JP6297663B1 - 電子機器、補正制御方法、及び補正制御プログラム - Google Patents

電子機器、補正制御方法、及び補正制御プログラム Download PDF

Info

Publication number
JP6297663B1
JP6297663B1 JP2016241307A JP2016241307A JP6297663B1 JP 6297663 B1 JP6297663 B1 JP 6297663B1 JP 2016241307 A JP2016241307 A JP 2016241307A JP 2016241307 A JP2016241307 A JP 2016241307A JP 6297663 B1 JP6297663 B1 JP 6297663B1
Authority
JP
Japan
Prior art keywords
sensor
state
correction value
acceleration
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016241307A
Other languages
English (en)
Other versions
JP2018096829A (ja
Inventor
上野 泰弘
泰弘 上野
茂輝 田辺
茂輝 田辺
英樹 森田
英樹 森田
功 益池
功 益池
浩太郎 山内
浩太郎 山内
学 佐久間
学 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016241307A priority Critical patent/JP6297663B1/ja
Priority to US15/838,403 priority patent/US10605825B2/en
Application granted granted Critical
Publication of JP6297663B1 publication Critical patent/JP6297663B1/ja
Publication of JP2018096829A publication Critical patent/JP2018096829A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/10Details of telephonic subscriber devices including a GPS signal receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion

Abstract

【課題】加速度センサの検出誤差の補正に用いる補正値の変更方法を改善すること。【解決手段】1つの態様において、電子機器は、自機の移動状態を推定するためのセンサと、加速度センサと、コントローラとを備える。コントローラは、第1の状態であると判別したとき、加速度センサの検出誤差の補正に用いる補正値を変更しない。【選択図】図1

