JP6282508B2 - 凸凹表面のエッジに向けて強化されたエッジ検出ツール - Google Patents

凸凹表面のエッジに向けて強化されたエッジ検出ツール Download PDF

Info

Publication number
JP6282508B2
JP6282508B2 JP2014067664A JP2014067664A JP6282508B2 JP 6282508 B2 JP6282508 B2 JP 6282508B2 JP 2014067664 A JP2014067664 A JP 2014067664A JP 2014067664 A JP2014067664 A JP 2014067664A JP 6282508 B2 JP6282508 B2 JP 6282508B2
Authority
JP
Japan
Prior art keywords
edge
edge element
directional filtering
video tool
alignment correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014067664A
Other languages
English (en)
Other versions
JP2014194776A (ja
Inventor
カーミル ブリル ロバート
カーミル ブリル ロバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Publication of JP2014194776A publication Critical patent/JP2014194776A/ja
Application granted granted Critical
Publication of JP6282508B2 publication Critical patent/JP6282508B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

背景
精密なマシンビジョン検査システム(又は略して「ビジョンシステム」)は、被検査物体の精密な寸法測定を取得し、様々な他の物体特徴を検査するために利用することができる。そのようなシステムは、コンピュータと、カメラ及び光学系と、複数の方向に移動可能であり、ワークピース検査を可能にする精密ステージとを含み得る。汎用「オフライン」精密ビジョンシステムとして特徴付けることができる1つの例示的な従来技術によるシステムは、イリノイ州Auroraに所在のMitutoyo America Corporation (MAC)から入手可能な市販のQUICK VISION(登録商標)シリーズのPCに基づくビジョンシステム及びQVPAK(登録商標)ソフトウェアである。QUICK VISION(登録商標)シリーズのビジョンシステム及びQVPAK(登録商標)ソフトウェアの機能及び動作は一般に、例えば、2003年1月に公開されたQVPAK 3D CNC Vision Measuring Machine User's Guide及び1996年9月に公開されたQVPAK 3D CNC Vision Measuring Machine Operation Guideに説明されている。この種のシステムは、顕微鏡型光学系を使用可能であり、様々な倍率で小さいワークピース又は比較的大きなワークピースの検査画像を提供するようにステージを移動させることが可能である。
QUICK VISION(登録商標)システム等の汎用精密マシンビジョン検査システムは一般に、自動ビデオ検査を提供するようにプログラム可能でもある。米国特許第6,542,180号(’180号特許)は、そのような自動ビデオ検査の様々な態様を教示している。’180号特許において教示されるように、自動ビデオ検査計測機器は一般に、プログラミング機能を有し、プログラミング機能により、自動検査イベントシーケンスをユーザが特定の各ワークピース構成に関して定義することができる。これは、例えば、テキストベースのプログラミングにより、又はグラフィカルユーザインタフェースを用いて、ユーザが実行する検査動作シーケンスに対応するマシン制御命令シーケンスを記憶することにより検査イベントシーケンスを徐々に「学習」する記録モードを通して、又は両方法の組み合わせを通して実施することができる。そのような記録モードは多くの場合、「学習モード」、「トレーニングモード」、又は「記録モード」と呼ばれる。検査イベントシーケンスが「学習モード」で定義されると、そのようなシーケンスを使用して、「実行モード」中にワークピースの画像を自動的に取得する(且つさらに解析又は検査する)ことができる。
特定の検査イベントシーケンス(すなわち、各画像を取得する方法及び各取得画像を解析/検査する方法)を含むマシン制御命令は一般に、特定のワークピース構成に固有の「パートプログラム」又は「ワークピースプログラム」として記憶される。例えば、パートプログラムは、ワークピースに対してカメラを位置決めする方法、照明レベル、倍率レベル等の各画像を取得する方法を定義する。さらに、パートプログラムは、例えば、エッジ/境界検出ビデオツール等の1つ又は複数のビデオツールを使用することにより、取得画像を解析/検査する方法を定義する。
ビデオツール(又は略して「ツール」)は、動作及びプログラミングを非熟練操作者が実行できるように、GUI機能及び事前定義される画像解析動作を含む。ユーザはビデオツールを操作して、手動検査及び/又はマシン制御動作を達成し得る(「手動モード」で)。セットアップパラメータ及び動作は、学習モード中に記録して、自動検査プログラムを作成することもできる。例示的なビデオツールとしては、エッジ位置測定ツールが挙げられ、エッジ位置測定ツールは、ワークピースのエッジ要素を見つけるために使用され、関心領域内のエッジを分離し、次に、エッジ位置を自動的に特定するために使用される「ボックスツール」と呼ばれるツール構成を含み得る。例えば、本願と同じ譲受人に譲渡された米国特許第7,627,162号は、ボックスツールの様々な適用を教示している。
既知のエッジ位置測定ツールは、画像強度を使用して、エッジ位置を特定する。強度勾配が、エッジを横切る走査線(ピクセル輝度又は強度値)に沿って解析される。最大勾配位置が往々にして、エッジ位置として使用される。しかし、強度勾配方法を使用する場合、鋸又はレーザによる切断により生成される凸凹した、若しくはかなり粗い表面又は不規則なエッジ等の「ノイズの多い」エッジを確実に見つけることは困難なままである。結果として生成される走査線は往々にして、ノイズが多すぎて、確実なエッジ位置特定測定をサポートすることができない。
別の既知のタイプのビデオツールは、「マルチポイントツール」又は「マルチポイントオートフォーカスツール」ビデオツールと呼ばれることがある。そのようなツールは、PFF(point from focus:画像による合焦点からの点検出)による3Dデータ合成と呼ばれることがあるコントラストベースの「オートフォーカス」方法により特定されるような、ツールの関心領域内の定義されたX−Y座標での複数の小領域の「最良合焦」位置から導出されるZ高さ測定又は座標(カメラ系の光軸及び合焦軸に沿った)を提供する。そのようなX、Y、Z座標セットはポイントクラウドデータ又は略してポイントクラウドと呼び得る。一般に、従来技術によるオートフォーカス方法及び/又はツールによれば、カメラは、z軸(合焦軸)に沿ったある範囲の位置を移動し、各位置で画像を捕捉する(画像スタックと呼ばれる)。捕捉画像毎に、画像に基づいて各小領域の合焦尺度が計算され、画像捕捉時のZ軸に沿ってカメラの対応する位置に関連付けられる。これにより、各小領域の合焦曲線データが生成され、合焦曲線データは単に「合焦曲線」又は「オートフォーカス曲線」と呼び得る。z軸に沿った最良合焦位置に対応する合焦曲線のピークは、曲線を合焦曲線データに当てはめ、当てはめられた曲線のピークを推定することにより見つけ得る。そのようなオートフォーカス方法の変形も当分野において周知である。例えば、上述したものと同様のオートフォーカスの1つの既知の方法が、Jan-Mark Geusebroek及びArnold Smeuldersによる「Robust Autofocusing in Microscopy」ISIS Technical Report Series, Vol. 17, November 2000において考察されている。別の既知のオートフォーカス方法及び装置が、米国特許第5,790,710号に記載されている。
ポイントクラウドデータを事後処理し、ポイントクラウド内のエッジ要素を識別するいくつかの方法が既知である。しかし、そのような方法は、理解及び適用がはるかに複雑であり、一般に比較的未熟なユーザには適さないという点で、上述した既知の強度ベースのエッジ位置測定ツール(例えば、ボックスツール等)に類似しない。加えて、ワークピース及び/又はエッジの表面にわたる複数の3Dデータポイントを特定し、結果として生成される3Dデータポイントを一緒に使用して、エッジの位置又はZプロファイルを特定しようとする場合、特定の問題が生じ得る。ミクロン又はサブミクロン範囲の精度が精密マシンビジョン検査システムでは望まれることが多い。これは特に、エッジの周囲のZ高さ測定に関して難問である。各画像ピクセル(ポイントクラウドX−Y位置に対応する)周囲の局所コントラストが通常、コントラスト曲線でのノイズを低減し、確実なZ深度再構築を可能にするために、その位置を中心とした正方形近傍(例えば、7×7ピクセル)に基づくか、又はその正方形近傍内で平均化されるという点で、エッジ周囲の合焦点(PFF)再構築において特定の問題が生じる。しかし、一般に、これは、ポイントクラウドデータ内のエッジプロファイルを歪ませるか、又は「平滑化」し、エッジを横切るプロファイルの精度及び分解能を低減する。その結果、特定のタイプのエッジ、例えば、鋸又はレーザによる切断により生成される凸凹表面のエッジ又は不規則なエッジ等の「ノイズの多い」エッジの正確なプロファイル及び/又は位置を特定することは困難なままである。非熟練ユーザが、信頼性及び/又は再現性を向上させてそのようなエッジのプロファイルを特定することができるビデオツール及び/又は自動動作が望まれる。
詳細な説明
マシンビジョン検査システムにおいて凸凹表面のエッジのエッジ検出を強化する方法が、本明細書に開示される。マシンビジョン検査システムは、関心領域定義部を含むエッジ要素ビデオツールを含み得、エッジ要素ビデオツールは、関心領域内の複数の異なる合焦位置の画像に基づいて、関心領域におけるエッジ要素のプロファイルデータを特定するように構成される。方法は、ワークピースをマシンビジョン検査システムの視野に配置すること、及びエッジ要素ビデオツールを動作させて、ワークピースの取得画像内のエッジ要素を含むビデオツール関心領域を定義することを含む。エッジ要素ビデオツールは動作して、関心領域内の少なくとも1つのワークピース画像の画像データを解析し、エッジ要素のプロファイルデータを特定する前に、複数の異なる合焦位置の画像を方向性フィルタリングするために使用される方向性フィルタリング方向に沿った各位置でのエッジ要素の各オフセット量を実質的に最小化する参照エッジのアライメント補正を提供する。参照エッジのアライメント補正が、方向性フィルタリング方向に相対するエッジ要素の各オフセット量を最小化又は略最小化しようとするために使用されることが理解されるだろう。しかし、いくつかの実施形態では、計算コスト、画像のワークピース特徴の「ノイズの多さ」、又は両方が、十分ではあるが完璧ではなくこの目標を達成する妥協を決定づけ得る。
様々な実施形態では、参照エッジのアライメント補正は、方向性フィルタリング方向に沿った各位置でのエッジ要素の各オフセット量が、a)実質的に除去されること、b)実質的に補償されること、及びc)方向性フィルタリング方向に沿った各位置での対応するエッジ要素の、以前に特定された各オフセット量に実質的に一致すること、のうちの少なくとも1つであるような、方向性フィルタリング方向の調整に使用可能である。方向性フィルタリング方向が、実質的に同じ結果を達成する様々な数学的形態をとり得ることが理解されるだろう。一形態では、方向性フィルタリング方向は実際に、エッジ要素に可能な限り(又は実際的に)平行するように調整され得る。別の形態では、方向性フィルタリング方向に沿った各位置でのエッジ要素の各オフセット量を使用して、実際には、エッジ要素に平行して位置合わせされたピクセルデータが方向性フィルタリング動作に使用されるように画像データを回転させ、且つ/又は再サンプリングして、デフォルト若しくは一般方向性フィルタリング方向に対応するピクセル位置のデフォルト若しくは一般セットの相対アドレス若しくは位置を調整又は補償し得る。第1の場合はオフセット量の除去、第2の場合はオフセット量の補償として特徴付け得るこれらの動作は、略同様の結果を有する。両方とも、エッジ要素トポグラフィの公称「等高輪郭線」に沿って向くように、エッジ要素に概ね平行して位置合わせされたピクセルデータを使用する方向性フィルタリング動作に繋がり得る。さらに詳細に後述するように、この条件が満たされる場合、エッジの近傍のZ高さ特定を提供する方向性フィルタリング又は平均化された合焦尺度は、実際の高さの小さなずれに対応するはずの画像データに基づくことになり、より再現性が高く、正確で代表的なZ高さ特定が行われる。このため、略同様の結果を提供する任意の形態の参照エッジのアライメント補正は、本明細書では、「方向性フィルタリング方向の調整」と呼び得る。
様々な実施形態では、エッジ要素ビデオツールは動作して、複数の異なる合焦位置の画像を取得する。参照エッジのアライメント補正が適用されて、方向性フィルタリング方向が調整される。複数の異なる合焦位置の画像は、参照エッジのアライメント補正を適用した後に方向性フィルタリングされる。エッジ要素のプロファイルデータが、方向性フィルタリングされた複数の異なる合焦位置の画像に基づいて特定される。
いくつかの実施形態では、複数の異なる合焦位置の画像を方向性フィルタリングすることは、複数の画像のそれぞれのPFFの基本となるピクセル位置に対応するポイントに関連して定義される方向性フィルタリング小領域(DFS)を使用することを含み得、各DFSは、方向性フィルタリング方向に概ね直交する第2の方向に沿った短寸法よりも大きな、方向性フィルタリング方向に沿った長寸法を有する。参照エッジのアライメント補正を使用して、方向性フィルタリング方向に沿ったエッジ要素のオフセット量が、方向性フィルタリングを実行する前に、a)実質的に除去されること、及びb)実質的に補償されることの少なくとも1つであるように、方向性フィルタリング方向を調整し得る。特定の実施態様では、短寸法は多くとも5ピクセルであり、長寸法は少なくとも、短寸法の3倍である。特定の実施態様では、DFSのPFFの基本となるピクセル位置に関連付けられたプロファイルZ高さの特定に使用されるPFF
による測定が専ら、そのDFSに含まれるピクセルに基づいて特定される。
方向性フィルタリング方向に沿って長寸法を有するDFSの利用により、正方形フィルタリング小領域のみが利用される従来の方法に勝る利点を提供することが理解されるだろう。より具体的には、従来の合焦点(PFF)再構築では、各画像ピクセル周囲の局所コントラストは、コントラスト曲線でのノイズを低減し、ピクセル位置での確実なZ深度再構築を可能にするために、正方形フィルタリング小領域(例えば、7×7ピクセル)内で平均化される。したがって、再構築された3D深度マップのX−Y分解能は、X及びY方向の両方で同程度、正方形フィルタリング小領域だけ低減する。これとは対照的に、方向性フィルタリング方向に沿って長寸法を有し、長寸法を横切る狭寸法を有するDFSを利用することにより、X−Y分解能は、方向性フィルタリング方向を横切る狭方向に沿って選択的に増大し得る。
説明のための具体例として、正方形フィルタリング小領域(例えば、7×7ピクセル)を利用するのではなく、方向性フィルタリング方向に沿って長寸法を有するDFS(例えば、49ピクセル幅、1ピクセル高さ)を利用し得、これはピクセル当たり同数のコントラスト値(例えば、49)を生成するが、そのDFS方向に沿った49ピクセルの使用に基づいてY(垂直)分解能は1ピクセルに増大し、X分解能は低減する。一実施態様では、従来通り実施されるPFFアルゴリズムのように、平均化DFSをピクセル毎に計算することができる(例えば、ピクセル毎に1つずつ、複数の重複する非正方形平均化DFSであり、DFSの中心としてポイントクラウドX−Y位置が定義される)。代替の実施態様では、プロファイル再構築領域(すなわち、PFFツール再構築関心領域)は、プロファイル再構築領域のライン又は列毎に1つずつの非正方形平均化小領域に分割することができる。
