JP6279297B2 - 嫌気性消化装置およびこれに用いる熱交換器 - Google Patents

嫌気性消化装置およびこれに用いる熱交換器 Download PDF

Info

Publication number
JP6279297B2
JP6279297B2 JP2013248942A JP2013248942A JP6279297B2 JP 6279297 B2 JP6279297 B2 JP 6279297B2 JP 2013248942 A JP2013248942 A JP 2013248942A JP 2013248942 A JP2013248942 A JP 2013248942A JP 6279297 B2 JP6279297 B2 JP 6279297B2
Authority
JP
Japan
Prior art keywords
sludge
heat medium
heat
circulation
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013248942A
Other languages
English (en)
Other versions
JP2015104713A (ja
Inventor
佐藤 稔
稔 佐藤
雄一郎 信澤
雄一郎 信澤
正文 間
正文 間
之也 土屋
之也 土屋
Original Assignee
株式会社西原環境
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社西原環境 filed Critical 株式会社西原環境
Priority to JP2013248942A priority Critical patent/JP6279297B2/ja
Publication of JP2015104713A publication Critical patent/JP2015104713A/ja
Application granted granted Critical
Publication of JP6279297B2 publication Critical patent/JP6279297B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、主に下水やし尿などの処理に伴って発生する有機性汚泥から高効率でエネルギー回収を行うための嫌気性消化反応を適切な環境下で行う嫌気性消化装置およびこれに用いる間接加温式の熱交換器に関するものである。
下水やし尿などの処理に伴って発生する有機性汚泥は、過去においては廃棄物として埋め立て処分や焼却処分によって処理されており、有機性汚泥中に含まれる窒素やリンのコンポスト化(堆肥化)やメタンガスを含む消化ガスへの変換などによる有効利用はごく限られた範囲で行われるのみであった。
しかし、近年においては、これら有機性汚泥を資源として積極的に利用することの重要性が認識されている。
有機性汚泥処理プロセスを嫌気条件下で行う嫌気性処理では、有機性汚泥がメタン菌等の古細菌による分解を受けて、メタンガスを含む消化ガスが生成される。このメタンガス等の消化ガスは、そのまま大気中に放出されれば、温室効果に与える影響が大きいが、効率よく生成し、回収することで、貴重な熱源として有効利用できるバイオガスである。
このように、クリーンエネルギーへの変換が可能なメタンガスを含む消化ガスを生成できる有機性汚泥の嫌気性処理では、昨今のエネルギー利用と環境配慮に係る事情を考慮すると、嫌気性処理に要するエネルギーを可能な限り少なくすると同時に、熱エネルギー源となるメタンガスを含む消化ガスを可能な限り多く回収できるように、エネルギー収支の向上が特に重要となっている。このため、既存の有機性汚泥処理方式に対して、より安定化した効率のよいエネルギー変換を行うための改善や改良が行われることで、有機性汚泥処理プロセスから発生する、従来廃棄されていた熱エネルギーの有効利用による、装置全体としてのエネルギー回収率の向上などが図られている。
このような嫌気性汚泥処理を行う消化装置では、その消化反応を効率よく進行させるため、対象となる汚泥全体の温度が、汚泥中に存在するメタン菌等の古細菌の至適温度となるように管理される必要がある。
従来の嫌気性消化装置として、例えば、特許文献1に記載された、汚泥の温度管理や汚泥循環を行うための汚泥消化制御装置を備えたものが知られている。
この汚泥消化制御装置は、上部と中間部に著しい温度差を生じ、汚泥の消化発酵が適切に行われないことで、エネルギー変換効率が低下するという不都合を解決するために、汚泥投入ポンプから投入された汚泥を処理する卵形消化タンク内の上部の汚泥温度と中間部の汚泥温度の差に基づき、汚泥投入ポンプと消化タンクとの間に設置された熱交換器によって、投入前の汚泥を加熱することで、消化タンク内の上部温度と中間部温度の均一化を図るものである。また、上記の汚泥温度の差に基づき、投入後の汚泥を撹拌することで、消化タンク内の上部温度と中間部温度の均一化を図るものである。
また、従来の嫌気性消化装置として、例えば、特許文献2、3および4に記載されたものも知られている。
特許文献2および3に記載された汚泥消化装置は、いずれも、汚泥消化槽内の汚泥の撹拌を目的として汚泥消化槽の内外に延在させた汚泥の循環経路のうち、汚泥消化槽外のU字状管の屈曲部分に、汚泥を循環させるためのスクリューポンプを配設し、その近傍に、循環経路内の汚泥を加熱する熱交換器を備えたものである。特許文献2の熱交換器は、伝熱管に汚泥を通し、この伝熱管を外側から蒸気で加熱して熱交換を行う構成を有している。また、特許文献3の熱交換器は、汚泥を通す内管と、この内管の外側に配され、汚泥の流れと反対向き(向流)に熱媒体を通す外管からなる二重管構造を有している。
また、特許文献4に記載された汚泥消化装置は、消化槽内に配置されたドラフトチューブの上部に、汚泥の下降流を形成するためのスクリューポンプを配設し、その下側のドラフトチューブ内に、汚泥を通す内管と、この内管の外側に配され、汚泥の流れと反対向き(向流)に熱媒体を通す外管からなる二重管構造の熱交換器を設けている。この熱交換器の外管には、消化槽内の汚泥中を延在する、熱媒体導入管および熱媒体導出管が接続されている。
従来の嫌気性消化装置に使用可能な間接加温式の熱交換器としては、非特許文献1に記載された、間接加温式の外筒パイプ型やスパイラル型のものが一般に知られている。
図14および図15に示した外筒パイプ型の熱交換器60は、円筒状の本体61と、この本体61の一端側に設けられた汚泥流入室62と、本体61の他端側に設けられた汚泥流出室63を備えており、本体61と汚泥流入室62および汚泥流出室63とはフランジ継手で接合されている。汚泥流入室62および汚泥流出室63には、それぞれ、本体61の軸方向に直交する方向に開口する汚泥流入口62aおよび汚泥流出口63aが設けられている。本体61の内部は、その本体61の軸方向に沿って複数の汚泥流路64を形成するように複数の円筒状の伝熱壁65が設けられた一つの熱媒体流路66となっている。この熱媒体流路66には、本体61の軸方向に直交する方向に開口する熱媒体供給口66aおよび熱媒体排出口66bが設けられている。図14に示すように、汚泥の流れと熱媒体の流れは対向流である。このような構造の熱交換器60では、汚泥流入室62の大きさに比べて小さな開口を有する複数の汚泥流路64が汚泥流入口62aおよび汚泥流出口63aに対して直交している。このため、熱交換器60の汚泥流入口62aから流入する汚泥の流れは、汚泥流入室62内で汚泥流路64に向けて直角に折れ曲がり、狭い汚泥流路64を通過し、伝熱壁65を介した熱交換を受けた後、再び、汚泥流出室63内で汚泥流出口63aに向けて直角に折れ曲がる経路を辿る。
また、図16に示したスパイラル型の熱交換器70は、円筒管71内に螺旋状に配設した伝熱壁72を隔てて形成された汚泥流路73と熱媒体流路74を備えており、汚泥流路73を通過する汚泥の流れと熱媒体流路74を通過する熱媒体の流れが対向流となるように構成されている。汚泥流路73は、円筒管71の周面に形成された汚泥流入口73aと、円筒管71の軸線方向に向けて開口する汚泥流出口73bを有している。熱媒体流路74は、円筒管71の軸線方向に向けて開口する熱媒体流入口74aと、円筒管71の周面に形成された熱媒体流出口74bを有している。このような構造の熱交換器70では、汚泥流路73が汚泥流入口73aおよび汚泥流出口73bに対して直交している。このため、熱交換器70内に流入する汚泥の流れは、汚泥流入口73a付近で略直角に折れ曲がり、螺旋状の汚泥流路73を通過し、伝熱壁72を介した熱交換を受けた後、再び、汚泥流出口73b付近で略直角に折れ曲がる経路を辿る。
特開平5−192697号公報 特開2011−31166号公報 特開2011−31167号公報 特開2011−31168号公報
「汚泥消化タンク改築・修繕」技術資料 財団法人 下水道新技術推進機構 2007年3月発行 第47頁〜第50頁
本願発明者達は、本発明に想到するに際して、少なくとも以下に記載する課題を認識していた。
特許文献1に開示された、汚泥消化制御装置を備えた嫌気性消化装置には、以下の課題がある。
(1)消化タンクの上部温度と中部温度を検出する温度検出器が必要であり、温度検出器および付帯設備ならびにその維持管理にコストがかかる。
(2)投入される汚泥の加温や消化タンク内の撹拌機の回転数の制御を適切に行うためには、消化タンク内の上部および中部を代表する温度の測定に適した場所に温度検出器を設置する必要がある。さらに、夏季と冬季における外気温の変化による消化タンク内外の熱移動に及ぼす影響に配慮すると、温度検出器の設置場所を変える必要もある。この場合、嫌気性消化装置の運転開始条件を設定する作業が煩雑となる。また、温度検出器を設置した箇所が適切でない場合、投入される汚泥の加温や消化タンク内の撹拌機の回転数の制御を適切に行うことができなくなるため、消化タンク内の汚泥の温度や質を均一に保つことができず、消化反応を効率よく進行させることができない可能性がある。
(3)消化タンク内の汚泥を加温する設備の他に投入する汚泥を事前に加温するための設備が別途必要となり、その設備およびその維持管理にコストがかかる。
(4)投入する汚泥の事前加温や消化タンク内の撹拌機の回転数制御を行うための制御設備が必要となり、その設備およびその維持管理にコストがかかる。
特許文献2乃至4に開示された、汚泥消化装置には、以下の課題がある。
(5)汚泥消化槽の汚泥を加熱するために必要な熱交換器の伝熱面を、循環経路上で、確保しなければならない。循環経路は通常、管路であり、その外周長×管路長が伝熱面積であることから、加温に必要な長さの外管付設箇所が嫌気性消化槽の外部において確保が困難な場合、不必要な循環経路を延長する構成(特許文献2および3のU字管)や、嫌気性消化槽内の循環経路部分に外管付設箇所を設ける構成(特許文献4のドラフトチューブ内の外管)を採用することとなる。
(6)循環経路の延長ができない場合、熱交換器の伝熱面積を小さい(配管ならば短い)状態で必要温度まで加熱するのに、伝熱効率の高い熱媒体(例えば、水蒸気など)を用意することも可能であるが、そのためには、別途、熱媒体の供給が必要となる。
(7)特許文献2および3に開示されたような、従来の熱交換器の伝熱部は、コンパクトなサイズで高効率の熱交換を行うために、伝熱壁の比表面積(熱交換器の被加熱媒体(汚泥)流路の単位容積に対する伝熱壁面積の割合)を大きくとれる狭い流路で構成されている。しかし、一般に狭い流路は圧力損失が大きいので、大流量での利用は困難であり、低流量での熱交換となる。そのため、所定の熱量を供給するためには少ない流量の汚泥を大きく昇温しなければならず、汚泥を変質させ、熱的損傷を与えてしまうことが懸念される。このような熱的損傷は、汚泥中のメタン菌等の古細菌の死滅あるいは失活につながり、消化槽内での嫌気性消化反応(メタン発酵)が進行しないか、あるいは、進行しにくくなる可能性がある。
特に、特許文献4に開示された、汚泥消化装置には、以下の課題がある。
(8)汚泥消化槽内部の循環経路やドラフトチューブに外管を設ける場合には、外管やこれに接続される熱媒体導入管および熱媒体導出管に接する汚泥消化槽内の汚泥も少なからず加温されることとなる。このため、汚泥消化槽内の汚泥温度が不均一となる原因となる。つまり、循環経路やドラフトチューブ内の汚泥流速と比較して、汚泥消化槽内の汚泥流速は小さいため、外管やこれに接続される熱媒体導入管および熱媒体導出管に接する汚泥消化槽内部の汚泥は、循環経路やドラフトチューブ内を流れる汚泥と比較して高温に加温され、温度の不均一を生じやすくなる。さらに、循環経路やドラフトチューブ内と異なり、能動的な加温の調整が行われないため、必要以上に汚泥が高温に曝され、汚泥の変質やそれに伴う汚泥消化機能の低下が懸念される。この場合も、汚泥中のメタン菌等の古細菌の死滅あるいは失活につながる熱的損傷によって、消化槽内での嫌気性消化反応(メタン発酵)が進行しないか、あるいは、進行しにくくなる可能性がある。
非特許文献1に開示された、外筒パイプ型やスパイラル型の熱交換器には、以下の課題がある。
いずれの熱交換器においても、汚泥の流れが略直角方向に折れ曲がる経路を辿るため、汚泥が通過する際の圧力損失が大きくなる。このため、当該熱交換器が、例えば、消化槽内の汚泥を循環する目的で設置される循環管に設けられた場合、その汚泥の流れの勢いを弱めてしまうので、汚泥の循環流による撹拌能力を損なう結果となり、熱交換を行うことができたとしても、本来の目的である汚泥循環を効率よく行うことができない可能性があるという課題がある。
本発明は、上記の課題を解決するためになされたもので、嫌気性消化槽内の汚泥を循環させるための循環管内における汚泥の円滑な流通を維持し、且つ、汚泥に熱的損傷を与えない程度に昇温幅(熱交換前後の汚泥の温度差)を抑えながら汚泥を加温し、その加温された汚泥の循環流によって、嫌気性消化槽内の温度分布ムラを抑制できる嫌気性消化装置を提供することを目的とするものである。
また、本発明は、被加熱媒体である汚泥の流れの勢いを弱めることなく、汚泥を円滑に流通させながら熱交換を行うことで、汚泥の昇温幅を抑制できる熱交換器を提供することを目的とするものである。
上記課題を解決するために、本発明に係る嫌気性消化装置は、
投入された原汚泥を嫌気性消化処理する嫌気性消化槽、
該嫌気性消化槽内で開口する吸引口と吐出口を有し、
前記嫌気性消化槽外に延在する循環管、
該循環管に設けられ、前記嫌気性消化槽内の混合汚泥を
移送する循環ポンプ、
および
前記循環管に設けられ、前記混合汚泥を加温する熱交換器、
を備えた嫌気性消化装置において、
前記熱交換器は、
混合汚泥が通過する外筒と、
該外筒内に複数設けられた中空の熱交換部材と、
前記外筒の一端の周面を覆い、熱媒体を受け入れる熱媒体供給室を
形成する供給側外覆部材と
を備え、
前記熱交換部材と前記熱媒体供給室とが連通している
ことを特徴とする。
前記熱交換器は、
前記外筒の他端の周面を覆い、熱媒体を受け入れる熱媒体排出室を
形成する排出側外覆部材を備え、
前記熱交換部材と前記熱媒体排出室とが連通していることを特徴とする。
前記熱交換器に用いる熱媒体は、温水である
ことを特徴とする。
前記循環ポンプおよび前記熱交換器は、
前記嫌気性消化槽外に配設されていることを特徴とする。
前記循環管は、
垂直方向に開口する吸引口が設けられた1つまたは2つ以上の吸引管と、
