JP6269097B2 - 電気自動車制御システム - Google Patents

電気自動車制御システム Download PDF

Info

Publication number
JP6269097B2
JP6269097B2 JP2014008902A JP2014008902A JP6269097B2 JP 6269097 B2 JP6269097 B2 JP 6269097B2 JP 2014008902 A JP2014008902 A JP 2014008902A JP 2014008902 A JP2014008902 A JP 2014008902A JP 6269097 B2 JP6269097 B2 JP 6269097B2
Authority
JP
Japan
Prior art keywords
power generation
power
section
electric
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014008902A
Other languages
English (en)
Other versions
JP2015136987A (ja
Inventor
良晨 潘
良晨 潘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014008902A priority Critical patent/JP6269097B2/ja
Publication of JP2015136987A publication Critical patent/JP2015136987A/ja
Application granted granted Critical
Publication of JP6269097B2 publication Critical patent/JP6269097B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、いわゆるレンジエクステンダーを備える電気自動車の制御システムに関する。
充放電可能な二次電池と、この二次電池によって供給される電力によって駆動され、走行のための駆動力を発生する電気モータとを備えた電気自動車が実用化されている。ただし、このような電気自動車においては、コストや重量等の問題から、十分な容量の二次電池を搭載することが困難であり、1充電当りの走行可能距離は、ガソリンエンジン等を動力源とする従来車両に比較して、短いという問題があった。
なお、従来の電気自動車の中には、制動時の回生ブレーキにより発電される電力を用いて、二次電池を充電するものもあるが、回生ブレーキによる充電量は限られたものであり、走行可能距離を飛躍的に伸ばすには至っていない。
そのため、例えば特許文献1に記載されるように、小型のエンジンにより駆動される発電機によって発電された電力にて二次電池を充電する、いわゆるレンジエクステンダーを搭載することが提案されている。
特開平3−270603号公報
上述したようなレンジエクステンダーを備えた電気自動車では、外部電源により二次電池が充電された場合、通常、レンジエクステンダーを動作させずに、二次電池に充電された電力を用いて電気モータを駆動する。そして、二次電池の充電量(SOC)が所定の下限値まで低下すると、レンジエクステンダーを動作させ、二次電池を充電する。この充電により、二次電池のSOCが所定の上限値に達すると、再び、レンジエクステンダーの動作を停止させる。
しかしながら、このようにレンジエクステンダーを動作させたり、その動作を停止したりすると、二次電池の充放電サイクルが繰り返されることになるため、二次電池の寿命を短くする虞がある。
本発明は、上述した点に鑑みてなされたものであり、二次電池の充放電サイクルの発生を極力抑制することにより、二次電池の寿命を延ばすことが可能な電気自動車制御システムを提供することを目的とする。
上記目的を達成するために、本発明に係る電気自動車制御システムは、
車両を駆動する駆動用モータ(28)と、
駆動用モータを含む車両の電気負荷(26、28、30、32、34、36)へ電力を供給する充放電可能な二次電池(12)と、
電気負荷と二次電池への電力供給のために発電を行う発電手段(14)と、
電気負荷による電力の使用状況に基づき、二次電池の充放電サイクルの発生を抑制するように、発電手段による発電を制御する発電制御手段(42、46)と、
車両が目的地に達するまでの経路における、電気負荷の消費電力を予測する予測手段(S120)と、
予測手段による予測の確からしさを評価する評価手段(S140)と、を備え、
発電制御手段は、予測手段によって予測された電気負荷の消費電力に基づき、発電を行う区間を決定するとともに、その区間において予測される消費電力以下の電力を発電するように発電手段を制御するものであり、
発電手段は、エンジン(20)及び当該エンジンによって駆動される発電用モータ(18)を含み、エンジンを燃焼効率が良い一定動作点で運転したとき、発電用モータは、一定の第1の電力を発電するものであり、
発電制御手段は、電気負荷において消費される電力が第1の電力よりも大きいときに発電手段が第1の電力の発電を行うように発電手段の発電時期を制御する発電時期制御と、電気負荷において消費される電力が第1の電力より小さい場合、発電手段が発電する電力が電気負荷の消費電力よりも小さくなるようにエンジンの動作点を変更して発電手段の発電量を制御する発電量制御とを実行可能であり、