上述した方向性フィルタリング小領域技術の利用により、DFSの狭方向に沿った方向において、エッジ要素等を横切る比較的精密な高分解能プロファイル(「断面」)を生成し得る。しかし、特定の要件を満たさなければならない。要件は、エッジ要素トポグラフィの公称「等高輪郭線」に沿って向くように、より長い方向性フィルタリング方向をエッジ要素に概ね平行して位置合わせすべきことである。この条件が満たされる場合、そのDFSのZ高さ特定を提供する方向性フィルタリング又は平均化された合焦尺度は、実際の高さの小さなずれに対応するはずの画像データに基づくことになり、そのDFSの中心でのより再現性が高く、正確で代表的なZ高さが生成される。これとは対照的に、この条件が満たされない場合、そのDFSのZ高さ特定を提供する方向性フィルタリング又は平均化された合焦尺度は、エッジを横切って傾斜した画像データに基づくことになり、したがって、実際の高さの大きなずれに広がり、そのDFSの中心でのより再現性が低く、低精度でおそらくは非代表的なZ高さが生成される。
より長い方向性フィルタリング方向がエッジ要素に概ね平行して位置合わせされる場合、上述したエッジPFF技術が特に、特定のタイプのエッジ、例えば、鋸又はレーザによる切断により生成される凸凹表面のエッジ又は不規則なエッジ等の「ノイズの多い」エッジの正確なプロファイル及び/又は公称位置を特定するなどの特定の用途で有益であることが理解されるだろう。特定の用途では、より長い方向性フィルタリング方向がエッジ要素に概ね平行して位置合わせされることを保証するために、より詳細に後述するように、参照エッジのアライメント補正を提供し得る。特定の実施形態では、参照エッジのアライメント補正は自動的又は半自動的に提供し得、それにより、比較的未熟なユーザが、プロセスの極めて重要な側面を理解していなくても、ノイズの多いエッジの確実な測定を得ることができる。いくつかの実施形態では、参照エッジのアライメント補正は、PFF方法を実施して、エッジ位置及び/又はエッジプロファイルを特定するエッジ要素ビデオツール又はビデオツールモードの動作及び/又はユーザインタフェースに含め得る。
いくつかの実施形態では、エッジ要素ビデオツールは、少なくとも1つの、ワークピースの画像に重ねられた関心領域インジケータを含むユーザインタフェースを含み、方法は、ユーザインタフェースにおいてワークピースの画像に重ねられた要素を調整することにより、参照エッジのアライメント補正が提供されたことの表示を提供することをさらに含む。特定の実施態様では、ユーザインタフェースにおいてワークピースの画像に重ねられた要素を調整することは、ワークピースの画像に重ねられた要素の属性を変更すること、及び画像に重ねられる参照エッジのアライメント補正インジケータを追加することのうちの一方を含む。
いくつかの実施形態では、ユーザインタフェースにおいてワークピースの画像に重ねられた要素を調整することは、参照エッジのアライメント補正が提供されたことを示すために、関心領域インジケータ、エッジ方向インジケータ、及び方向性フィルタリング方向インジケータのうちの少なくとも1つを調整することを含む。様々な特定の実施態様では、エッジ方向インジケータ又は方向性フィルタリング方向インジケータが、ユーザインタフェースの公称エッジ形状線であり得ることが理解されるだろう。
いくつかの実施形態では、エッジ要素ビデオツールは、直線エッジ要素に対応して構成され、関心領域インジケータを調整することは、軸の1つがエッジ要素に直交するように、関心領域インジケータを位置決めすることを含み、エッジ方向インジケータを調整することは、エッジ要素に平行するようにエッジ方向インジケータを位置決めすることを含み、方向性フィルタリング方向インジケータを調整することは、エッジ要素に平行又は直交するように、方向性フィルタリング方向インジケータを位置決めすることを含む。特定の他の実施形態では、エッジ要素ビデオツールは、円形エッジ要素及び円弧エッジ要素のうちの一方に対応して構成され、関心領域インジケータを調整することは、境界がエッジ要素と概ね同心になるように、関心領域インジケータを位置決めすることを含み、エッジ方向インジケータを調整することは、エッジ要素と概ね同心になるように、エッジ方向インジケータを位置決めすることを含み、方向性フィルタリング方向インジケータを調整することは、エッジ要素と概ね同心になるように、方向性フィルタリング方向インジケータを位置決めすることを含む。
様々な実施形態では、方法の実施態様は、a)参照エッジのアライメント補正動作を含むタイプであるようなエッジ要素ビデオツールを選択すること、b)エッジ要素ビデオツールの、参照エッジのアライメント補正動作を含む参照エッジのアライメント補正モード又はオプションを選択すること、c)エッジ要素ビデオツールの、参照エッジのアライメント補正動作を含む方向性フィルタリングモード又はオプションを選択すること、及びd)エッジ要素ビデオツールと併せて動作する参照エッジのアライメント補正動作を提供する参照エッジのアライメント補正ツールを選択することのうちの1つを含み得る。関心領域の少なくとも1つのワークピース画面の画像データを解析して、参照エッジのアライメント補正を提供することは、エッジ要素ビデオツールの動作と併せて参照エッジのアライメント補正動作を実行することを含み得る。
いくつかの場合、方法は、マシンビジョンシステムの学習モード中に実行され、対応する動作はパートプログラムに記録される。他の場合、方法の少なくともいくつかのステップが、パートプログラムに記録された対応する動作を実行することにより、マシンビジョンシステムの実行モード中に実行される。
いくつかの実施形態では、参照エッジのアライメント補正を提供することは、複数の異なる合焦位置の画像の方向性フィルタリングに使用される方向性フィルタリング方向に沿った各位置でのエッジ要素の各オフセット量を特徴付けることを含む。特定の実施態様では、ルックアップテーブルを利用して、各位置に対応する各オフセット量を記憶し得る。
いくつかの実施態様では、方向性フィルタリング方向に沿った各位置でのエッジ要素の各オフセット量を特徴付けることは、エッジ要素ビデオツールを動作させて、関心領域内の複数の異なる合焦位置の画像を取得すること、関心領域の取得された複数の異なる合焦位置の画像に基づいて、エッジ要素の予備プロファイルデータを特定すること、予備プロファイルデータに基づいて、エッジ要素ビデオツールに関連付けられた線形状をエッジ要素に位置合わせすること、及び方向性フィルタリング方向に沿った各位置において位置合わせされた線形状の各オフセット量を特徴付けることを含む。いくつかのそのような実施形態では、エッジ要素ビデオツールに関連付けられた線形状は直線であり、方向性フィルタリング方向に沿った各位置において位置合わせされた線形状の各オフセット量を特徴付けることは、位置合わせされた直線と方向性フィルタリング方向との角度を特定することを含む。いくつかのそのような実施形態では、エッジ要素ビデオツールに関連付けられた線形状は、円の少なくとも一部を含み、方向性フィルタリング方向はフィルタリング方向円に平行する方向を辿り、方向性フィルタリング方向に沿った各位置において位置合わせされた線形状の各オフセット量を特徴付けることは、フィルタリング方向円に対する位置合わせされた円の少なくとも一部の各オフセット量を特定することを含む。
いくつかの実施形態では、方法は、マシンビジョンシステムの学習モード中、エッジ要素ビデオツールを動作させて、関心領域内の複数の異なる合焦位置の画像を取得すること、及び関心領域の取得された複数の異なる合焦位置の画像に基づいて、方向性フィルタリング方向に沿った各位置での学習モードエッジプロファイルを特定することを含む。さらに、参照エッジのアライメント補正を提供することは、学習モード中、方向性フィルタリング方向に沿った各位置での各学習モードエッジ要素の各オフセット量を含む複数の寄与学習モードエッジプロファイルに基づいて、学習モード複合エッジプロファイルを特定することを含み、方法に対応する動作は、学習モード複合エッジプロファイルの記憶された表現を含むパートプログラムに記憶される。いくつかの実施態様では、方法は、マシンビジョンシステムの実行モード中、パートプログラムを実行することをさらに含み、実行モードは、複数の実行モード寄与エッジプロファイルに基づいて実行モード複合エッジプロファイルを特定することに基づいて、実行モード中に参照エッジのアライメント補正を提供することを含む。プロファイルは、実行モード中、方向性フィルタリング方向に沿った各位置での各学習モードエッジ要素に対応する実行モードエッジ要素の各オフセット量を含み、実行モード方向性フィルタリング方向は、実行モード複合エッジプロファイルと学習モード複合エッジプロファイルとの一致を概ね最大化することに基づいて調整される。いくつかのそのような実施形態では、学習モード方向性フィルタリング方向は、学習モード複合エッジプロファイルの各エッジ要素に対応するプロファイル勾配が概ね最大化されるように、学習モード中に調整される。
汎用精密マシンビジョン検査システムの様々な典型的な構成要素を示す図である。 図1と同様であり、方向性フィルタリング及び位置合わせ補償を用いるPFF方法を含むエッジ要素ツールを含むマシンビジョン検査システムの制御システム部及びビジョン構成要素部のブロック図である。 正方形フィルタリング小領域及び方向性フィルタリング小領域(DFS)を示す図である。 垂直特徴を横切るPFFプロファイリングに利用される方向性フィルタリング小領域を示す図である。 水平特徴を横切るPFFプロファイリングに利用される方向性フィルタリング小領域を示す図である。 各ピクセルに正方形フィルタリング小領域を用いるPFFアルゴリズムを使用して再構築された深度マップを示す図である。 各ピクセルに方向性フィルタリング小領域を用いるPFFアルゴリズムを使用して再構築された深度マップを示す図である。 ユーザインタフェースの視野内の直線エッジ要素を示し、位置合わせされた、概略的に表されるDFSに沿ったエッジ要素のオフセット量並びに対応する実際のZ高さプロファイルの関連するファクタを比較する。 ユーザインタフェースの視野内の直線エッジ要素を示し、位置がずれた、概略的に表されるDFSに沿ったエッジ要素のオフセット量並びに対応する実際のZ高さプロファイルの関連するファクタを比較する。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFFボックスツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の直線エッジ要素のPFFプロファイルデータを特定するために位置決めされたPFFボックスツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFFボックスツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の直線エッジ要素のPFFプロファイルデータを特定するために位置決めされたPFFボックスツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFFボックスツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の直線エッジ要素のPFFプロファイルデータを特定するために位置決めされたPFFボックスツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFF円弧ツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の円形エッジ要素部分のPFFプロファイルデータを特定するために位置決めされたPFF円弧ツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFF円弧ツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の円形エッジ要素部分のPFFプロファイルデータを特定するために位置決めされたPFF円弧ツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFF円弧ツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の円形エッジ要素部分のPFFプロファイルデータを特定するために位置決めされたPFF円弧ツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFFボックスツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の直線エッジ要素のPFFプロファイルデータを特定するために位置決めされたPFFボックスツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFFボックスツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の直線エッジ要素のPFFプロファイルデータを特定するために位置決めされたPFFボックスツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFFボックスツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の直線エッジ要素のPFFプロファイルデータを特定するために位置決めされたPFFボックスツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFF円弧ツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の円形エッジ要素部分のPFFプロファイルデータを特定するために位置決めされたPFF円弧ツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFF円弧ツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の円形エッジ要素部分のPFFプロファイルデータを特定するために位置決めされたPFF円弧ツールを示す。 本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正を提供することに関連するPFF円弧ツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の円形エッジ要素部分のPFFプロファイルデータを特定するために位置決めされたPFF円弧ツールを示す。 マシンビジョン検査システムにおいて凸凹表面のエッジのエッジ検出を強化する方法の流れ図である。 方向性フィルタリングに基づいてエッジ要素のPFFプロファイルデータを特定する方法の流れ図である。 PFFベースのピクセル位置に関連して定義された方向性フィルタリング小領域を利用して方向性フィルタリングを実行する方法の流れ図である。
本発明の様々な実施形態を後述する。以下の説明は、これらの実施形態の完全な理解及びこれらの実施形態を可能にする説明のために特定の詳細を提供する。しかし、これらの詳細の多くなしで本発明を実施し得ることを当業者は理解するだろう。さらに、様々な実施形態の関連する説明を不必要に曖昧にしないように、いくつかの周知の構造又は機能については詳細に図示又は説明しないことがある。以下に提示される本説明に使用される用語は、本発明の特定の具体的な実施形態の詳細な説明と併せて使用されている場合であっても、その最も広義の妥当な様式で解釈されることが意図される。
図1は、本明細書に記載の方法により使用可能な例示的な1つのマシンビジョン検査システム10のブロック図である。マシンビジョン検査システム10は画像測定機12を含み、画像測定機12は、制御コンピュータシステム14とデータ及び制御信号を交換するように動作可能に接続される。制御コンピュータシステム14は、モニタ又はディスプレイ16、プリンタ18、ジョイスティック22、キーボード24、及びマウス26とデータ及び制御信号を交換するようにさらに動作可能に接続される。モニタ又はディスプレイ16は、マシンビジョン検査システム10の動作の制御及び/又はプログラムに適したユーザインタフェースを表示し得る。