水平方向に開口する吐出口が設けられた1つまたは2つ以上の吐出管と
を備えていることを特徴とする。
本発明に係る熱交換器は、
汚泥が通過する外筒と、
該外筒内に複数設けられた中空の熱交換部材と、
前記外筒の一端の周面を覆い、熱媒体を受け入れる熱媒体供給室を
形成する供給側外覆部材と
を備え、
前記熱交換部材と前記熱媒体供給室とが連通している
ことを特徴とする。
前記外筒の他端の周面を覆い、熱媒体を受け入れる熱媒体排出室を
形成する排出側外覆部材を備え、
前記熱交換部材と前記熱媒体排出室とが連通している
ことを特徴とする。
熱媒体は、温水である
ことを特徴とする。
本発明に係る嫌気性消化装置によれば、以下のような優れた作用効果を奏することができる。
(1)嫌気性消化槽内で開口する吸引口と吐出口を有し、消化槽外に延在する循環管に設けられた熱交換器を、混合汚泥が通過する外筒と、この外筒内に複数設けられた中空の熱交換部材と、外筒の一端の周面を覆い、熱媒体を受け入れる熱媒体供給室を形成する供給側外覆部材とを備え、熱交換部材と熱媒体供給室とを連通させた構成としたことにより、循環管内を流れる混合汚泥の流れの勢いを弱めることなく、複数の熱交換部材が設けられた外筒内に通過させることができるとともに、その外筒内を通過する混合汚泥を、熱媒体供給室から熱媒体が供給された熱交換部材に接触させることで、その混合汚泥に対して効率よく熱交換を行うことができる。そして、効率よく加温された混合汚泥は、循環ポンプの吐出力によって消化槽内の全体で循環するので、このような循環流によって、消化槽内の混合撹拌を十分に行うことができる。これにより、消化槽内の混合汚泥中の温度分布ムラを抑制できるので、消化槽内の混合汚泥の温度や質をほぼ均一に保つことができる。
この嫌気性消化装置について、混合汚泥の流れの勢いを弱めることなく、混合汚泥を円滑に流通させながら熱交換を行うことで、混合汚泥の昇温幅を抑えて混合汚泥に熱的損傷を与えずに加温できる上述の熱交換器を適用することにより、消化槽内の温度分布ムラを抑えることができる一方で、汚泥撹拌に必要な負荷(例えば、撹拌エネルギー)の増大を抑制することができる。この熱交換器の熱媒体の温度上昇に廃熱を有効利用すれば、従来よりも大幅に負荷を抑えてエネルギーを回収することが可能となる。
(2)また、上述の構成に加えて、外筒の他端の周面を覆い、熱媒体を受け入れる熱媒体排出室を形成する排出側外覆部材を備え、熱交換部材と熱媒体排出室とを連通させた構成としたことにより、熱交換部材内への新たな熱媒体の供給が可能となるため、混合汚泥に対して、さらに効率よく熱交換を行うことができる。
本発明に係る熱交換器によれば、以下のような優れた作用効果を奏することができる。
(1)熱交換器を、汚泥が通過する外筒と、外筒内に複数設けられた中空の熱交換部材と、外筒の一端の周面を覆い、熱媒体を受け入れる熱媒体供給室を形成する供給側外覆部材とを備え、熱交換部材と熱媒体供給室とを連通させた構成としたことにより、外筒を流れる汚泥の流れの勢いを弱めることなく、複数の熱交換部材が設けられた外筒内に通過させることができるとともに、その外筒内を通過する汚泥を、熱媒体供給室から熱媒体が供給された熱交換部材に接触させることで、その汚泥に対して効率よく熱交換を行うことができる。その熱交換に際しては、汚泥の流れの勢いを弱めることなく、汚泥を円滑に流通させることで、汚泥の昇温幅を抑えて加温することができる。このため、汚泥に熱的損傷を与えることを防止できる。
(2)また、上述の構成に加えて、外筒の他端の周面を覆い、熱媒体を受け入れる熱媒体排出室を形成する排出側外覆部材を備え、熱交換部材と熱媒体排出室とを連通させた構成としたことにより、熱交換部材内への新たな熱媒体の供給が可能となるため、混合汚泥に対して、さらに効率よく熱交換を行うことができる。
本発明の実施の形態1による嫌気性消化装置の全体構成を模式的に示す部分断面図である。 図1に示した嫌気性消化装置の熱交換器の内部構造を拡大して示す断面図である。 図2のIII−III断面図である。 本発明の実施の形態2による嫌気性消化装置の全体構成を模式的に示す部分断面図である。 図4に示した嫌気性消化装置を示す平面図である。 図4および図5に示した嫌気性消化装置の熱交換器の外部構造を示す斜視図である。 図6に示した熱交換器の内部構造の一部を破断して示す斜視図である。 図4乃至図7に示した熱交換器内の熱交換部材の配置構成を示す斜視図である。 図4乃至図8に示した熱交換器の分解斜視図である。 図4乃至図9に示した熱交換器内での汚泥および熱媒体の流れの様子を模式的に示す斜視図である。 本発明の実施の形態3による嫌気性消化装置に用いられる熱交換器内の熱交換部材の配置構成を示す断面図である。 図11に示した熱交換部材の連通穴の配置構成を熱媒体供給側から示す部分断面図である。 本発明の実施の形態4による嫌気性消化装置の全体構成を模式的に示す部分断面図である。 従来の一般的な熱交換器(外筒パイプ型)における熱媒体および汚泥の流れの様子を示す概略断面図である。 図14のXV−XV断面図である。 従来の一般的な熱交換器(スパイラル型)における熱媒体および汚泥の流れの様子を示す概略断面図である。
実施の形態1.
図1は本発明の実施の形態1による嫌気性消化装置の全体構成を模式的に示す部分断面図であり、図2は図1に示した嫌気性消化装置の熱交換器の内部構造を拡大して示す断面図であり、図3は図2のIII−III断面図である。なお、図1および図2中の太い矢印は、汚泥の流れを示し、細い矢印は特に明示した場合を除き、熱媒体の流れを示すものとする。この点は、他の実施の形態において参照する図4乃至図7、図10および図13においても同様である。
この実施の形態1による嫌気性消化装置は、図1に示すように、投入された原汚泥を嫌気性消化処理する嫌気性消化槽(以下、単に、消化槽という)1と、この消化槽1内で開口する吸引口2aと吐出口2bを有し、消化槽1外に延在する循環管2と、この循環管2に設けられ、消化槽1内で原汚泥が混合されてなる混合汚泥を圧送(移送)する循環ポンプ3と、循環管2に設けられ、混合汚泥を加温する熱交換器4とを備えている。
消化槽1は、図1に示すように、球状の密閉タンクである。この消化槽1には、上記循環管2の他に、消化槽1の上部に、原汚泥を投入するための汚泥投入管(図示せず)と、嫌気性消化処理された混合汚泥から消化ガスを回収するための消化ガス回収管(図示せず)と、混合汚泥から消化汚泥を脱離させて生じた分離液(脱離液)を排出するための脱離液流出管(図示せず)が配設されている。また、消化槽1の底部には、消化汚泥を排出するための消化汚泥排出管(図示せず)が配設されている。
循環管2は、消化槽1内の上部で開口する吸引口2aおよび消化槽1内の下部で開口する吐出口2bを除き、消化槽1外に延在している。この消化槽1外に延在する部分の循環管2は、概ねU字状をなしており、そのうち、少なくとも、循環ポンプ3が配設される流路方向反転部分と、この流路方向反転部分よりも吐出口2b側の、熱交換器4が配設される部分は、略直線状をなしている。流路方向反転部分は、循環管2を、吸引口2aを有する吸引側部分(吸引管)と吐出口2bを有する吐出側部分(吐出管)とに分けている。また、その吐出側部分のうち、熱交換器4が配設される部分は、その熱交換器4を装着する分だけ離間した状態で分離されており、装着された熱交換器4内の直線的な汚泥流通部を経由することで、循環管2が直線的に連続するように構成されている。
循環管2の口径は、吸引口2aおよび吐出口2bを含め、全長にわたって同一寸法に設定されていることが望ましい。その口径寸法は、消化槽1で嫌気性処理される原汚泥の投入量(負荷)、単位時間当たりの混合汚泥の循環流量、循環する混合汚泥に対する熱交換の効率などを勘案して決められることが望ましい。
ここで、循環管2の吸引口2aおよび吐出口2bは、混合汚泥を循環管2内で吸引口2aから吐出口2bへ流すことを前提とした便宜上の表現であり、混合汚泥の流れが反対方向になれば、混合汚泥は吐出口2bから吸引され、吸引口2aから吐出されることになる。
循環ポンプ3は、逆送可能なスクリューポンプであり、循環管2のうち、略直線状の流路方向反転部分内に延在するスクリュー30と、循環管2外に配設され、且つスクリュー30を正転または逆転の各方向に回転駆動する駆動器31とから概略構成されている。スクリュー30は、回転軸30aと、この回転軸30aの周面にらせん状に配設された回転羽根30bとから概略構成されている。スクリュー30の回転羽根30bのピッチは、一定に設定されている。ピッチの大きさは、循環管2内を流れる混合汚泥の想定流量と、スクリュー30による混合汚泥の移送機能を勘案して決められることが望ましい。つまり、ピッチを比較的小さく設定すると、圧縮機能が優位となり、移送機能が低下するが、ピッチを比較的大きく設定すれば、圧縮機能よりも移送機能が優位となる。しかし、混合汚泥の流量に見合ったピッチの大きさでなければ、ピッチを大きくしたとしても、混合汚泥を効率よく圧送(移送)することが困難となるからである。
駆動器31としては、例えば、モータが用いられる。モータとしては、スクリュー30の回転軸30aを正転または逆転の各方向に回転駆動し、混合汚泥を移送できるものであれば、油圧式、電動式などのいかなる種類のものも使用可能である。ここで、正転方向とは、循環管2の吸引側部分から吐出側部分に向けて混合汚泥を移送する場合の回転方向をいい、逆転方向とは、吐出側部分から吸引側部分に向けて混合汚泥を移送する場合の回転方向をいう。消化槽1内での嫌気性消化反応を行う通常運転時は、正転方向に回転駆動させる。また、例えば、熱交換器4のメンテナンス時などにおいて、スクリュー30を逆転方向に回転駆動させる。
なお、スクリュー30の回転軸30aの一端は、循環管2外に配設された駆動器31に連結されるため、その一端側の回転軸30aと循環管2との境界部分は、パッキン等の封止部材(図示せず)を用いた水密構造となっている。
熱交換器4は、混合汚泥が通過する外筒41と、この外筒41内に複数設けられた中空の熱交換部材42と、外筒41の一端の周面(循環管2の吐出口2b側の端面)を覆い、熱媒体を受け入れる熱媒体供給室43aを形成する供給側外覆部材43と、外筒41の他端の周面(循環管2の吸引口2a側の端面)を覆い、熱媒体を受け入れる熱媒体排出室44aを形成する排出側外覆部材44を備えており、中空の熱交換部材42の内部は、熱媒体供給室43aおよび熱媒体排出室44aの双方に連通している。つまり、熱媒体供給室43aと熱媒体排出室44aは、熱交換部材42を介して連通している。この熱交換器4では、外筒41内を通過する混合汚泥に対して向流となる流れの方向(以下、順方向という場合がある)で、熱媒体が流れるように構成されている。
ここで、熱交換器4における「供給側」とは、熱媒体を順方向で流すことを前提とした場合における熱交換器4内での熱媒体の供給側を指し、「排出側」とは、その順方向における熱交換器4内での熱媒体の排出側を指す。この点は、他の実施の形態でも同様である。
なお、熱交換器4の各構成部品は、いずれも、混合汚泥の熱媒体(温水)による希釈や熱的損傷につながる熱媒体の外筒41内への流入を防止するため、水密構造で連結されている。混合汚泥の希釈は、熱媒体(温水)の流入分だけ、混合汚泥の総量(負荷)が増加する一方で、メタン菌等の古細菌の濃度が低下し、消化反応の効率が低下するため、好ましくない。混合汚泥の熱的損傷は、混合汚泥中のメタン菌等の古細菌の死滅あるいは失活につながるため、好ましくない。熱交換器4の各構成部品の水密構造により、混合汚泥は、熱媒体と接触することなく、また熱交換器4から漏洩することなく、熱交換部材42の外側を常に流通することになる。
外筒41は、図1および図2に示すように、循環管2の口径よりも大きな口径を有する直胴の円筒状部材である。図3に示すように、外筒41の内部のうち、配設された複数の熱交換部材42が占める部分以外の残りの部分は、混合汚泥が通過する汚泥流通部41aとなっている。この汚泥流通部41aの口径は、汚泥流通部41aの断面積(汚泥の移送方向に直交する方向の断面積)が循環管2の断面積に等しくなる程度の寸法以上であって、混合汚泥が汚泥流通部41a内で必要以上に迂回するスペースや混合汚泥が流れないデッドスペースが形成されない程度の口径寸法未満の範囲で設定されることが望ましい。
このような外筒41は、循環管2と同軸になるように、循環管2の分離部分に配設される。
熱交換部材42は、図1乃至図3に示すように、平たい中空の略長板状部材であり、熱媒体を内部に流通させる熱媒体流通部42aと、この熱媒体流通部42aを内部に形成する伝熱部42bと、この伝熱部42bの長さ方向の両端に形成され、且つ供給側外覆部材43の後述の供給側連通穴や排出側外覆部材44の後述の排出側連通穴との接合が可能な連通穴42cとから概略構成されている。
熱媒体流通部42aは、熱媒体供給室43a内の熱媒体を、供給側外覆部材43の後述の供給側連通穴およびこれに接合した伝熱部42bの一端側の連通穴42cを介して熱媒体を受け入れ、伝熱部42bの他端側の連通穴42cおよびこれに接合した排出側外覆部材44の後述の排出側連通穴を介して、熱媒体排出室44aへ熱媒体を移行させる通路である。
伝熱部42bは、図3に示すように、外筒41の汚泥流通部41aの内周面に片固定され、且つ外筒41の内周面から半径方向内方に向けて延在している。伝熱部42bは、その外表面が、外筒41の汚泥流通部41a内を流れる混合汚泥の流れに並行となるように、配設されている。伝熱部42bの長さ方向の両端の両側面(接触面)は、いずれも傾斜面または曲面となっており、外筒41の汚泥流通部41a内を流れる混合汚泥の流れの方向がいずれの方向になったとしても、その混合汚泥の流れに対して抵抗(圧力損失)が少ない。また、伝熱部42bの長さ方向に交差する方向の両側面(接触面)は、いずれも傾斜面または曲面となっており、外筒41の汚泥流通部41aの中央側および内周面側を流れる混合汚泥の流れに対して抵抗(圧力損失)が少ない。
伝熱部42bが、前述したように混合汚泥の流れに対して接触面を傾斜または曲面形状となっていることに加え、外筒41に対して片固定となっていることによって、例えば、毛髪等の、熱交換部材42に絡みつきやすい形状の異物が混合汚泥中に混入している場合においても、汚泥や汚泥中の異物が引っ掛かるなどして付着・堆積する、いわゆる「汚泥詰まり」が生じにくい。また、伝熱部42bの一端側の連通穴42cと供給側外覆部材43の後述の供給側連通穴との接合部や伝熱部42bの一端側の連通穴42cと排出側外覆部材44の後述の排出側連通穴との接合部は、いわゆる「汚泥詰まり」が生じないよう、密接する形状とされている。また、定期的に循環管2内の汚泥流れを逆方向とすることで熱交換部材42に異物の付着・堆積を防止することができる。これにより、熱交換器4の清掃などのメンテナンスの実施頻度は少なくなり、嫌気性消化装置の稼働率が向上するため、原汚泥の処理、および消化ガスの発生効率が向上する。
なお、図3に示す熱交換部材42の配設数は24本であるが、これに限定されるものではない。熱交換部材42の配設数およびその間隔は、汚泥流通部41a内の汚泥の圧力損失をできるだけ小さくし、且つ熱交換に必要な伝熱部42bの熱交換面積(伝熱面積)をできるだけ広く確保できる点を勘案して決められることが望ましい。伝熱部42bの形成材料としては、熱伝導性、耐腐食性、寸法安定性などに優れた金属材料や熱伝導性樹脂材料が挙げられる。また、伝熱部42bの外表面は、汚泥流通部41a内の汚泥の流れをより円滑にするため、滑面処理されていることが望ましい。