発電制御手段は、経路に、評価手段によって予測の確かさしさが高いと評価された区間を含み、当該区間における予測消費電力が第1の電力よりも大きい場合には、当該区間において発電時期制御を実行することを決定し、経路に、予測の確からしさが低いと評価された区間しか含まれない場合、及び予測の確からしさが高いと評価された区間が含まれていても、当該区間における予測消費電力が第1の電力よりも小さい場合には、少なくとも1つの区間において発電量制御を実行することを決定し、車両が決定された区間を走行するときに、発電時期制御又は発電量制御を実行することを特徴とする。
このように本発明に係る電気自動車制御システムでは、発電制御手段が、予測手段によって予測された電気負荷の消費電力に基づき、発電を行う区間を決定するとともに、その区間において予測される消費電力以下の電力を発電するように発電手段を制御する
ように構成されているので、二次電池の充放電サイクルの発生を抑制することが可能になる。
なお、上記括弧内の参照番号は、本発明の理解を容易にすべく、後述する実施形態における具体的な構成との対応関係の一例を示すものにすぎず、なんら本発明の範囲を制限することを意図したものではない。
また、上述した特徴以外の、特許請求の範囲の各請求項に記載した技術的特徴に関しては、後述する実施形態の説明及び添付図面から明らかになる。
第1実施形態による電気自動車の制御システムの全体構成を示すブロック図である。 第1実施形態の制御システムによる発電制御のための制御処理の流れを示すフローチャートである。 発電時期制御と発電量制御とを説明するための説明図である。 第1実施形態の制御システムの効果を説明するための説明図である。 エンジンECUによって実行されるエンジン制御の一例を説明するための説明図である。 第1実施形態の制御システムによる発電制御のための制御処理の流れを示すフローチャートである。 第2実施形態の制御システムによる発電制御を説明するための説明図である。
以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。
(第1実施形態)
図1は、第1実施形態による電気自動車の制御システム10の全体構成を示すブロック図である。本実施形態に係る電気自動車は、高出力の駆動用モータ28を備えている。この駆動用モータ28は、例えば三相交流同期モータからなり、図示しない減速機構を介して電気自動車の駆動輪に接続されている。従って、電気自動車は、この駆動用モータ28が駆動力を発生すると、その駆動力により走行する。また、駆動用モータ28は、電気自動車が減速するときに、制動力を発生しつつ発電を行う、いわゆる回生ブレーキ機能を発揮する。
高圧電池12は、例えば、リチウムイオン電池やニッケル水素電池等の充放電可能な二次電池であり、所定の高電圧(直流)を発生可能なものである。この高圧電池12は、プラグ24が、家庭用電源などの外部電源に接続されることにより、充電されるように構成されている。つまり、電気自動車には、充電器22が設けられており、プラグ24が外部電源に接されると、充電器22が、外部電源によって提供される低圧の単相交流を高圧の直流に変換して、高圧電池12の充電を行う。
インバータ26は、高圧電池12と駆動用モータ28との間に接続され、高圧電池12側の直流電流と駆動用モータ28側の交流電流とを相互に変換するものである。つまり、駆動用モータ28に電気自動車を走行させるための駆動力を発生させる場合、高圧電池12から出力された直流電流を交流電流に変換して、駆動用モータ28へ出力する。この際、インバータ26が交流電流の大きさや周期を変化させることで、駆動用モータ28が発生するトルクや回転数が制御される。一方、電気自動車の減速時に駆動用モータ28が発電する場合には、インバータ26は、駆動用モータ28が発生した交流電流を直流電流に変換して、高圧電池12に出力する。これにより、高圧電池12が充電される。
ただし、このような駆動用モータ28の回生ブレーキ機能による発電によって高圧電池12に充電される電力は限られたものである。そのため、電気自動車の走行可能距離をさらに延ばすべく、本実施形態に係る電気自動車は、レンジエクステンダーとして、電力を発電する発電装置14を備えている。この発電装置14は、インバータ16、発電用モータ18、及びエンジン20によって構成される。
エンジン20は、例えば、ガソリン、軽油等の液体燃料を用いて駆動される内燃機関である。このエンジン20に対して、発電用モータ18が直結されている。このように、エンジン20は、電気自動車を走行させるための駆動力は発生せず、発電用モータ18の駆動のみに用いられる。そのため、エンジン20は、電気自動車の走行状態の影響を受けることなく、効率の良い運転状態を維持することができる。