制御コンピュータシステム14が一般に、任意の計算システム又は装置からなり得ることを当業者は理解するだろう。適する計算システム又は装置は、パーソナルコンピュータ、サーバコンピュータ、ミニコンピュータ、メインフレームコンピュータ、任意の上記を含む分散計算環境等を含み得る。そのような計算システム又は装置は、本明細書に記載の機能を実行するソフトウェアを実行する1つ又は複数のプロセッサを含み得る。プロセッサは、プログラマブル汎用又は専用マイクロプロセッサ、プログラマブルコントローラ、特定用途向け集積回路(ASIC)、プログラマブル論理装置(PLD)等、又はそのような装置の組み合わせを含む。ソフトウェアは、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、フラッシュメモリ等、又はそのような構成要素の組み合わせ等のメモリに記憶し得る。ソフトウェアは、磁気若しくは光学ベースのディスク、フラッシュメモリ装置、又はデータを記憶する任意の他の種類の不揮発性記憶媒体等の1つ又は複数の記憶装置に記憶してもよい。ソフトウェアは、特定のタスクを実行し、又は特定の抽象データ型を実施するルーチン、プログラム、オブジェクト、構成要素、データ構造等を含む1つ又は複数のプログラムモジュールを含み得る。分散計算環境では、プログラムモジュールの機能は、結合してもよく、又は複数の計算システム若しくは装置にわたって分散し、サービス呼び出しを介してアクセスしてもよい。
画像測定機12は、可動式ワークピースステージ32と、光学撮像システム34とを含み、光学撮像システム34はズームレンズ又は交換式レンズを含み得る。ズームレンズ又は交換式レンズは一般に、光学撮像システム34により提供される画像に様々な倍率を提供する。マシンビジョン検査システム10は一般に、上述したQUICK VISION(登録商標)シリーズのビジョンシステム及びQVPAK(登録商標)ソフトウェア並びに類似の現在市販されている精密マシンビジョン検査システムと同等である。マシンビジョン検査システム10は、本願と同じ譲受人に譲渡された米国特許第7,454,053号、同第7,324,682号、同第8,111,905号、及び同第8,111,938号にも記載されている。
図2は、図1のマシンビジョン検査システム10と同様のマシンビジョン検査システム100の制御システム部120と、ビジョン構成要素部200とのブロック図である。より詳細に後述するように、制御システム部120は、ビジョン構成要素部200の制御に利用される。ビジョン構成要素部200は、光学アセンブリ部205と、光源220、230、及び240と、中央透明部212を有するワークピースステージ210とを含む。ワークピースステージ210は、ワークピース20を位置決めし得るステージ表面に略平行する平面内にあるX軸及びY軸に沿って制御可能に移動可能である。光学アセンブリ部205は、カメラ260と、ビームスプリッタ291と、交換式対物レンズ250とを含み、レンズ286及び288を有するターレットレンズアセンブリ280を含み得る。ターレットレンズアセンブリに対する代替として、固定レンズ、又は交換式の倍率変更レンズ、又はズームレンズ構成等を含み得る。交換式レンズは手動又は自動で交換し得る。
光学アセンブリ部205は、制御可能なモータ294を使用することにより、X軸及びY軸に略直交するZ軸に沿って制御可能に移動可能であり、制御可能なモータ294はアクチュエータを駆動して、光学アセンブリ部205をZ軸に沿って移動させ、ワークピース20の画像のフォーカスを変更する。制御可能なモータ294は、信号線296を介して入出インタフェース130に接続される。
マシンビジョン検査システム100を使用して撮像すべきワークピース20又は複数のワークピース20を保持するトレイ若しくは固定具は、ワークピースステージ210に配置される。ワークピースステージ210は、交換式対物レンズ250がワークピース20上の位置間及び/又は複数のワークピース20間で移動するように、光学アセンブリ部205に相対して移動するように制御し得る。透過光220、落射照明光230、及び斜め照明光240(例えば、リング光)のうちの1つ又は複数は、光源光222、232、及び/又は242のそれぞれを発して、1つ又は複数のワークピース20を照明する。光源230は、ミラー290を含む経路に沿って光232を発し得る。光源光はワークピース光255として反射又は透過し、撮像に使用されるワークピース光は、交換式対物レンズ250及びターレットレンズアセンブリ280を通過し、カメラ260に集められる。カメラ260からのワークピース20の画像は、信号線262上で制御システム部120に出力される。光源220、230、及び240は、信号線又はバス221、231、及び241のそれぞれを通して制御システム部120に接続し得る。画像の倍率を変更するには、制御システム部120は、信号線又はバス281を通して、軸284に沿ってターレットレンズアセンブリ280を回転させて、ターレットレンズを選択し得る。
図2に示されるように、様々な例示的な実施形態では、制御システム部120は、コントローラ125と、入出インタフェース130と、メモリ140と、ワークピースプログラム生成・実行器170と、電源部190とを含む。これらの各構成要素及び後述する追加の構成要素は、1つ若しくは複数のデータ/制御バス及び/又はアプリケーションプログラミングインタフェースにより、或いは様々な要素間の直接接続により相互接続し得る。
入出力インタフェース130は、撮像制御インタフェース131と、運動制御インタフェース132と、照明制御インタフェース133と、レンズ制御インタフェース134とを含む。運動制御インタフェース132は、位置制御要素132aと、速度/加速度制御要素132bとを含み得るが、そのような要素は統合且つ/又は区別不可能であってもよい。照明制御インタフェース133は照明制御要素133a〜133n及び133flを含み、照明制御要素133a〜133n及び133flは、例えば、マシンビジョン検査システム100の様々な対応する光源の選択、電力、オン/オフ切り替え、及び該当する場合にはストローブパルスタイミングを制御する。
メモリ140は、画像ファイルメモリ部141と、1つ又は複数のパートプログラム等を含み得るワークピースプログラムメモリ部142と、ビデオツール部143とを含む。示されるように、ビデオツール部143は代表的なビデオツール部143a及び143nを含み、代表的なビデオツール部143a及び143nは、対応する各ビデオツールのGUI、画像処理動作等を決定する。ビデオツール部143は、特に、さらに詳細に後述する方向性フィルタリング及び位置合わせ補償を有するエッジ要素ツール143eftも含み得、このツールは、例えば、QVPAK 3D CNC Vision Measuring Machine Operation Guideにおいて「ボックスツール」及び「円弧ツール」に関して説明される動作を決定するエッジプロファイルを含み得、本明細書に開示される方法を実施する信号処理を組み込み得る。方向性フィルタリング及び位置合わせ補償を有するエッジ要素ツール143eftは、より詳細に後述するように、所望の補償を自動的又は半自動的に決定する参照エッジのアライメント補正定義部143eracdを含み得る。ビデオツール部143は関心領域(ROI)生成器143roiも含み、関心領域生成器143roiは、ビデオツール部143に含まれる様々なビデオツールで動作可能な様々なROIを定義する自動、半自動、及び/又は手動の動作をサポートする。いくつかの実施形態では、方向性フィルタリング及び位置合わせ補償を有するエッジ要素ツール143eftは、関心領域(ROI)生成器143roiと併せて動作するか、又はROI生成器143roiの動作を補足して、さらに詳細に後述するように、関心領域の初期動作又は位置を調整し、ビデオツール関心領域をエッジ要素に位置合わせして、エッジ位置測定の再現性を向上させ得る。
本開示の文脈の中では、当業者には既知のように、ビデオツールという用語は一般に、ビデオツールに含まれる動作のステップ毎のシーケンスを作成せずに、又は一般化されたテキストベースのプログラミング言語等を用いずに、マシンビジョンユーザが比較的単純なユーザインタフェース(例えば、グラフィカルユーザインタフェース、編集可能パラメータウィンドウ、メニュー等)を通して実施することができる比較的複雑な自動又はプログラムされた動作のセットを指す。例えば、ビデオツールは、動作及び計算を支配する少数の変数又はパラメータを調整することにより、特定のインスタンスに適用されカスタマイズされる画像処理動作及び計算の事前にプログラムされた複雑なセットを含み得る。基本となる動作及び計算に加えて、ビデオツールは、ユーザがビデオツールの特定のインスタンスに向けてそれらのパラメータを調整できるようにするユーザインタフェースを含む。例えば、多くのマシンビジョンビデオツールでは、ユーザは、マウスを使用する単純な「ハンドルドラッグ」動作を通して、グラフィカル関心領域(ROI)インジケータを構成して、ビデオツールの特定のインスタンスの画像処理動作により解析すべき画像サブセットの位置パラメータを定義することができる。基本となる動作が暗黙的に含まれて、可視のユーザインタフェース特徴がビデオツールと呼ばれることもあることに留意されたい。
多くのビデオツール及び/又はビデオツール機能及び動作に共通して、本開示の方向性フィルタリング及び参照エッジのアライメント補正主題は、ユーザインタフェース機能及び基本となる画像処理動作等の両方を含み、関連する機能は、ビデオツール部143に含まれる方向性フィルタリング及び位置合わせ補償を有するか、又はそれらを含むエッジ要素ビデオツール143eftの特徴として特徴付け得る。方向性フィルタリング及び位置合わせ補償を有するエッジ要素ツール143eftは、エッジ要素のプロファイルを特定する方向性フィルタリング及び参照エッジのアライメント補正を自動的に提供し、関連するエッジプロファイル特定動作の再現性を向上させるために使用し得る動作を提供する。
さらに詳細に後述するように、エッジ要素ツール143eftの学習モード動作中、特定される様々なツールパラメータ及び/又はオフセット特徴付けを特定し、学習モード中、パートプログラムに記憶し得る。ビデオツール部143は、追加又は代替として、既知のエッジ検出又は位置特定方法に従って動作する従来のエッジ測定ビデオツールを含み得る。一実施形態では、参照エッジのアライメント補正定義部143eracdは、そのようなツールにリンクするか、又は他の様式で併せて動作し得る。例えば、一実施形態では、本明細書に開示される方向性フィルタリング及び参照エッジのアライメント補正動作は、既知のエッジツール(例えば、既知のボックスツール、円弧ツール、円ツール等)に相当するモードを含むマルチモードエッジプロファイルツールに、方向性フィルタリング・参照エッジのアライメント補正モードとして含まれ得る。いくつかの実施形態では、方向性フィルタリング及び位置合わせ補償を有するエッジ要素ツール143eft並びに既知又は従来のエッジツールは別個のツールであり得るが、いくつかの実施形態では、単一のエッジツールの2つのモードであり得る。単一のエッジツールの2つのモードであるいくつかの実施形態では、特定のモードは、さらに後述するように、手動及び/又は自動学習モード動作に基づいて(例えば、エッジの不規則性もしくはノイズの程度及び/又は公称形状が既知であるか否かに基づいて)エッジツールにより選び得る。
透過光220、落射照明光230及び230’、並びに斜め照明光240のそれぞれの信号線又はバス221、231、及び241はすべて、入出力インタフェース130に接続される。カメラ260からの信号線262及び制御可能なモータ294からの信号線296は、入出力インタフェース130に接続される。画像データの搬送に加えて、信号線262は、画像取得を開始する信号をコントローラ125から搬送し得る。
1つ又は複数のディスプレイ装置136(例えば、図1のディスプレイ16)及び1つ又は複数の入力装置138(例えば、図1のジョイスティック22、キーボード24、及びマウス26)も、入出力インタフェース130に接続することができる。ディスプレイ装置136及び入力装置138を使用して、ユーザインタフェースを表示することができ、ユーザインタフェースは、様々なユーザグラフィカルインタフェース(GUI)機能を含み得、GUI機能は、カメラ260により捕捉された画像を閲覧し、且つ/又はビジョンシステム構成要素部200を直接制御するために、検査動作の実行、並びに/或いはパートプログラムの作成及び/又は変更に使用可能である。
様々な例示的な実施形態では、ユーザは、マシンビジョン検査システム100を利用して、ワークピース20のパートプログラムを作成する場合、学習モードでマシンビジョン検査システム100を動作させて、所望の画像取得トレーニングシーケンスを提供することにより、パートプログラム命令を生成する。例えば、トレーニングシーケンスは、代表的なワークピースの特定のワークピース要素を視野(FOV)内に位置決めすること、光レベルを設定すること、フォーカス又はオートフォーカスすること、画像を取得すること、及び画像に適用される検査トレーニングシーケンスを提供すること(例えば、そのワークピース要素に対してビデオツールの1つのインスタンスを使用して)を含み得る。学習モードは、シーケンスを捕捉又は記録し、対応するパートプログラム命令に変換するように動作する。これらの命令は、パートプログラムが実行される場合、マシンビジョン検査システムにトレーニングされた画像取得・検査動作を再現させて、パートプログラム作成時に使用された代表的なワークピースに適合する1つ又は複数の実行モードワークピースのその特定のワークピース要素(すなわち、対応する位置の対応する要素)を自動的に検査する。
図3は、画像ピクセル(又はピクセル位置)310のアレイに重ねられた(例えば、画像内の関心領域の一部に対応する)正方形フィルタリング小領域305並びに代替の方向性フィルタリング小領域304Ydfs及び304Xdfsを示す図300である。より詳細に後述するように、エッジ要素のプロファイルデータ及び/又は位置を特定する(例えば、合焦点技術を利用して)エッジ要素ビデオツールを提供し得る。従来の合焦点(PFF)再構築では、各画像ピクセル周囲の局所コントラストが、正方形小領域(例えば、正方形小領域305)内で平均化される。正方形フィルタリング小領域(例えば、7×7ピクセル)を利用して、コントラスト曲線でのノイズを低減するとともに、ピクセル位置での確実なZ深度再構築を可能にする。したがって、再構築された3D深度マップのX−Y分解能は、X及びY方向の両方で同程度、正方形フィルタリング小領域だけ低減する。これとは対照的に、より詳細に後述するように、一方の寸法が他方の寸法よりも長い方向性フィルタリング小領域(DFS)を利用することにより、X−Y分解能は、狭い一方向に沿って選択的に増大又は維持し得る。具体例として、図3に示されるように、DFS304Ydfs(例えば、49ピクセル幅、1ピクセル高さ)は、Y方向に関する良好なプロファイリング分解能(すなわち、Y方向に沿って延びるZ高さプロファイル)に利用し得、DFS304Xdfs(例えば、49ピクセル幅、1ピクセル高さ)は、X方向に関する良好なプロファイリング分解能(すなわち、X方向に沿って延びるZ高さプロファイル)に利用し得る。
DFS304Ydfs(Y方向プロファイリング用)及びDFS304Xdfs(X方向プロファイリング用)が、正方形小領域305と同じ面積を有するが、一方の寸法が他方よりもはるかに狭く、したがって、狭い方向に沿ってより良好なプロファイリング分解能も提供しながら、合焦尺度の特定のために同量のピクセルデータを提供することが理解されるだろう。一実施態様では、DFS内の既知のタイプのPFF動作を利用して、各DFSのZ深度が計算され、ポイントクラウドX−Y座標に対応するX−Y位置を有するDFSの中心ピクセルCPの位置におけるZ座標として割り当てられる。
いくつかの実施形態では、次に、DFSの長寸法の方向に沿って互いに隣接する選択された数のポイントクラウドX−Yピクセル位置に対応するZ深度も平均化して、狭寸法の方向に沿ったZ深度プロファイル及び/又はエッジ位置の再現性をさらに向上させる。これらの線に沿って、一実施形態では、方向性フィルタリング動作は、親DFS(例えば、7個、9個、11個のピクセル等)の部分であり、親DFSよりも短い「子」DFSのZ高さを特定し、子DFSのZ高さを平均化して、親DFSの全体Z高さを特定することとして説明し得る。これらの線にさらに沿って、一実施形態では、方向性フィルタリング動作は、PFFスタックの各画像内の親DFS(例えば、7個、9個、11個のピクセル等)の部分であり、親DFSよりも短い「子」DFSの合焦尺度を特定し、子DFSの合焦尺度又は計算されたZ高さを平均化して、親DFSの全体合焦尺度又は平均Z深度を特定し、結果として生成される親DFSの平均合焦尺度(合焦曲線)又は平均Z高さに基づいてZ高さを特定することとして説明し得る。一般に、そのようなタイプの平均化が、DFSの長寸法方向に沿ってZ高さプロファイルをさらに平滑化し、これがその方向に沿ったプロファイル分解能の劣化として考えられ得ることが理解されるだろう。しかし、多くのエッジ測定用途では、これは重要ではない。
図4A及び図4Bは、プロファイリング並びに/或いは水平及び垂直エッジの位置特定に利用される方向性フィルタリング小領域の適用を明確にする図400A及び400Bである。