また、外筒41内に熱交換部材42を配設する際には、熱交換部材42同士が外筒41の中心側において互いに接触しない程度に、且つ、汚泥流れを必要以上に妨げず圧力損失の増加や汚泥・異物による閉塞を起こさない程度に離間していることが重要である。
このような構成の熱交換器4では、外筒41内の汚泥流通部41aに配設した熱交換部材42による圧力損失を低減するため、上述のように、汚泥流通部41aの口径が循環管2よりも大口径となっている。これにより、循環ポンプ3は、消化槽1内の混合汚泥を混合撹拌することを目的とするポンプとしての役割に加えて、その混合汚泥を熱交換器4へ移送することを目的とする熱交換器用ポンプとしての役割を果たすこととなるため、別途、当該熱交換器用ポンプの配設が不要となる。
熱交換器4は、その外筒41内の汚泥流通部41aが循環管2よりも大きい口径を有し、且つ循環管2と同軸になるように、循環管2の分離部分に配設されるため、外筒41の軸方向の両端には、それぞれ、循環管2との口径差によって生じる略円環状のギャップが形成される。このギャップを埋める部材が供給側外覆部材43と排出側外覆部材44である。なお、この実施の形態1における供給側外覆部材43および排出側外覆部材44の各外径は、外筒1の外径と略同一の寸法に設定されている。
供給側外覆部材43は、図1および図2に示すように、外筒41の両端のうち、循環管2の吐出口2b側の端面を覆うための二重円筒状壁部を有する略円環状の中空部材である。この供給側外覆部材43の内部には、略円環状の熱媒体供給室43aが形成されている。この熱媒体供給室43aには、外筒41側の壁部に、熱交換部材42の連通穴42cに連結する供給側連通穴43bが形成され、これらの連通穴を介して、熱媒体供給室43aの熱媒体が熱交換部材42内に供給可能である。また、熱媒体供給室43aには、外側の壁部に、熱媒体供給設備(図示せず)からの熱媒体を熱媒体供給室43aに供給する熱媒体供給口43cが設けられている。
また、熱媒体供給室43aを形成する壁部のうち、二重円筒状壁部の内側の円筒状壁部内は、外筒41の汚泥流通部41aを通過した混合汚泥を循環管2内に送るための汚泥流通部43dとなっている。
このような構成の供給側外覆部材43の吐出口2b側の端部には、図1に示すように、略円筒状の第一接続部材45aが接続されており、この第一接続部材45aを介して、循環管2の分離部分の一方と連結することが可能である。第一接続部材45aの内部は、外筒41の汚泥流通部41a内を流れる混合汚泥を循環管2へ移行させる汚泥流通部45bとなっており、その内径は、供給側外覆部材43の汚泥流通部43dの内径、並びに、循環管2の口径と同一の寸法に設定されている。
なお、熱媒体供給設備(図示せず)は、熱媒体を貯留するタンク(図示せず)と、熱媒体を加温するヒータ(図示せず)と、熱媒体の温度を計測する温度検出器(図示せず)と、熱媒体を供給するポンプ(図示せず)と、熱媒体を移送する配管(図示せず)とから概略構成されている。ここで、熱交換部材42内を流れる熱媒体としては、熱交換部材42外の汚泥流通部41a内を勢いよく流れる混合汚泥に対して瞬時に付与される熱エネルギーによる熱的損傷を防止する点と、1回の循環で、昇温の前後で比重差がほぼ同じであり、混合汚泥の温度分布に影響を与えない約0.5℃〜1℃程度に加温できる点を考慮すると、60℃〜80℃程度の温水を用いることが望ましい。廃熱を利用して熱媒体を当該温度まで加熱すれば、エネルギーの有効利用を図ることができる。
排出側外覆部材44は、図1および図2に示すように、外筒41の両端のうち、循環管2の吸引口2a側の端面を覆う略円環状の中空部材であり、供給側外覆部材43と同一の形状および寸法を有している。この排出側外覆部材44の内部には、熱媒体排出室44aが形成されている。この熱媒体排出室44aには、外筒41側の壁部に、熱交換部材42の連通穴42cに連結する排出側連通穴44bが形成され、これらの連通穴を介して、熱交換部材42の熱媒体が熱媒体排出室44a内に流入可能である。また、熱媒体排出室44aには、外側の壁部に、熱媒体供給設備(図示せず)からの熱媒体を熱媒体排出室44aに供給する熱媒体排出口44cが設けられている。
また、熱媒体排出室44aを形成する壁部のうち、二重円筒状壁部の内側の円筒状壁部内は、循環管2を通過した混合汚泥を外筒41の汚泥流通部41a内に送るための汚泥流通部44dとなっている。
このような構成の排出側外覆部材44の吸引口2a側の端部には、図1に示すように、略円筒状の第二接続部材45cが接続されており、この第二接続部材45cを介して、循環管2の分離部分の他方と連結することが可能である。第二接続部材45cの内部は、循環管2内を流れる混合汚泥を外筒41の汚泥流通部41aへ移行させる汚泥流通部45dとなっており、その内径は、排出側外覆部材44の汚泥流通部44dの内径、並びに、循環管2の口径と同一の寸法に設定されている。
熱交換器4は、例えば、以下のような手順で組み立て、循環管2に配設することが可能である。
まず、図1および図2に示すように、供給側外覆部材43に第一接続部材45aを接続し、排出側外覆部材44に第二接続部材45cを接続する。その後、図3に示すように、外筒41の汚泥流通部41a内に複数の熱交換部材42を片固定状態で配設する。その後、外筒41の汚泥流通部41aに供給側外覆部材43の汚泥流通部43dおよび排出側外覆部材44の汚泥流通部44dを位置合わせした状態で、熱交換部材42の連通穴42cに供給側外覆部材43の供給側連通穴43bおよび排出側外覆部材44の排出側連通穴44bを連結して、熱交換器4を組み立てる。この組み立てられた熱交換器4の外筒41を、循環管2の分離部分の間に配設する。その後、循環管2の分離部分の一方に第一接続部材45aを連結し、分離部分の他方に第二接続部材45cを連結して、熱交換器4を循環管2に配設する。このような手順で、容易に、熱交換器4を循環管2に配設することが可能である。
また、例えば、熱交換器4のメンテナンス時または交換時において、上記組立手順とは逆の手順で、熱交換器4を循環管2から容易に取り外すことが可能である。
次に、動作について説明する。
まず、図1に示すように、消化槽1内に原汚泥が投入される。
消化槽1内に導入された原汚泥は、嫌気性微生物(メタン菌等の古細菌)を主体とする消化槽1内の汚泥と混合され、この混合汚泥は、汚泥中の嫌気性微生物によって、数十日(例えば、30日から60日程度の時間)をかけて嫌気的に消化・分解され、一部は消化ガスとなり回収されて燃料として利用され、残りは消化汚泥となって排出口より消化槽1外へ排出されて処分される。この間、消化槽1内では、原汚泥など未消化部分を有する汚泥が嫌気性微生物による分解(嫌気性消化反応)が適切に、且つ安定して行われるよう、原汚泥の投入量(負荷)、温度、pHおよび混合撹拌など、嫌気性消化に影響を与える管理指標に基づいて運転管理が行われる。
ここで、混合撹拌の管理のため、循環ポンプ3の駆動器31を駆動してスクリュー30を正転方向に回転させる一方で、温度管理のため、熱媒体供給装置(図示せず)からの熱媒体(例えば、60℃〜80℃程度の温水)を、熱交換器4の熱媒体供給口43cから熱媒体供給室43aに供給し、熱交換部材42の熱媒体流通部42aを経て、熱媒体排出室44aに流し、その熱媒体排出口44cから熱媒体供給装置(図示せず)に還流することで、熱媒体を循環させる。
スクリュー30の正転方向の回転によって、循環管2の吸引側部分に吸引力が生じ、吐出側部分に吐出力が生じる。吸引力および吐出力は、汚泥流れに勢いを付けることができる。循環ポンプ3の吸引力によって、消化槽1内の上部を流れる混合汚泥が取り込まれ、吸引口2aから循環管2の吸引側部分内に入り、循環ポンプ3を経て、循環管2の吐出側部分に配設された熱交換器4に送られる。熱交換器4内に入った混合汚泥は、第二接続部材45cの汚泥流通部45d、排出側外覆部材44の汚泥流通部44d、外筒41の汚泥流通部41a、供給側外覆部材43の汚泥流通部43d、および、第一接続部材45aの汚泥流通部45bを経て、再び、循環管2内に戻る。このとき、混合汚泥は、図1および図2に示すように、外筒41の汚泥流通部41a内の熱交換部材42の伝熱部42bに接触することで、その伝熱部42bを介して、熱媒体流通部42aを流れる向流の熱媒体との熱交換を受けて、所定の昇温幅となるように加温される。加温された混合汚泥は、図1に示すように、循環ポンプ3の吐出力によって、吐出口2bから消化槽1内の下部に吐出される。消化槽1内に吐出された混合汚泥は、循環ポンプ3の吐出力によって消化槽1内の全体で循環する。このような循環流によって、消化槽1内の混合汚泥に対する混合撹拌が行われるとともに、適温に管理される。
なお、例えば、熱交換器4のメンテナンス時などにおいて、スクリュー30を逆転方向に回転駆動させて、混合汚泥の流れを反対方向に変更する。このとき、循環管2の吸引側部分内に吐出力が生じ、吐出側部分に吸引力が生じるため、吐出口2bから消化槽1内の混合汚泥を循環管2内に取り込み、その取り込まれた混合汚泥を熱交換器4内に逆流させることで、熱交換器4の分解等を行うことなく、熱交換器4のメンテナンスを容易に行うことができる。
混合汚泥に対する加温は、循環管2内を流れる混合汚泥の流れの勢いを弱めることなく、混合汚泥を外筒41内に通過させる熱交換器4において、熱媒体として比較的低い60℃〜80℃程度の温水を用いて行う熱交換によるものであるため、1回の循環による熱交換での所定の昇温幅は、約0.5℃〜1℃程度に抑制される。循環管2内を流れる混合汚泥の循環量は、従来の熱交換器の汚泥循環量よりもはるかに多いため、熱交換器4の汚泥循環数は大きく、複数回の循環による熱交換を受けた混合汚泥は、熱交換ごとに、徐々に加温されていく。熱交換部材42内を流れる温水が60℃〜80℃程度であっても、熱交換部材42外を流れる混合汚泥の流れに勢いがあるので、混合汚泥中のメタン菌等の古細菌を死滅等させることなく、その至適温度の、例えば、約37℃程度までに抑えて加温することができる。また、複数回の循環による熱交換を継続することで、メタン菌等の古細菌の至適温度を維持し、そのメタン菌等の古細菌による嫌気性消化反応を効率よく進行させ、計画量の消化ガス(例えば、メタンガス)を得ることができる。また、昇温幅が約0.5℃〜1℃程度と小さいため、加温された混合汚泥を消化槽1内に還流しても、消化槽1内に局所的に高温領域が形成されないので、消化槽1内の混合汚泥中の温度分布ムラを抑制できる。
また、pHは一般的に酸やアルカリなどの薬品を消化槽1内に注入して行われるが、循環ポンプ3による吸引力や吐出力に基づく、循環管2内の汚泥流れの勢いによって消化槽1内の混合汚泥が全体的に混合撹拌され、均一となるため、注入された薬品も均一に混合汚泥に混合され、結果として、混合汚泥のpHをメタン菌等の古細菌の生育に適した至適pHとなるようにpHの管理を適切に行うことが可能となる。
なお、この実施の形態1では、消化槽1の形状を球状とした場合について本発明を適用したが、これに限定されるものではなく、混合汚泥の良好な循環の妨げとなるデッドスペースがない内部構造を有するものであれば、断面亀甲形や卵形など、いかなる形状の消化槽を用いてもよい。
また、この実施の形態1では、同一の寸法および形状を有する複数の熱交換部材42を用いた場合について本発明を適用したが、これに限定されるものではなく、例えば、後述の図8、図11および図12に示すように、異なる寸法および形状を有する複数の熱交換部材42を用いてもよい。
また、この実施の形態1では、熱媒体供給室43aに熱媒体供給口43cを設け、熱媒体排出室44aに熱媒体排出口44cを設けた場合について本発明を適用したが、これに限定されるものではなく、例えば、後述の図4乃至図7、図9および図10に示すように、熱媒体供給室43aに熱媒体供給管を設け、熱媒体排出室44aに熱媒体排出管を設けてもよい。
また、この実施の形態1では、循環管2に吸引口2aと吐出口2bをそれぞれ1つ設けた場合について本発明を適用したが、吸引口2aと吐出口2bをそれぞれ2つ以上設けてもよい。この場合、2つ以上の吸引口2aと2つ以上の吐出口2bを消化槽1内の上部、中部および下部で開口するように構成することで、各吸引口2aに向けて混合汚泥の流れが生じ、各吐出口2bから混合汚泥の流れが生じるので、消化槽1内の混合汚泥中に様々な循環流を形成することができる。
実施の形態1によれば、次のような優れた作用効果を奏することができる。
(1)消化槽1内で開口する吸引口2aと吐出口2bを有し、消化槽1外に延在する循環管2に設けられた熱交換器4を、混合汚泥が通過する外筒41と、この外筒41内に複数設けられた中空の熱交換部材42と、外筒41の一端の周面(循環管2の吐出口2b側の端面)を覆い、熱媒体を受け入れる熱媒体供給室43aを形成する供給側外覆部材43とを備え、熱交換部材42と熱媒体供給室43aとを連通させた構成としたことにより、循環管2内を流れる混合汚泥の流れを弱めることなく、複数の熱交換部材42が設けられた外筒41内に通過させることができるとともに、その外筒41内を通過する混合汚泥を、熱媒体供給室43aから熱媒体が供給された熱交換部材42に接触させることで、その混合汚泥に対して効率よく熱交換を行うことができる。そして、効率よく加温された混合汚泥は、循環ポンプ3の吐出力で、消化槽1内の全体で循環するので、このような循環流によって、消化槽1内の混合撹拌を十分に行うことができる。これにより、消化槽1内の混合汚泥中の温度分布ムラや薬品等の混合ムラを抑制できる。
(2)上述の構成に加えて、外筒41の他端の周面(循環管2の吸引口2a側の端面)を覆い、熱媒体を受け入れる熱媒体排出室44aを形成する排出側外覆部材44を備え、熱交換部材42と熱媒体排出室44aとを連通させた構成としたことにより、熱交換部材42内への新たな熱媒体の供給が可能となるため、混合汚泥に対して、さらに効率よく熱交換を行うことができる。
(3)熱交換器4の外筒41内の汚泥流通部41aは、その口径が循環管2の口径より大きく、且つ循環管2と同軸になるように配設されている。また、直線状の汚泥流通部41aに至るまでの汚泥の流通経路は、直線状の第二接続部材45cの汚泥流通部45dおよび排出側外覆部材44の汚泥流通部44dによって確保され、汚泥流通部41aから循環管2へ戻る汚泥の流通経路は、直線状の供給側外覆部材43の汚泥流通部43dおよび第一接続部材45aの汚泥流通部45bによって確保されている。このため、混合汚泥が熱交換器4内を通過する際における混合汚泥に対する圧力損失は少ないので、循環ポンプ3によって得られた吐出力が減殺されず、その吐出力をほとんどそのまま、混合汚泥の吐出に利用することができる。したがって、少ない圧力損失で流れ、且つ加温された混合汚泥を吐出口2bから循環ポンプ3の吐出力によって吐出することで、消化槽1内の混合汚泥に良好な循環流を形成することができ、消化槽1内の混合汚泥中の温度分布ムラや薬品等の混合ムラを抑制できる。
(4)熱媒体が60℃〜80℃程度の温水であるため、この温水と熱交換した混合汚泥は、熱的損傷を受けることが少ない。このため、その混合汚泥中のメタン菌等の古細菌の死滅あるいは失活を防止できるので、メタン菌等の古細菌による嫌気性消化反応を効率よく進行させ、計画量の消化ガス(例えば、メタンガス)を得ることができる。