発電用モータ18は、駆動用モータ28よりも低出力のものであり、エンジン20によって駆動されることで電力を発生する。ただし、発電用モータ18によって発生される電力は、3相交流であるため、インバータ16により直流に変換されて、高圧電池12側に出力される。この直流に変換された電力は、上述した駆動用モータ28の駆動のために使用されたり、後述する他の電気負荷への電力供給のために使用されたり、高圧電池12の充電のために使用されたりする。なお、発電用モータ18は、エンジン20が停止しているとき、当該エンジン20を始動させるためのスターターとしての役割を担うことが可能なものである。
本実施形態に係る電気自動車は、上述したインバータ26及び駆動用モータ28に加えて、高圧電池12からの電源供給を受ける電気負荷を有している。このような電気負荷として、図1には、エアコンインバータ30及びエアコン32、さらに、DCDCコンバータ34及び補機用低圧電池36が示されている。ただし、電気負荷はこれらに限られるわけではなく、他の電気負荷に置換されたり、他の電気負荷が追加されたりしても良い。
エアコン32(特に、コンプレッサ)は、動作時に比較的大きな電力を必要とするため、高圧電池12から電力を供給するように構成されている。また、各種の車両補機などに電源を供給するための補機用低圧電池36が容量不足とならないように、高圧電池12の電力を用いて、補機用低圧電池36を充電するように構成されている。なお、DCDCコンバータ34は、高圧電池12が発生する高電圧を、補機用低圧電池36を充電するための低電圧に変換するためのものである。
図1に示すように、上述した各種の機器等を制御するためのECUとして、電池ECU40、モータ/ジェネレータ(M/G)ECU42、ナビゲーションECU44、及びエンジンECU46が設けられている。これらのECU40、42、44、46は、車内LAN48に接続されており、相互にデータ通信を行うことが可能となっている。ただし、各ECU同士を個別に通信可能に接続しても良い。
M/GECU42は、駆動用モータ28による駆動や発電を制御するものである。例えば、駆動用モータ28を駆動する場合、M/GECU42は、図示しない上位のECUからの駆動用モータ28の目標回転数に関する指令に従い、インバータ26を制御する。より詳細には、M/GECU42は、目標回転数と実回転数との差分に基づき、実回転数を目標回転数に近づけるためのPWM信号を生成して、インバータ26に出力する。また、駆動用モータ28が発電する場合には、駆動用モータ28が発生する3相交流電流を直流電流に変換すべく、インバータ26にPWM信号を出力する。この際、必要とされる制動力に応じて、PWM信号のデューティ比が制御される。
また、M/GECU42は、発電制御手段として、電気負荷による電力の使用状況に基づいて、発電装置14による発電を制御する。そのため、M/GECU42は、後述するエンジンECU46に対して目標発電量を出力するとともに、発電用モータ18が発生する3相交流電流を直流電流に変換すべく、インバータ16にPWM信号を出力する。
エンジンECU46は、M/GECU42から与えられる目標発電量に従って、エンジン20のスロットルバルブ開度を制御する。これにより、エンジン20は、発電装置14において、目標発電量を発生させることが可能な回転数にて回転駆動されることになる。なお、エンジン20には燃料の燃焼効率が良い動作点があり、その動作点にてエンジンが稼働した場合、発電用モータ18は、ほぼ一定の所定電力を発電する。そのため、M/GECU42は、極力、その所定電力を目標発電量とする指令をエンジンECU46に与えるようにし、その所定電力では、高圧電池12の寿命に悪影響を及ぼすことが想定される場合には、その所定電力とは異なる電力を目標発電量とするようになっている。このようなM/GECU42による発電制御について、後に詳細に説明する。
電池ECU40は、高圧電池12の電流、電圧などに基づいて高圧電池12の電池容量に対する充電量の比率SOC(state of charge)を逐次監視し、そのSOCをM/GECU42に出力する。また、電池ECU40は、高圧電池12が過充電状態や過放電状態とならないように、高圧電池12の保護制御も実行する。
ナビゲーションECU44は、道路地図データ(道路形状、道路種別、制限速度、勾配等)を記憶しており、目的地が入力されると、その目的地までの走行経路を設定することが可能なものである。このナビゲーションECU44は、目的地までの走行経路に加え、衛星からのGPS信号を用いて検出された電気自動車の自車位置、道路地図データ、及びインフラとの通信により取得した渋滞情報、過去の走行履歴などのナビ情報を、M/GECU42に出力する。
次に、本実施形態による電気自動車の制御システムにおいて、主としてM/GECU42により実行される発電制御について説明する。図2は、発電制御のための制御処理の流れを示すフローチャートである。
まず、ステップS100では、ナビゲーションECU44から、ナビ情報を取得する。次いで、ステップS110では、取得したナビ情報に基づき、電気自動車の走行状況を予測する。すなわち、目的地までの走行経路に含まれる各道路を電気自動車が走行する際の走行速度や走行時間を、渋滞情報や過去の走行履歴を加味して予測する。そして、ステップS120では、ステップS110にて予測した走行状況に基づき、電気自動車が各道路を走行するために使用される電力の状況を予測する。この際、各道路の道路勾配や、電気自動車を加速させる際の加速度を過去の走行履歴から算出して考慮することにより、電気自動車の走行に必要な電力の予測精度を向上することができる。さらに、インバータ26や駆動用モータ28以外の電気負荷による電力使用状況や、各電気負荷での損失なども考慮することにより、電力使用状況の予測精度をより一層高めることができる。
