に接続され、かつ車両の電装機器20に動作電力を供給する鉛バッテリ1と、鉛バッテリ1に並列に接続されると共に、車両の電装機器20に動作電力を供給するニッケル水素電池2と、鉛バッテリ1と車両の電装機器20との間に接続してなるメインスイッチ3と、ニッケル水素電池2と車両の電装機器20との間に接続してなるサブスイッチ4と、鉛バッテリ1及びニッケル水素電池2から車両の電装機器20への動作電力の供給を制御する制御回路5とを備える。ニッケル水素電池2は、サブスイッチ4とメインスイッチ3とを介して車両のオルタネータ23に接続される。
鉛バッテリ1は、定格電圧を12Vとするバッテリである。鉛バッテリ1の1セルの定格電圧は2Vである。12Vの鉛バッテリ1は6セルを直列に接続している。鉛バッテリ1は、直列に接続するセルの数で定格電圧を調整できる。したがって、鉛バッテリ1には、定格電圧を12V以外とするものも使用できる。さらに鉛バッテリ1は、12Vのバッテリを直列に接続して、定格電圧を24V、36V、48Vとすることもできる。ニッケル水素電池2は、DC/DCコンバータを介することなく鉛バッテリ1に接続されるので、直列に接続する個数を調整して、定格電圧を鉛バッテリ1に等しく、あるいはほぼ等しくする。
12Vの鉛バッテリ1に並列に接続されるニッケル水素電池2は、10個のニッケル水素電池セル2Aを直列に接続して定格電圧を12Vとする。ニッケル水素電池2は、常に鉛バッテリ1と並列に接続されて、残容量の狭い電圧範囲でのみ使用されると、効率よく充放電されない。ニッケル水素電池2が、その開放電圧を12.5V〜12.8Vとする狭い電圧範囲で充放電されると、その残容量は20%〜30%しか変化せず、全体の容量の1/5〜1/3しか充放電に使用されない。ニッケル水素電池2は、鉛バッテリ1と違って、残容量が10%に低下するまで放電し、また80%となるまで充電しても劣化は少なく、例えば残容量範囲を20%〜80%と、定格容量の60%もの広い残容量範囲で充放電してほとんど劣化しない状態で使用できる。ニッケル水素電池2の特性を生かしながら、充放電するために、図1の電源装置は、ニッケル水素電池2の充放電をコントロールするサブスイッチ4と、ニッケル水素電池2の残容量でサブスイッチ4をオンオフに制御する制御回路5とを備えている。
ニッケル水素電池2は、回生制動の発電電力を効率よく蓄電する。回生制動は、車両が停止するまでの極めて短い時間において、バッテリを大きな電流で充電するので、いかに効率よくバッテリに充電できるかが大切である。図1の電源装置は、回生発電電力を効率よく蓄電するために、鉛バッテリ1と並列にニッケル水素電池2を接続している。ニッケル水素電池2は、鉛バッテリ1に比較して充電抵抗が極めて小さく、大電流の充電特性に優れるので、回生制動時の大電流で効率よく充電される。
制御回路5は、ニッケル水素電池2の残容量を検出する残容量検出回路12と、この残容量検出回路12で検出されるニッケル水素電池2の残容量で、サブスイッチ4とメインスイッチ3をオンオフに切り換える切換回路11とを備える。制御回路5は、残容量検出回路12で検出するニッケル水素電池2の残容量によって、切換回路11でもって、サブスイッチ4とメインスイッチ3とをオンオフに制御する。
残容量検出回路12は、ニッケル水素電池2に流れる電流を積算して残容量を演算する。残容量は、充電電流の積算値を加算し、放電電流の積算値を減算して演算される。また、残容量検出回路12は、電流の積算値で演算される残容量を、ニッケル水素電池2の電圧で補正することもできる。また、残容量検出回路12は、電流の積算値によらず、電圧のみで残容量を検出することもできる。ニッケル水素電池2が残容量によって電圧が変化するからである。
図1の制御回路5は、ニッケル水素電池2の電流を検出するために、ニッケル水素電池2と直列に電流検出抵抗14を接続している。残容量検出回路12は、この電流検出抵抗の両端の電圧を差動アンプ(図示せず)で増幅して、ニッケル水素電池2の電流を検出し、検出する電流から残容量を演算する。さらに、図1の制御回路5は、ニッケル水素電池2の電圧や温度等の電池状態を検出する回路も備えており、電池状態によってもサブスイッチ4をオンオフに切り換える。たとえば、電池の温度が異常な温度範囲になると、サブスイッチ4をオフ状態に切り換えて、ニッケル水素電池2の充放電を停止する。
切換回路11は、残容量検出回路12で検出されるニッケル水素電池2の残容量でサブスイッチ4とメインスイッチ3をオンオフに制御する。この切換回路11がサブスイッチ4とメインスイッチ3とをオンオフに切り換える状態を図2に示している。切換回路11は、ニッケル水素電池2の残容量がメインスイッチ切換残容量よりも大きい状態では、サブスイッチ4をオン状態として、メインスイッチ3をオフ状態とする。切換回路11は、このメインスイッチ切換残容量をメモリ13に記憶している。メモリ13は、メインスイッチ切換残容量を、たとえば、20%と記憶する。この切換回路11は、ニッケル水素電池2の残容量が20%よりも大きい状態では、サブスイッチ4をオン状態、メインスイッチ3をオフ状態として、ニッケル水素電池2のみから電装機器20に動作電力を供給する。この状態において、鉛バッテリ1は電装機器20に動作電力を供給しない。したがって、この状態で鉛バッテリ1の電圧は低下しない。