Description

本出願は、電子機器、補正制御方法、及び補正制御プログラムに関する。
従来、加速度センサを備える電子機器がある。
特開2006−107657号公報
加速度センサを備える電子機器は、加速度センサの検出誤差の補正に用いる補正値の変更方法について改善の余地がある。
1つの態様に係る電子機器は、自機の移動状態を推定するためのセンサと、加速度センサと、前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機の移動状態が第1の状態であるかを判別するコントローラとを備える。前記コントローラは、自機の移動状態が前記第1の状態であると判別したとき、前記加速度センサの検出誤差の補正に用いる補正値を変更しない。
1つの態様に係る補正制御方法は、自機の移動状態を推定するためのセンサと加速度センサとを備える電子機器に実行させる補正制御方法であって、前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機の移動状態が第1の状態であるかを判別するステップと、前記第1の状態であると判別したとき、前記加速度センサの検出誤差の補正に用いる補正値を変更しないステップとを含む。
1つの態様に係る補正制御プログラムは、自機の移動状態を推定するためのセンサと加速度センサとを備える電子機器に、前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機の移動状態が第1の状態であるかを判別するステップと、前記第1の状態であると判別したとき、前記加速度センサの検出誤差の補正に用いる補正値を変更しないステップとを実行させる。
他の態様に係る電子機器は、自機の移動状態を推定するためのセンサと、加速度センサと、前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機の移動状態が第1の状態であるかを判別するコントローラとを備える。前記コントローラは、前記加速度センサの検出誤差の補正に用いる補正値を変更したときの自機の移動状態が前記第1の状態であると判別すると、前記補正値を変更する。
他の態様に係る補正制御方法は、自機の移動状態を推定するためのセンサと加速度センサとを備える電子機器に実行させる補正制御方法であって、前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機の移動状態が第1の状態であるかを判別するステップと、前記加速度センサの検出誤差の補正に用いる補正値を変更したときの自機の移動状態が前記第1の状態であると判別すると、前記補正値を変更するステップとを含む。
他の態様に係る補正制御プログラムは、自機の移動状態を推定するためのセンサと加速度センサとを備える電子機器に、前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機の移動状態が第1の状態であるかを判別するステップと、前記加速度センサの検出誤差の補正に用いる補正値を変更したときの自機の移動状態が前記第1の状態であると判別すると、前記補正値を変更するステップとを実行させる。
図1は、実施形態に係るスマートフォンの機能構成の一例を示すブロック図である。 図2は、実施形態に係るスマートフォンにより実行される処理の一例を示すフローチャートである。 図3は、実施形態に係るスマートフォンにより実行される処理の他の例を示すフローチャートである。 図4は、実施形態に係るスマートフォンにより実行される処理の他の例を示すフローチャートである。 図5は、実施形態に係るスマートフォンにより実行される処理の他の例を示すフローチャートである。 図6は、実施形態に係るスマートフォンにより実行される処理の他の例を示すフローチャートである。
本出願に係る電子機器、補正制御方法、及び補正制御プログラムを実施するための複数の実施形態を、図面を参照しつつ詳細に説明する。
以下では、本出願に係る電子機器の一例として、スマートフォンを取り上げて説明する。電子機器は、加速度センサを各種制御に利用する機器であれば、スマートフォン以外の機器であってもよく、例えば、モバイルフォン、タブレット、携帯型パソコン、デジタルカメラ、メディアプレイヤ、電子書籍リーダ、ナビゲータ、歩数計、活動量計、ウエアラブルデバイス、ヘッドマウントディスプレイ、補聴器、イヤホン、又はゲーム機等の機器であってよい。ウエアラブルデバイスは、時計型、メガネ型、靴型、髪留め型、鍵型、ネックレス型、首輪型、指輪型、腕輪型、鞄型などを含む。
図1は、実施形態に係るスマートフォンの機能構成の一例を示すブロック図である。以下の説明において、同様の構成要素について同一の符号を付すことがある。以下の説明において、重複する説明は省略することがある。以下の説明において、スマートフォン1を「自機」と表記する場合がある。
図1に示すように、スマートフォン1は、タッチスクリーンディスプレイ2と、ボタン3と、照度センサ4と、近接センサ5と、通信ユニット6と、レシーバ7と、マイク8と、ストレージ9と、コントローラ10と、スピーカ11と、カメラ12と、カメラ13と、コネクタ14と、加速度センサ15と、方位センサ16と、角速度センサ17と、気圧センサ18と、GPS受信機19とを含む。
タッチスクリーンディスプレイ2は、ディスプレイ2Aと、タッチスクリーン2Bとを有する。ディスプレイ2A及びタッチスクリーン2Bは、例えば、重なって位置してよいし、並んで位置してよいし、離れて位置してよい。ディスプレイ2Aとタッチスクリーン2Bとが重なって位置する場合、例えば、ディスプレイ2Aの1ないし複数の辺は、タッチスクリーン2Bのいずれの辺とも沿っていなくてもよい。
ディスプレイ2Aは、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OELD:Organic Electro−Luminescence Display)、又は無機ELディスプレイ(IELD:Inorganic Electro−Luminescence Display)等の表示デバイスを含む。ディスプレイ2Aは、文字、画像、記号、及び図形等のオブジェクトを画面内に表示する。ディスプレイ2Aが表示するオブジェクトを含む画面は、ロック画面と呼ばれる画面、ホーム画面と呼ばれる画面、アプリケーションの実行中に表示されるアプリケーション画面を含む。ホーム画面は、デスクトップ、待受画面、アイドル画面、標準画面、アプリ一覧画面又はランチャー画面と呼ばれることもある。
タッチスクリーン2Bは、タッチスクリーン2Bに対する指、ペン、又はスタイラスペン等の接触又は近接を検出する。タッチスクリーン2Bは、複数の指、ペン、又はスタイラスペン等がタッチスクリーン2Bに接触又は近接したときのタッチスクリーン2B上の位置を検出することができる。以下の説明において、タッチスクリーン2Bが検出する複数の指、ペン、及びスタイラスペン等がタッチスクリーン2Bに接触又は近接した位置を「検出位置」と表記する。タッチスクリーン2Bは、タッチスクリーン2Bに対する指の接触又は近接を、検出位置とともにコントローラ10に通知する。タッチスクリーン2Bは、検出位置の通知をもって接触又は近接の検出をコントローラ10に通知してよい。タッチスクリーン2Bが行える動作を、タッチスクリーン2Bを有するタッチスクリーンディスプレイ2は実行できる。言い換えると、タッチスクリーン2Bが行う動作は、タッチスクリーンディスプレイ2が行ってもよい。
コントローラ10は、タッチスクリーン2Bにより検出された接触又は近接、検出位置、検出位置の変化、接触又は近接が継続した時間、接触又は近接が検出された間隔、及び接触が検出された回数の少なくとも1つに基づいて、ジェスチャの種別を判別する。コントローラ10が行える動作を、コントローラ10を有するスマートフォン1は実行できる。言い換えると、コントローラ10が行う動作は、スマートフォン1が行ってもよい。ジェスチャは、指を用いて、タッチスクリーン2Bに対して行われる操作である。タッチスクリーン2Bに対して行われる操作は、タッチスクリーン2Bを有するタッチスクリーンディスプレイ2により行われてもよい。コントローラ10が、タッチスクリーン2Bを介して判別するジェスチャには、例えば、タッチ、ロングタッチ、リリース、スワイプ、タップ、ダブルタップ、ロングタップ、ドラッグ、フリック、ピンチイン、及びピンチアウトが含まれるが、これらに限定されない。
タッチスクリーン2Bの検出方式は、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、及び荷重検出方式等の任意の方式でよい。