例えば、図3に示すように、走行経路に含まれるある区間の道路を走行するために必要な電力として、A区間では5.5kw、B区間では1.5kwの電力が予測されたとする。この場合、電力使用量として、損失や他の電気負荷による電力使用を考慮すると、例えば、A区間では6kw、B区間では2kwと予測される。なお、図3に示す例では、損失及び他の電気負荷による電力を一定としたが、可変させても良い。例えば、エアコン32によって使用される電力は、外気温が高くなるほど大きくなる傾向があるため、外気温の検出結果に応じて、使用予測電力を可変させても良い。
続くステップS130では、発電装置14による目標発電量を算出する。このため、まず、ステップS120にて予測した電力使用量を、目的地に達するまでの走行時間全体に渡って積分し、電力使用量の総計を求める。次に、電池ECU40から取得したSOCから現在の高圧電池12の残容量を求める。そして、電力使用量の総計と現在の高圧電池12の残容量との差から、目標発電量を算出する。なお、この場合、現在の高圧電池12の残容量が、電力使用量の総計よりも大きければ、発電装置14による発電は不要である。そのため、高圧電池12の残容量>電力使用量の総計である場合、目標発電量はゼロとする。
目標発電量がゼロではない場合、ステップS140にて、上述した電力使用状況予測の確からしさに応じて、発電制御方法として、発電時期制御と発電量制御とのどちらか、もしくは、その組み合わせを選定する。まず、電力使用状況予測の確からしさの評価手法について説明する。例えば、目的地までの走行経路に高速道路(自動車専用道路)が含まれている場合、電気自動車はその高速道路をほぼ制限速度で走行する確率が高い。そのため、該当する高速道路の走行のために予測された電力使用状況の確からしさは高いと評価することができる。また、電気自動車が過去に走行したことがある道路に関しても、その過去の走行履歴から、電力使用状況の予測の確からしさは、相対的に高いと考えられる。さらに、この場合の予測の確からしさは、走行した回数が多い道路ほど高いと評価することができる。一方、市街地道路や、過去に走行したことがない道路に対する電力使用状況の予測は、相対的に確からしさが低いと評価される。
次に、発電時期制御と、発電量制御について説明する。上述したように、エンジン20には燃料の燃焼効率が良い動作点があるので、その動作点にてエンジン20が運転された場合、同じ発電量を得るための燃料消費を抑えることが可能になる。そこで、本実施形態では、電力使用状況予測の確からしさが高いと評価された区間があり、その区間における電力使用量が、上述した動作点にてエンジン20が運転された場合に、発電装置14により発電される電力量よりも大きい場合、その区間において発電を行うべく、発電時期制御の実行が決定される。
例えば、図3に示す例では、A区間の電力使用量が6kw,B区間の電力使用量が2kwと予測されている。この例において、A区間の予測の確からしさが高いものとする。そして、エンジン20が燃料の燃焼効率が良い動作点で運転された場合、発電装置14は、4kwの電力を発電するものとする。この場合、A区間の予測の確からしさが高く、かつ、A区間の予測電力使用量は、エンジン20の効率が良い動作点での発電装置14の発電電力量よりも大きいので、A区間において発電を行うべく、発電時期制御の実行が決定される。
一方、電力使用状況予測の確からしさが高いと評価された区間がない場合、あっても、その区間における電力使用量が、上述したエンジン20の効率が良い動作点での発電装置14の発電電力量よりも小さい場合、さらには、上述した発電時期制御だけでは、目標発電量を満たすことができない場合、発電量制御の実行が決定される。この発電量制御では、発電装置14が、発電を行う区間における予測電力使用量以下の電力を発電するように、M/GECU42が、発電装置14を制御する。
例えば、図3には、発電量制御の一例として、B区間において、発電装置が2kwの発電を行う例が示されている。
従来は、図4(a)に示すように、高圧電池の充電量(SOC)が所定の下限値まで低下すると、レンジエクステンダーを動作させ、高圧電池の充電を行い、この充電により、高圧電池のSOCが所定の上限値に達すると、レンジエクステンダーの動作を停止させ、高圧電池の充電を終了させていた。このような、レンジエクステンダーによる発電制御では、図4(a)に示すごとく、高圧電池の充放電サイクルが繰り返されることになるため、高圧電池の寿命を短くする虞があった。
それに対して、本実施形態の上述した発電制御によれば、発電時期制御と発電量制御とのいずれであっても、発電装置14は、電気負荷による電力使用量よりも小さい電力しか発電しない。そのため、発電装置14によって発電された電力は電気負荷において消費され、高圧電池12を充電することが抑制される。その結果、図4(b)に示すように、高圧電池12の充放電サイクルの発生を抑えることができるので、高圧電池12の寿命を延ばすことができる。