図4Aは、画像ピクセル(又はピクセル位置)410Aのアレイに重ねられた(例えば、画像内の関心領域の一部に対応する)DFSセット404Aを示す。DFSセット404A内の陰影は、基礎となるワークピースの撮像された表面構造を概略的に表し、Y方向に沿って可変の高さを有するとともに、X方向に沿って比較的一定の高さを有する「水平」表面特徴(例えば、水平エッジ)を示す表面を示す。DFSは、図3を参照して上述した理由により、長寸法が水平表面特徴に概ね平行するように決定される。したがって、セット404Aの各DFSは、図3を参照して上述したDFS304Ydfsと同様であると理解し得(例えば、比較的長いX寸法及び比較的狭いY寸法を有する)、表面特徴を横切ってY方向に沿って比較的高い分解能のZプロファイルを提供し得る。セット内の各DFSのX−Y座標は、中心ピクセル又はポイントCPに対応し得る。したがって、各DFSに特定された(例えば、既知のPFFコントラスト又は合焦曲線方法に基づいて)Z座標Zcpは、Y方向プロファイル線404Aplyに沿い得る。
図4Aは、ZプロファイルZply、すなわち、水平表面要素を横切るY方向に沿ったZプロファイルも示す。ZプロファイルZplyは、セット404A内の各DFSに特定された表面高さZcpを含み、対応するポイントクラウドZ座標として使用し得る。仮に表面要素を横切るY方向に沿ったZプロファイルが、Y方向プロファイル線404Aplyの位置の左側の1ピクセル(又はNピクセル)の位置特定が望まれる場合、セット404Aと同様のDFSセットを1ピクセル(又はNピクセル)だけ左にシフトさせ得、上述した手順をそのセットに対して実行し得ることが理解されるだろう。このようにして、所望であれば、ビデオツール関心領域内のあらゆるピクセル位置のZ高さを特定することができる。プロファイリングし、且つ/又は位置特定すべき水平要素がROIの全幅に延びる場合、所望であれば、DFSの長寸法がROIの全幅に延び得ることが理解されるだろう。あるいは、これらの状況下で、所望であれば、X方向に沿った隣接する所望のDFS群でZ座標を平均化することができ、その平均化されたZ座標を、平均化群の中心のZ座標として使用することができる。
図4Bは、関連する表面要素が水平ではなく垂直であることを除き、図4Aと同様である。図4Bは、画像ピクセル(又はピクセル位置)410B(例えば、画像内の関心領域の一部に対応する)のアレイに重ねられたDFSセット404Bを示す。DFSセット404B内の陰影は、基礎となるワークピースの撮像された表面構造を概略的に表し、X方向に沿って可変の高さを有するとともに、Y方向に沿って比較的一定の高さを有する「垂直」表面要素(例えば、垂直エッジ)を示す表面を示す。DFSは、長寸法が垂直表面要素に概ね平行するように決定される。したがって、セット404Bの各DFSは、図3を参照して上述したDFS304Xdfsと同様であると理解し得、表面要素を横切ってX方向に沿って比較的高い分解能のZプロファイルを提供し得る。セット内の各DFSのX−Y座標は、中心ピクセル又はポイントCPに対応し得る。したがって、各DFSに特定されたZ座標Zcpは、X方向プロファイル線404Bplxに沿い得る。
図4Bは、ZプロファイルZplx、すなわち、垂直表面要素を横切るX方向に沿ったZプロファイルも示す。ZプロファイルZplxは、セット404B内の各DFSに特定された表面高さZcpを含む。仮に表面要素を横切るX方向に沿ったZプロファイルが、X方向プロファイル線404Bplxの位置の上又は下のNピクセルの位置特定が望まれる場合、セット404Bと同様のDFSセットを適宜シフトさせ得、上述した手順をそのセットに対して実行し得ることが理解されるだろう。このようにして、所望であれば、ビデオツール関心領域内のあらゆるピクセル位置のZ高さを特定することができる。プロファイリングし、且つ/又は位置特定すべき垂直要素がROIの全幅に延びる場合、所望であれば、DFSの長寸法がROIの全高に延び得ることが理解されるだろう。あるいは、これらの状況下で、所望であれば、Y方向に沿った隣接する所望のDFS群でZ座標を平均化することができ、その平均化されたZ座標を、平均化群の中心のZ座標として使用することができる。
図5は、図6と比較される従来のPFF動作の結果を示し、本明細書に開示されるエッジプロファイリング及び/又は位置特定システム及び方法に好ましい方向性フィルタリングPFF方法の結果を示す。図5は、各ピクセルに正方向フィルタリング小領域を使用する既知のPFF方法を使用して再構築されたプロファイル又は深度マップ510を示す図500である。マップ510の異なる陰影又は色は、粗い又はノイズの多い表面及びエッジを表し、マップの白色エリアは、データ及び/又は表面があまりに不規則又はノイズが多く、その位置での確実な高さを特定することができない領域を示した。ウィンドウ530内のプロファイル再構築領域520(例えば、ビデオツールのROI)及び対応するプロファイル531も示される。プロファイル再構築領域520は、水平溝の「ノイズの多い」エッジ(例えば、表面を横切る鋸又はレーザによる切断により生成される凸凹表面のエッジ又は不規則なエッジ等)の例であるエッジ要素522及び524を含んで示される。エッジ要素522及び524は概ね、Y位置512及び514に配置される。Zプロファイル曲線531は、水平溝のプロファイルを示し、マップ510内のプロファイル再構築領域520を横切るX方向に沿ってZ値を平均化することに基づいて特定される。この全幅平均化により、プロファイル曲線531は、中心に配置されたZ高さプロファイル線504plyの位置に対応すると見なし得る。Zプロファイル曲線531は凸凹した側部プロファイル532及び534を有する溝を示し、これらのプロファイルは、溝の底の幅に一致するように見えるエッジ要素522及び524の垂直位置512及び514の表示を提供する。図6に関してより詳細に後述するように、図5での正方形フィルタリング小領域(例えば、5×5ピクセル)の利用により、Zプロファイル曲線531は図のX及びY方向の良好で平均化又はフィルタリングされるデータに基づき、Y方向に関する分解能の損失を生じさせ、これは溝のエッジのプロファイリング及び/又は位置特定に望ましくないことがある。
図6は、上述したように、各中心ピクセル位置に方向性フィルタリング小領域(この場合、Xに49ピクセル、Yに1ピクセル)を使用して再構築されたプロファイル又は深度マップ610を示す図600である。図5と同様に、マップ610の異なる陰影又は色は、粗い又はノイズの多い表面及びエッジを表し、マップの白色エリアは、データ及び/又は表面があまりに不規則又はノイズが多く、その位置での確実な高さを特定することができない領域を示した。図5のマップ510と図6のマップ610との比較は、所望のように、図6の結果がX方向においてより少ないノイズを有し、Y方向に沿ってより高い分解能を有することを示す。図6において撮像された水平溝は、図5において撮像された水平溝と同一である。図6に示されるように、ウィンドウ630内のプロファイル再構築領域620(例えば、ビデオツールのROI)及び対応するZプロファイル631も示さされる。
プロファイル再構築領域620は、水平溝のエッジであるエッジ要素622及び624を含んで示される。エッジ要素622及び624は垂直位置612及び614に配置される。Zプロファイル曲線631は、水平溝のプロファイルを示し、マップ610内のプロファイル再構築領域620を横切るX方向に沿ってZ値を平均化することに基づいて特定される。この全幅平均化により、プロファイル曲線631は、中心に配置されたZ高さプロファイル線604plyの位置に対応すると見なし得る。しかし、このX方向平均化が要件ではないことが理解されるだろう。例えば、所望であれば、X方向平均化の程度が低いか、又はX方向平均化を用いずに、例えば、領域620内の各ピクセル列に一致する複数の各高さプロファイル線にZプロファイル曲線を確立することができる。
Zプロファイル曲線631はここでも、溝側部プロファイル632及び634を示し、これらのプロファイルは、溝の底の幅に一致するように見えるエッジ要素622及び624のY位置612及び614の表示を提供する。図5とは対照的に、図6での方向性フィルタリング小領域の利用により、Zプロファイル曲線631は向上したYプロファイリング分解能を有する。換言すれば、曲線631は「より鮮鋭」に示され、Y方向に沿ったZプロファイルはノイズがより少なく、分解能がより高く、より詳細である。例えば、曲線631は、溝の底の角の丸みが低く、よりよい定義を示し、エッジ要素622及び624に対応するエッジ位置線612及び614の位置の特定が向上する。水平に位置合わせされた溝の正確なZプロファイル及び/又はY方向に沿ったエッジ位置を取得するという目的を考えると、方向性フィルタリング小領域の向きによるX(すなわち、水平)方向での分解能の対応する増大は一般に、許容可能であると見なし得る。
図3〜図6に関して上述したように、方向性フィルタリング小領域(DFS)を利用して、エッジ要素のより高い分解能のZプロファイル及び/又は位置を得ることができ、ノイズの多いエッジ(例えば、鋸又はレーザによる切断により生成される凸凹表面のエッジ又は不規則なエッジ)に特に適する。さらに、所望の場合、エッジに平行する方向に沿ったZ高さ平均化を、方向性フィルタリング小領域と組み合わせて使用し得、ノイズをさらに退ける。上記例では、関心のある表面要素(例えば、エッジ)は画像の行又は列に位置合わせされ、そのため、DFSは画像の行又は列に位置合わせされた。しかし、上述したように、より一般的な要件は、エッジ要素トポロジーの公称「等高輪郭線」に沿って向くように、より長い方向性フィルタリング方向をエッジ要素に概ね平行して位置合わせすべきであることである。この条件が満たされる場合、そのDFSのZ高さ特定を提供する方向性フィルタリング又は平均化された合焦尺度は、実際の高さの小さなずれに対応するはずの画像データに基づくことになり、そのDFSの中心でのより再現性が高く、正確で代表的なZ高さが生成される。これとは対照的に、この条件が満たされない場合、そのDFSのZ高さ特定を提供する方向性フィルタリング又は平均化された合焦尺度は、エッジにわたり傾斜し、ひいては実際の高さの大きなずれに広がる画像データに基づくことになり、そのDFSの中心でのより再現性が低く、正確性が低く、且つ恐らくは非代表的なZ高さが生成される。したがって、関心のあるエッジ要素が画像の行又は列に精密に位置合わせされない場合、Z高さの特定に使用される方向性フィルタリング小領域をやはりエッジ要素に位置合わせしなければならず、一般に、未処理の画像を形成するピクセル列又は行に位置合わせされない。
より長い方向性フィルタリング方向が概ね、エッジ要素と平行して位置合わせされることを保証するために、図7〜図12に関してより詳細に後述するように、参照エッジのアライメント補正を提供し得る。特定の実施形態では、参照エッジのアライメント補正は自動的又は半自動的に提供し得、それにより、比較的未熟なユーザが、プロセスの極めて重要な側面を理解していなくても、ノイズの多いエッジの確実な測定を得ることができる。いくつかの実施形態では、参照エッジのアライメント補正は、PFF方法を実施して、エッジ位置及び/又はエッジプロファイルを特定するエッジ要素ビデオツール又はビデオツールモードの動作及び/又はユーザインタフェースに含め得る。
参照エッジのアライメント補正の様々な技術が、本願と同じ譲受人に譲渡された2012年12月27日に出願された「METHOD FOR IMPROVING REPEATABILITY IN EDGE LOCATION RESULTS OF A MACHINE VISION INSPECTION SYSTEM」という名称の米国特許出願第13/728,842号に記載されている。’842号出願は、強度走査線に基づく様々な参照エッジのアライメント補正技術を含め、強度勾配に基づくエッジ検出又は測定技術を記載している。そこに記載される参照エッジのアライメント補正は、例えば、間隔が密なエッジの区別において向上した信頼性を提供する。’842号出願は、方向性フィルタリングと組み合わせて参照エッジのアライメント補正を使用して、PFFベースエッジ検出をノイズの多いエッジに提供することを記載していないが、本明細書に開示のように、図7A及び図7Bを参照して説明され、さらに後述される参照エッジのアライメント補正技術のいくつかは、’842号出願に記載の特徴と同様であると理解し得る。
例えば、PFFモード又は方法に基づくエッジ要素ビデオツールでは、図4、図5、及び図6に示される線404Aply、404plx、504ply、及び604ply等のZ高さプロファイル線は、’842号出願に示される強度走査線と同様である。例えば、それぞれの場合で、走査線の勾配又は高さプロファイル線の勾配を使用して、エッジ位置を特定し得、これらは参照エッジのアライメント補正の目的と大方同様である。
図7A及び図7Bは、ユーザインタフェースの視野700内の直線エッジ要素725を示し、図7Aにおいて位置合わせされたビデオツール705に関連付けられた概略的に表現される位置合わせされたDFSであるDFSaに沿ったエッジ要素725のオフセット量と、図7Bでのビデオツール705’に関連付けられた位置ずれしたDFSであるDFSa’のオフセット量とを、対応する高さプロファイルでの関連する結果とともに比較する。図7Aは、マシンビジョン検査システム(例えば、マシンビジョン検査システム100)のユーザインタフェースに含み得る、ワークピース20の画像(例えば、カメラ260により撮像される)を含む視野ウィンドウ700を示す。図7Aでは、説明のために、画像内のエッジ725のエッジ向きEOを破線で示す。関心領域ROIは、関心インジケータROIinの領域で示されるように、エッジ725の関連部分を定義する。一実施形態では、関心領域生成器143roiは、エッジ要素ツール143eftと併せて動作して、関心領域ROIを定義し得る。説明のために、図7Aでは、2つの例示的な平行する高さプロファイル線La及びLbも示し、様々な実施形態において、これらは実際にエッジツールユーザインタフェースに表示されてもよく、又は表示されなくてもよい。エッジセレクタESも示され、このセレクタは、いくつかの実施形態では、ユーザにより、検出が望まれるエッジを示すか、又はマークするように位置決めし得る。第2のエッジ726も図7Aに示される。
図7Aの下部は、位置合わせされたDFSであるDFSaの中心点(例えば、X−Y座標)に対応する中心プロファイル線704plに沿ったピクセル位置(例えば、ピクセル数)での理想的又は実際のZ高さプロファイルZpact及び対応するZ高さ勾配プロファイルZG(プロファイル線に沿ったZ高さの変化率)を示すチャート710である。一実施形態では、本明細書に開示されるPFFモードで動作するエッジ要素位置特定ビデオツールが、Z高さプロファイル線に沿ったエッジポイント又は位置を、最大のZ高さ勾配が生じる(例えば、ボックス712内の極値における)位置として識別することを理解されたい。図7Aは、例示的なDFSであるDFSaがエッジ725に位置合わせされる例を示す。この位置合わせにより、且つエッジ725が全長に沿って概ね直線であり、均一である(例えば、理想的なZ高さプロファイルは、例えば、線La、704pl、及びLbに沿って同じ)と仮定すると、DFSaは、対応する高さ点Zdfsaへの線PROJallに沿ったDFSaの各ピクセルの位置合わせされた投射により示されるように、同じZ高さでDFSa内の各ピクセルに対応する各Z高さプロファイルに交差する。これは、エッジ725が、DFSaに沿ったあるピクセル位置において別のピクセル位置から「オフセット」せず、すなわち、別の位置に対するDFSaに沿ったある位置でのエッジのオフセットOabが概ねゼロであることを意味する。このため、実際の画像合焦高さは、DFSa内のすべてのピクセルで概ね同じであり(不可避の表面高さ及び/又は画像ノイズを除く)、関連付けられるコントラスト又は合焦尺度は公称高さZdfsaを正確に反映することになり、これはDFSaに関連付けるべき適切な(例えば、プロファイル線704plの位置に沿ったDFSaの位置で測定されるZ高さとして)Z高さである。ROI全体を通して同様に位置合わせされたDFSsも同じ理由で同様の正確性を有し、結果として生成されるZ高さプロファイルは、エッジ725の位置を良好な忠実性及びDFSsの狭方向(例えば、エッジ725を横切る方向)に沿って高分解能で示すことになる。
図7Aとは対照的に、図7Bは、関心領域ROI’及び/又は代表的なDFSであるDFSa’がエッジ725に対して回転又は「位置ずれ」したワークピース20の画像を含む視野ウィンドウ700を示す。