ボタン3は、ユーザからの操作入力を受け付ける。ボタン3の数は、単数であっても、複数であってもよい。ボタン3は、操作ボタンの一例である。
照度センサ4は、照度を検出する。照度は、照度センサ4の測定面の単位面積に入射する光束の値である。照度センサ4は、例えば、ディスプレイ2Aの輝度の調整に用いられる。
近接センサ5は、近隣の物体の存在を非接触で検出する。近接センサ5は、磁界の変化又は超音波の反射波の帰還時間の変化等に基づいて物体の存在を検出する。照度センサ4及び近接センサ5は、1つのセンサとして構成されていてもよい。照度センサ4は、近接センサとして用いられてもよい。
通信ユニット6は、無線により通信する。通信ユニット6によってサポートされる無線通信規格には、例えば、2G、3G、4G、5G等のセルラーフォンの通信規格と、近距離無線の通信規格とが含まれる。セルラーフォンの通信規格としては、例えば、LTE(Long Term Evolution)、W−CDMA(登録商標)(Wideband Code Division Multiple Access)、CDMA2000、PDC(Personal Digital Cellular)、GSM(登録商標)(Global System for Mobile communications)、PHS(Personal Handy−phone System)等がある。近距離無線の通信規格としては、例えば、WiMAX(登録商標)(Worldwide interoperability for Microwave Access)、IEEE802.11、Bluetooth(登録商標)、IrDA(Infrared Data Association)、NFC(登録商標)(Near Field Communication)、WPAN(Wireless Personal Area Network)等が含まれる。通信ユニット6は、上述した通信規格の1つ又は複数をサポートしていてもよい。
レシーバ7は、コントローラ10から送出される音信号を音として出力する。マイク8は、入力されるユーザの声等を音信号へ変換してコントローラ10へ送信する。
ストレージ9は、プログラム及びデータを記憶する。ストレージ9は、コントローラ10の処理結果を一時的に記憶する作業領域として利用されてもよい。ストレージ9は、半導体記憶媒体、及び磁気記憶媒体等の任意の非一過的(non−transitory)な記憶媒体を含んでよい。ストレージ9は、複数の種類の記憶媒体を含んでよい。ストレージ9は、メモリカード、光ディスク、又は光磁気ディスク等の記憶媒体と、記憶媒体の読み取り装置との組み合わせを含んでよい。ストレージ9は、RAM(Random Access Memory)等の一時的な記憶領域として利用される記憶デバイスを含んでよい。
ストレージ9に記憶されるプログラムには、フォアグランド又はバックグランドで実行されるアプリケーションと、アプリケーションの動作を支援する支援プログラム(図示略)とが含まれる。アプリケーションは、例えば、フォアグランドで実行される場合、当該アプリケーションに係る画面を、ディスプレイ2Aに表示する。支援プログラムには、例えば、OSが含まれる。プログラムは、通信ユニット6による無線通信又は非一過的な記憶媒体を介してストレージ9にインストールされてもよい。
ストレージ9は、制御プログラム9A、補正制御プログラム9B、加速度データ9C、気圧データ9D、補正値データ9E、自動補正実行条件9F、及び設定データ9Zなどを記憶できる。
制御プログラム9Aは、スマートフォン1の動作に関する機能を提供できる。制御プログラム9Aは、各種機能を提供するに際し、各種プログラム及びアプリケーションと連携できる。例えば、制御プログラム9Aは、加速度センサ15の検出結果から、自機の移動態様を判定する機能を提供できる。制御プログラム9Aは、自機の移動態様の判定結果を補正制御プログラム9Bに通知する。制御プログラム9Aは、通信ユニット6を介してクラウドストレージと連携し、当該クラウドストレージが記憶するファイル及びデータにアクセスしてもよい。クラウドストレージは、ストレージ9に記憶されるプログラム及びデータの一部又は全部を記憶してもよい。
補正制御プログラム9Bは、自動補正実行条件9Fを満足することを条件として、例えば、特開2015−224939に開示された方法により、加速度センサ15に生じる検出誤差(オフセット)を減殺するキャリブレーションを実行するための機能を提供できる。補正制御プログラム9Bは、キャリブレーションの実行の際、キャリブレーションに用いる補正値の変更を制御するための機能を提供できる。すなわち、補正制御プログラム9Bは、実施形態の一例として、気圧センサ18の検出結果に基づいて自機の移動状態が第1の状態であると判別したとき、加速度センサ15の検出誤差の補正に用いる補正値を変更せずに、前回のキャリブレーションで使用した補正値を用いることができる。
補正制御プログラム9Bは、気圧データ9Dに基づいて、一定時間前からの気圧変動量を算出し、算出した気圧変動量に基づいて、自機の移動状態が第1の状態であるかを判定できる。例えば、補正制御プログラム9Bは、3秒間で0.3hPa(ヘクトパスカル)を超える気圧変動量である場合、第1の状態であると判定できる。第1の状態は、自機に対して意図しない加速度が作用する状態である。自機に対して意図しない加速度が作用する状態は、移動状態にある自機が移動態様の少なくとも1部に一定の加速度で移動する等加速度運動の状態を含む。自機が等加速度運動の状態にある場合、気圧センサ18により大気圧変動とは異なる気圧変動が検出されることが推察されるので、気圧変動により、自機の移動状態が第1の状態であるかを判別することができる。
加速度データ9Cは、加速度センサ15により検出される加速度の値を含む。加速度データ9Cは、スマートフォン1に作用する加速度の方向及び大きさを含む。加速度データ9Cは、加速度センサ15により取得される全ての測定結果を含んでよい。例えば、加速度データ9Cは、加速度の方向及び大きさの時系列変化で構成される加速度パターンを含んでよい。例えば、加速度データ9Cは、加速度センサ15がX軸方向、Y軸方向、及びZ軸方向の加速度を検出する3軸型である場合、各軸における加速度の方向及び大きさ、並びに3軸の加速度を合成した合成ベクトルを含んでよい。
加速度データ9Cは、自機の移動状態の判定に用いる移動状態判定用のデータを含んでよい。例えば、加速度データ9Cは、スマートフォン1の利用者の歩行、走行、自転車による移動、自動車及び電車などの乗り物による移動などの移動態様ごとに、各移動態様に対応した加速度の方向及び大きさ、加速度パターン、及び合成ベクトルを含んでよい。制御プログラム9Aは、移動態様に対応した加速度の方向及び大きさ、加速度パターン、及び合成ベクトルを用いて、加速度センサ15の検出結果から自機の移動態様を判別できる。
気圧データ9Dは、気圧センサ18により検出される気圧の値を含む。気圧データ9Dは、単位時間あたりの気圧変化量を含んでよい。気圧変化量は、絶対値もしくはスカラー量を累積した値であってよい。単位時間は、スマートフォン1の処理を効率的に実行できる任意の時間でよい。
補正値データ9Eは、加速度センサ15の検出誤差の補正に用いる補正値に関するデータである。補正値データ9Eは、少なくとも、前回のキャリブレーションで使用した補正値のデータを含む。
自動補正実行条件9Fは、加速度センサ15に生じる検出誤差を減殺するキャリブレーションを自動で実行させるための条件を含む。自動補正実行条件9Fは、自機が移動状態であることを含む。自動補正実行条件9Fは、自機に作用するX軸方向、Y軸方向およびZ軸方向の各加速度がそれぞれ所定値以下であることを含む。自動補正実行条件9Fは、検出誤差が生じている軸以外の他の2軸の加速度の一定時間における平均値が所定値以下であることを含む。すなわち、自動補正実行条件9Fは、スマートフォン1が移動状態であり、静置されており、検出誤差が生じている加速度の軸が1軸のみで他の2軸には検出誤差が無視できる程度であることを条件として、キャリブレーションを自動的に開始させる。
設定データ9Zは、スマートフォン1の動作に関する各種設定の情報を含む。
コントローラ10は、演算処理装置を含む。演算処理装置は、例えば、CPU(Central Processing Unit)、SoC(System−on−a−Chip)、MCU(Micro Control Unit)、FPGA(Field−Programmable Gate Array)、およびコプロセッサを含むが、これらに限定されない。コントローラ10は、スマートフォン1の動作を統括的に制御して各種の機能を実現する。