(5)従来の嫌気性消化装置に利用されている熱交換器によって、嫌気性消化槽内の温度よりも約3℃〜5℃程度の大幅な昇温幅で昇温された汚泥は、その温度上昇によって体積膨張し、比重が軽くなるため、嫌気性消化槽の上部にとどまり易くなる。このような汚泥の比較的大きな比重差は嫌気性消化槽内の上下方向の汚泥循環を阻害する要因となるため、嫌気性消化槽内に解消し難い温度分布が生じる。このため、従来の嫌気性消化槽内の撹拌装置、例えば一般的な撹拌羽根とドラフトチューブの組み合わせによる上下方向に循環流を形成して撹拌する形式のもの(例えば、特許文献4)においては、通常の汚泥循環に必要な動力に加えて、比重差による汚泥循環阻害要因を取り除くための動力が必要となる。また、従来の、水平方向に対して循環流を形成して撹拌する形式のものにおいては、水平循環するのみとなる可能性があり、その場合、消化槽内に形成される温度分布(例えば、上部分から下部分に向かって汚泥温度が低くなる)が保たれたままとなることから、その上下方向の温度分布を解消するために、別途、上下方向に循環流を形成する方策を講じる必要があった。
これに対し、この実施の形態1による嫌気性消化装置では、循環ポンプ3によって勢いよく循環管2内を流れる混合汚泥をその流れの勢いを弱めることなく外筒41内を通過させて、複数の熱交換部材42との接触で効率よく加温した上で、消化槽1内に勢いよく還流させ、消化槽1内の全体に行渡る循環流を形成することができる。このため、この嫌気性消化装置では、例えば、熱交換器4での汚泥の昇温幅を約0.5℃〜1℃と低く保ち、加温汚泥循環回数(循環経路で1日に加温した汚泥量が消化槽1を循環する回数)を多く設定する運転が可能であるので、消化槽1内の汚泥の温度や質を常にほぼ均一に保つことが容易となり、汚泥処理が安定化することで消化ガスの安定で効率的な回収を行うことができる。また、汚泥の昇温幅を約1℃以下に抑え、汚泥の比重差による消化槽1内での汚泥循環阻害を十分に低く抑えることが可能であるため、上下方向の汚泥循環において通常消費される循環ポンプ3の動力によって、消化槽1内の汚泥循環を良好に行うことができる。また、水平方向に対し循環流を形成して撹拌する場合においても、汚泥の昇温幅を約1℃以下に抑えることで、消化槽1内での温度分布が顕著とならないため、従来の嫌気性消化装置のように、別途、上下方向への循環流を形成する方策を講じる必要がない。このように熱交換器4での汚泥の昇温幅を約0.5℃〜1℃と低く保ち、消化槽1内において微生物相の「ムラ」を無くすことで、消化反応が消化槽1内の全体で均一に行われ、消化汚泥として排出される処理汚泥中の未消化汚泥の混入率が低下し、計画量の消化ガスを回収できる。
(6)汚泥の循環流路の圧力損失が高いために低流量となり、結果的に、加温汚泥循環回数が少ない運転を余儀なくされていた従来の間接加温式の熱交換器では、1回の循環で、汚泥を約3℃〜5℃程度の大幅な昇温幅で昇温する必要があったため、水蒸気ボイラや温水ボイラより供給される熱媒体を熱源としなければならなかった。このような高温(蒸気、温水共に100℃程度)の熱媒体の供給には、専用のボイラを設置する必要があり、特に消化槽のような大容量の設備を加温できる大型の水蒸気ボイラを設置する場合には、有資格者による管理が義務付けられている。
これに対し、この実施の形態1による嫌気性消化装置では、混合汚泥の昇温幅を約0.5℃〜1℃と低くし、且つ加温汚泥循環回数を多くする条件で昇温できるため、60℃〜80℃程度の温水を熱交換器4に供給する熱源として利用できる。また、60℃〜80℃程度の温水を熱源とし、1回の循環での混合汚泥の昇温幅を約0.5℃〜1℃に抑え、加温汚泥循環回数を多くする(熱交換器4内での汚泥滞留時間が短いために、結果として、熱交換時間が短い)ことにより、混合汚泥の熱による変質(例えば、熱的損傷)およびメタン菌等の古細菌の活性低下を抑制できるので、安定した汚泥の消化および計画量の消化ガス回収を図ることができる。また、大型の水蒸気ボイラを設置する必要がないので、有資格者による管理も不要である。
(7)循環管2内を流れる混合汚泥の流れの勢いを弱めることなく、混合汚泥を外筒41内に通過させて熱交換を行うことができる熱交換器4を用いている。このため、循環ポンプ3の他に、熱交換器専用の汚泥循環ポンプを設ける必要がないので、その分、ポンプ動力を削減できる。嫌気性消化装置全体における、ポンプ動力の動力消費に占める割合は極めて高いため、ポンプ動力の削減は格段の省エネルギーとなると共に、エネルギーの回収率を高めることに大きく寄与する。
(8)従来のスパイラル型(図16)や外筒パイプ型(図14および図15)の熱交換器は、熱交換器の被加熱媒体(汚泥)流通部単位容積当たりの伝熱壁面積を高める構造とすることで、1回の循環での被加熱媒体(汚泥)の昇温幅(熱交換前後の温度差)を高め、熱交換効率を高めていた。しかし、この場合、被加熱媒体(汚泥)の流路が狭く圧力損失が高くなるので、熱交換できる被加熱媒体(汚泥)は自ずと少流量(従来の消化槽汚泥の加温を目的とした場合であれば、例えば消化槽有効容積に対して1日当たり約0.5回程度の流量)とせざるを得なかった。このため、汚泥を循環する循環管に流れる、より大流量の汚泥(被加熱媒体)を加温する場合には、複数の熱交換器を並列に配列し、高楊程の循環ポンプを配設する必要があった。
これに対し、この実施の形態1による嫌気性消化装置では、汚泥が通過する外筒41を循環管2よりも大径としたので、熱交換器4内の圧力損失を低く保ちながら(従来の汚泥循環に用いられる循環ポンプの仕様を変更する必要がなくなる)、消化槽1内の汚泥温度を目標温度(例えば、メタン菌の至適温度)まで調節できる程度に十分な熱交換面積(伝熱面積)を提供することができる。これにより、消化槽1内の汚泥を循環する循環管2に流れる、従来の熱交換器と比較して大流量の汚泥によって消化槽1内の温度を調節することが可能であるため、循環する汚泥の昇温幅を約0.5℃〜1℃の範囲に抑えることができる。
実施の形態2.
図4は本発明の実施の形態2による嫌気性消化装置の全体構成を模式的に示す部分断面図であり、図5は図4に示した嫌気性消化装置を示す平面図であり、図6は図4および図5に示した嫌気性消化装置の熱交換器の外部構造を示す斜視図であり、図7は図6に示した熱交換器の内部構造の一部を破断して示す斜視図であり、図8は図4乃至図7に示した熱交換器内の熱交換部材の配置構成を示す斜視図であり、図9は図4乃至図8に示した熱交換器の分解斜視図であり、図10は図4乃至図9に示した熱交換器内での汚泥および熱媒体の流れの様子を模式的に示す斜視図であり、図1等と同一の構成要素には同一符号を付して重複説明を省略する。
この実施の形態2は、以下の点で、実施の形態1と異なる。
(1)熱交換器4の供給側外覆部材43を、本体46aと供給側端フランジ46bと熱媒体供給管46cを備えた供給側外筒部材46と、供給側内筒部材47とから構成した点。
(2)熱交換器4の排出側外覆部材44を、本体48aと排出側端フランジ48bと熱媒体排出管48cを備えた排出側外筒部材48と、排出側内筒部材49とから構成した点。
(3)熱交換器4の外筒41の供給側の端部に外筒供給側端フランジ41bを備え、排出側の端部に外筒排出側端フランジ41cを備えた点。
(4)熱交換器4の熱媒体供給管46cへの熱媒体流路と熱媒体排出管48cからの熱媒体流路を切り替える開閉バルブV1、V2、V3およびV4を備えた流路切替器5を設けた点。
(5)循環管2の吐出側部分に、開閉バルブV5を設けた点。
(6)循環管2の吐出側部分のうち、熱交換器4と開閉バルブV5との間に、消化槽1内に開口する吐出口21aを有する分岐管21を設け、この分岐管21の途中に開閉バルブV6を設けた点。
(7)消化槽1の形状を断面亀甲形とし、その上部に、原汚泥を投入するための原汚泥投入管6と、混合汚泥から消化汚泥を脱離させて生じた分離液(脱離液)を排出するための脱離液流出管7を設けた点。
(8)消化槽1の底部に、消化汚泥を排出するための消化汚泥排出管8を設け、この消化汚泥排出管8の途中に開閉バルブV7を設けた点。
(9)熱交換部材42として、大小2種類の熱交換部材42x、42yを用いた点。
まず、熱交換器4における熱媒体の循環系について説明する。
供給側外筒部材46と供給側内筒部材47は、これら両部材を連結し一体化することで、供給側外覆部材43を構成するとともに、実施の形態1における第一接続部材45aとしても機能する。供給側内筒部材47の内側には、供給側外覆部材43の汚泥流通部43dおよび第一接続部材45aの汚泥流通部45bが連続して形成され、供給側外筒部材46と供給側内筒部材47との間には、熱媒体供給室43cが形成される。
供給側外筒部材46は、図6、図7および図9に示すように、円筒状の本体46aと、この本体46aの一端側の外周面に設けられた供給側端フランジ46bと、本体46aの外周面の一部に設けられた熱媒体供給管46cとから概略構成されている。
本体46aは、外筒41の外径より小さい寸法の外径を有しており、その内周面は、供給側外筒部材46と供給側内筒部材47との連結時に、熱媒体供給室43cを形成する壁部の一部となる。
供給側端フランジ46bは、外筒41の外筒供給側端フランジ41bとフランジ継手を行うための接合部である。
熱媒体供給管46cは、熱媒体供給設備(図示せず)からの熱媒体を熱供給室43a内に供給する。なお、熱媒体の流れを変更するときは、熱媒体供給管46cは、熱媒体の排出を行う。この熱媒体の流路の切替えは、図5に示す流路切替器5により行われる。
供給側内筒部材47は、その内部に供給側外覆部材43の汚泥流通部43dおよび第一接続部材45aの汚泥流通部45bを形成し、且つ、供給側外筒部材46との間に熱媒体供給室43aを形成するための部材であり、図7および図9に示すように、供給側円筒部50と、供給側截頭錐体部51と、供給側外覆部52とから概略構成されている。
供給側円筒部50は、円筒状の本体50aと、この本体50aの外周面の一端に形成された端フランジ50bと、本体50aの外周面の中間位置に形成された中フランジ50cと、この中フランジ50cに形成されたエア抜き部50dを備えており、実質的に、実施の形態1における第一接続部材45aの機能を有している。
本体50aは、外筒41の汚泥流通部41aからの混合汚泥を循環管2内に円滑に送るため、循環管2の口径と同一寸法の内径を有している。
端フランジ50bは、第一接続部材45aのように、循環管2とフランジ継手を行うための接合部である。このため、上記本体50aの内部は、実質的に、実施の形態1における第一接続部材45aの汚泥流通部45bを構成する。
中フランジ50cは、端フランジ50bよりも大きく、且つ供給側外筒部材46の本体46aの内径よりも僅かに小さい外径を有しており、その内面は、熱媒体供給室43cを形成する壁部の一部である。
エア抜き部50dは、熱媒体供給室43aの内圧が上昇したときに、熱媒体供給室43aの内部を大気に開放する安全装置である。エア抜き部50dとしては、所定の内圧を検知して開口する開閉バルブであれば、特に限定されるものではなく、例えば、電磁弁や手動弁などの周知の弁が挙げられる。
供給側截頭錐体部51は、略截頭錐体状をなしており、供給側円筒部50の本体50aの内径と同一寸法の内径を有する供給側円筒部50側の円筒状の最小径部分と、外筒41の汚泥流通部41aの内径と同一寸法を有する内径を有する最大径部分と、最小径部分から最大径部分に至るまで徐々に拡径するテーパ部分を備えている。テーパ部分の内周面は、図1等に示す外筒41の汚泥流通部41aの内周面に連続するように形成されている。また、そのテーパ部分には、熱交換部材42の連通穴42cと連絡する複数の供給側連通穴43bが形成されている。なお、最小径部分とテーパ部分は、熱媒体供給室43cを形成する壁部の一部である。
また、このような供給側截頭錐体部51が供給側円筒部50と同軸上に配されるように、供給側截頭錐体部51の最小径部分の端部は、供給側円筒部50の本体50aの外周面の一端に接合され、供給側截頭錐体部51の最大径部分の端部は、供給側外覆部52の内側に接合されている。
このため、供給側截頭錐体部51内部は、供給側円筒部50の本体50a内部に連通する一方で、図1等に示す外筒41の汚泥流通部41aとも連通する。つまり、供給側截頭錐体部51のテーパ部分の内部は、供給側外覆部材43の汚泥流通部43dを構成している。これにより、その汚泥流通部41aを通過した混合汚泥は、供給側截頭錐体部51のテーパ部分の内側(供給側外覆部材43の汚泥流通部43d)および供給側円筒部50の本体50a(第一接続部材45aの汚泥流通部45b)内を経て、循環管2に移送される経路を辿る。その移送の際における圧力損失は、内径の異なる汚泥流通部41aと本体50aを連絡するテーパ部分を経由することで、低減される。
供給側外覆部52は、供給側外筒部材46の本体46aの内径よりも僅かに小さい外径を有する円筒体である。この供給側外覆部52の内側には、複数の熱交換部材42の供給側部分が配設され、外周面には、供給側外筒部材46が外挿される。
ここで、図6、図7および図10に示すように、供給側外覆部52に供給側外筒部材46が外挿されると、供給側内筒部材47の供給側円筒部50の本体50aおよび端フランジ50bは、供給側外筒部材46の本体46a内から突出する。このとき、図7および図10に示すように、供給側外筒部材46の本体46aは、供給側内筒部材47の供給側外覆部52と供給側円筒部50の中フランジ50cとの間を覆うため、供給側外筒部材46と供給側内筒部材47との間には、外筒41の内径よりも小さい最外径を有する略円環状の熱媒体供給室43aが形成される。熱媒体は、熱媒体供給管46cから熱媒体供給室43a内に供給され、熱交換部材42の連通穴42cおよび供給側截頭錐体部51の供給側連通穴43bを介して熱交換部材42に送られる経路を辿る。
なお、この実施の形態1における媒体供給室43cは、上述のように、供給側外筒部材46の本体46aの内周面と、供給側円筒部50の中フランジ50cの内面と、供給側截頭錐体部51の最小径部分およびテーパ部分とによって形成される。
排出側外筒部材48と排出側内筒部材49は、これら両部材を連結し一体化することで、排出側外覆部材44を構成するとともに、実施の形態1における第二接続部材45cとしても機能する。排出側内筒部材49の内側には、排出側外覆部材44の汚泥流通部44dおよび第二接続部材45cの汚泥流通部45dが連続して形成され、排出側外筒部材48と排出側内筒部材49との間には、熱媒体排出室44cが形成される。
排出側外筒部材48は、上述した供給側外筒部材46と同一の形状および寸法を有する部材であり、円筒状の本体48aと、この本体48aの一端側の外周面に設けられた排出側端フランジ48bと、本体46aの外周面の一部に設けられた熱媒体排出管48cとから概略構成されている。
本体48aは、外筒41の外径より小さい寸法の外径を有しており、その内周面は、排出側外筒部材48と排出側内筒部材49との連結時に、熱媒体排出室44cを形成する壁部の一部となる。
排出側端フランジ48bは、外筒41の外筒排出側端フランジ41cとフランジ継手を行うための接合部である。
熱媒体排出管48cは、熱媒体排出室44a内の熱媒体を熱媒体供給設備(図示せず)へ還流させる。なお、熱媒体の流れを変更するときは、熱媒体排出管48cは、熱媒体の供給を行う。この熱媒体の流路の切替えは、図5に示す流路切替器5により行われる。