上述したステップS140において、発電制御方法として、発電時期制御と発電量制御とのどちらか、もしくは、その組み合わせが選定されると、続くステップS150において、選定された発電時期制御と発電量制御とのどちらか、もしくは、その組み合わせに従って、発電パターンが算出される。続くステップS160では、算出した発電パターンに従って、発電すべき時期が到来すると、エンジンECU46に対して目標発電量を与えることにより、エンジン制御を実行させる。
このエンジンECU46によるエンジン制御の一例を、図5を参照して説明する。エンジンECU46は、目標発電量が与えられると、スロットル開度ベース値算出部52において、目標発電量に応じたエンジン回転数を実現するためのスロットル開度ベース値を算出する。このスロットル開度ベース値の算出に関しては、例えば実験結果から目標発電量とスロットル開度との関係を得て、それをマップとしてスロットル開度ベース値算出部52に記憶させておき、そのマップを参照すれば良い。
また、エンジンECU46は、発電装置14の実発電量を検出し、目標発電量と実発電量との差分をスロットル開度補正値算出部54に入力する。スロットル開度補正値算出部54は、例えばPI制御や、PDI制御などによって、実発電量を目標発電量に近づけるためのスロットル開度補正値を算出する。そして、スロットル開度ベース値算出部52が算出したスロットル開度ベース値と、スロットル開度補正値算出部54が算出したスロットル開度補正値とを加算して、目標とするスロットル開度を算出する。この目標スロットル開度となるように、エンジンECU46は、エンジン20のスロットルバルブの開度を制御する。
最後に、ステップS170では、電気自動車の走行が完了したか否かを判定し、完了したと判定すると、図2のフローチャートに示す処理を終了する。
(第2実施形態)
次に、第2実施形態による電気自動車の制御システムについて説明する。本実施形態による電気自動車の制御システムの構成は、第1実施形態における構成と同じであるため、説明を省略する。
第1実施形態では、発電制御方法として、電気負荷による電力使用状況の予測の確からしさに応じて、発電時期制御と発電量制御とのどちらか、もしくは、その組み合わせを選定した。それに対して、本実施形態では、発電装置14が、相互に異なる複数の発電パターンにて発電したと仮定した場合に、高圧電池12の寿命に与える影響の大きさを表す評価値として電池寿命影響度を算出する。そして、算出した電池寿命影響度に基づき、高圧電池12の寿命に与える影響が最も小さい発電パターンを選択し、その発電パターンに従って発電を行うように発電装置14を制御する。これにより、電気負荷による電力の使用状況を考慮した上で、高圧電池12の寿命に与える影響が最も小さい発電パターンにて、発電させることが可能になる。
以下、本実施形態における発電制御について詳しく説明する。図6は、本実施形態における発電制御の処理の流れを示すフローチャートである。
図6のフローチャートのステップS200〜S220までの処理は、上述した第1実施形態のステップS100〜S120までの処理と同様である。
ステップS230では、電池寿命影響度を算出したときに、その電池寿命影響度を持つ発電パターンによる発電を実施すべきか否かを判定するための判定閾値を算出する。この判定閾値は、ゼロ以下の一定値として算出しても良いし、ステップS220における電力使用状況予測において、相対的に大きな電力が必要となる時間が長いほど、よりマイナス側の低い値として算出しても良い。詳しくは後述するが、予測電力使用量が大きい場合に、判定閾値をマイナス側の低い値とするほど、より大きな発電量の発電パターンが、選択されることになる。
続くステップS240では、電池寿命影響度を算出するとともに、算出した電池寿命影響度に基づいて、電池寿命にとって最も好ましいと考えられる発電パターンを選択する。電池寿命影響度の算出について以下に詳しく説明する。
まず、本実施形態では、予め複数の発電パターンが定められている。最も単純な例では、図7に示すように、発電電力の大きさを異ならせた発電パターンが定められる。ただし、この発電パターンに関しては、徐々に変化したり、断続的なものであったり、種々の形態が考えられる。
そして、走行経路に含まれる各区間の予測電力使用量に基づき、各区間において、複数の発電パターンにて発電した場合の高圧電池12の電力増減量と、発電しない場合の高圧電池12の電力増減量との差分に基づき、各発電パターンの電池寿命影響度を算出する。具体的には、電池寿命影響度は下記の数式1により算出される。
(数1)
電池寿命影響度=(|発電ありの場合の電力増減量|−|発電なしの場合の電力増減量|)/C*補正係数
なお、Cは定数であり、補正係数は、環境温度及び高圧電池12のSOCの少なくとも一方に応じて決定される変数である。環境温度やSOCは、電池寿命に影響を及ぼすパラメータであるため、これらの影響を補正係数により電池寿命影響度に織り込むことができる。
高圧電池12の充放電量の大きさ、すなわち、高圧電池12の電力増減量の大きさによって、高圧電池12の寿命が変わる。そのため、発電装置14が発電する場合と発電しない場合の高圧電池12の電力増減量の差分から、その発電が、電池寿命へ及ぼす影響度の大きさを算出することができる。