具体的には、コントローラ10は、ストレージ9に記憶されているデータを必要に応じて参照しつつ、ストレージ9に記憶されているプログラムに含まれる命令を実行する。そして、コントローラ10は、データ及び命令に応じて機能部を制御し、それによって各種機能を実現する。機能部は、例えば、ディスプレイ2A、通信ユニット6、マイク8、スピーカ11及びGPS受信機19を含むが、これらに限定されない。コントローラ10は、検出部の検出結果に応じて、制御を変更することがある。検出部は、例えば、タッチスクリーン2B、ボタン3、照度センサ4、近接センサ5、マイク8、カメラ12、カメラ13、加速度センサ15、方位センサ16、角速度センサ17、及び気圧センサ18を含むが、これらに限定されない。
コントローラ10は、制御プログラム9Aを実行することにより、スマートフォン1の動作に関する各種制御を実現できる。
コントローラ10は、補正制御プログラム9Bを実行することにより、加速度センサ15に生じる検出誤差を減殺するキャリブレーションに関する各種制御を実現できる。例えば、コントローラ10は、キャリブレーションの実行の際、気圧センサ18の検出結果に基づいて自機の移動状態が第1の状態であると判別したとき、加速度センサ15の検出誤差の補正に用いる補正値を変更しないように制御できる。
スピーカ11は、コントローラ10から送出される音信号を音として出力する。スピーカ11は、例えば、着信音及び音楽を出力するために用いられる。レシーバ7及びスピーカ11の一方が、他方の機能を兼ねてもよい。
カメラ12及びカメラ13は、撮影した画像を電気信号へ変換する。カメラ12は、ディスプレイ2Aに面している物体を撮影するインカメラである。カメラ13は、ディスプレイ2Aの反対側の面に面している物体を撮影するアウトカメラである。カメラ12及びカメラ13は、インカメラ及びアウトカメラを切り換えて利用可能なカメラユニットとして、機能的及び物理的に統合された状態でスマートフォン1に実装されてもよい。
コネクタ14は、他の装置が接続される端子である。コネクタ14は、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)、MHL(Mobile High−difinition Link)、ライトピーク(Light Peak)、サンダーボルト(登録商標)(Thunderbolt)、LANコネクタ(Local Area Network connector)、イヤホンマイクコネクタのような汎用的な端子であってもよい。コネクタ14は、Dockコネクタのような専用に設計された端子でもよい。コネクタ14に接続される装置は、例えば、充電器、外部ストレージ、スピーカ、通信装置、及び情報処理装置を含むが、これらに限定されない。
加速度センサ15は、スマートフォン1に作用する加速度の方向及び大きさを検出できる。実施形態の1つの例として、X軸方向、Y軸方向、及びZ軸方向の加速度を検出する3軸型の加速度センサ15を採用できる。加速度センサ15は、ピエゾ抵抗型、静電容量型、圧電素子型(圧電式)、熱検知型によるMEMS(Micro Electro Mechanical Systems)式、動作させた可動コイルをフィードバック電流により元に戻すサーボ式、あるいは歪みゲージ式などにより構成することができる。加速度センサ15は、検出結果をコントローラ10に送出する。コントローラ10は、加速度センサ15の検出結果に基づいて各種制御を実行できる。例えば、スマートフォン1に作用している重力が加速度として加速度センサ15から出力されると、コントローラ10は、スマートフォン1に作用する重力方向を反映した制御を実行できる。
方位センサ16は、地磁気の向きを検出できる。方位センサ16は、検出結果をコントローラ10に送出する。コントローラ10は、方位センサ16の検出結果に基づいて各種制御を実行できる。例えば、コントローラ10は、地磁気の向きからスマートフォン1の向き(方位)を特定し、特定したスマートフォン1の方位を反映した制御を実行できる。
角速度センサ17は、スマートフォン1の角速度を検出できる。角速度センサ17は、検出結果をコントローラ10に送出する。コントローラ10は、角速度センサ17の検出結果に基づいて各種制御を実行できる。例えば、コントローラ10は、角速度センサ17から出力される角速度の有無に基づいて、スマートフォン1の回転を反映した制御を実現できる。
コントローラ10は、加速度センサ15、方位センサ16、及び角速度センサ17の各検出結果を個別に利用する場合に限定されず、各検出結果を組み合わせて利用することもできる。
気圧センサ18は、スマートフォン1に作用する気圧を検出できる。気圧センサ18の検出結果は、単位時間あたりの気圧変化量を含んでよい。気圧変化量は、絶対値もしくはスカラー量を累積した値であってよい。単位時間は、任意の時間を設定してよい。気圧センサ18は、検出結果をコントローラ10に送出する。コントローラ10は、気圧センサ18の検出結果に基づいて、上述した通り、加速度センサ15に生じる検出誤差を減殺するキャリブレーションに関する制御を実現できる。
GPS受信機19は、GPS衛星からの所定の周波数帯の電波信号を受信できる。GPS受信機は、受信した電波信号の復調処理を行って、処理後の信号をコントローラ10に送出する。
スマートフォン1は、バイブレータを備えてもよい。バイブレータは、スマートフォン1の一部又は全体を振動させる。バイブレータは、振動を発生させるために、例えば、圧電素子、又は偏心モータなどを有する。スマートフォン1は、上述のセンサの他、温度センサ、湿度センサ、圧力センサなどを備えてもよい。スマートフォン1は、バッテリなど、スマートフォン1の機能を維持するために当然に用いられる機能部、及びスマートフォン1の制御を実現するために当然に用いられる検出部を実装する。
図2を用いて、実施形態に係るスマートフォン1により実行される処理を説明する。図2は、実施形態に係るスマートフォンにより実行される処理の一例を示すフローチャートである。図2に示す処理は、コントローラ10が、ストレージ9に記憶されている制御プログラム9Aおよび補正制御プログラム9Bを実行することにより実現される。なお、図2に示す処理は、スマートフォン1が動作可能な状態であるとき繰り返し実行される。すなわち、スマートフォン1は、給電制御を一部制限するモード、いわゆる、省電力モードのときにも、図2に示す処理を繰り返し実行してよい。
図2に示すように、コントローラ10は、自動補正実行条件を満足するかを判定する(ステップS101)。
コントローラ10は、判定の結果、自動補正実行条件を満足しない場合(ステップS101,No)、ステップS101の判定を繰り返す。
一方、コントローラ10は、判定の結果、自動補正実行条件を満足する場合(ステップS101,Yes)、キャリブレーション用の補正値X’を算出する(ステップS102)。
キャリブレーション用の補正値X’の算出後、コントローラ10は、ストレージ9から気圧データ9Dを取得する(ステップS103)。
コントローラ10は、ステップS103で取得した気圧データ9Dに基づいて、自機の移動状態が第1の状態であるかを判定する(ステップS104)。
コントローラ10は、判定の結果、自機の移動状態が第1の状態ではない場合(ステップS104,No)、キャリブレーション用の補正値を前回のキャリブレーションで使用した補正値Xから補正値X’に変更し(ステップS105)、上記ステップS101の判定に戻る。
一方、コントローラ10は、判定の結果、自機の移動状態が第1の状態である場合(ステップS104,Yes)、キャリブレーション用の補正値を前回のキャリブレーションで使用した補正値Xから補正値X’に変更することなく(ステップS106)、上記ステップS101の判定に戻る。
図2に示す処理によれば、コントローラ10は、自機の移動状態が第1の状態である場合、キャリブレーション用の補正値を前回のキャリブレーションで使用した補正値Xから補正値X’に変更しない。すなわち、スマートフォン1において、自機に対して意図しない加速度が作用する状態で算出された補正値を用いて、加速度センサ15のキャリブレーションが行われることを回避できる。
以下、スマートフォン1が、キャリブレーション用の補正値を変更する処理の変形例を説明する。