排出側内筒部材49は、その内部に汚泥流通部43dおよび第二接続部材45cの汚泥流通部45dを形成し、且つ、排出側外筒部材48との間に熱媒体排出室44aを形成するための部材であり、図7に示すように、排出側円筒部53と、排出側截頭錐体部54と、排出側外覆部55とから概略構成されている。
排出側円筒部53は、循環管2の口径と同一寸法の口径を有し、循環管2からの混合汚泥を、外筒41の汚泥流通部41a側に送るための円筒状の本体53aと、この本体53aの外周面の一端に形成された端フランジ53bと、この端フランジ53bよりも大きい外径を有し、本体53aの外周面の中間位置に形成された中フランジ53cを備えており、実質的に、実施の形態1における第二接続部材45cの機能を有している。
本体53aは、循環管2からの混合汚泥を外筒41の汚泥流通部41a内に円滑に送るため、循環管2の口径と同一寸法の内径を有している。
端フランジ53bは、第二接続部材45cのように、循環管2とフランジ継手を行うための接合部である。このため、上記本体53aの内部は、実質的に、実施の形態1における第二接続部材45cの汚泥流通部45dを構成する。
中フランジ53cは、端フランジ53bよりも大きく、且つ排出側外筒部材48の本体48aの内径よりも僅かに小さい外径を有しており、その内面は、熱媒体排出室44cを形成する壁部の一部である。
排出側截頭錐体部54は、略截頭錐体状をなしており、排出側円筒部53の本体53aの内径と同一寸法の内径を有する排出側円筒部53側の円筒状の最小径部分と、外筒41の汚泥流通部41aの内径と同一寸法を有する内径を有する最大径部分と、最小径部分から最大径部分に至るまで徐々に拡径するテーパ部分を備えている。テーパ部分の内周面は、図1等に示す外筒41の汚泥流通部41aの内周面に連続するように形成されている。また、そのテーパ部分には、熱交換部材42の連通穴42cと連絡する複数の排出側連通穴44bが形成されている。なお、最小径部分とテーパ部分は、熱媒体排出室44cを形成する壁部の一部である。
また、このような排出側截頭錐体部54が排出側円筒部53と同軸上に配されるように、排出側截頭錐体部54の最小径部分の端部は、排出側円筒部53の本体53aの外周面の一端に接合され、排出側截頭錐体部54の最大径部分の端部は、排出側外覆部55の内側に接合されている。
このため、排出側截頭錐体部54内部は、排出側円筒部53の本体53a内部に連通する一方で、図1等に示す外筒41の汚泥流通部41aとも連通する。つまり、排出側截頭錐体部54のテーパ部分の内部は、排出側外覆部材44の汚泥流通部44dを構成している。これにより、循環管2を流れてきた混合汚泥は、排出側円筒部53の本体53a(第二接続部材45cの汚泥流通部45d)内および排出側截頭錐体部54のテーパ部分の内側(排出側外覆部材44の汚泥流通部44d)を経て、外筒41の汚泥流通部41a内に移送される経路を辿る。その移送の際における圧力損失は、内径の異なる本体53aと汚泥流通部41aを連絡するテーパ部分を経由することで、低減される。
排出側外覆部55は、排出側外筒部材48の本体48aの内径よりも僅かに小さい外径を有する円筒体である。この排出側外覆部55の内側には、複数の熱交換部材42の排出側部分が配設され、外周面には、排出側外筒部材48が外挿される。
ここで、図6、図7および図10に示すように、排出側外覆部55に排出側外筒部材48が外挿されると、排出側内筒部材49の排出側円筒部53の本体53aおよび端フランジ53bは、排出側外筒部材48の本体48a内から突出する。このとき、図7および図10に示すように、排出側外筒部材48の本体48aは、排出側内筒部材49の排出側外覆部55と排出側円筒部53の中フランジ53cとの間を覆うため、排出側外筒部材48と排出側内筒部材49との間には、外筒41の内径よりも小さい外径を有する略円環状の熱媒体排出室44aが形成される。熱媒体は、熱交換部材42の連通穴42cおよび排出側截頭錐体部54の排出側連通穴44bを介して、熱媒体排出室44a内に流れ込み、熱媒体排出管48cから排出される経路を辿る。
なお、この実施の形態1における媒体排出室44cは、上述のように、排出側外筒部材48の本体48aの内周面と、排出側円筒部53の中フランジ53cの内面と、排出側截頭錐体部54の最小径部分およびテーパ部分とによって形成される。
熱交換器4の外筒41は、図6、図9および図10に示すように、その供給側の端部に外筒供給側端フランジ41bを備え、排出側の端部に外筒排出側端フランジ41cを備えている。上述のように、外筒供給側端フランジ41bは、供給側外筒部材46の供給側端フランジ46bとフランジ継手を行うための接合部であり、外筒排出側端フランジ41cは、排出側外筒部材48の排出側端フランジ48bとフランジ継手を行うための接合部である。このため、外筒41は、その両端において、供給側外筒部材46および排出側外筒部材48との連結が可能である。
熱交換部材42としては、図8に示すように、大小2種類の熱交換部材42x、42yを用いている。熱交換部材42x、42yの熱媒体供給側と熱媒体排出側とは、同一の形状および寸法を有しているので、図8では、混合汚泥が流入する熱媒体排出側のみを示し、混合汚泥が流出する熱媒体供給側の図示を省略している。
大型の熱交換部材42xおよび小型の熱交換部材42yは、いずれも共通して、排出側截頭錐体部54のテーパ部分の内周面に接し、且つ連通穴42cが形成された傾斜面と、この傾斜面に連続して形成され、且つ外筒41内の汚泥流通部41aの内周面に接する一側面とを有している。
大型の熱交換部材42xと小型の熱交換部材42yとの相異は、以下の点である。
一つ目は、幅寸法(外筒41の汚泥流通部41aの内周面からの長さ寸法)である。大型の熱交換部材42xの傾斜面が小型の熱交換部材42yの傾斜面よりも長くなっている。
二つ目は、連通穴42cの設置数である。大型の熱交換部材42xの長い傾斜面には、2つの連通穴42cが形成されているのに対し、小型の熱交換部材42yの短い傾斜面には、1つの連通穴42cが形成されている。小型の熱交換部材42yの連通穴42cの汚泥流通部41aの内周面からの距離は、大型の熱交換部材42xの2つの連通穴42cのうち、汚泥流通部41aの内周面側の連通穴42cと同一に設定されている。連通穴42cの設置数は、排出側截頭錐体部54のテーパ部分等によって形成される熱媒体排出室44c内に所定量の熱媒体を確実に送ることができるのであれば、特に限定されるものではない。
三つ目は、外筒41内の汚泥流通部41aの中心に向く一側面の形状である。図8に示すように、小型の熱交換部材42yの当該一側面は、その全体が外筒41の軸方向に沿って平面状に形成されているのに対し、大型の熱交換部材42xの当該一側面には、排出側円筒部53の本体53a側の近傍に曲面部42dが形成され、それ以外の部分は、外筒41の軸方向に沿って平面状に形成されている。この曲面部42dは、循環管2からの混合汚泥の流れを外筒41の汚泥流通部41a内に導く際に、その流れを円滑にし、乱流の発生を防止するために形成されている。
ここで、図5を参照して、熱交換器4に対して熱媒体の循環方向を切り替える流路切替器5について説明する。
熱交換器4には、熱媒体供給設備(図示せず)から、熱媒体供給管46cを介して熱媒体(温水)が供給される。熱媒体の流れは、熱交換器4の外筒41の汚泥流通部41a内の汚泥流れに対向するように供給されることで高効率に熱交換が行われる(対向流式)。また、循環管2内を流れる混合汚泥の流れを変更する場合においても、流路切替器5で熱媒体の循環方向を切り替えることで、対向流式を常に維持することが可能である。
流路切替器5は、熱媒体供給設備(図示せず)と熱媒体供給管46cを連絡し、熱交換前の熱媒体(高温の温水)を供給する供給管Hと、この供給管Hに設けられた開閉バルブV2と、熱媒体供給設備(図示せず)と熱媒体排出管48cを連絡し、熱交換後の熱媒体(低温の温水)を排出する排出管Lと、この排出管Lに設けられた開閉バルブV3と、開閉バルブV2よりも熱媒体供給管46c側の供給管Hと開閉バルブV3よりも熱媒体供給設備(図示せず)側の排出管Lを連絡する分岐管BP1と、この分岐管BP1に設けられた開閉バルブV4と、開閉バルブV2よりも熱媒体供給設備(図示せず)側の供給管Hと開閉バルブV3よりも熱媒体排出管48c側の排出管Lを連絡する分岐管BP2と、この分岐管BP2に設けられた開閉バルブV1とから概略構成されている。
熱媒体を順方向(通常の循環方向)に循環させる場合には、開閉バルブV1およびV4を「閉」とし、開閉バルブV2およびV3を「開」とする。このとき、熱媒体供給設備(図示せず)からの熱媒体は、供給管Hを流れて熱交換器4内に供給され、排出管Lから流出して熱媒体供給設備(図示せず)に戻る。また、熱媒体を順方向とは反対の逆方向に循環させる場合には、開閉バルブV1およびV4を「開」とし、開閉バルブV2およびV3を「閉」とする。このとき、熱媒体供給設備(図示せず)からの熱媒体は、供給管Hから分岐管BP2および排出管Lに至る経路を辿って熱交換器4内に供給され、供給管Hから分岐管BP1および排出管Lに至る経路を辿って熱媒体供給設備(図示せず)に戻る。
次に、消化槽1内の混合汚泥の循環系について説明する。
消化槽1は、図4に示すように、断面亀甲形を有しており、その上部には、原汚泥を投入するための原汚泥投入管6と、混合汚泥から消化汚泥を脱離させて生じた分離液(脱離液)を排出するための脱離液流出管7が設けられている。また、消化槽1の底部には、消化汚泥を排出するための消化汚泥排出管8が設けられ、この消化汚泥排出管8の途中には開閉バルブV7が設けられている。
循環管2の吸引口2aは、消化槽1内の上部において上方(垂直上方向)に向けて開口し、且つその開口端が拡径している。このため、消化槽1内の上部を循環する混合汚泥を効率よく集めることができ、その吸引力によって、吸引口2aに向けて上昇流が形成される。また、循環管2の吐出口2bは、消化槽1内の最下部において下方(垂直下方向)に向けて開口し、且つその開口端が拡径している。このため、循環管2の吐出口2bから吐出された混合汚泥を断面亀甲形の消化槽1内の底部傾斜面に沿って上昇する循環流(下方から上方に向う垂直方向の汚泥循環)とすることができる。
また、循環管2の吐出側部分のうち、熱交換器4と吐出口2aとの間には、開閉バルブV5が設けられ、熱交換器4と開閉バルブV5との間には、消化槽1内の中部において消化槽1の内周壁に沿って水平方向に開口する吐出口21aを有する分岐管21が設けられ、この分岐管21の途中には、開閉バルブV6が設けられている。
次に、動作について説明する。
循環ポンプ3の吐出側が熱交換器4側となるように駆動器31を正転方向に駆動させる場合、開閉バルブV5を「開」とし、開閉バルブV6を「閉」とすることにより、吸引口2aから混合汚泥を吸引し、その吸引口2aに向けて上昇流を形成させ、その吸引口2aから吸引された混合汚泥を吐出口2bから吐出させ、その吐出された混合汚泥により消化槽1内の下部に上昇流を発生させることができる。逆に、開閉バルブV5を「閉」とし、開閉バルブV6を「開」とすることにより、吸引口2aから吸引された混合汚泥を分岐管21経由で吐出口21aから吐出させ、その吐出された混合汚泥により消化槽1の内周壁に沿って周回する水平流を発生させることができる。さらに、開閉バルブV5および開閉バルブV6の双方を「開」とすることにより、吸引口2aから吸引された混合汚泥を吐出口2bおよび吐出口21aの双方から吐出させ、吐出口2bからの混合汚泥により消化槽1内の下部に上昇流を発生させ、吐出口21aからの混合汚泥により消化槽1内の中部に水平流を発生させることができる。
このように駆動器31を正転方向に駆動させて、消化槽1内の混合汚泥を循環させる場合、流路切替器5により、開閉バルブV1およびV4を「閉」とし、開閉バルブV2およびV3を「開」とした状態で熱媒体を、混合汚泥が通過する熱交換器4内に循環させることで、混合汚泥を加温する。加温された混合汚泥が消化槽1内に吐出されることで、消化槽1内の混合汚泥が撹拌混合されると共に適温(例えば、メタン菌の至適温度)に管理される。
一方、循環ポンプ3の吸引側が熱交換器4側となるように駆動器31を逆転方向に駆動させる場合、開閉バルブV5を「開」とし、開閉バルブV6を「閉」とすることにより、吐出口2bから混合汚泥を吸引し、その吐出口2bに向けて下降流を形成させ、その吐出口2bから吸引された混合汚泥を吸引口2aから吐出させ、その吐出された混合汚泥により消化槽1内の上部に下降流を発生させることができる。逆に、開閉バルブV5を「閉」とし、開閉バルブV6を「開」とすることにより、吐出口21aから吸引し、その吐出口21aに向けて水平流を形成させ、その吐出口21aから吸引された混合汚泥を分岐管21経由で吸引口2aから吐出させ、その吐出された混合汚泥により消化槽1内の上部に下降流を発生させることができる。さらに、開閉バルブV5および開閉バルブV6の双方を「開」とすることにより、吐出口2bおよび吐出口21aの双方から混合汚泥を吸引し、その吐出口2bおよび吐出口21aに向けて上昇流や水平流を形成させ、その吸引された混合汚泥を吸引口2aから吐出させ、その吐出された混合汚泥により消化槽1内の上部に下降流を発生させることができる。
このように駆動器31を逆転方向に駆動させて、消化槽1内の混合汚泥を循環させる場合、
流路切替器5により熱媒体の流路を切り替えて、開閉バルブV1およびV4を「閉」とし、開閉バルブV2およびV3を「開」とした状態で熱媒体を、混合汚泥が通過する熱交換器4内に循環させることで、混合汚泥を加温する。加温された混合汚泥が消化槽1内に吐出されることで、消化槽1内の混合汚泥が撹拌混合されると共に適温(例えば、メタン菌の至適温度)に管理される。
循環管2内を流れる混合汚泥の流れを変更する場合としては、例えば、汚泥や異物(毛髪等、熱交換部材42に絡みつきやすい形状の異物)の熱交換器4内での付着や堆積の防止を目的とし、いわゆる「汚泥詰まり」が生じないようにするための熱交換器4の保全などの場合がある。このような場合においても、消化槽1内の混合汚泥の循環を停止することなく、また、熱交換器4の分解清掃を行うことなく、汚泥の流れ方向と熱媒体の流れ方向が対向した運転を継続することが可能となり、効率の良い昇温を維持しながら、嫌気性消化反応を進行し続けることができる。
このような嫌気性消化反応の進行によって、混合汚泥から消化汚泥を脱離させて生じた分離液(脱離液)は、脱離液流出管7から消化槽1外に排出され、消化汚泥は消化汚泥排出管8から消化槽1外に排出され、消化ガスは消化槽1の上部から排出される。また、消化反応に適した温度まで混合汚泥が加温され、且つ消化反応が嫌気性消化槽内の全体で均一に行われるので、消化汚泥として排出される処理汚泥中の未消化汚泥の混入率が低下し、計画量の消化ガスを回収できる。
なお、この実施の形態2では、異なる寸法および形状を有する複数の熱交換部材42として、大小2種類の熱交換部材42x、42yを用いた場合について本発明を適用したが、これに限定されるものではなく、例えば、図3に示したように、同一の寸法および形状を有する複数の熱交換部材42を用いてもよい。
また、この実施の形態2では、吐出口21aを消化槽1の水平方向に開口させた場合について本発明を適用したが、吐出口21aの開口方向は水平方向に限らず、消化槽1の形状や吐出口21aからの汚泥吐出量などを考慮して消化槽1内の汚泥が十分に混合撹拌される向きとすることが好ましい。