図7Bの下部は、図7Aを参照して上述した理想的又は実際のZ高さプロファイルZpactを示すチャート720である。図7Bは、例示的なDFSであるDFSa’がエッジ725と位置ずれした例を示す。この位置ずれと、エッジ725が全長にわたって概ね直接であり均一である(例えば、理想的なZ高さプロファイルは、例えば、線La’、704pl’、及びLb’に沿って同じ)との仮定により、DFSa’は、対応する高さ点Zdfsa’1への線projend1に沿ったDFSa’の「上端部」ピクセルの位置合わせされた投射及び対応する高さ点Zdfsa’2への線projend2に沿ったDFSa’の「下端部」ピクセルの位置合わせされた投射に示されるように、異なるZ高さでDFSa’内の各ピクセルに対応する各Z高さプロファイルに交差する。これは、示されるように、エッジ725がDFSa’に沿ったあるピクセル位置において別のピクセル位置から「オフセット」しており、すなわち、別のピクセル位置に対するDFSa’に沿ったある位置のエッジ725のオフセットOab’が大きなOab’であり得ることを意味する。このため、実際の画像合焦高さは一般に、チャート720に示されるZ高さの範囲Zrange−dfsa’に示されるように、DFSa’内のすべてのピクセルで同じではない。これは、関連付けられるコントラスト又は合焦尺度が別途合焦された画像部分を含むことになり、それにより、DFSa’の中心点CPでの公称高さ(例えば、図7Aに示されるように、プロファイル線704pl’に沿ったCPの位置での適切なZ高さであるZdfsa)を正確に反映することができないことを意味する。実際に、図7Bに示される例では、DFSa’が、DFSa’の中心点CPにおいて公称Z高さよりもかなり下のZ高さ画像部分を有することになり、DFSa’のコントラスト又は合焦尺度(及び測定されるZ高さ)を誤って低くすることが分かる。別の視点から、より長いフィルタリング方向がエッジ725を部分的に横切るように、DFSa’が位置ずれするため、エッジ725を横切っていくらかの方向性フィルタリングを提供し、真のプロファイルが失われるように、エッジ725を囲む高さ情報を平滑化し歪ませると言える。ROI’全体を通して同様に位置ずれしたDFSsは、同じ理由で同様の不正確性を有し得、結果として生成されるZ高さプロファイルは、エッジ725の位置を不良な正確性及び/又は分解能で示すことになる。
図7A及び図7Bに示されるように、DFSs及びPFF技術を利用するエッジビデオツールが、参照エッジのアライメント補正を提供し、オフセットOab’(例えば、図7Bの位置ずれ角度MAに対応する)等を除去又は補償し、それにより、DFS全体を通して(又はノイズの多いエッジの検出又は推定位置を向上させる他の方向性フィルタリング技術により使用される平均化データセット全体を通して)画像データが概ね同じ公称合焦高さを有することが望ましい。これは、図7Aに示されるように、そのようなエッジビデオツールが所望のZ高さ精度及び分解能を提供する能力を強化する。参照エッジのアライメント補正は、さらに詳細に後述するように、概ね既知の形状(例えば、検査システムのユーザに既知であり、且つ/又は特定のビデオツールタイプ若しくはパラメータ等に反映される直線又は円形形状)を有するエッジに対して特に可能であり、望ましい。
DFSの対応するピクセルが、平均化又はフィルタリング動作を含む解析により適宜結合可能な内容(例えば、公称的に同様のZ高さ)を有するように、エッジ要素に沿った互いに対するあるDFSピクセルのオフセット(もしあれば)を補償するために、様々な方法を使用して、予備方向に対するオフセットを識別し得、予備方向は代替として、元の方向、参照方向、又はデフォルト方向として特徴付け得、予備方向性フィルタリング方向として特徴付け、且つ/又は使用してもよい。例えば、一実施形態では、ROIベースの正方形コントラスト核(例えば、正方形小領域305)の予備Z高さマップを特定し得る。次に、その高さマップ内のエッジを横切り、エッジに沿って分布する複数の平行線のZ高さプロファイルを特定し得る。いくつかの実施形態では、これらの予備プロファイル線は、例えば、図7Bのプロファイル線La’及びLb’のように、ROIの全体位置合わせ(例えば、ROIの辺に垂直)に基づき得る。参照すべきエッジに対応する予備エッジ点は、そのような各プロファイル線に沿って配置し得る(例えば、Z高さ勾配ピーク位置に対応するものとして)。画像データ及び/又は基礎をなす表面はノイズが多いため、いくつかの実施形態では、いくつかのプロファイル線を使用し得る。直線エッジの場合(図7A及び図7Bに示されるように)、線をこれらのエッジ点に当てはめ得、そのROIに相対するその近似線及び/又はそのROIの予備若しくはデフォルトDFSの位置ずれ角度を特定し得る。DFSに沿った2つの位置での例示的なDFS方向からの近似線のオフセット距離の差は、sin(MA)*2つの位置の距離になる。より一般的には、様々な実施形態では、エッジ測定ビデオツールは、ボックスツール、円ツール、及び円弧ツールの1つであり、各DFSに沿ったエッジ要素の各オフセット量を特徴付けることは、エッジ点を検出し、ビデオツールに関連付けられた線形状をエッジ点に当てはめ、ビデオツールにより方向性フィルタリングに使用される予備又はデフォルト方向性フィルタリング方向に沿った様々な位置での近似線の各オフセット量を特徴付けることを含む。ビデオツールがボックスツールである場合、ビデオツールに関連付けられる線形状は直線であり、予備方向性フィルタリング方向に沿った様々な位置での近似線の各オフセット量を特徴付けることは、近似線と、そのROIの予備又はデフォルトDFS方向との角度を特定することを含み得る。エッジ測定ビデオツールが円ツールである場合、予備プロファイル線はすべて、円ツールの中心から延びる半径に沿い得、ビデオツールに関連付けられる線形状は円であり、各予備プロファイル線に沿った近似線の各オフセット量を特徴付けることは、当てはめられた円がどこで予備プロファイル線と交差するかを特定することを含み得る。いずれの場合でも、直線エッジの位置ずれ角度が特徴付けられる(又は円又は円弧ツールでは、予備「DFS円又は弧」に相対する当てはめられた円エッジの位置ずれに対して、より複雑な特徴付けが行われる)と、上述した原理により、ツール内のDFSの方向を、エッジに適宜位置合わせされるように調整し得ることが理解されるだろう。一実施形態では、エッジ測定ビデオツールが円ツール又は円弧ツールである場合、各DFS弧はすべて、円又は円弧ツールの中心から延びる半径に直交する「同心」のDFSであり得、ビデオツールに関連付けられる線形状は円(又は円の部分)であり得、当てはめられた円の中心を、円又は円弧ツールの中心又は走査線の中心に相対して特定し得る。次に、ツールの中心は、当てはめられた円の中心に一致するように調整し得、調整された半径及び関連付けられた弧形状DFS位置を計算し得る。
直線エッジの代替として、ワークピース及びカメラが互いに対して回転し得、それにより、カメラのピクセル行又は列が使用されて、DFS方向が定義され、ワークピースのエッジに対して平行方向に沿って向けられるが、これが、多くのマシンビジョンシステムにおいて時間がかかるか、又は不可能な代替であり得、したがって、そのようなシステムでの好ましくないことがあることが理解されるだろう。いずれの場合でも、エッジに実際に平行するようなDFS方向の調整は、参照エッジのアライメント補正として見なし得る。
DFS内のすべてのピクセルが画像ピクセル位置に厳密に一致する可能性が低いことが理解されるだろう。そのような場合、PFF動作に使用されるDFS内の「ピクセル」位置での画像値は、様々な既知の方法により周囲の画像ピクセルに基づく補間により特定し得る。前に取得された画像データに基づいて所望の線及び/又は方向に沿って補間された画像強度を計算することは、例えば、米国特許第7,567,713号に教示されている。
位置ずれを特定する別の代替の方法は、X−Y平面においてビデオツールに関連付けられた代表的なDFS又はDFSセットの向き及び/又は位置を変更する検索を実行し、各向き及び/又は位置で、各向き及び/又は位置に関連付けられた方向性フィルタリング方向に沿ったZ高さの分布を特徴付けることを含み得る。本質的に、分布の幅が、関連付けられた方向性フィルタリング方向のオフセット又は位置ずれを特徴付ける。次に、DFSの向き及び/又は位置を、DFS又はDFSセット内の最も狭いZ高さ分布(例えば、最小の標準偏差)を提供する向き及び/又は位置に設定し得、これを参照エッジのアライメント補正と見なし得る。
位置ずれを特定する別の代替の方法は、X−Y平面においてビデオツールに関連付けられた代表的なDFSセットの向き及び/又は位置を変更する検索を実行し、セットの各向き及び/又は位置で、エッジに交差する少なくとも1つの予備Z高さプロファイルを形成することを含み得る。そのような一実施形態では、DFSは、代表的なDFSセット全体に基づいて、平均Z高さプロファイルを表す単一の代表的な複合エッジプロファイル(すなわち、エッジを横切るZ高さ)が生成されるように定義され、且つ/又は使用される。いずれの場合でも、結果として生成される予備Z高さプロファイルが評価される。結果として生成されるプロファイルにおいて特徴付けられるエッジの鮮明さは本質的に、関連付けられた方向性フィルタリング方向のオフセット又は位置ずれを特徴付ける。特に、Z高さプロファイルにおいて最も狭いエッジ、最も狭い勾配ピーク、及び/又は最高のエッジ勾配を提供する向き及び/又は位置が、最良に位置合わせされ、参照エッジのアライメント補正及び/又は動作方向性フィルタリング方向を定義する向き及び/又は位置である。言い換えれば、対応するZ高さプロファイルにおいて最も狭いエッジ、最も狭い勾配ピーク、及び/又は最高のエッジ勾配を提供する向き及び/又は位置は、そのZ高さプロファイルの提供に使用される方向性フィルタリング方向に沿った各位置でのエッジ要素の各オフセット量を実質的に最小化する参照エッジのアライメント補正に対応する。上記手順は、学習モード及び/又は実行モード中に使用し得る。いくつかの実施形態では、学習モード中に特定される最良のZ高さプロファイル(最良の参照エッジのアライメント補正に対応する)はパートプログラムに保存され、実行モード中、実行モード方向性フィルタリング方向が、対応する実行モードZ高さプロファイルの、記憶された学習モードZ高さプロファイルへの一致を概ね最大化することに基づいて調整される。DFS方向に参照エッジのアライメント補正を提供する他の代替が、本開示の恩恵を受ける当業者には明らかであり得る。
パートプログラムが作成される場合、エッジ検出ビデオツールにより位置特定すべき特定のワークピースエッジを特徴付けるパラメータ(「学習された」エッジパラメータとも呼ばれる)が、学習モード中にエッジに相対して向けられるため、ビデオツール位置合わせ及びDFSパラメータに基づくことを理解されたい。対照的に、そのパートプログラムが実行されて、実行モード中に異なるワークピースの対応するエッジを自動的に検出する場合、ワークピースエッジは、プログラムされたビデオツールに相対してわずかに異なる角度又は位置に回転又は並進移動し得、それにより、学習されたエッジパラメータが、実行モード中にエッジの特徴に一致しない可能性が高くなる。特にノイズの多いエッジの場合、確実なエッジ検出が本質的に難しく、そのような誤差の許容性が最小であり得ることが理解されるだろう。したがって、そのような場合でのエッジ検出確実性を増大させるために、エッジ要素に対する実行モードDFS向きが、学習モードDFS向きと可能な限り同様であることを保証することが望ましいことがあり、これは、パートプログラムに含まれる学習されたエッジパラメータと、実行モード中に観測されるエッジ要素とが一致する可能性を増大させる。この場合、一実施形態では、学習モード中及び/又は実行モード中のエッジに実際に平行するようなDFS方向の調整は、参照エッジのアライメント補正と見なし得る。別の実施形態では、学習モード中、エッジ又はDFS方向の別の特徴付け(例えば、DFS方向に沿ったZ高さプロファイル又はZ高さの分布)に相対するDFS方向の実際の向きを特定し、記録し得、次に、エッジに対する実行モードDFS向を、実際のDFS向き又は学習モード中に記録された他の特徴に最良に一致するように調整し得る。この場合、学習モード中に記録されたエッジに対する実際のDFS向き又は他のDFS特徴に一致するようなエッジに対する実行モードDFS向きの調整(例えば、相関付け解析又は他の既知のデータ/プロファイル比較技術に基づく)は、参照エッジのアライメント補正と見なし得る。いくつかのそのような実施形態では、DFS方向は、学習モード及び/又は実行モード中、DFSの長寸法に直交する方向に沿ってDFSデータに基づいて特定されるZ高さプロファイル内のエッジ要素に対応する勾配が概ね最大化されるように調整し得る。いずれの場合でも、上述した手順は、パートプログラムが実行モード中に同様のワークピースに適用される場合、学習モードワークピースで特定され、パートプログラムに記録されるエッジ検出パラメータの信頼性を増大させ得る。
上述したように、いくつかの実施形態では、DFS方向をビデオツール(例えば、ビデオツール関心領域)に関連して定義し得、DFS方向の調整及び/又は補償が、関心領域の要素又は特徴の調整を含み得ることが理解されるだろう。したがって、様々な実施形態では、DFS方向を直接(例えば、DFSに直接関連するビデオツールパラメータにより)又は間接的に(例えば、DFSに影響する関連するビデオツール特徴又はパラメータを通して)調整し、且つ/又は補償し得ることが理解されるだろう。
図8A〜図8Cは、本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正の提供に関連するボックスツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の直線エッジ要素825のプロファイル及び/又はエッジ位置データを特定するために位置決めされたPFFボックスツール800を示す。図8A〜図8Cに示されるように、ボックスツールは、ワークピースの画像に重ねられた少なくとも1つの関心領域インジケータROIinを含むユーザインタフェースを含み、ユーザインタフェースにおいて、ワークピースの画像に重ねられる参照エッジのアライメント補正が提供された(又は提供されていない)表示を提供する。いくつかのそのような実施形態では、ユーザインタフェース要素の調整は、ワークピースの画像に重ねられた1つ又は複数の要素の属性(例えば、色、線種等)を変更すること、又は画像に重ねられる参照エッジのアライメント補正インジケータ(例えば、エッジ参照インジケータERinアイコン又はウィジェット)を追加若しくは調整することを含み得る。図8Aに示されるように、参照エッジのアライメント補正はまだ提供されていない(例えば、ツールはまだ、学習モード又は手動モードで実行又はトレーニングされていない)。その結果、ビデオツールGUIは初期状態(例えば、トレーニングされていない状態)で表示される。いくつかの実施形態では、参照エッジのアライメント補正がまだ提供されていないことを示す状態で、任意選択のエッジ参照インジケータERinを表示し得る。他の実施形態では、ビデオツールGUIは単に初期状態で表示される。
図8B及び図8Cに示されるように、参照エッジのアライメント補正が提供された(例えば、ツールが、学習モード又は手動モードで実行又はトレーニングされた)。この特定の実施形態では、ビデオツールの内部動作が、方向性フィルタリング方向に沿った各位置間のオフセットをなくした(例えば、上述したように、予備位置ずれ角度特定に基づいてDFS方向を調整することにより)。その結果、いくつかの実施形態では、参照エッジのアライメント補正が提供されたことを示す状態で、任意選択のエッジ参照インジケータERinを表示し得る。他の実施形態では、ビデオツールGUIは、参照エッジのアライメント補正が提供されたことを示唆するように、初期状態に関連する要素の1つを調整する。例えば、図8Bでは、ボックスツールであるビデオツール800は、軸の1つがエッジ要素に垂直になり、その一方で、他の軸が方向性フィルタリング方向を表し、エッジ要素に平行するように、関心領域インジケータを回転させることによりユーザインタフェースを調整する。図8Cでは、ビデオツール800は、エッジ要素825に平行するように、1つ又は複数のエッジ方向インジケータEDinを提供し、且つ/又は回転させる。一実施形態では、エッジ方向インジケータEDinの1つは、エッジ要素に位置合わせされた「線形状」と呼ぶことができ、そして、図示されるように、元又はデフォルトの方向性フィルタリング方向に相対して傾斜して向けられ得る(例えば、関心領域インジケータROIinの垂直エッジにより現れるように)。したがって、エッジ方向インジケータEDinの1つと、関心領域インジケータROIinの垂直エッジの1つとの角度を使用して、元又はデフォルト方向性フィルタリング方向(例えば、関心領域インジケータROIinの垂直エッジで表される)に沿った各位置で位置合わせされた線形状(例えば、エッジ方向インジケータEDin)の各オフセット量を特徴付け得る。