補正制御プログラム9Bは、自機の移動状態が第1の状態ではないと判別したとき、前回のキャリブレーションで使用した補正値Xと、新たに算出された補正値X’との差の絶対値が所定値以上であることを条件として、キャリブレーション用の補正値を変更する機能を提供できる。
コントローラ10は、補正制御プログラム9Bを実行することにより、自機の移動状態が第1の状態ではないと判別したとき、前回のキャリブレーションで使用した補正値Xと、新たに算出された補正値X’との差の絶対値が所定値以上であることを条件として、キャリブレーション用の補正値を変更できる。
図3を用いて、実施形態に係るスマートフォン1により実行される処理を説明する。図3は、実施形態に係るスマートフォンにより実行される処理の他の例を示すフローチャートである。図3に示す処理は、コントローラ10が、ストレージ9に記憶されている制御プログラム9Aおよび補正制御プログラム9Bを実行することにより実現される。図3に示す処理は、ステップS205及びステップS206の処理手順を含む点が、図2に示す処理とは異なる。
図3に示すように、コントローラ10は、自動補正実行条件を満足するかを判定する(ステップS201)。
コントローラ10は、判定の結果、自動補正実行条件を満足しない場合(ステップS201,No)、ステップS201の判定を繰り返す。
一方、コントローラ10は、判定の結果、自動補正実行条件を満足する場合(ステップS201,Yes)、キャリブレーション用の補正値X’を算出する(ステップS202)。
キャリブレーション用の補正値X’の算出後、コントローラ10は、ストレージ9から気圧データ9Dを取得する(ステップS203)。
コントローラ10は、ステップS203で取得した気圧データ9Dに基づいて、自機の移動状態が第1の状態であるかを判定する(ステップS204)。
コントローラ10は、判定の結果、自機の移動状態が第1の状態ではない場合(ステップS204,No)、ストレージ9に記憶されている補正値データ9Eから、前回のキャリブレーションで使用した補正値Xを取得する(ステップS205)。
続いて、コントローラ10は、ステップS205で取得された補正値Xと、ステップS202で算出された補正値X’との差を算出し、算出した差の絶対値が所定値未満であるかを判定する(ステップS206)。
コントローラ10は、判定の結果、補正値Xと、補正値X’との差の絶対値が所定値未満ではない場合(ステップS206,No)、すなわち、補正値Xと補正値X’との間に大きな開きがある場合には、キャリブレーション用の補正値を前回のキャリブレーションで使用した補正値Xから補正値X’に変更し(ステップS207)、上記ステップS201の判定に戻る。
コントローラ10は、判定の結果、補正値Xと、補正値X’との差の絶対値が所定値未満である場合(ステップS206,Yes)、すなわち、補正値Xと補正値X’との間にさほど開きがない場合には、キャリブレーション用の補正値を前回のキャリブレーションで使用した補正値Xから補正値X’に変更することなく(ステップS208)、上記ステップS201の判定に戻る。
上記ステップS204において、コントローラ10は、判定の結果、自機の移動状態が第1の状態である場合(ステップS204,Yes)、上記ステップS208の処理手順に進む。
図3に示す処理によれば、スマートフォン1は、新たに算出したキャリブレーション用の補正値X’と、前回のキャリブレーションで使用した補正値Xとの間に大きな開きがない場合、補正値を変更しない。このため、スマートフォン1は、キャリブレーションが実行されるたびに補正値が更新されることを原因として、補正値に生じる誤差を低減できる。
上記図2及び図3の処理において、スマートフォン1は、自動補正実行条件9Fを満足すると判定した場合、補正値X’を算出する前に、気圧センサ18の検出結果を取得して、自機の移動状態が第1の状態であるかを判別してもよい。これにより、補正値X’が不要となる場合にも、補正値X’が算出される無駄を排除できる。
上記の実施形態では、キャリブレーション用の補正値を変更する前に、自機の移動状態に基づいて補正値の変更を実行するかを判定する例を説明したが、この例に限定されるものではない。例えば、補正値の変更後に、補正値を変更したときの自機の移動状態に基づいて補正値を再度変更するかを判定してもよい。
補正制御プログラム9Bは、前回のキャリブレーションで使用した補正値を変更したときの自機の移動状態が第1の状態であったと判別すると、現在の補正値を無効にして、補正値を再度変更する機能を提供できる。補正制御プログラム9Bは、例えば、補正値の変更が実施される前の10秒間および補正値の変更が実施された後の10秒間で、0.3hPa(ヘクトパスカル)を超える気圧変動量である場合、第1の状態であると判定できる。補正制御プログラム9Bが改めて実行する補正値の変更方法には、現在の補正値を前回のキャリブレーションで使用した補正値に戻す方法、過去のキャリブレーションで使用した補正値の平均値に変更する方法、初期値に戻す方法などが含まれる。
コントローラ10は、補正制御プログラム9Bを実行することにより、前回のキャリブレーションで使用した補正値を変更したときの自機の移動状態が第1の状態であったと判別すると、現在の補正値を無効にして、補正値を再度変更できる。
図4を用いて、実施形態に係るスマートフォン1により実行される処理を説明する。図4は、実施形態に係るスマートフォンにより実行される処理の他の例を示すフローチャートである。図4に示す処理は、コントローラ10が、ストレージ9に記憶されている制御プログラム9Aおよび補正制御プログラム9Bを実行することにより実現される。
図4に示すように、コントローラ10は、自動補正実行条件を満足するかを判定する(ステップS301)。
コントローラ10は、判定の結果、自動補正実行条件を満足しない場合(ステップS301,No)、ステップS301の判定を繰り返す。
一方、コントローラ10は、判定の結果、自動補正実行条件を満足する場合(ステップS301,Yes)、キャリブレーション用の補正値X’を算出する(ステップS302)。
キャリブレーション用の補正値X’の算出後、コントローラ10は、キャリブレーション用の補正値を前回のキャリブレーションで使用した補正値Xから補正値X’に変更する(ステップS303)。
続いて、コントローラ10は、ストレージ9から気圧データ9Dを取得する(ステップS304)。
コントローラ10は、ステップS304で取得した気圧データ9Dに基づいて、ステップS303の補正値の変更時に自機の移動状態が第1の状態であったかを判定する(ステップS305)。
コントローラ10は、判定の結果、自機の移動状態が第1の状態であった場合(ステップS305,Yes)、キャリブレーション用の補正値を、補正値X’から補正値Xに再度変更して(ステップS306)、上記ステップS301の判定に戻る。
コントローラ10は、判定の結果、自機の移動状態が第1の状態でなかった場合(ステップS305,No)、そのまま上記ステップS301の判定に戻る。
図4に示す処理によれば、コントローラ10は、補正値の変更時に自機の移動状態が第1の状態であった場合、キャリブレーション用の補正値を、ステップS302で算出した補正値X’から、前回のキャリブレーションで使用した補正値Xに再度変更する。補正値の変更が実施された後であっても、図4に示す処理を実行することにより、スマートフォン1において、自機に対して意図しない加速度が作用する状態で算出された補正値を用いて、加速度センサ15のキャリブレーションが行われることを回避できる。
図2に示す処理において、スマートフォン1は、自機の移動状態が第1の状態であるかを判別することを目的として、GPS信号をさらに利用してもよい。
補正制御プログラム9Bは、気圧センサ18の検出結果及びGPS信号に基づいて、自機の移動状態が第1の状態ではないと判別したとき、前回のキャリブレーションで使用した補正値Xと、新たに算出された補正値X’との差の絶対値が所定値を超えることを条件として、キャリブレーション用の補正値を変更する機能を提供できる。補正制御プログラム9Bは、GPS信号に基づいて自機の移動距離を求め、移動距離及び移動時間から自機の移動速度及び移動加速度を算出して、自機の移動状態が第1の状態であるかを裏付ける情報として採用できる。例えば、補正制御プログラム9Bは、気圧センサ18の検出結果から所定の気圧変動が認められる場合に、GPS信号を用いて算出した自機の移動速度から自機の移動状態を解析し、解析の結果、等加速度運動が認められる場合には、自機の移動状態が第1の状態と判定できる。GPS信号をさらに利用することにより、補正制御プログラム9Bは、例えば、新幹線及び航空機のように、水平方向へ高速移動する交通機関での移動中の場合には、GPS信号を利用して、自機の移動状態が第1の状態であるかを精度よく判定できる。