なお、上述した数式1において、「発電ありの場合の電力増減量」、「発電なしの場合の電力増減量」に関して絶対値としているのは、充電、放電に係わらず、高圧電池12の電力量が大きく変動すると、電池寿命に悪影響が及ぶと考えられるためである。
従って、発電する場合の電力増減量の絶対値が、発電しない場合の電力増減量の絶対値より小さければ、発電した方が、電池寿命を延ばす効果が見込める。発電する場合の電力増減量の絶対値と、発電しない場合の電力増減量の絶対値とが同じ値であれば、発電してもしなくても電池寿命に対する影響は変わらない。このため、上述したように、発電を実施すべきか否かを判定するための判定閾値は、ゼロ以下の一定値、もしくは、可変値として算出されるのである。
例えば、図7に示すように、ある区間の予測電力使用量がゼロである場合、発電しない場合の電力増減量の絶対値はゼロであるのに対し、複数の発電パターンにて発電した場合には、いずれも電力増減量がゼロよりも大きくなる。このため、この区間においては、発電を行うべきではない。
一方、予測電力使用量が4kwや6kwの区間においては、発電しない場合の電力増減量の絶対値よりも、発電した場合の電力増減量の絶対値の方が小さくなっている。従って、この区間においては、発電を行った方が、電池寿命を延ばす効果が見込めることになる。この際、いずれの発電パターンを選択するかは、電池寿命影響度によって決定される。具体的には、発電した場合の電力増減量がより小さい方が好ましいため、電池寿命影響度としては、よりマイナスの数字が大きい方が良い。従って、予測電力使用量が4kwの場合には、発電電力4kwの発電パターンが最も好ましい発電パターンとして選択され、予測電力使用量が6kwの場合には、発電電力5kwの発電パターンが最も好ましい発電パターンとして選択される。
続くステップS250では、上述した判定閾値と、選択された発電パターンの電池寿命影響度とに基づいて、発電を実施すべきか否かを判定する。具体的には、電池寿命影響度が、判定閾値以下であれば発電を実施すべきと判定し、判定閾値よりも大きければ、電池寿命影響度は判定閾値により規定される発電制御を行うべき範囲に属していないため、発電を実施しないと判定する。
ステップS260及びS270の処理は、第1実施形態のステップS160及びS17
0の処理と同様である。
上述した第2実施形態の技術的特徴をまとめると、以下の通りである。
(技術的特徴1)
車両を駆動する駆動用モータ(28)と、
駆動用モータを含む車両の電気負荷(26、28、30、32、34、36)へ電力を供給する充放電可能な二次電池(12)と、
電気負荷と二次電池への電力供給のために発電を行う発電手段(14)と、
電気負荷による電力の使用状況に基づき、二次電池の充放電サイクルの発生を抑制するように、発電手段による発電を制御する発電制御手段(42、46)と、
発電手段が、相互に異なる複数の発電パターンにて発電した場合に、二次電池の寿命に与える影響の大きさを表す評価値を算出する算出手段(S240)と、を備え、
発電制御手段は、評価値に基づき、二次電池の寿命に与える影響が最も小さい発電パターンを選択し、その発電パターンに従って発電を行うように発電手段を制御する。
(技術的特徴2)
技術的特徴1において、算出手段は、発電手段が選択した発電パターンにて発電した場合の二次電池の電力増減量と、発電手段が発電しない場合の二次電池の電力増減量との差分に基づき、評価値を算出する。
(技術的特徴3)
技術的特徴1又は2において、算出手段は、環境温度及び二次電池のSOCの少なくとも1つに基づいて、評価値を補正する。
(技術的特徴4)
技術的特徴1乃至3のいずれかにおいて、発電制御手段は、二次電池の寿命に与える影響が最も小さい発電パターンとして選択された発電パターンの評価値を所定の閾値と比較するとともに、その比較において、評価値が、閾値により規定される発電制御を行うべき範囲に属していないと判定した場合、発電制御を行わない。
(技術的特徴5)
技術的特徴4において、電気負荷の消費電力を予測する予測手段(S220)と、
予測手段により、相対的に大きな消費電力が必要となる時間が長いほど、より大きな発電量の発電パターンが発電制御を行うべき範囲に属するように、閾値を変更する閾値算出手段(S230)を備える。
以上、本発明の好ましい実施形態について説明したが、本発明は、上述した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
例えば、上述した第1、第2実施形態では、目的地までの走行経路をナビゲーションECUから取得して、その走行経路における各道路区間の電力使用状況を予測した上で、発電制御を実施するものであった。
しかしながら、目的地までの走行経路が設定されていなくとも、例えば、高圧電池のSOCがある程度低下した場合などに、電気自動車が、現在走行している道路における電力使用状態を予測し、その予測した電力使用状態に基づき、発電制御を実行しても良い。
10 制御システム
12 高圧電池
14 発電装置
18 発電用モータ
20 エンジン
28 駆動用モータ
40 電池ECU
42 モータ/ジェネレータECU
44 ナビゲーションECU
46 エンジンECU

Claims (4)

  1. 車両を駆動する駆動用モータ(28)と、
    前記駆動用モータを含む前記車両の電気負荷(26、28、30、32、34、36)へ電力を供給する充放電可能な二次電池(12)と、