図9A〜図9Cは、本明細書に開示される原理により、DFS/エッジオフセットを実質的になくす参照エッジのアライメント補正の提供に関連する円弧ツール状態を示す様々なビデオツールユーザインタフェース実施形態を含む、ワークピース画像の円形エッジ要素925のプロファイル及び/又はエッジ位置データを特定するために位置決めされたPFF円弧ツール900を示す。図9A〜図9Cは図8A〜図8Cと同様であり、同様に理解し得るため、手短な説明のみを提供する。円弧ツール900は、ワークピースの画像に重ねられた関心領域インジケータROIinを含むユーザインタフェースを含む。図9Aに示されるように、参照エッジのアライメント補正はまだ提供されていない。その結果、ビデオツールGUIは初期状態(例えば、トレーニングされていない状態)で表示される。いくつかの実施形態では、参照エッジのアライメント補正がまだ提供されていないことを示す状態で、任意選択のエッジ参照インジケータERinを表示し得る。他の実施形態では、ビデオツールGUIは単に初期状態で表示される。
図9B及び図9Cに示されるように、参照エッジのアライメント補正が提供された(例えば、ツールが、学習モード又は手動モードで実行又はトレーニングされた)。この特定の実施形態では、ビデオツールの内部動作が、エッジと、円形/接線方向性フィルタリング方向とのオフセットをなくした(例えば、上述したように、予備位置ずれ角度特定に基づいてDFS方向を調整することにより)。その結果、いくつかの実施形態では、参照エッジのアライメント補正が提供されたことを示す状態で、任意選択のエッジ参照インジケータERinを表示し得る。他の実施形態では、ビデオツールGUIは、参照エッジのアライメント補正が提供されたことを示唆するように、初期状態に関連する要素の1つを調整する。例えば、図9Bでは、ビデオツール900は、弧の境界がエッジ要素925と概ね同心になるように、関心領域インジケータROIinを位置決めすることにより、ユーザインタフェースを調整する。図9Cでは、ビデオツール900は、エッジ要素と概ね同心になるように、エッジ方向インジケータEDinを提供し、且つ/又は位置決めする。一実施形態では、エッジ方向インジケータEDinの1つは、エッジ要素に位置合わせされた「線形状」と呼ぶことができ、見られるように、元々の又はデフォルトの方向性フィルタリング方向に相対して傾斜して向けられ得る(例えば、関心領域インジケータROIinの弧エッジにより現れるように)。したがって、エッジ方向インジケータEDinの1つと、関心領域インジケータROIinの弧エッジの1つとの角度を使用して、元又はデフォルト方向性フィルタリング方向(例えば、関心領域インジケータROIinの弧エッジで表される)に沿った各位置で位置合わせされた線形状(例えば、エッジ方向インジケータEDin)の各オフセット量を特徴付け得る。円ツールの様々な実施形態が、図9A〜図9Cに示される弧の実施形態と同様の特徴を有し得ることが理解されるだろう。
図9Aは、例示的で任意選択の検索エリアインジケータSAを示し、これは、様々なビデオツールのユーザインタフェースに含めて、上述したように、位置合わせ補償の検索手順に使用される検索エリアを示し得る。いくつかの実施形態では、ユーザは、検索をより高速にする(例えば、より小さな検索エリア)又はよりロバストな検索にする(例えば、より大きな検索エリア)ために、検索エリアのサイズを調整し得る(例えば、サイド又は隅をドラッグすることにより)。
上述したように、いくつかの実施形態では、参照エッジのアライメント補正は、方向性フィルタリング方向に沿った各位置での各オフセット量を特定し、上述したように、方向性フィルタリング方向に沿った各位置でのエッジ要素の各オフセット量が実質的に補償されるような、データの調整に使用される。そのような実施形態では、ユーザインタフェースの調整は、関心領域インジケータ、エッジ方向インジケータ、及び検出エッジ点を表す表示のうちの少なくとも1つを、各オフセット量を記号で表すように調整することを含み得る。図10A〜図10C及び図11A〜図11Cは、そのような実施形態において使用し得るユーザインタフェース特徴を示す。
図10A〜図10Cは、図8A〜図8Cと一般に同様であり、同様に理解し得るため、手短な説明のみが提供される。ボックスツール1000は、ワークピースの画像に重ねられた関心領域インジケータROIinを含むユーザインタフェースを含む。図10Aに示されるように、参照エッジのアライメント補正はまだ提供されていない。その結果、ビデオツールGUIは初期状態(例えば、トレーニングされていない状態)で表示される。いくつかの実施形態では、参照エッジのアライメント補正がまだ提供されていないことを示す状態で、任意選択のエッジ参照インジケータERinを表示し得る。他の実施形態では、ビデオツールGUIは単に初期状態で表示される。
図10B及び図10Cに示されるように、参照エッジのアライメント補正が提供された(例えば、ツールが、学習モード又は手動モードで実行又はトレーニングされた)。この特定の実施形態では、ビデオツールの内部動作が、方向性フィルタリング方向に沿った各位置でのオフセットを特定した(例えば、上述したように、オフセットを計算的に補償し得るように)。その結果、いくつかの実施形態では、参照エッジのアライメント補正が提供されたことを示す状態で、任意選択のエッジ参照インジケータERinを表示し得る。他の実施形態では、ビデオツールGUIは、参照エッジのアライメント補正が提供されたことを示唆するように、初期状態に関連する要素の1つを調整する。例えば、図10Bでは、エッジ方向インジケータEDinがエッジ要素1025に平行し、且つ/又はエッジ要素1025と若しくはデフォルト方向性フィルタリング方向(例えば、関心領域インジケータROIinの垂直エッジに平行するものとして示される)を示す線との角度を示すように、エッジ方向インジケータEDinを提供し、且つ/又は位置決めする。図10Cでは、ビデオツール1000は、エッジ要素に概ね沿って、検出エッジ点表現DEP又は検出エッジ点に当てはめられた線を提供し、且つ/又は位置決めする。特定の実施態様では、検出エッジ点に当てはめられた線を使用して、若しくはデフォルト方向性フィルタリング方向(例えば、関心領域インジケータROIinの垂直エッジに平行して示される)に対する角度を示し得、且つ/又は方向性フィルタリング方向を表す線を使用して、若しくはデフォルト方向性フィルタリング方向に沿った各位置(例えば、各検出エッジ点表現DEP)での各オフセット量を特徴付け得る。
図11A〜図11Cは、図9A〜図9Cと一般に同様であり、同様に理解し得るため、手短な説明のみが提供される。円弧ツール1100は、ワークピースの画像に重ねられた関心領域インジケータROIinを含むユーザインタフェースを含む。図11Aに示されるように、参照エッジのアライメント補正はまだ提供されていない。その結果、ビデオツールGUIは初期状態(例えば、トレーニングされていない状態)で表示される。いくつかの実施形態では、参照エッジのアライメント補正がまだ提供されていないことを示す状態で、任意選択のエッジ参照インジケータERinを表示し得る。他の実施形態では、ビデオツールGUIは単に初期状態で表示される。
図11B及び図11Cに示されるように、参照エッジのアライメント補正が提供された(例えば、ツールが、学習モード又は手動モードで実行又はトレーニングされた)。この特定の実施形態では、ビデオツールの内部動作が、方向性フィルタリング方向に沿った各位置でのオフセットを特定した(例えば、上述したように、オフセットを計算的に補償し得るように)。その結果、いくつかの実施形態では、参照エッジのアライメント補正が提供されたことを示す状態で、任意選択のエッジ参照インジケータERinを表示し得る。他の実施形態では、ビデオツールGUIは、参照エッジのアライメント補正が提供されたことを示唆するように、初期状態に関連する要素の1つを調整する。例えば、図11Bでは、ビデオツール1100は、曲線がエッジ要素1125と概ね同心又は一致し、且つ/又はエッジ要素1125と、若しくはデフォルト方向性フィルタリング方向を示す線(例えば、関心領域インジケータROIinのエッジと同心に示される)との角度を示すように、エッジ方向インジケータEDinを提供し、且つ/又は位置決めする。図11Cでは、ビデオツール1100は、エッジ要素に概ね沿って、検出エッジ点表現DEP又は検出エッジ点に当てはめられた線を提供し、且つ/又は位置決めする。特定の実施態様では、検出エッジ点に当てはめられた線を使用して、若しくはデフォルト方向性フィルタリング方向(例えば、関心領域インジケータROIinの弧エッジに同心に示される)に対する角度を示し得る。特定の実施態様では、検出エッジ点に当てはめられた線を使用して、若しくはデフォルト方向性フィルタリング方向(例えば、関心領域ROIinの弧エッジと同心に示される)に相対する角度を示し得、且つ/又は各検出エッジ点表現DEPと、方向性フィルタリング方向を表す線との距離を使用して、若しくはデフォルト方向性フィルタリング方向に沿った各位置(例えば、各検出エッジ点表現DEP)での各オフセット量を特徴付け得る。
様々な実施形態において、本明細書に開示される参照エッジのアライメント補正方法の実施は、a)参照エッジのアライメント補正動作を含むタイプのエッジ要素ビデオツールを選択すること、b)参照エッジのアライメント補正動作を含むエッジ要素ビデオツールの参照エッジのアライメント補正モード又はオプションを選択すること、c)参照エッジのアライメント補正を含むエッジ要素ビデオツールの方向性フィルタリングモード又はオプションを選択すること、及びd)エッジ要素ビデオツールと併せて動作する参照エッジのアライメント補正動作を提供する参照エッジのアライメント補正ツールを選択すること、のうちの1つを含み得る。そのような実施形態では、方向性フィルタリング方向に沿った複数の各位置を解析して、参照エッジのアライメント補正を提供するステップは、エッジ要素ビデオツールの動作と併せて参照エッジのアライメント補正動作を実行することを含み得る。
いくつかの場合、当該方法は、マシンビジョンシステムの学習モード中に実行され、対応する動作がパートプログラムに記録される。他の場合、方法の少なくともいくつかのステップは、パートプログラムに記録された対応する動作を実行することにより、マシンビジョンシステムの実行モード中に実行される。
いくつかの実施形態では、当該方法は、参照エッジのアライメント補正を適用して、方向性フィルタリング方向に沿った各位置でのエッジ要素の各オフセット量が、a)実質的に除去されること、b)実質的に補償されること、及びc)方向性フィルタリング方向に沿った各位置での対応するエッジ要素の、以前に特定された各オフセット量に実質的に一致することのうちの少なくとも1つであるように、方向性フィルタリング方向を調整することをさらに含み得る。
図8〜図11に示されるこれらの参照エッジのアライメント補正状態インジケータが、単なる例示であり、限定ではないことが理解されるだろう。
図12は、マシンビジョン検査システムにおいて凸凹表面のエッジのエッジ検出を強化する方法1200の流れ図である。ブロック1210において、関心領域定義部を含むエッジ要素ビデオツールが提供される。エッジ要素ビデオツールは、関心領域内の複数の異なる合焦位置の画像に基づいて、関心領域のエッジ要素のプロファイルデータを特定するように構成される。特定の一実施態様例では、そのような画像は、合焦点(PFF)動作の一環として取得し得る。
ブロック1220において、ワークピースがマシンビジョン検査システムの視野に配置される。ブロック1230において、エッジ要素ビデオツールが動作して、ワークピースの取得画像内のエッジ要素を含むビデオツール関心領域を定義する。ブロック1240において、エッジ要素ビデオツールが動作して、関心領域内の少なくとも1つのワークピース画像の画像データを解析し、参照エッジのアライメント補正を提供する。参照エッジのアライメント補正は、エッジ要素のプロファイルデータを特定する前、複数の異なる合焦位置の画像を方向性フィルタリングするために使用される方向性フィルタリング方向に沿った各位置でのエッジ要素の各オフセット量を実質的に最小化することに関連する。
図13は、方向性フィルタリングに基づくエッジ要素のプロファイルデータを特定する方法1300の流れ図である。ブロック1310において、エッジ要素ビデオツールが動作して、複数の異なる合焦位置の画像を取得する。ブロック1320において、参照エッジのアライメント補正が適用されて、方向性フィルタリング方向を調整する。ブロック1330において、複数の異なる合焦位置の画像は、参照エッジのアライメント補正の適用後、方向性フィルタリングされる。ブロック1340において、エッジ要素のプロファイルデータは、方向性フィルタリングされた複数の異なる合焦位置の画像に基づいて特定される。
図14は、合焦点(PFF)ベースピクセル位置に関連して定義される方向性フィルタリング小領域を利用して方向性フィルタリングを実行する方法1400の流れ図である。ブロック1410において、複数の異なる合焦位置の画像が、複数の各画像のPFFの基本となるピクセル位置に対応するポイントに関連して定義される方向性フィルタリング小領域(DFS)を使用して方向性フィルタリングされる。各DFSは、方向性フィルタリング方向に概ね直交する第2の方向に沿った短寸法よりも大きな、方向性フィルタリング方向に沿った長寸法を有するような形状である。ブロック1420において、参照エッジのアライメント補正を使用して、方向性フィルタリング方向を調整する。調整は、方向性フィルタリングの実行前に、方向性フィルタリング方向に沿ったエッジ要素のオフセット量が、a)実質的に除去されること、及びb)実質的に補償されることのうちの少なくとも一方であるように実行される。
上記から、本発明の特定の実施形態が例示のために本明細書に記載されたが、本発明の範囲から逸脱せずに、様々な変更を行い得ることが理解されるだろう。したがって、本発明は、添付の特許請求の範囲による以外、限定されない。
10、100 マシンビジョン検査システム
12 画像測定機
14 制御コンピュータシステム
16 ディスプレイ
18 プリンタ
20 ワークピース
22 ジョイスティック
24 キーボード
26 マウス
32 可動式ワークピースステージ
34 光学撮像システム
120 制御システム部
125 コントローラ
130 入出力インタフェース
131 撮像制御インタフェース
132 運動制御インタフェース
132a 位置制御要素
132b 速度/加速度制御要素
133 照明制御インタフェース
133a〜133n、133fl 照明制御要素
134 レンズ制御インタフェース
136 ディスプレイ装置
138 入力装置
140 メモリ
141 画像ファイルメモリ部
142 ワークピースプログラムメモリ部
143 ビデオツール部
143a、143n 代表的ビデオツール部
143eft 方向性フィルタリング及び位置合わせ補償を有するエッジ要素ツール
143eracd 参照エッジのアライメント補正定義部
143roi 関心領域生成器
170 ワークピースプログラム生成・実行器
190 電源部
200 ビジョン構成要素部
205 光学アセンブリ部
210 ワークピースステージ
212 中央透明部
220 透過光
221、231、241、281 バス
262、296 信号線
230、230’ 落射照明光
232 光
240 斜め照明光
250 交換式対物レンズ
255 ワークピース光
260 カメラ
280 ターレットレンズアセンブリ
284 軸
286、288 レンズ
290 ミラー
291 ビームスプリッタ
294 制御可能なモータ
300、400A、400B、500、600 図
304Ydfs、304Xdfs 方向性フィルタリング小領域
305 正方形フィルタリング小領域
310、410A、410B 画像ピクセル
404A、404B DFSセット
404Aply Y方向プロファイル線
404Bplx X方向プロファイル線
510、610 深度マップ
512、514、612、614 Y位置
520、620 プロファイル再構築領域
522、524、622、624、1025、1125 エッジ要素
530、630 ウィンドウ
531、631 Zプロファイル曲線
504ply、604ply Z高さプロファイル線
612、614 垂直位置
632、634 溝側部プロファイル
700 視野
704pl、704pl’、704’ プロファイル線
705 位置合わせされたビデオツール
705’、1000 ビデオツール
710、720 チャート
712 ボックス
725、825 直線エッジ要素
726 第2のエッジ
800 PFFボックスツール
900 PFF円弧ツール
925 円形エッジ要素
1000 ボックスツール
1100 円弧ツール
1200、1300、1400 方法