コントローラ10は、気圧センサ18の検出結果及びGPS信号に基づいて、自機の移動状態が第1の状態ではないと判別したとき、前回のキャリブレーションで使用した補正値Xと、新たに算出された補正値X’との差の絶対値が所定値を超えることを条件として、キャリブレーション用の補正値を変更できる。
図5を用いて、実施形態に係るスマートフォン1により実行される処理を説明する。図5は、実施形態に係るスマートフォンにより実行される処理の他の例を示すフローチャートである。図5に示す処理は、コントローラ10が、ストレージ9に記憶されている制御プログラム9Aおよび補正制御プログラム9Bを実行することにより実現される。図5に示す処理は、ステップS404の処理手順を含む点が、図2に示す処理とは異なる。
図5に示すように、コントローラ10は、自動補正実行条件を満足するかを判定する(ステップS401)。
コントローラ10は、判定の結果、自動補正実行条件を満足しない場合(ステップS401,No)、ステップS401の判定を繰り返す。
一方、コントローラ10は、判定の結果、自動補正実行条件を満足する場合(ステップS401,Yes)、キャリブレーション用の補正値X’を算出する(ステップS402)。
キャリブレーション用の補正値X’の算出後、コントローラ10は、ストレージ9から気圧データ9Dを取得する(ステップS403)。
続いて、コントローラ10は、GPS受信機19からGPS信号を取得する(ステップS404)。
コントローラ10は、ステップS403で取得した気圧データ9D、及びステップS404で取得したGPS信号に基づいて、自機の移動状態が第1の状態であるかを判定する(ステップS405)。
コントローラ10は、判定の結果、自機の移動状態が第1の状態ではない場合(ステップS405,No)、キャリブレーション用の補正値を前回のキャリブレーションで使用した補正値Xから補正値X’に変更し(ステップS406)、上記ステップS401の判定に戻る。
一方、コントローラ10は、判定の結果、自機の移動状態が第1の状態である場合(ステップS405,Yes)、キャリブレーション用の補正値を前回のキャリブレーションで使用した補正値Xから補正値X’に変更することなく(ステップS407)、上記ステップS401の判定に戻る。
上記図5に示す処理と同様に、図4に示す処理において、スマートフォン1は、自機の移動状態が第1の状態であるかを判別することを目的として、GPS信号をさらに利用してもよい。
補正制御プログラム9Bは、気圧センサ18の検出結果及びGPS信号に基づいて、前回のキャリブレーションで使用した補正値を変更したときの自機の移動状態が第1の状態であったと判別すると、現在の補正値を無効にして、補正値を再度変更する機能を提供できる。
コントローラ10は、補正制御プログラム9Bを実行することにより、気圧センサ18の検出結果及びGPS信号に基づいて、前回のキャリブレーションで使用した補正値を変更したときの自機の移動状態が第1の状態であったと判別すると、現在の補正値を無効にして、補正値を再度変更できる。
図6を用いて、実施形態に係るスマートフォン1により実行される処理を説明する。図6は、実施形態に係るスマートフォンにより実行される処理の他の例を示すフローチャートである。図6に示す処理は、コントローラ10が、ストレージ9に記憶されている制御プログラム9Aおよび補正制御プログラム9Bを実行することにより実現される。図6に示す処理は、ステップS505の処理手順を含む点が、図4に示す処理とは異なる。
図6に示すように、コントローラ10は、自動補正実行条件を満足するかを判定する(ステップS501)。
コントローラ10は、判定の結果、自動補正実行条件を満足しない場合(ステップS501,No)、ステップS501の判定を繰り返す。
一方、コントローラ10は、判定の結果、自動補正実行条件を満足する場合(ステップS501,Yes)、キャリブレーション用の補正値X’を算出する(ステップS502)。
キャリブレーション用の補正値X’の算出後、コントローラ10は、キャリブレーション用の補正値を前回のキャリブレーションで使用した補正値Xから補正値X’に変更する(ステップS503)。
続いて、コントローラ10は、ストレージ9から気圧データ9Dを取得する(ステップS504)。
続いて、コントローラ10は、GPS受信機19からGPS信号を取得する(ステップS505)。
コントローラ10は、ステップS504で取得した気圧データ9D及びステップS505で取得したGPS信号に基づいて、ステップS503の補正値の変更時に自機の移動状態が第1の状態であったかを判定する(ステップS506)。
コントローラ10は、判定の結果、自機の移動状態が第1の状態であった場合(ステップS506,Yes)、キャリブレーション用の補正値を、補正値X’から補正値Xに再度変更して(ステップS507)、上記ステップS501の判定に戻る。
コントローラ10は、判定の結果、自機の移動状態が第1の状態でなかった場合(ステップS506,No)、そのまま上記ステップS501の判定に戻る。
上記の実施形態において、スマートフォン1は、第1の状態であると判定され得る自機の移動状態の中から、エレベータの移動のみを抽出し、エスカレータ及び階段での移動を排除することを目的として、加速度センサ15の検出結果に基づいて、歩行検出を実行してもよい。例えば、スマートフォン1は、気圧変動から自機の移動状態が第1の状態であると判定しても、歩行が検出された場合には、第1の状態には該当しないものとして取り扱い、補正値の変更を実行してもよい。
本実施形態では、自機に対して意図しない加速度が作用する状態を、気圧センサ18の検出結果に基づいて判別するものを一例として説明したがこの限りではない。すなわち、スマートフォン1は、測位衛星の電波を受信する受信機の検出結果に基づいて、自機に対して意図しない加速度が作用する状態を判別してもよい。例えば、スマートフォン1は、測位衛星の電波を受信する受信機の検出結果に基づいて、自機が等加速度運動していると判定すれば、自機に対して意図しない加速度が作用する状態と判定してよい。なお、自機の移動速度は、受信した測位衛星の電波のドップラー効果から速度を算出てもよいし、測位衛星の電波から求めた移動の距離及び移動にかかった時間から算出してもよい。測位衛星の電波を受信する受信機は、例えば、GPS受信機19、GLONASS(Global Navigation Satellite System)受信機、IRNSS(Indian Regional Navigational Satellite System)受信機、COMPASS、Galileo受信機、又は準天頂衛星システム(QZSS:Quasi−Zenith Satellite System)受信機、等であってよい。
また、スマートフォン1は、ユーザが乗りこむ車両又は昇降機等の移動体と通信ユニット6を介して近距離通信し、移動体の移動速度又は移動体の加速度等を含む情報を取得してもよい。スマートフォン1は、取得した移動体の移動速度又は移動体の加速度等を含む情報に基づいて、自機が等加速度運動していると判定すれば、自機に対して意図しない加速度が作用する状態と判定してよい。車両は、自動車、鉄道車両、リニアモーターカ、ローラーコースター、等を含む。昇降機は、人又は荷物を内部に収容し、垂直、斜め及び水平のうち少なくとも一方に移動させるエレベータを含む。
本明細書では、添付の請求項に係る技術を完全かつ明瞭に開示するために特徴的な実施形態に関し記載してきた。しかし、添付の請求項は、上記の実施形態に限定されるべきものでなく、本明細書に示した基礎的事項の範囲内で当該技術分野の当業者が創作しうるすべての変形例及び代替可能な構成により具現化されるべきである。
1 スマートフォン
2 タッチスクリーンディスプレイ
2A ディスプレイ
2B タッチスクリーン
3 ボタン
4 照度センサ
5 近接センサ
6 通信ユニット
7 レシーバ
8 マイク
9 ストレージ
9A 制御プログラム
9B 補正制御プログラム
9C 加速度データ
9D 気圧データ
9E 補正値データ
9F 自動補正実行条件
9Z 設定データ
10 コントローラ
11 スピーカ
12 カメラ
13 カメラ
14 コネクタ
15 加速度センサ
16 方位センサ
17 角速度センサ
18 気圧センサ
19 GPS受信機