    前記電気負荷と前記二次電池への電力供給のために発電を行う発電手段(14)と、
    前記電気負荷による電力の使用状況に基づき、前記二次電池の充放電サイクルの発生を抑制するように、前記発電手段による発電を制御する発電制御手段(42、46)と、
    前記車両が目的地に達するまでの経路における、前記電気負荷の消費電力を予測する予測手段(S120)と、
    前記予測手段による予測の確からしさを評価する評価手段(S140)と、を備え、
    前記発電制御手段は、前記予測手段によって予測された前記電気負荷の消費電力に基づき、発電を行う区間を決定するとともに、その区間において予測される消費電力以下の電力を発電するように前記発電手段を制御するものであり、
    前記発電手段は、エンジン(20)及び当該エンジンによって駆動される発電用モータ(18)を含み、前記エンジンを燃焼効率が良い一定動作点で運転したとき、前記発電用モータは、一定の第1の電力を発電するものであり、
    前記発電制御手段は、前記電気負荷において消費される電力が前記第1の電力よりも大きいときに前記発電手段が前記第1の電力の発電を行うように前記発電手段の発電時期を制御する発電時期制御と、前記電気負荷において消費される電力が前記第1の電力より小さい場合、前記発電手段が発電する電力が前記電気負荷の消費電力よりも小さくなるように前記エンジンの動作点を変更して前記発電手段の発電量を制御する発電量制御とを実行可能であり、
    前記発電制御手段は、前記経路に、前記評価手段によって予測の確かさしさが高いと評価された区間を含み、当該区間における予測消費電力が前記第1の電力よりも大きい場合には、当該区間において前記発電時期制御を実行することを決定し、前記経路に、予測の確からしさが低いと評価された区間しか含まれない場合、及び予測の確からしさが高いと評価された区間が含まれていても、当該区間における予測消費電力が前記第1の電力よりも小さい場合には、少なくとも1つの区間において前記発電量制御を実行することを決定し、前記車両が決定された区間を走行するときに、前記発電時期制御又は前記発電量制御を実行することを特徴とする電気自動車制御システム。
  2. 目的地に達するまでの経路における電力使用量の総計と、二次電池の残容量とから目標発電量を算出する目標発電量算出手段(S130)をさらに備え、
    前記発電制御手段は、実行を決定した前記発電時期制御だけでは、目標発電量を確保できない場合、前記発電量制御の実行を決定することを特徴とする請求項に記載の電気自動車制御システム。
  3. 前記評価手段は、予測の確からしさを、前記経路に含まれる各区間が自動車専用道路に該当するか否か及び各区間の過去の走行履歴から評価することを特徴とする請求項に記載の電気自動車制御システム。
  4. 前記評価手段は、走行回数の多い区間ほど、予測の確からしさが高いと評価することを特徴とする請求項に記載の電気自動車制御システム。
JP2014008902A 2014-01-21 2014-01-21 電気自動車制御システム Active JP6269097B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008902A JP6269097B2 (ja) 2014-01-21 2014-01-21 電気自動車制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008902A JP6269097B2 (ja) 2014-01-21 2014-01-21 電気自動車制御システム

Publications (2)

Publication Number Publication Date
JP2015136987A JP2015136987A (ja) 2015-07-30
JP6269097B2 true JP6269097B2 (ja) 2018-01-31

Family

ID=53768300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008902A Active JP6269097B2 (ja) 2014-01-21 2014-01-21 電気自動車制御システム

Country Status (1)

Country Link
JP (1) JP6269097B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775043A (zh) * 2019-11-11 2020-02-11 吉林大学 一种基于电池寿命衰减模式识别的混动汽车能量优化方法
CN110775065A (zh) * 2019-11-11 2020-02-11 吉林大学 一种基于工况识别的混合动力汽车电池寿命预测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107600065A (zh) * 2016-07-12 2018-01-19 贵航青年莲花汽车有限公司 一种基于动力电池寿命优化的整车控制方法
JP2019151140A (ja) * 2018-02-28 2019-09-12 ダイハツ工業株式会社 ハイブリッド車