Claims (26)

  1. マシンビジョン検査システムにおいてエッジ要素のプロファイルデータを特定する方法であって、前記マシンビジョン検査システムは、
    関心領域定義部を含むエッジ要素ビデオツールであって、前記関心領域内の複数の異なる合焦位置の画像に基づいて、前記関心領域におけるエッジ要素のプロファイルデータを特定するように構成される、エッジ要素ビデオツールを備え、
    前記方法は、
    ワークピースを前記マシンビジョン検査システムの視野に配置すること、
    前記エッジ要素ビデオツールを動作させて、前記ワークピースの取得画像内のエッジ要素を含むビデオツール関心領域を定義すること、及び
    前記エッジ要素ビデオツールを動作させて、前記関心領域内の少なくとも1つのワークピース画像の画像データを解析し、前記エッジ要素の前記プロファイルデータを特定する前に、前記複数の異なる合焦位置の画像を方向性フィルタリングするために使用される方向性フィルタリング方向に沿った各位置での前記エッジ要素の各オフセット量を実質的に最小化する参照エッジのアライメント補正を提供すること、
    を含む、方法。
  2. 前記参照エッジのアライメント補正は、前記方向性フィルタリング方向に沿った各位置での前記エッジ要素の各オフセット量が、a)実質的に除去されること、b)実質的に補償されること、及びc)前記方向性フィルタリング方向に沿った各位置での対応するエッジ要素の、以前に特定された各オフセット量に実質的に一致されることのうちの少なくとも1つであるように、前記方向性フィルタリング方向を調整する、請求項1に記載の方法。
  3. 前記エッジ要素ビデオツールを動作させて、複数の異なる合焦位置の画像を取得すること、
    前記参照エッジのアライメント補正を適用して、前記方向性フィルタリング方向を調整すること、
    前記参照エッジのアライメント補正を適用した後、前記複数の異なる合焦位置の画像を方向性フィルタリングすること、及び
    前記方向性フィルタリングされた複数の異なる合焦位置の画像に基づいて、前記エッジ要素の前記プロファイルデータを特定すること、
    をさらに含む、請求項1に記載の方法。
  4. 前記複数の異なる合焦位置の画像を方向性フィルタリングすることは、前記複数の画像のそれぞれのPFFの基本となるピクセル位置に対応するポイントに関連して定義される方向性フィルタリング小領域(DFS)を使用することを含み、各DFSは、前記方向性フィルタリング方向に概ね直交する第2の方向に沿った短寸法よりも大きな、前記方向性フィルタリング方向に沿った長寸法を有し、
    前記参照エッジのアライメント補正を使用して、前記方向性フィルタリング方向に沿った前記エッジ要素の前記オフセット量が、前記方向性フィルタリングを実行する前に、a)実質的に除去されること、及びb)実質的に補償されることの少なくとも1つであるように、前記方向性フィルタリング方向を調整する、請求項3に記載の方法。
  5. 前記短寸法は多くとも5ピクセルであり、前記長寸法は少なくとも、前記短寸法の3倍である、請求項4に記載の方法。
  6. 前記DFSの前記PFFの基本となるピクセル位置に関連付けられたZ高さ又はPFFによる測定の一方が専ら、そのDFSに含まれる前記ピクセルに基づいて特定される、請求項5に記載の方法。
  7. 前記エッジ要素ビデオツールは、少なくとも、前記ワークピースの画像に重ねられた関心領域インジケータを含むユーザインタフェースを含み、前記方法は、前記ユーザインタフェースにおいて前記ワークピースの前記画像に重ねられた要素を調整することにより、前記参照エッジのアライメント補正が提供されたことの表示を提供することをさらに含む、請求項1に記載の方法。
  8. 前記ユーザインタフェースにおいて前記ワークピースの前記画像に重ねられた要素を調整することは、前記参照エッジのアライメント補正が提供されたことを示すために、関心領域インジケータ、エッジ方向インジケータ、及び方向性フィルタリング方向インジケータのうちの少なくとも1つを調整することを含む、請求項7に記載の方法。
  9. 前記エッジ要素ビデオツールは、直線エッジ要素に対応して構成され、前記関心領域インジケータを調整することは、軸の1つが前記エッジ要素に直交するように、前記関心領域インジケータを位置決めすることを含み、前記エッジ方向インジケータを調整することは、前記エッジ要素に平行するように前記エッジ方向インジケータを位置決めすることを含み、前記方向性フィルタリング方向インジケータを調整することは、前記エッジ要素に平行又は直交するように、前記方向性フィルタリング方向インジケータを位置決めすることを含む、請求項8に記載の方法。
  10. 前記エッジ要素ビデオツールは、円形エッジ要素及び円弧エッジ要素のうちの一方に対応して構成され、前記関心領域インジケータを調整することは、境界が前記エッジ要素と概ね同心になるように、前記関心領域インジケータを位置決めすることを含み、前記エッジ方向インジケータを調整することは、前記エッジ要素と概ね同心になるように、前記エッジ方向インジケータを位置決めすることを含み、前記方向性フィルタリング方向インジケータを調整することは、前記エッジ要素と概ね同心になるように、前記方向性フィルタリング方向インジケータを位置決めすることを含む、請求項8に記載の方法。
  11. 前記ユーザインタフェースにおいて前記ワークピースの前記画像に重ねられた要素を調整することは、前記ワークピースの前記画像に重ねられた要素の属性を変更すること、及び前記画像に重ねられる参照エッジのアライメント補正インジケータを追加することのうちの一方を含む、請求項7に記載の方法。
  12. 前記方法は、a)参照エッジのアライメント補正動作を含むタイプであるような前記エッジ要素ビデオツールを選択すること、b)前記エッジ要素ビデオツールの、参照エッジのアライメント補正動作を含む参照エッジのアライメント補正モード又はオプションを選択すること、c)前記エッジ要素ビデオツールの、参照エッジのアライメント補正動作を含む方向性フィルタリングモード又はオプションを選択すること、及びd)前記エッジ要素ビデオツールと併せて動作する参照エッジのアライメント補正動作を提供する参照エッジのアライメント補正ツールを選択することのうちの1つを含み、
    前記関心領域の少なくとも1つのワークピース画像の前記画像データを解析して、前記参照エッジのアライメント補正を提供することは、前記エッジ要素ビデオツールの動作と併せて前記参照エッジのアライメント補正動作を実行することを含む、請求項1に記載の方法。
  13. 前記方法は、前記マシンビジョンシステムの学習モード中に実行され、対応する動作はパートプログラムに記録される、請求項1に記載の方法。
  14. 前記方法の少なくともいくつかのステップは、パートプログラムに記録された対応する動作を実行することにより、前記マシンビジョンシステムの実行モード中に実行される、請求項1に記載の方法。
  15. 前記参照エッジのアライメント補正を提供することは、前記エッジ要素ビデオツールに関連付けられたデフォルト方向に沿った各位置での前記エッジ要素の各オフセット量を特徴付けることを含む、請求項1に記載の方法。
  16. 前記デフォルト方向に沿った各位置での前記エッジ要素の各オフセット量を特徴付けることは、
    前記エッジ要素ビデオツールを動作させて、前記関心領域内の複数の異なる合焦位置の画像を取得すること、
    前記関心領域の前記取得された複数の異なる合焦位置の画像に基づいて、前記エッジ要素の予備プロファイルデータを特定すること、
    前記予備プロファイルデータに基づいて、前記エッジ要素ビデオツールに関連付けられた線形状を前記エッジ要素に位置合わせすること、及び
    前記デフォルト方向に沿った各位置での位置合わせされた前記線形状の各オフセット量を特徴付けること、
    を含む、請求項15に記載の方法。
  17. 前記エッジ要素ビデオツールに関連付けられた前記線形状は直線であり、前記デフォルト方向に沿った各位置において位置合わせされた前記線形状の各オフセット量を特徴付けることは、前記位置合わせされた直線と前記デフォルト方向との間の角度を特定することを含む、請求項16に記載の方法。
  18. 前記エッジ要素ビデオツールに関連付けられた前記線形状は、円の少なくとも一部を含み、前記デフォルト方向はデフォルト円に平行する方向を辿り、前記デフォルト方向に沿った各位置において位置合わせされた前記線形状の各オフセット量を特徴付けることは、前記デフォルト円に対する前記位置合わせされた円の少なくとも一部の各オフセット量を特定することを含む、請求項16に記載の方法。
  19. 前記方法は、
    前記マシンビジョンシステムの学習モード中、前記エッジ要素ビデオツールを動作させて、前記関心領域内の複数の異なる合焦位置の画像を取得すること、
    前記エッジ要素にわたる複数の代表的な複合Z高さプロファイルを特定することであって、代表的な各複合Z高さプロファイルを、各複合Z高さプロファイルを特定する前に、複数の異なる合焦位置の画像を方向性フィルタリングするために使用される対応する方向性フィルタリング方向に基づいて特定すること、
    その代表的な複合Z高さプロファイルを提供するために使用される方向性フィルタリング方向に沿った各位置での前記エッジ要素の各オフセット量を実質的に最小化する、前記複数の代表的な複合Z高さプロファイルのうちの1つを特定すること、及び
    前記エッジ要素の各オフセット量を実質的に最小化する前記複数の代表的な複合Z高さプロファイルのその1つに対応する前記方向性フィルタリング方向に基づいて、前記参照エッジのアライメント補正を決定すること、
    をさらに含む、請求項1に記載の方法。
  20. 各オフセット量を実質的に最小化する前記複数の代表的な複合Z高さプロファイルのうちの1つを特定することは、前記複数の代表的な複合Z高さプロファイルの中から、前記代表的なエッジ要素に対応する最大プロファイル勾配を示す複合Z高さプロファイルを特定することを含む、請求項19に記載の方法。
  21. エッジ要素のプロファイルデータを特定するシステムであって、
    プログラム命令を記憶するメモリと、
    前記プログラム命令を実行して、動作を実行するように構成されるプロセッサと、
    を含み、前記動作は、
    ワークピースをマシンビジョン検査システムの視野に配置すること、
    エッジ要素ビデオツールを動作させて、前記ワークピースの取得画像内のエッジ要素を含むビデオツール関心領域を定義すること、及び
    前記エッジ要素ビデオツールを動作させて、前記関心領域内の少なくとも1つのワークピース画像の画像データを解析し、前記エッジ要素のプロファイルデータを特定する前に、複数の異なる合焦位置の画像を方向性でフィルタリングするために使用される方向性フィルタリング方向に沿った各位置での前記エッジ要素の各オフセット量を実質的に最小化する参照エッジのアライメント補正を提供すること、
    を含む、システム。
  22. 前記動作は、
    前記エッジ要素ビデオツールを動作させて、複数の異なる合焦位置の画像を取得すること、
    前記参照エッジのアライメント補正を適用して、前記方向性フィルタリング方向を調整すること、
    前記参照エッジのアライメント補正を適用した後、前記複数の異なる合焦位置の画像を方向性フィルタリングすること、及び
    前記方向性フィルタリングされた複数の異なる合焦位置の画像に基づいて、前記エッジ要素の前記プロファイルデータを特定すること、
    をさらに含む、請求項21に記載のシステム。
  23. 前記複数の異なる合焦位置の画像を方向性フィルタリングすることは、前記複数の画像のそれぞれのPFFの基本となるピクセル位置に対応するポイントに関連して定義される方向性フィルタリング小領域(DFS)を使用することを含み、各DFSは、前記方向性フィルタリング方向に概ね直交する第2の方向に沿った短寸法よりも大きな、前記方向性フィルタリング方向に沿った長寸法を有し、
    前記参照エッジのアライメント補正を使用して、前記方向性フィルタリング方向に沿った前記エッジ要素の前記オフセット量が、前記方向性フィルタリングを実行する前に、a)実質的に除去されること、及びb)実質的に補償されることの少なくとも1つであるように、前記方向性フィルタリング方向を調整する、請求項22に記載のシステム。
  24. 命令が記憶されたコンピュータ可読記憶媒体であって、前記命令は、プロセッサにより実行可能であり、
    ワークピースをマシンビジョン検査システムの視野に配置する動作と、
    エッジ要素ビデオツールを動作させて、前記ワークピースの取得画像内のエッジ要素を含むビデオツール関心領域を定義する動作と、
    前記エッジ要素ビデオツールを動作させて、前記関心領域内の少なくとも1つのワークピース画像の画像データを解析し、前記エッジ要素のプロファイルデータを特定する前に、複数の異なる合焦位置の画像を方向性フィルタリングするために使用される方向性フィルタリング方向に沿った各位置での前記エッジ要素の各オフセット量を実質的に最小化する参照エッジのアライメント補正を提供する動作と、
    を実行する、コンピュータ可読記憶媒体。
  25. 前記動作は、
    前記エッジ要素ビデオツールを動作させて、複数の異なる合焦位置の画像を取得すること、
    前記参照エッジのアライメント補正を適用して、前記方向性フィルタリング方向を調整すること、
    前記参照エッジのアライメント補正を適用した後、前記複数の異なる合焦位置の画像を方向性フィルタリングすること、及び
    前記方向性フィルタリングされた複数の異なる合焦位置の画像に基づいて、前記エッジ要素の前記プロファイルデータを特定すること、
    をさらに含む、請求項24に記載のコンピュータ可読記憶媒体。
  26. 前記複数の異なる合焦位置の画像を方向性フィルタリングすることは、前記複数の画像のそれぞれのPFFの基本となるピクセル位置に対応するポイントに関連して定義される方向性フィルタリング小領域(DFS)を使用することを含み、各DFSは、前記方向性フィルタリング方向に概ね直交する第2の方向に沿った短寸法よりも大きな、前記方向性フィルタリング方向に沿った長寸法を有し、
    前記参照エッジのアライメント補正を使用して、前記方向性フィルタリング方向に沿った前記エッジ要素の前記オフセット量が、前記方向性フィルタリングを実行する前に、a)実質的に除去されること、及びb)実質的に補償されることの少なくとも1つであるように、前記方向性フィルタリング方向を調整する、請求項25に記載のコンピュータ可読記憶媒体。
JP2014067664A 2013-03-28 2014-03-28 凸凹表面のエッジに向けて強化されたエッジ検出ツール Active JP6282508B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/852,945 US8995749B2 (en) 2013-03-28 2013-03-28 Enhanced edge detection tool for edges of irregular surfaces
US13/852,945 2013-03-28