また、この実施の形態2では、循環管2に分岐管21を設けることで、実質的に、循環管2の吐出側部分(吐出管)を2つ設けた場合について本発明を適用したが、その吐出管を3以上設けてもよい。また、循環管2の吸引側部分(吸引管)を2つ以上設けてもよい。
この実施の形態2によれば、実施の形態1による作用効果に加えて、次のような優れた作用効果を奏することができる。
(1)循環管2が、消化槽1内の上部で上方に向けて開口する吸引口2aと、消化槽1内の下部で下方に向けて開口する吐出口2bと、消化槽1内の中部で水平方向に向けて開口する分岐管21の吐出口21aを有する構成としたことにより、消化槽1内の上部の混合汚泥が吸引口2aから取り込まれ、熱交換器4で約0.5℃〜1℃の昇温幅で加温され、吐出口2bから吐出される場合には、消化槽1内に縦方向(垂直下方向)の流れを形成し、吐出口21aから吐出される場合には、消化槽1内に水平方向の流れを形成することができる。このような様々な流れを形成することができるので、消化槽1内の混合汚泥の撹拌混合や温度の管理を適切に行うことができる。このため、消化槽1内の混合汚泥中の温度分布ムラや薬品等の混合ムラを抑制できる。
(2)このように、循環ポンプ3によって勢いよく循環管2内を流れる混合汚泥をその流れの勢いを弱めることなく外筒41内を通過させて、複数の熱交換部材42xおよび42yとの接触で効率よく加温した上で、消化槽1内に勢いよく還流させ、消化槽1内の全体に行渡る循環流を形成することができるので、例えば、消化槽1の有効容積に対して1日当たり約4〜12回の循環量に相当する大流量の混合汚泥を熱交換器4内に流通させて循環させることができる。このため、原汚泥の投入量(負荷)が増大した場合でも、その原汚泥に対する嫌気性消化反応を確実に進行させることができる。
(3)熱交換器4に流路切替器5を併設した構成としたことにより、混合汚泥の流れの方向が変更されても、熱媒体を混合汚泥の流れに対して常に向流で流すことができ、熱交換の効率が良い対向流式を維持することができる。
実施の形態3.
図11は本発明の実施の形態3による嫌気性消化装置に用いられる熱交換器内の熱交換部材の配置構成を示す断面図であり、図12は図11に示した熱交換部材の連通穴の配置構成を熱媒体供給側から示す部分断面図であり、図1等と同一の構成要素には同一符号を付して重複説明を省略する。
この実施の形態3は、大型の熱交換部材42xと小型の熱交換部材42yに加えて、中型の熱交換部材42zを用いた点で、実施の形態2と異なる。
中型の熱交換部材42zは、図11および図12に示すように、その幅寸法(外筒41の汚泥流通部41aの内周面からの長さ寸法)が大型の熱交換部材42xと小型の熱交換部材42yの中間の寸法を有している。また、小型の熱交換部材42yは、中型の熱交換部材42z間および大型の熱交換部材42xと中型の熱交換部材42zとの間に配設されている。このような3種類の熱交換部材42x、42yおよび42zの配置構成では、外筒41の汚泥流通部41a内の中心側の空間を主に大型の熱交換部材42xが占め、その間を主に小型の熱交換部材42yと中型の熱交換部材42zが占めるようになっている。これにより、汚泥流通部41a内に、ほぼ均等の間隔をもって熱交換部材42x、42yおよび42zを配設することが可能になるため、汚泥流れを必要以上に妨げず圧力損失の増加や汚泥・異物による閉塞の発生を防止することができる。
また、図12に示すように、中型の熱交換部材42zの両端には、大型の熱交換部材42xと同様の間隔で、2つの連通穴42cが形成され、汚泥流通部41aの内周面からの距離も同一に設定されている。なお、中型の熱交換部材42zには、大型の熱交換部材42xと同様に曲面部が形成されてもよい。
この実施の形態3によれば、熱交換部材42を3種類の熱交換部材42x、42yおよび42zで構成したことにより、汚泥流れを必要以上に妨げず圧力損失の増加や汚泥・異物による閉塞の発生を防止することができる一方で、熱交換面積(伝熱面積)を高め、熱交換の効率を向上させることができる。
実施の形態4.
図13は本発明の実施の形態4による嫌気性消化装置の全体構成を模式的に示す部分断面図であり、図1等と同一の構成要素には同一符号を付して重複説明を省略する。
この実施の形態4は、ガスによる混合汚泥の撹拌混合および加温を行う嫌気性消化装置であり、具体的には、以下の点で、実施の形態2と異なる。
(1)略断面亀甲形の消化槽1の縦方向の長さ寸法が、実施の形態2における消化槽1よりも大きく設定され、縦長になっている点。
(2)消化槽1内にエアリフトポンプ13を設け、実施の形態2における、混合汚泥を圧送するタイプの循環ポンプ3を設けていない点。
消化槽1内の中央部には、上部開放部9aと下部開口部9bを有し、消化槽1の水面上から消化槽1の底部近傍まで達する縦寸法を有するドラフトチューブ9が設けられている。このドラフトチューブ9の上部には、その上部開口部分に接続する略円筒状のドラフトチューブ接続部10aと、このドラフトチューブ接続部10aから水面下で分岐し、循環管2の吸引口2aと接続する略円筒状の循環管接続部10bを有する分岐部材10が設けられている。また、消化槽1の上部空間内で開口する消化ガス吸引口11aと、消化槽1内のドラフトチューブ9の下部に接続し、そのドラフトチューブ9内の下方で開口する消化ガス吐出口11bを有し、消化槽1外を延在する消化ガス循環管11が設けられている。この消化ガス循環管11の途中には、消化槽1内の上部の水面上に浮上した消化ガスを消化ガス吸引口11aで吸引し、消化ガス吐出口11bからドラフトチューブ9内に吐出する消化ガス循環器12が設けられている。
これらドラフトチューブ9と分岐部材10と消化ガス循環管11と消化ガス循環器12とは、循環管2に設けられ、消化槽1内の混合汚泥を移送するエアリフトポンプ(循環ポンプ)13を構成している。
なお、消化ガス循環器12は、消化ガス(例えば、メタンガス)への引火を防止する防爆構造となっている。また、消化槽1には、原汚泥投入管、脱離液流出管および消化汚泥排出管が配設されているが、いずれも図示を省略している。
循環管2の吸引口2aは、消化槽1内の上部に配設された分岐部材10の循環管接続部10bに接続し、吐出口2bは、消化槽1内の下部であって、ドラフトチューブ9の下部開口部9bより上方で、水平方向に向けて開口している。このような循環管2は、縦長の消化槽1の外壁部に沿って上下方向に配管されるので、吸引口2aと吐出口2bとの高低差により、循環管2内の混合汚泥に対して、重力による自然流下作用が働く。また、熱交換器4は、吸引口2aの高さよりも低く、吐出口2bの高さより高い位置で循環管2に配設されている。
次に、動作について説明する。
消化槽1内で嫌気性消化反応が進行すると、消化槽1内の上部の水面上に消化ガスが浮上する。その消化ガスは、消化ガス循環器12の作動により、消化ガス循環管11の消化ガス吸引口11aで吸引され、消化ガス循環器12を経て消化ガス循環管11の消化ガス吐出口11bからドラフトチューブ9内に吐出される。吐出された消化ガスは、その浮力によって、ドラフトチューブ9内を勢いよく上昇する。この消化ガスのエアリフト効果によって、消化槽1内の底部の混合汚泥がドラフトチューブ9の下部開口部9bから吸引され、ドラフトチューブ9を上昇する。分岐部材10まで揚水された混合汚泥は、そのままドラフトチューブ9の上部開放部9aから勢いよく溢れ、再びドラフトチューブ9を下降して循環流となる。
一方、分岐部材10まで揚水された混合汚泥のうち、分岐部材10の循環管接続部10bおよび吸引口2aから循環管2内に移行した混合汚泥は、熱交換器4の外筒41の汚泥流通部41aに導入され、約0.5℃〜1℃程度の昇温幅で加温される。加温された混合汚泥は、循環管2の吐出口2bから消化槽1内で水平方向に吐出され、ドラフトチューブ9の下部開口部9bから吸引されて消化槽1内で循環流となる。
この実施の形態4によれば、実施の形態2と同様に、圧力損失の低い大流量の混合汚泥を流通させて約0.5℃〜1℃程度の昇温幅で加温できる熱交換器4を配設しているので、エアリフトポンプ13のような大流量で低揚程のポンプを利用しても、消化槽1内の混合汚泥を循環し、且つ約0.5℃〜1℃程度の昇温幅で加温して混合汚泥の温度や質を均一に維持し、嫌気性消化反応を効率よく進行させることができる。
なお、上記実施の形態1乃至4では、熱交換器4の熱媒体(約60℃から80℃の温水)の流れと循環管2内を通過する混合汚泥の流れを対向流とした場合について本発明を適用したが、これに限定されるものではなく、大流量の混合汚泥を約0.5℃〜1℃程度の昇温幅で加温できる方式であれば、例えば、他の方式を採用してもよい。熱媒体として80℃を超える比較的高温の温水や水蒸気を用いる場合に熱交換効率のよい対向流式で熱交換を行うと、混合汚泥の昇温幅が大きくなり、混合汚泥に熱的損傷を与える可能性がある。このため、80℃を超える熱媒体を用いる場合には、汚泥の熱的損傷に至る懸念がある高温であれば、熱交換効率が対向流式よりも低い並流式で熱交換を行ってもよい。
表1は、本発明に係る嫌気性消化装置(実施例1乃至3)と、従来の嫌気性消化装置(比較例1乃至3)とのポンプ動力を比較した例示である。
Figure 0006279297
実施例1乃至3では、いずれも、図4乃至図10に示した、圧力損失が低く、しかも熱交換効率の高い熱交換器4を備えた実施の形態2による嫌気性消化装置を用いて汚泥の嫌気性消化処理を行った。実施例1乃至3に用いた嫌気性消化装置では、熱交換器4を通過する際の汚泥の圧力損失が低いため、消化槽内撹拌用の汚泥循環ポンプ(循環ポンプ3に相当)のみで汚泥循環を賄うことができるので、従来の嫌気性消化装置において必要であった熱交換用の汚泥循環ポンプを用いていない。また、比較例1乃至3では、いずれも、図16に示した従来のスパイラル型の熱交換器70を備え、且つ、消化槽内撹拌用の汚泥循環ポンプおよび熱交換用の汚泥循環ポンプの両方を備えた従来の嫌気性消化装置を用いた汚泥の嫌気性消化処理を行った。
実施例1と比較例1、実施例2と比較例2、および、実施例3と比較例3は、相互に比較対象である。各比較対象同士の消化槽の容量(m)、消化槽内撹拌用の汚泥循環ポンプ(循環ポンプ3に相当)の撹拌機動力(kW)、熱交換器内の伝熱面積(m)、および、熱交換器へ熱媒体を給排する温水循環ポンプの流速(m/分)、機動力(kW)については、表1に示すように、同等のものを用いた。また、消化槽内撹拌用の汚泥循環ポンプ(循環ポンプ3に相当)を配設した循環管の口径についても、同等のものを用いた。
表1から明らかなように、実施例1と比較例1との総動力差(kW)は13.7kWであり、実施例1は比較例1よりも約67.9%のポンプ動力削減を図ることができ、実施例2と比較例2との総動力差(kW)は15.0kWであり、実施例2は比較例2よりも約57.3%のポンプ動力削減を図ることができ、実施例3と比較例3との総動力差(kW)は22.0kWであり、実施例3は比較例3よりも約59.9%のポンプ動力削減を図ることができたことが分かる。この結果から、本発明に係る嫌気性消化装置(実施例1乃至3)は、従来の嫌気性消化装置(比較例1乃至3)よりも省エネルギーであると共にエネルギー回収率の増大に寄与していることになる。
また、実施例1乃至3、および、比較例1乃至3では、いずれも、同一の外気温の条件下で、消化槽内の汚泥の目標温度を、メタン菌(中温菌)の至適温度(約37℃)に設定し、熱媒体として60℃の温水を用い、pHを調整しながら、同種の原汚泥に対する嫌気性消化反応を行った。実施例1乃至3では、1回の循環で、約0.5℃の昇温幅で加温でき、消化槽有効容積に対して1日当たり約4〜12回の循環量に相当する大流量の混合汚泥を循環させることができ、消化槽内全体の混合汚泥の温度を目標温度であるメタン菌の至適温度(約37℃)に調整し、混合汚泥のpHをメタン菌の至適pHに調整することができた。これに対し、比較例1乃至3では、1回の循環での昇温幅が約5℃となり、消化槽有効容積に対して1日当たり約0.5回の流量の混合汚泥を循環させるに止まり、消化槽内の混合汚泥に温度分布が生じ、目標温度であるメタン菌の至適温度(約37℃)に調整できず、混合汚泥のpHをメタン菌の至適pHに調整することができなかった。また、このような嫌気性消化反応により消化汚泥として得られた処理汚泥中の未消化汚泥の混入率では、実施例1乃至3が比較例1乃至3よりも格段に低かった。さらに、得られた消化ガスの回収量では、実施例1乃至3が比較例1乃至3よりも格段に多かった。
本発明に係る熱交換器は、嫌気性消化装置において、消化槽内の混合汚泥を加温するために用いられるが、このような嫌気性消化装置への適用に限定されるものではなく、必要に応じて、好気性生物処理装置などの汚泥処理装置への適用も可能である。
1 嫌気性消化槽,
2 循環管, 2a 吸引口, 2b 吐出口,
21 分岐管, 21a 吐出口,
3 循環ポンプ, 30 スクリュー, 30a 回転軸, 30b 回転羽根,
31 駆動器,
4 熱交換器, 41 外筒,
41a 汚泥流通部, 41b 外筒排出側端フランジ,
41c 外筒供給側端フランジ,
42 熱交換部材,
42a 熱媒体流通部, 42b 伝熱部, 42c 連通穴,
42d 曲面部,
42x 大型の熱交換部材, 42y 小型の熱交換部材,
42z 中型の熱交換部材,
43 供給側外覆部材,
43a 熱媒体供給室, 43b 供給側連通穴, 43c 熱媒体供給口,
43d 汚泥流通部,
44 排出側外覆部材,
44a 熱媒体排出室, 44b 排出側連通穴, 44c 熱媒体排出口,
44d 汚泥流通部,
45a 第一接続部材, 45b 汚泥流通部,
45c 第二接続部材, 45d 汚泥流通部,
46 供給側外筒部材,
46a 本体, 46b 供給側端フランジ, 46c 熱媒体供給管,
47 供給側内筒部材, 48 排出側外筒部材,
48a 本体, 48b 排出側端フランジ, 48c 熱媒体排出管,
49 排出側内筒部材, 50 供給側円筒部,
50a 本体, 50b 端フランジ, 50c 中フランジ,
50d エア抜き部,
51 供給側截頭錐体部, 52 供給側外覆部,
53 排出側円筒部, 53a 本体, 53b 端フランジ,
53c 中フランジ,
54 排出側截頭錐体部, 55 排出側外覆部,
5 流路切替器,
H 供給管, L 排出管, BP1,BP2 分岐管,
6 原汚泥投入管, 7 脱離液流出管, 8 消化汚泥排出管,
9 ドラフトチューブ, 9a 上部開放部, 9b 下部開口部,
10 分岐部材,
10a ドラフトチューブ接続部, 10b 循環管接続部,
11 消化ガス循環管,
11a 消化ガス吸引口, 11b 消化ガス吐出口,
12 消化ガス循環器,
V1,V2,V3,V4,V5,V6,V7 開閉バルブ,
13 エアリフトポンプ,
60 外筒パイプ型の熱交換器,
61 本体, 62 汚泥流入室, 62a 汚泥流入口,
63 汚泥流出室, 63a 汚泥流出口,
64 汚泥流路, 65 伝熱壁,
66 熱媒体流路, 66a 熱媒体供給口, 66b 熱媒体排出口,
70 スパイラル型の熱交換器,
71 円筒管, 72 伝熱壁,
73 汚泥流路, 73a 汚泥流入口, 73b 汚泥流出口,
74 熱媒体流路, 74a 熱媒体流入口, 74b 熱媒体流出口