KR102135033B1 (ko) * 2018-07-16 2020-07-17 한국생산기술연구원 농업용 전기차량 발전기의 가동시점 결정방법
JP7126531B2 (ja) * 2020-06-12 2022-08-26 三菱電機株式会社 ハイブリッド車両の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3092079B2 (ja) * 1992-08-20 2000-09-25 株式会社デンソー ハイブリッド型電気自動車
JP3928300B2 (ja) * 1999-05-06 2007-06-13 日産自動車株式会社 ハイブリッド車両の制御装置
JP5097687B2 (ja) * 2008-12-05 2012-12-12 株式会社日立製作所 鉄道車両及び鉄道車両用駆動装置
JP2011020571A (ja) * 2009-07-16 2011-02-03 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2013230718A (ja) * 2012-04-27 2013-11-14 Mazda Motor Corp 内燃機関の排気ガス浄化装置及び制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775043A (zh) * 2019-11-11 2020-02-11 吉林大学 一种基于电池寿命衰减模式识别的混动汽车能量优化方法
CN110775065A (zh) * 2019-11-11 2020-02-11 吉林大学 一种基于工况识别的混合动力汽车电池寿命预测方法

Also Published As

Publication number Publication date
JP2015136987A (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6269097B2 (ja) 電気自動車制御システム
US9346452B2 (en) Predicting energy consumption for an electric vehicle using variations in past energy consumption
RU2607469C2 (ru) Способ и система определения необходимой степени заряженности для зарядки аккумуляторной батареи
JP5482798B2 (ja) 車両および車両の制御方法
JP4307455B2 (ja) ハイブリッド車両の制御装置
KR101459464B1 (ko) 연료전지 차량의 전력 제어 방법 및 시스템
US20140132214A1 (en) Electrically powered vehicle and method for controlling electrically powered vehicle
KR101836250B1 (ko) 구동 모터를 구비한 차량의 dc 컨버터의 출력 전압을 제어하는 방법 및 장치
WO2008041471A1 (fr) Véhicule hybride et procédé de commande de déplacement de véhicule hybride
JP6558280B2 (ja) 制御システム
US20140021919A1 (en) Electrically powered vehicle and method for controlling same
JP2018509880A (ja) 自動車の中の電池のエネルギー状態の値を決定するための方法及び装置
WO2011161781A1 (ja) 車両用制御装置および車両用制御方法
JP2009248822A (ja) 蓄電量制御装置
JP6344336B2 (ja) 電池システム
US10910971B2 (en) Alternator control unit, alternator driving control method, and power supply management system for engine vehicle
CN108068813B (zh) 用于确定混合电动车辆的最佳操作点的方法
US9132737B2 (en) Electromotive force device
CN110957544A (zh) 锂离子电池的控制装置、锂离子电池的控制方法及存储介质
JP2017055551A (ja) 蓄電池制御装置
JP2006304574A (ja) 電源装置およびその制御方法
US9849773B2 (en) Generation control apparatus
JP2020072581A (ja) 移動可能距離算出装置
JP2005261034A (ja) 蓄電機構の制御装置
JP2016088440A (ja) ハイブリッド駆動車両の出力制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6269097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250