Claims (10)

  1. 自機の移動状態を推定するためのセンサと、
    加速度センサと、
    前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機が等加速度運動している状態であるかを判別するコントローラと
    を備え、
    前記コントローラは、自機が等加速度運動している状態であると判別したとき、前記加速度センサの検出誤差の補正に用いる補正値を変更しない電子機器。
  2. 前記自機の移動状態を推定するためのセンサは、気圧センサを含むことを特徴とする、請求項1に記載の電子機器。
  3. 前記自機の移動状態を推定するためのセンサは、測位衛星の電波を受信する受信機を含むことを特徴とする、請求項1に記載の電子機器。
  4. 自機の移動状態を推定するためのセンサと加速度センサとを備える電子機器に実行させる補正制御方法であって、
    前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機が等加速度運動している状態であるかを判別するステップと、
    前記等加速度運動している状態であると判別したとき、前記加速度センサの検出誤差の補正に用いる補正値を変更しないステップと
    を含む補正制御方法。
  5. 自機の移動状態を推定するためのセンサと加速度センサとを備える電子機器に、
    前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機が等加速度運動している状態であるかを判別するステップと、
    前記等加速度運動している状態であると判別したとき、前記加速度センサの検出誤差の補正に用いる補正値を変更しないステップと
    を実行させる補正制御プログラム。
  6. 自機の移動状態を推定するためのセンサと、
    加速度センサと、
    前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機が等加速度運動している状態であるかを判別するコントローラと
    を備え、
    前記コントローラは、前記加速度センサの検出誤差の補正に用いる補正値を変更したときの自機の移動状態が前記等加速度運動している状態であったと判別すると、前記補正値を変更する電子機器。
  7. 前記自機の移動状態を推定するためのセンサは、気圧センサを含むことを特徴とする、請求項6に記載の電子機器。
  8. 前記自機の移動状態を推定するためのセンサは、測位衛星の電波を受信する受信機を含むことを特徴とする、請求項6に記載の電子機器。
  9. 自機の移動状態を推定するためのセンサと加速度センサとを備える電子機器に実行させる補正制御方法であって、
    前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機が等加速度運動している状態であるかを判別するステップと、
    前記加速度センサの検出誤差の補正に用いる補正値を変更したときの自機の移動状態が前記等加速度運動している状態であると判別すると、前記補正値を変更するステップと
    を含む補正制御方法。
  10. 自機の移動状態を推定するためのセンサと加速度センサとを備える電子機器に、
    前記自機の移動状態を推定するためのセンサの検出結果に基づいて、自機が等加速度運動している状態であるかを判別するステップと、
    前記加速度センサの検出誤差の補正に用いる補正値を変更したときの自機の移動状態が前記等加速度運動している状態であると判別すると、前記補正値を変更するステップと
    を実行させる補正制御プログラム。
JP2016241307A 2016-12-13 2016-12-13 電子機器、補正制御方法、及び補正制御プログラム Active JP6297663B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016241307A JP6297663B1 (ja) 2016-12-13 2016-12-13 電子機器、補正制御方法、及び補正制御プログラム
US15/838,403 US10605825B2 (en) 2016-12-13 2017-12-12 Electronic device, correction control method and non-transitory storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016241307A JP6297663B1 (ja) 2016-12-13 2016-12-13 電子機器、補正制御方法、及び補正制御プログラム