Publications (2)

Publication Number Publication Date
JP2014194776A JP2014194776A (ja) 2014-10-09
JP6282508B2 true JP6282508B2 (ja) 2018-02-21

Family

ID=51597104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067664A Active JP6282508B2 (ja) 2013-03-28 2014-03-28 凸凹表面のエッジに向けて強化されたエッジ検出ツール

Country Status (4)

Country Link
US (1) US8995749B2 (ja)
JP (1) JP6282508B2 (ja)
CN (1) CN104075666B (ja)
DE (1) DE102014205726B4 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995749B2 (en) * 2013-03-28 2015-03-31 Mitutoyo Corporation Enhanced edge detection tool for edges of irregular surfaces
US9605950B2 (en) * 2013-05-22 2017-03-28 Cognex Corporation System and method for efficient surface measurement using a laser displacement sensor
DE102014107143B4 (de) * 2013-05-22 2021-03-04 Cognex Corp. System und Verfahren zur Messung der Verschiebung einer Objektoberfläche
JP5965939B2 (ja) * 2014-04-24 2016-08-10 株式会社オプトアート ワーク形状特定装置
US10824315B2 (en) * 2015-05-29 2020-11-03 Canon Medical Systems Corporation Medical image processing apparatus, magnetic resonance imaging apparatus and medical image processing method
US9602715B2 (en) 2015-07-09 2017-03-21 Mitutoyo Corporation Adaptable operating frequency of a variable focal length lens in an adjustable magnification optical system
US9830694B2 (en) 2015-08-31 2017-11-28 Mitutoyo Corporation Multi-level image focus using a tunable lens in a machine vision inspection system
CN105136065B (zh) * 2015-09-11 2018-02-06 成都金本华电子有限公司 飞机结构件特征点自动采集系统及其采集方法
US9774765B2 (en) 2015-09-15 2017-09-26 Mitutoyo Corporation Chromatic aberration correction in imaging system including variable focal length lens
CN105825173B (zh) * 2016-03-11 2019-07-19 福州华鹰重工机械有限公司 通用道路和车道检测系统与方法
CN106404800B (zh) * 2016-11-02 2019-08-30 北京中电科电子装备有限公司 一种划片机视觉切换控制系统及划片机
EP3542204B1 (en) * 2016-11-18 2021-02-17 Ventana Medical Systems, Inc. Method and system to detect substrate placement accuracy
CN109215068B (zh) * 2017-07-06 2021-05-28 深圳华大智造科技股份有限公司 图像放大率测量方法及装置
JP6756676B2 (ja) * 2017-07-27 2020-09-16 ファナック株式会社 製造システム
JP2019074476A (ja) * 2017-10-18 2019-05-16 株式会社キーエンス 形状測定装置
JP6939501B2 (ja) * 2017-12-15 2021-09-22 オムロン株式会社 画像処理システム、画像処理プログラム、および画像処理方法
CN108759661A (zh) * 2018-03-27 2018-11-06 松下电子部品(江门)有限公司 边缘检测视觉系统的直线偏移方法
US10498948B1 (en) 2018-06-05 2019-12-03 Applied Materials, Inc. Methods and apparatus for absolute and relative depth measurements using camera focus distance
US10825154B2 (en) 2019-03-19 2020-11-03 Apple Inc. Directional bilateral filtering with improved noise reduction along edges
JP2021109298A (ja) * 2020-01-15 2021-08-02 Dmg森精機株式会社 画像処理装置、工作機及び画像処理方法
WO2021161530A1 (ja) * 2020-02-14 2021-08-19 ヤマザキマザック株式会社 加工装置のためのワークの据え付け方法、ワーク据え付け支援システム、及び、ワーク据え付け支援プログラム
US11494924B2 (en) * 2020-04-28 2022-11-08 KLA Corp. Image alignment for noisy images
US11499817B2 (en) 2020-05-29 2022-11-15 Mitutoyo Corporation Coordinate measuring machine with vision probe for performing points-from-focus type measurement operations
US11328409B2 (en) 2020-09-30 2022-05-10 Mitutoyo Corporation System and method utilizing multi-point autofocus to align an optical axis of an optical assembly portion to be normal to a workpiece surface
US11587246B2 (en) 2020-10-30 2023-02-21 Mitutoyo Corporation Metrology system with projected pattern for points-from-focus type processes
CN112464947B (zh) * 2020-10-30 2021-09-28 深圳市路远智能装备有限公司 一种三脚透镜的视觉识别方法
CN112819843B (zh) * 2021-01-20 2022-08-26 上海大学 一种夜间电力线的提取方法及系统
TWI809705B (zh) 2022-02-09 2023-07-21 財團法人工業技術研究院 加工路徑產生方法及裝置
CN114509021B (zh) * 2022-02-18 2024-04-16 深圳市中钞科信金融科技有限公司 异形平板玻璃边部成像方法
CN114700227B (zh) * 2022-04-22 2023-09-08 广东赛威莱自动化科技有限公司 贴片机
CN117237669B (zh) * 2023-11-14 2024-02-06 武汉海微科技有限公司 结构件特征提取方法、装置、设备及存储介质

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8614214D0 (en) 1986-06-11 1986-07-16 Kodak Ltd Image processing method
US5790710A (en) 1991-07-12 1998-08-04 Jeffrey H. Price Autofocus system for scanning microscopy
US5729622A (en) * 1995-08-02 1998-03-17 Lucent Technologies Inc. Automatic inspection system for contactlessly measuring an offset of a central feature of an object
US5768409A (en) * 1995-08-02 1998-06-16 Lucent Technologies Inc. Automatic inspection method for contactlessly measuring an offset of a central feature of an object
JPH1196372A (ja) * 1997-09-16 1999-04-09 Omron Corp 画像処理方法およびその装置、ならびに画像処理用の制御プログラムの記録媒体
US6542180B1 (en) 2000-01-07 2003-04-01 Mitutoyo Corporation Systems and methods for adjusting lighting of a part based on a plurality of selected regions of an image of the part
US7120286B2 (en) * 2001-11-21 2006-10-10 Mitutoyo Corporation Method and apparatus for three dimensional edge tracing with Z height adjustment
US6728593B2 (en) * 2002-06-06 2004-04-27 The Hong Kong Polytechnic University System for analysis of fabric surface
JP3961438B2 (ja) * 2003-03-25 2007-08-22 株式会社東芝 パターン計測装置、パターン計測方法および半導体装置の製造方法
JP2005063678A (ja) * 2003-08-11 2005-03-10 Jeol Ltd 荷電粒子ビーム装置における自動焦点補正方法および自動非点補正方法
US7324682B2 (en) 2004-03-25 2008-01-29 Mitutoyo Corporation System and method for excluding extraneous features from inspection operations performed by a machine vision inspection system
JP2005315792A (ja) * 2004-04-30 2005-11-10 Sony Corp 欠陥検査分類装置
JP4585822B2 (ja) * 2004-09-22 2010-11-24 株式会社日立ハイテクノロジーズ 寸法計測方法及びその装置
JP4511303B2 (ja) * 2004-10-05 2010-07-28 株式会社日立ハイテクノロジーズ 荷電粒子線装置および寸法測定方法
US7454053B2 (en) 2004-10-29 2008-11-18 Mitutoyo Corporation System and method for automatically recovering video tools in a vision system
US7627162B2 (en) * 2005-01-31 2009-12-01 Mitutoyo Corporation Enhanced video metrology tool
US8004614B2 (en) * 2005-09-23 2011-08-23 Broadcom Corporation Method and system for reducing the appearance of jaggies when deinterlacing moving edges
US7567713B2 (en) * 2006-02-08 2009-07-28 Mitutoyo Corporation Method utilizing intensity interpolation for measuring edge locations in a high precision machine vision inspection system
JP4677376B2 (ja) 2006-07-07 2011-04-27 キヤノン株式会社 画像処理装置、画像処理方法、画像処理プログラム及び記憶媒体
JP2008128771A (ja) * 2006-11-20 2008-06-05 Toppan Printing Co Ltd 分光情報および形状情報同時取得装置及び情報取得方法
JP4943304B2 (ja) * 2006-12-05 2012-05-30 株式会社 Ngr パターン検査装置および方法
KR101392482B1 (ko) * 2007-08-30 2014-05-07 삼성전자주식회사 블록킹 효과 제거 시스템 및 방법
JP5253955B2 (ja) 2008-08-09 2013-07-31 株式会社キーエンス 画像処理におけるパターンモデルの位置決め方法、画像処理装置、画像処理プログラム及びコンピュータで読み取り可能な記録媒体
US8111938B2 (en) 2008-12-23 2012-02-07 Mitutoyo Corporation System and method for fast approximate focus
JP5075861B2 (ja) * 2009-03-16 2012-11-21 株式会社東芝 画像処理装置及び画像処理方法
US8111905B2 (en) * 2009-10-29 2012-02-07 Mitutoyo Corporation Autofocus video tool and method for precise dimensional inspection
US8581162B2 (en) * 2009-12-08 2013-11-12 Mitutoyo Corporation Weighting surface fit points based on focus peak uncertainty
US8773526B2 (en) 2010-12-17 2014-07-08 Mitutoyo Corporation Edge detection using structured illumination
US8280172B1 (en) 2011-03-22 2012-10-02 Mitutoyo Corporation Edge location measurement correction for coaxial light images
CN102901444B (zh) * 2012-08-29 2015-02-18 浙江大学 一种基于mp小波滤波的零件尺寸检测方法及其检测系统
US8885945B2 (en) * 2012-12-27 2014-11-11 Mitutoyo Corporation Method for improving repeatability in edge location results of a machine vision inspection system
US8995749B2 (en) * 2013-03-28 2015-03-31 Mitutoyo Corporation Enhanced edge detection tool for edges of irregular surfaces
CN103499297B (zh) * 2013-10-25 2016-01-13 爱科维申科技(天津)有限公司 一种基于ccd的高精度测量方法

Also Published As

Publication number Publication date
US8995749B2 (en) 2015-03-31
US20140294284A1 (en) 2014-10-02
DE102014205726A1 (de) 2014-10-16
JP2014194776A (ja) 2014-10-09
CN104075666B (zh) 2017-08-29
CN104075666A (zh) 2014-10-01
DE102014205726B4 (de) 2024-02-08

Similar Documents

Publication Publication Date Title
JP6282508B2 (ja) 凸凹表面のエッジに向けて強化されたエッジ検出ツール
JP6239232B2 (ja) 高性能エッジフォーカスツール
JP6101706B2 (ja) マシンビジョンシステムにおいて複数の照明設定を使用する合焦点動作
JP6469368B2 (ja) マシンビジョン検査システム及び高速合焦高さ測定動作を実行する方法
JP5972563B2 (ja) 構造化照明を用いるエッジ検出
JP5982144B2 (ja) 落射照明画像用のエッジ位置測定値補正
US8581162B2 (en) Weighting surface fit points based on focus peak uncertainty
US8885945B2 (en) Method for improving repeatability in edge location results of a machine vision inspection system
US8111938B2 (en) System and method for fast approximate focus
US8311311B2 (en) Optical aberration correction for machine vision inspection systems
US8648906B2 (en) Precision solder resist registration inspection method
JP6355411B2 (ja) エッジ検出方法
US9456120B2 (en) Focus height repeatability improvement in a machine vision inspection system
US7120286B2 (en) Method and apparatus for three dimensional edge tracing with Z height adjustment
US8937654B2 (en) Machine vision inspection system comprising two cameras having a rotational offset
JP7353757B2 (ja) アーチファクトを測定するための方法
US10880468B1 (en) Metrology system with transparent workpiece surface mode
JP6293453B2 (ja) エッジ測定ビデオツールパラメータ設定ユーザインタフェース
JP2019045399A (ja) 検査方法、検査プログラム及び検査装置
JP2024086618A (ja) 測定マーキング装置を利用したマシンビジョンシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180124

R150 Certificate of patent or registration of utility model

Ref document number: 6282508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250