Claims (10)

  1. 投入された原汚泥を嫌気性消化処理する嫌気性消化槽、
    該嫌気性消化槽内で開口する吸引口と吐出口を有し、
    前記嫌気性消化槽外に延在する循環管、
    該循環管に設けられ、前記嫌気性消化槽内の混合汚泥を
    移送する循環ポンプ、
    および
    前記循環管に設けられ、前記混合汚泥を加温する熱交換器、
    を備えた嫌気性消化装置において、
    前記熱交換器は、
    混合汚泥が通過する外筒と、
    該外筒内に複数設けられた中空の熱交換部材と、
    前記外筒の一端の周面を覆い、熱媒体を受け入れる熱媒体供給室を
    形成する供給側外覆部材と
    を備え、
    前記熱交換部材と前記熱媒体供給室とが連通しており、
    前記熱交換部材は、
    中空の長板状部材であって熱媒体を内部に流通する熱媒体流通部と、
    該熱媒体流通部を内部に形成する伝熱部と、を備え、
    前記伝熱部は、その長さ方向の両端の両側面がいずれも傾斜または曲面形状となっており、前記外筒の内周面に片固定されている
    ことを特徴とする嫌気性消化装置。
  2. 前記熱交換器は、
    前記外筒の他端の周面を覆い、熱媒体を受け入れる熱媒体排出室を
    形成する排出側外覆部材を備え、
    前記熱交換部材と前記熱媒体排出室とが連通している
    ことを特徴とする請求項1に記載の嫌気性消化装置。
  3. 前記熱交換器に用いる熱媒体は、60℃〜80℃の温水である
    ことを特徴とする請求項1または請求項2に記載の嫌気性消化装置。
  4. 前記循環ポンプおよび前記熱交換器は、
    前記嫌気性消化槽外に配設されている
    ことを特徴とする請求項1から請求項3のいずれかに記載の嫌気性消化装置。
  5. 前記循環管は、
    垂直方向に開口する吸引口が設けられた1つまたは2つ以上の吸引管と、
    水平方向に開口する吐出口が設けられた1つまたは2つ以上の吐出管と
    を備えている
    ことを特徴とする請求項1から請求項4のいずれかに記載の嫌気性消化装置。
  6. 汚泥が通過する外筒と、
    該外筒内に複数設けられた中空の熱交換部材と、
    前記外筒の一端の周面を覆い、熱媒体を受け入れる熱媒体供給室を
    形成する供給側外覆部材と
    を備え、
    前記熱交換部材と前記熱媒体供給室とが連通しており、
    前記熱交換部材は、
    中空の長板状部材であって熱媒体を内部に流通する熱媒体流通部と、
    該熱媒体流通部を内部に形成する伝熱部と、を備え、
    前記伝熱部は、その長さ方向の両端の両側面がいずれも傾斜または曲面形状となっており、前記外筒の内周面に片固定されている
    ことを特徴とする熱交換器。
  7. 前記外筒の他端の周面を覆い、熱媒体を受け入れる熱媒体排出室を
    形成する排出側外覆部材を備え、
    前記熱交換部材と前記熱媒体排出室とが連通している
    ことを特徴とする請求項6に記載の熱交換器。
  8. 熱媒体は、60℃〜80℃の温水である
    ことを特徴とする請求項6または請求項7に記載の熱交換器。
  9. 前記循環管は、
    前記消化槽内の上部で開口する吸引口および前記消化槽内の下部で開口する吐出口を除き、前記消化槽外に延在しており、
    該延在する部分の循環管は、U字状をなしており、前記循環ポンプが配設される流路方向反転部分と、該流路方向反転部分よりも吐出口側の、前記熱交換器が配設される部分は、直線状をなしている、ことを特徴とする請求項1から5のいずれかに記載の嫌気性消化装置。
  10. 請求項1から5または9のいずれかに記載の嫌気性消化装置の制御方法であって、
    前記熱交換器に用いる熱媒体に、60℃〜80℃の温水を用い、
    前記嫌気性消化装置を、1回の循環での前記混合汚泥の昇温幅を1℃以下とするように、前記循環ポンプおよび前記熱交換器を制御する、ことを特徴とする、制御方法。
JP2013248942A 2013-12-02 2013-12-02 嫌気性消化装置およびこれに用いる熱交換器 Active JP6279297B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248942A JP6279297B2 (ja) 2013-12-02 2013-12-02 嫌気性消化装置およびこれに用いる熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248942A JP6279297B2 (ja) 2013-12-02 2013-12-02 嫌気性消化装置およびこれに用いる熱交換器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018006264A Division JP6651555B2 (ja) 2018-01-18 2018-01-18 熱交換器