ニッケル水素電池2が放電されて、ニッケル水素電池2の残容量がメインスイッチ切換残容量の20%よりも小さくなると、メインスイッチ3をオフ状態からオン状態に切り換えて、ニッケル水素電池2をサブスイッチ4とメインスイッチ3を介して鉛バッテリ1と並列に接続する。この状態で、ニッケル水素電池2は鉛バッテリ1から充電される。鉛バッテリ1がニッケル水素電池2を充電して、電圧が低下すると、オルタネータ23が発電して鉛バッテリ1とニッケル水素電池2の両方を充電する。また、鉛バッテリ1とニッケル水素電池2とが並列に接続される状態で、回生制動の発電電力で両方のバッテリが充電される。ニッケル水素電池2がオルタネータ23で充電されて、ニッケル水素電池2の残容量がメインスイッチ切換残容量の20%よりも大きくなる状態では、切換回路11は、メインスイッチ3を直ちにオフに切り換えることなく、メインスイッチ3をオフに切り換える残容量にヒステリシスを持たせることができる。切換回路11は、たとえば、ニッケル水素電池2の残容量が所定の残容量(たとえば50%)になるまで、メインスイッチ3をオン状態に保持してもよい。
ニッケル水素電池2は、回生制動の蓄電を効率よくするために鉛バッテリ1に接続されるので、回生制動する状態で、切換回路11はメインスイッチ3とサブスイッチ4の両方をオン状態とする。回生制動は、発電電力を効率よく蓄電するために、鉛バッテリ1の電圧が充電停止電圧まで上昇しても、オルタネータ23は出力を遮断しない。また、回生制動時には、メインスイッチ3はニッケル水素電池2の残容量によらず、オン状態に保持される。回生制動時には、鉛バッテリ1とニッケル水素電池2の何れかの残容量が、あらかじめ設定している残容量を越え、あるいは鉛バッテリ1とニッケル水素電池2の電圧があらかじめ設定している最高電圧を越える状態で、オルタネータ23による発電を停止する。このような制御は、回生制動後において、一時的に鉛バッテリ1の電圧が高くなることはあるが、回生制動の後は、アイドリングストップしたエンジン21を再始動するので、スターターモータ22に大電流を放電して、電圧を低下できる。
切換回路11は、ニッケル水素電池2の過放電を防止するために、ドライバーが車両を使用しない状態、すなわち車両のメインスイッチ3であるイグニッションスイッチ26のオフ状態で、ニッケル水素電池2の残容量が最低残容量よりも低下すると、サブスイッチ4をオフ状態に切り換えて、ニッケル水素電池2の過放電を防止する。切換回路11は、この最低残容量をメモリ13に記憶している。メモリ13を切り換えする最低残容量は、たとえば10%とする。最低残容量を小さくして、サブスイッチ4をオフ状態に切り換えるタイミングを遅らせることができるが、小さすぎるとニッケル水素電池2を劣化させるので、ニッケル水素電池2の劣化と、車両側に暗電流を供給する時間とを考慮して、最適値に設定される。車両が使用されない状態で、ニッケル水素電池2はわずかな暗電流で放電される。暗電流は数mA以下の極めて小さい電流であるが、長期間にわたってニッケル水素電池2を放電して残容量を低下させることがある。最低残容量でサブスイッチ4をオフ状態に切り換える切換回路11は、ニッケル水素電池2の過放電による劣化を確実に防止できる。
切換回路11は、イグニッションスイッチ26のオフ状態でオフに切り換えられたサブスイッチ4を、イグニッションスイッチ26がオンに切り換えられる状態でオンに切り換えて、ニッケル水素電池2を充電できる状態とする。メインスイッチ3は、ニッケル水素電池2の残容量が、メインスイッチ切換残容量よりも小さい状態でオン状態にあるので、サブスイッチ4がオン状態に切り換えられると、ニッケル水素電池2の残容量は、鉛バッテリ1によって、メインスイッチ切換残容量まで充電される。
また、切換回路11は、図2に示すように、充電されるニッケル水素電池2の残容量が最大残容量を越えると、サブスイッチ4をオフ状態に切り換えて、ニッケル水素電池2の過充電を防止する。切換回路11は、この最高残容量をメモリ13に記憶している。この切換回路11は、たとえば回生制動する状態で、ニッケル水素電池2の残容量が最大残容量を越えると、サブスイッチ4をオフ状態として、過充電を防止できる。
切換回路11は、スターターモータ22に電力を供給してエンジン21を始動するタイミングにおいては、メインスイッチ3をオフ状態として、鉛バッテリ1のみからスターターモータ22に電力を供給して、ニッケル水素電池2からスターターモータ22には電力を供給しない。この電源装置は、エンジン21を始動する状態で、ニッケル水素電池2の電圧が低下しない。したがって、ニッケル水素電池2と電装機器20との間にDC/DCコンバータなどの電圧調整回路を設けることなく、ニッケル水素電池2を直接に電装機器20に接続して、電装機器20に安定して動作電力を供給できる。
本発明の電源装置は、回生制動する車両に搭載されて、鉛バッテリを一定の電圧範囲で充放電して劣化を少なくしながら、これと並列に接続するニッケル水素電池を広い残容量の範囲で充放電して燃費効率を改善できる。
1…鉛バッテリ
2…ニッケル水素電池 2A…ニッケル水素電池セル
3…メインスイッチ
4…サブスイッチ
5…制御回路
11…切換回路
12…残容量検出回路
13…メモリ
14…電流検出抵抗
20…電装機器
21…エンジン
22…スターターモータ
23…オルタネータ
26…イグニッションスイッチ

