JP6248707B2 - 半導体製造装置、成膜処理方法及び記憶媒体 - Google Patents

半導体製造装置、成膜処理方法及び記憶媒体 Download PDF

Info

Publication number
JP6248707B2
JP6248707B2 JP2014040628A JP2014040628A JP6248707B2 JP 6248707 B2 JP6248707 B2 JP 6248707B2 JP 2014040628 A JP2014040628 A JP 2014040628A JP 2014040628 A JP2014040628 A JP 2014040628A JP 6248707 B2 JP6248707 B2 JP 6248707B2
Authority
JP
Japan
Prior art keywords
reaction tube
plasma
processing gas
electrode
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014040628A
Other languages
English (en)
Other versions
JP2015167157A (ja
Inventor
豊 本山
豊 本山
晋吾 菱屋
晋吾 菱屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2014040628A priority Critical patent/JP6248707B2/ja
Publication of JP2015167157A publication Critical patent/JP2015167157A/ja
Application granted granted Critical
Publication of JP6248707B2 publication Critical patent/JP6248707B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、縦型の反応管内にて、基板保持具に棚状に保持された基板に対して成膜処理を行う半導体製造装置、成膜処理方法及びこの成膜処理方法が記録された記憶媒体に関する。
例えば窒化シリコン(Si−N)膜などの薄膜を成膜する装置として、半導体ウエハ(以下「ウエハ」と言う)などの基板を棚状に積載したウエハボート(基板保持具)を縦型の反応管内に下方側から気密に搬入して成膜処理を行う成膜装置が知られている。反応管内には、シリコン系の原料ガス(例えばジクロロシラン(DCS)ガス)と窒素系の反応ガス(例えばアンモニア(NH)ガス)とを各ウエハに夫々供給するためのガスインジェクタが設けられている。また、アンモニアガスのガスインジェクタの近傍位置(詳しくは反応管の外部にて当該ガスインジェクタに近接する位置)には、アンモニアガスをプラズマ化するための一対の平行電極が設けられている。
このような成膜装置において既述の窒化シリコン膜を成膜する時には、原料ガスと反応ガスのプラズマとを交互に各ウエハに供給する手法である、いわゆるALD法が用いられる。そして、これら原料ガスと反応ガスのプラズマとを切り替える時には、反応管内の真空排気や不活性ガスのパージにより当該反応管内の雰囲気が置換される。従って、前記雰囲気中では、ジクロルシランガスとアンモニアガスのプラズマとが互いに混合することが抑制されている。
ところで、薄膜の成膜中に反応管内でパーティクルが発生すると、このパーティクルがウエハに付着した場合には歩留まりの低下に繋がってしまう。そして、反応管内の長さ方向における一方側(例えば下方側)に当該反応管内を排気する排気ポートを設けているので、反応管内の他方側(上方側)にてパーティクルが発生すると、排気ポートに向かうガス流れを反応管内に形成するだけでは当該パーティクルを除去し難い。特許文献1には、枚葉式のエッチング装置や薄膜形成装置において、排気用配管の内部にメッシュ状電極板を配置して、このメッシュ状電極板によりパーティクルを集塵する技術について記載されている。しかしながら、特許文献1には、具体的な薄膜形成装置や、多数枚のウエハに対して一括して成膜を行う成膜装置において発生するパーティクルついては検討されていない。