Publications (2)

Publication Number Publication Date
JP2015104713A JP2015104713A (ja) 2015-06-08
JP6279297B2 true JP6279297B2 (ja) 2018-02-14

Family

ID=53435178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248942A Active JP6279297B2 (ja) 2013-12-02 2013-12-02 嫌気性消化装置およびこれに用いる熱交換器

Country Status (1)

Country Link
JP (1) JP6279297B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072141B (zh) * 2019-12-31 2024-04-12 河南省力华全环保科技有限公司 一种环形活塞布水换热装置
JP7366298B1 (ja) 2022-05-24 2023-10-20 古河産機システムズ株式会社 横軸型槽外撹拌機およびそのメンテナンス方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318687A (ja) * 1997-05-19 1998-12-04 Clean:Kk 熱交換器
JP2006057473A (ja) * 2004-08-17 2006-03-02 Usui Kokusai Sangyo Kaisha Ltd Egrガス冷却装置
JP4416671B2 (ja) * 2005-01-24 2010-02-17 株式会社ティラド 多流体熱交換器
SE531315C2 (sv) * 2005-04-15 2009-02-17 Jerzy Hawranek Axiell rörvärmeväxlare
JP4772537B2 (ja) * 2006-02-28 2011-09-14 株式会社西原環境 汚泥処理システム
JP5379451B2 (ja) * 2008-11-07 2013-12-25 サンデン株式会社 熱交換器及びこれを用いた給湯装置
JP2011031166A (ja) * 2009-07-31 2011-02-17 Furukawa Industrial Machinery Systems Co Ltd 汚泥消化装置
JP2011031167A (ja) * 2009-07-31 2011-02-17 Furukawa Industrial Machinery Systems Co Ltd 汚泥消化装置

Also Published As

Publication number Publication date
JP2015104713A (ja) 2015-06-08

Similar Documents

Publication Publication Date Title
US8110106B2 (en) Anaerobic digester design and operation
JP6651555B2 (ja) 熱交換器
JP6279297B2 (ja) 嫌気性消化装置およびこれに用いる熱交換器
CN106288873A (zh) 一种适用于高固体含量污水的套管式换热器
CN205443312U (zh) 一种生物制药用水循环增氧发酵罐
CN208532383U (zh) 一种应用季铵盐改性膜的抗污染厌氧膜生物反应器
JP6159573B2 (ja) 有機性廃棄物の処理装置
JP6938420B2 (ja) 有機性汚泥の嫌気性消化方法及び嫌気性消化装置
CN207483754U (zh) 外循环式多点热补偿大型全混式沼气厌氧发酵罐
CN208038239U (zh) 一种垃圾渗滤液生化处理系统
JP2008012496A (ja) 発酵槽の温度制御方法
CN202785930U (zh) 一种污泥水解酸化系统
JP2011218283A (ja) 有機性廃棄物処理装置および有機性廃棄物処理方法
KR20160117375A (ko) 고농도 유기성 폐기물의 열교환 장치
TWM591523U (zh) 厭氧發酵系統
KR101047849B1 (ko) 역방향 가스 교대교반 및 유로 와류형 혐기성 소화장치 및 그 방법
CN105692951A (zh) 一种铁泥循环利用的废水铁炭还原处理方法及其装置
JP5166337B2 (ja) メタン発酵処理方法及びメタン発酵処理装置
CN110195013A (zh) 一种厌氧菌培养系统
CN204824647U (zh) 一种太阳能餐厨垃圾处理装置
KR100976189B1 (ko) 오폐수 처리장의 슬러지 처리 시스템 및 처리 방법
JP4519149B2 (ja) 中温メタン発酵処理装置の運転方法ならびに中温メタン発酵処理装置
CN215712937U (zh) 一种用于有机废弃物微生物处理的无动力导热结构容器
CN107902853A (zh) 一种垃圾渗滤液生化处理系统
CN219098875U (zh) 一种催化湿式氧化废水预处理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250