Claims (5)

  1. 車両のオルタネータに接続される鉛バッテリと、
    前記鉛バッテリに並列に接続されるニッケル水素電池と、
    車両の電装機器と前記鉛バッテリとを接続すると共に、前記鉛バッテリから車両の電装機器への電力供給を遮断可能に構成されたメインスイッチと、
    車両の電装機器と前記ニッケル水素電池とを接続すると共に、前記ニッケル水素電池から車両の電装機器への電力供給を遮断可能に構成されたサブスイッチと、
    前記鉛バッテリ及び前記ニッケル水素電池から車両の電装機器への動作電力の供給を制御する制御回路であって、該制御回路が前記ニッケル水素電池の残容量を検出する残容量検出回路と、前記メインスイッチ及び前記サブスイッチのオンオフを切り替える切替回路と、予め設定されているメインスイッチ切替残容量を記憶するメモリと、を含んでいる、該制御回路とを備え、
    前記制御回路は、
    車両のオルタネータの出力が遮断されている状態において、
    前記ニッケル水素電池の残容量が前記メインスイッチ切替残容量よりも大きい場合、前記鉛バッテリの残容量とは無関係に前記メインスイッチをオフに制御し、
    前記ニッケル水素電池の残容量が前記メインスイッチ切替残容量よりも小さい場合、前記鉛バッテリの残容量とは無関係に前記メインスイッチをオンに制御することを特徴とする回生制動する車両の電源装置。
  2. 前記メモリは、さらに、前記メインスイッチ残容量よりも低い値となる最低残容量を記憶しており、
    前記制御回路は、前記ニッケル水素電池から車両の電装機器への動作電力を供給している際に、前記ニッケル水素電池の残容量が前記最低残容量よりも低くなると、前記サブスイッチをオフに切り替えて、前記ニッケル水素電池の放電を停止させることを特徴とする請求項1に記載の回生制動する車両の電源装置。
  3. 前記メモリは、さらに、前記メインスイッチ残容量よりも高い値となる最高残容量を記憶しており、
    前記制御回路は、前記ニッケル水素電池が車両のオルタネータにより充電されている際
    に、前記ニッケル水素電池の残容量が前記最高残容量よりも高くなると、前記サブスイッチをオフに切り替えて、前記ニッケル水素電池の充電を停止させることを特徴とする請求項1に記載の回生制動する車両の電源装置。
  4. 前記制御回路は、前記オルタネータからの出力が供給されている場合には、前記ニッケル水素電池の残容量とは無関係に、前記メインスイッチをオンに制御することを特徴とする請求項1に記載の回生制動する車両の電源装置。
  5. 前記鉛バッテリがメインスイッチを介することなくスターターモータに接続され、前記切換回路が、前記スターターモータに電力を切り換えする状態で、前記メインスイッチと前記サブスイッチの何れか又は両方をオフ状態として、前記鉛バッテリのみから前記スターターモータに電力を供給する請求項1ないしのいずれかに記載される回生制動する車両の電源装置。
JP2014544244A 2012-10-29 2013-10-17 回生制動する車両の電源装置 Active JP6305930B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012238119 2012-10-29
JP2012238119 2012-10-29
PCT/JP2013/006168 WO2014068884A1 (ja) 2012-10-29 2013-10-17 回生制動する車両の電源装置