特開平11−121437
本発明はこのような事情に鑑みてなされたものであり、その目的は、縦型の反応管内にて棚状に積載された基板に対して成膜処理を行うにあたって、基板へのパーティクルの付着を抑制できる技術を提供することにある。
本発明に係る各発明は、複数の基板を棚状に保持した基板保持具を縦型の石英からなる反応管内に搬入して成膜処理を行う半導体製造装置において、以下に列挙される構成要件を備えことを特徴とする。
前記基板に処理ガスを供給するための処理ガス供給部と、
この処理ガス供給部から供給される処理ガスをプラズマ化するために高周波電力が供給されるプラズマ用の導電部材と、
誘電部材を介して前記反応管内の空間を臨むように設けられ、当該反応管内のパーティクルをクーロン力により前記誘電部材側に引き込むために電圧が印加される電極と、
前記反応管内を真空排気する排気口と、を備え
前記反応管は、内管及び外管からなり、前記内管及び前記外管の間の隙間を介して処理ガスが排気される二重管構造として構成され、
前記電極は、前記誘電部材をなす石英部材により覆われると共に、前記隙間に設けられていることを特徴とする。
前記基板に処理ガスを供給するための処理ガス供給部と、
この処理ガス供給部から供給される処理ガスをプラズマ化するために高周波電力が供給されるプラズマ用の導電部材と、
前記反応管を介して当該反応管内の空間を臨むように設けられ、当該反応管内のパーティクルをクーロン力により前記誘電部材側に引き込むために電圧が印加される電極と、
前記反応管内を真空排気する排気口と、を備え
前記反応管の側周壁には、外方に向けて膨らむ凸部が上下方向に沿って設けられ、
前記プラズマ用の導電部材は、前記反応管の外側にて前記凸部に臨むように配置され、
前記処理ガス供給部は、平面で見て前記プラズマ用の導電部材よりも前記反応管の径方向外側に位置し、
前記電極は、平面で見て前記処理ガス供給部よりも前記反応管の径方向内側にて前記凸部に臨むように当該反応管の外側に配置されていることを特徴とする。
前記基板に処理ガスを供給するための処理ガス供給部と、
この処理ガス供給部から供給される処理ガスをプラズマ化するために高周波電力が供給されるプラズマ用の導電部材と、
誘電部材を介して前記反応管内の空間を臨むように設けられ、当該反応管内のパーティクルをクーロン力により前記誘電部材側に引き込むために電圧が印加される電極と、
前記反応管内を真空排気する排気口と、
前記基板に原料ガスを供給する原料ガス供給部と、
前記基板に雰囲気置換用の置換ガスを供給するガス供給部と、
前記基板に原料ガスとプラズマ化された処理ガスとを、置換ガスによる前記反応管内の雰囲気の置換ステップを介して交互に複数回供給するステップと、少なくとも前記置換ステップを行う時に前記電極に電圧を印加するステップとを実行するように制御信号を出力する制御部と、を備えたことを特徴とする。
前記基板に処理ガスを供給するための処理ガス供給部と、
この処理ガス供給部から供給される処理ガスをプラズマ化するために高周波電力が供給されるプラズマ用の導電部材と、
誘電部材を介して前記反応管内の空間を臨むように設けられ、当該反応管内のパーティクルをクーロン力により前記誘電部材側に引き込むために電圧が印加される電極と、
前記反応管内を真空排気する排気口と、を備え
前記プラズマ用の導電部材は、前記電極を兼用し、
前記処理ガスをプラズマ化する時には前記プラズマ用の導電部材に高周波電圧を供給し、処理ガスをプラズマ化しない時には前記電極に電圧を印加するために給電路の切り替えを行うためのスイッチが設けられていることを特徴とする。
また他の発明は、複数の基板を棚状に保持した基板保持具を縦型の石英からなる反応管内に搬入して成膜処理を行う成膜処理方法において、
前記基板に処理ガス供給部から処理ガスを供給する工程と、
プラズマ用の導電部材に高周波電力を供給して、前記処理ガス供給部から供給される処理ガスをプラズマ化する工程と、
誘電部材を介して前記反応管内の空間を臨むように設けられた電極に電圧を印加して、クーロン力により前記誘電部材側に前記反応管内のパーティクルを引き込む工程と、
前記反応管内を真空排気する工程と、
前記基板を加熱する工程と、を含み
前記処理ガスをプラズマ化する工程の前に、前記基板に原料ガスを供給する工程を行い、