Publications (2)

Publication Number Publication Date
JP6297663B1 true JP6297663B1 (ja) 2018-03-20
JP2018096829A JP2018096829A (ja) 2018-06-21

Family

ID=61629110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016241307A Active JP6297663B1 (ja) 2016-12-13 2016-12-13 電子機器、補正制御方法、及び補正制御プログラム

Country Status (2)

Country Link
US (1) US10605825B2 (ja)
JP (1) JP6297663B1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132843A (ja) * 1996-10-25 1998-05-22 Murata Mfg Co Ltd 速度演算装置
JPH10307032A (ja) * 1997-05-02 1998-11-17 Pioneer Electron Corp ナビゲーション装置
JP3733830B2 (ja) * 2000-03-31 2006-01-11 株式会社デンソー 加速度センサのゲイン誤差補正装置、車両用現在位置検出装置、ナビゲーション装置
JP3857286B2 (ja) * 2004-11-25 2006-12-13 パイオニア株式会社 ナビゲーション装置
JP2007093433A (ja) * 2005-09-29 2007-04-12 Hitachi Ltd 歩行者の動態検知装置
JP4581610B2 (ja) * 2004-10-07 2010-11-17 パナソニック株式会社 携帯型機器
JP4816302B2 (ja) * 2005-09-06 2011-11-16 ソニー株式会社 加速度センサのオフセット検出装置、加速度センサのオフセット検出方法及び加速度センサのオフセット検出プログラム並びにナビゲーション装置
JP4941199B2 (ja) * 2007-09-25 2012-05-30 ヤマハ株式会社 ナビゲーション装置
JP5096453B2 (ja) * 2006-03-20 2012-12-12 クゥアルコム・インコーポレイテッド 移動体装置の高度を判断する方法及び装置
JP2014038003A (ja) * 2012-08-13 2014-02-27 Jvc Kenwood Corp 加速度センサのオフセット値導出装置、加速度センサのオフセット値導出方法、およびプログラム
US20140343885A1 (en) * 2011-11-11 2014-11-20 Sony Mobile Communications Ab System and Method for the Assisted Calibration of Sensors Distributed Across Different Devices
JP2016125988A (ja) * 2015-01-08 2016-07-11 富士通株式会社 携帯端末装置及びキャリブレーション方法
JP6124841B2 (ja) * 2014-05-27 2017-05-10 京セラ株式会社 携帯機器、ならびに、携帯機器の制御方法および制御プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576705B1 (de) * 1992-06-30 1996-03-27 Siemens Aktiengesellschaft Verfahren zur Erkennung von Verbrennungsaussetzern
WO1997047977A1 (en) * 1996-06-11 1997-12-18 Alliedsignal Inc. Compensation of second-order non-linearity in sensors employing double-ended tuning forks
US20040261547A1 (en) * 2002-10-01 2004-12-30 Russell David Alexander Method of deriving data
JP5736948B2 (ja) * 2011-05-13 2015-06-17 日産自動車株式会社 タイヤ空気圧モニタシステム
DE102014202026A1 (de) * 2014-02-05 2015-08-06 Robert Bosch Gmbh Verfahren und Vorrichtung zum Kalibrieren eines Beschleunigungssensors in einem Kraftfahrzeug
JP6412075B2 (ja) * 2016-09-08 2018-10-24 ファナック株式会社 サーボモータ制御装置、サーボモータ制御方法、及びサーボモータ制御用プログラム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132843A (ja) * 1996-10-25 1998-05-22 Murata Mfg Co Ltd 速度演算装置
JPH10307032A (ja) * 1997-05-02 1998-11-17 Pioneer Electron Corp ナビゲーション装置
JP3733830B2 (ja) * 2000-03-31 2006-01-11 株式会社デンソー 加速度センサのゲイン誤差補正装置、車両用現在位置検出装置、ナビゲーション装置
JP4581610B2 (ja) * 2004-10-07 2010-11-17 パナソニック株式会社 携帯型機器
JP3857286B2 (ja) * 2004-11-25 2006-12-13 パイオニア株式会社 ナビゲーション装置
JP4816302B2 (ja) * 2005-09-06 2011-11-16 ソニー株式会社 加速度センサのオフセット検出装置、加速度センサのオフセット検出方法及び加速度センサのオフセット検出プログラム並びにナビゲーション装置
JP2007093433A (ja) * 2005-09-29 2007-04-12 Hitachi Ltd 歩行者の動態検知装置
JP5096453B2 (ja) * 2006-03-20 2012-12-12 クゥアルコム・インコーポレイテッド 移動体装置の高度を判断する方法及び装置
JP4941199B2 (ja) * 2007-09-25 2012-05-30 ヤマハ株式会社 ナビゲーション装置
US20140343885A1 (en) * 2011-11-11 2014-11-20 Sony Mobile Communications Ab System and Method for the Assisted Calibration of Sensors Distributed Across Different Devices
JP2014038003A (ja) * 2012-08-13 2014-02-27 Jvc Kenwood Corp 加速度センサのオフセット値導出装置、加速度センサのオフセット値導出方法、およびプログラム
JP6124841B2 (ja) * 2014-05-27 2017-05-10 京セラ株式会社 携帯機器、ならびに、携帯機器の制御方法および制御プログラム
JP2016125988A (ja) * 2015-01-08 2016-07-11 富士通株式会社 携帯端末装置及びキャリブレーション方法

Also Published As

Publication number Publication date
US10605825B2 (en) 2020-03-31
JP2018096829A (ja) 2018-06-21
US20180164340A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
US10184854B2 (en) Mobile device and control method for position correlation utilizing time-based atmospheric pressure measurements
US10614706B2 (en) Electronic apparatus, control method, and non-transitory computer-readable recording medium
JP6215277B2 (ja) 携帯機器、制御方法及び制御プログラム
US10536810B2 (en) Electronic apparatus, control method, and non-transitory computer-readable recording medium
US10636303B2 (en) Electronic device, method of communication, and non-transitory computer readable storage medium
JP6297663B1 (ja) 電子機器、補正制御方法、及び補正制御プログラム
JP6779707B2 (ja) 電子機器、制御方法、及び制御プログラム
JP6391768B2 (ja) 携帯機器、制御方法及び制御プログラム
JP2017212006A (ja) ウェアラブル端末及び制御プログラム
JP6462056B2 (ja) 電子機器、路側機、制御方法、及び制御プログラム
JP6483202B2 (ja) 電子機器、制御方法、制御プログラム及び路側機
JP6823092B2 (ja) 携帯電子機器、制御方法及び制御プログラム
JP7201054B2 (ja) 情報処理装置、情報処理方法及びプログラム
JP6636606B2 (ja) 電子機器、制御方法、及び制御プログラム
CN112050088B (zh) 管道检测方法、装置及计算机存储介质
JP6661452B2 (ja) 携帯機器、制御方法及び制御プログラム
JP2018056769A (ja) 電子機器、制御方法、及び制御プログラム

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180221

R150 Certificate of patent or registration of utility model

Ref document number: 6297663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150