Publications (2)

Publication Number Publication Date
JPWO2014068884A1 JPWO2014068884A1 (ja) 2016-09-08
JP6305930B2 true JP6305930B2 (ja) 2018-04-04

Family

ID=50626836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014544244A Active JP6305930B2 (ja) 2012-10-29 2013-10-17 回生制動する車両の電源装置

Country Status (2)

Country Link
JP (1) JP6305930B2 (ja)
WO (1) WO2014068884A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104057869A (zh) * 2014-06-13 2014-09-24 沈阳德邦仪器有限公司 一种以燃料电池为生活动力和热源的房车
WO2017065161A1 (ja) * 2015-10-13 2017-04-20 株式会社デンソー 電源装置及び電池ユニット
JP6406328B2 (ja) * 2015-10-13 2018-10-17 株式会社デンソー 電源装置及び電池ユニット
US10532417B2 (en) * 2016-08-08 2020-01-14 Lincoln Global, Inc. Dual battery hybrid engine drive welding power supply
JP7016628B2 (ja) * 2017-07-11 2022-02-07 ビークルエナジージャパン株式会社 複合蓄電システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124275A (ja) * 2003-10-15 2005-05-12 Auto Network Gijutsu Kenkyusho:Kk 車載充電制御装置
JP5488046B2 (ja) * 2010-02-25 2014-05-14 株式会社デンソー 車載電源装置
JP5541134B2 (ja) * 2010-12-13 2014-07-09 株式会社デンソー 電源装置

Also Published As

Publication number Publication date
JPWO2014068884A1 (ja) 2016-09-08
WO2014068884A1 (ja) 2014-05-08

Similar Documents

Publication Publication Date Title
KR102016752B1 (ko) 배터리 팩 및 배터리 팩 제어방법
JP5865013B2 (ja) 車両用の電源装置及びこの電源装置を備える車両
KR101397023B1 (ko) 배터리 팩 및 배터리 팩의 제어 방법
JP6128491B2 (ja) 車両用の電源装置及びこの電源装置を備える車両
CN102237706B (zh) 具有多个蓄电池的电源单元
US8436585B2 (en) Power supply device
JP6613997B2 (ja) 電源装置
JP6246729B2 (ja) アイドリングストップする車両
JP3931446B2 (ja) 組電池の充電状態調整装置
JP6305930B2 (ja) 回生制動する車両の電源装置
JP2011015516A (ja) 車載電源装置
JP6119725B2 (ja) 充電装置
CN103545903A (zh) 电池系统控制器
KR101927124B1 (ko) 배터리 고장 방지 장치
JP2014225942A (ja) 蓄電システム
WO2013115034A1 (ja) 車両用の電源装置及びこの電源装置を備える車両
JP2014033571A (ja) 電源システム
JP2014018017A (ja) バッテリシステム制御装置
JP2015009654A (ja) 蓄電システム
JP2015180140A (ja) 車両用電源システム
JP2013038983A (ja) 充電装置、車載用充電装置、車載用充電装置における充電方法
JP5409424B2 (ja) 電源装置
WO2013031615A1 (ja) ハイブリッドカーのバッテリシステム及びこのバッテリシステムを備えるハイブリッドカー
WO2013115035A1 (ja) 電源装置及びこの電源装置を備える車両並びに蓄電装置
JP6116838B2 (ja) 車両用の電源装置とこの電源装置を備える電動車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180307

R150 Certificate of patent or registration of utility model

Ref document number: 6305930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150