前記処理ガスをプラズマ化する工程と前記原料ガスを供給する工程とは、置換ガスによって前記反応管内の雰囲気を置換する工程を介して交互に複数回行われ、
前記パーティクルを引き込む工程は、少なくとも前記置換する工程を行う時に実行されることを特徴とする。
更に他の発明は、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
前記コンピュータプログラムは、本発明の成膜処理方法を実施するようにステップが組まれていることを特徴とする。

本発明は、反応管内にて棚状に積載された基板に対して成膜処理を行うにあたり、誘電部材を介して当該反応管内の空間を臨むように電極を設けて、この電極に対してクーロン力によりパーティクルを引き込むための電圧を印加している。そのため、反応管内にパーティクルが浮遊していると、プラズマの発生に伴って当該パーティクルが帯電するので、これらパーティクルと電極との間の電位差に基づいて誘電部材にパーティクルを引き込むことができる。
本発明の半導体製造装置の一例を示す縦断面図である。 前記半導体製造装置を示す横断平面図である。 前記半導体製造装置における成膜処理にて行われるシーケンスの一例を示す模式図である。 前記成膜処理において発生する浮遊粒子の挙動を示す模式図である。 前記浮遊粒子の挙動を示す模式図である。 前記半導体製造装置の他の例を示す横断平面図である。 前記半導体製造装置の更に他の例を示す横断平面図である。 前記半導体製造装置の別の例を示す横断平面図である。 前記半導体製造装置の更に別の例を示す横断平面図である。 前記半導体製造装置の他の例を示す横断平面図である。 前記半導体製造装置の他の例を示す横断平面図である。 前記半導体製造装置の他の例を示す縦断面図である。 前記半導体製造装置の他の例を示す横断平面図である。 前記半導体製造装置の他の例の一部を拡大して示す縦断面図である。 前記半導体製造装置の他の例を示す縦断面図である。 前記半導体装置にて捕集される浮遊粒子の挙動の一例を示す模式図である。
本発明に係る半導体製造装置の実施の形態の一例について、図1及び図2を参照して説明する。この半導体製造装置は、互いに反応する原料ガスと反応ガスとをウエハWに対して交互に供給して反応生成物を積層するALD法により薄膜を成膜するように構成されており、複数枚のウエハWに対して一括して成膜処理を行うバッチ式の半導体製造装置となっている。
この半導体製造装置は、図1及び図2に示すように、多数枚例えば150枚のウエハWを棚状に積載するウエハボート11と、このウエハボート11を気密に収納してこれらウエハWに対して一括して成膜処理を行う反応管12とを備えている。ウエハボート11及び反応管12は、誘電部材この例では石英により構成されている。反応管12の外側には、下面側が開口する概略円筒型の加熱炉本体14が設けられており、加熱炉本体14の内壁面には、周方向に亘って加熱機構であるヒータ13が配置されている。ウエハボート11は、反応管12(詳しくは後述のマニホールド18)の下方側開口端を気密に開閉する蓋体25と共に、図示しないボートエレベータにより昇降自在に構成されている。図1中16はベースプレート、26は断熱体、27は回転軸、28はモータなどの駆動部である。尚、図1では加熱炉本体14、ヒータ13及びベースプレート6を一部切り欠いて描画している。
図1及び図2に示すように、反応管12は、外管12aと当該外管12aの内部に収納された内管12bとの二重管構造となっており、上下面が開口する概略円筒形状の金属により構成されたマニホールド18によって下方側から気密に支持されている。図2にも示すように、平面で見た時における内管12bの一端側(手前側)の部位は、当該内管12bの長さ方向に亘って外側に向かって膨らんでプラズマ発生領域12cをなしており、このプラズマ発生領域12cにおける外周側の部位は、外管12aよりも外側に飛び出している。言い換えると、このプラズマ発生領域12cは、外管12a及び内管12bにおける壁面の一部を上下方向に亘ってスリット状に開口させ、ウエハボート11側が開口する概略箱型の石英部材の開口端及び外壁面を内管12b及び外管12aの側面側の開口部に夫々溶接することにより構成されている。
前記プラズマ発生領域12cには、ウエハボート11の長さ方向に沿って伸びる処理ガス供給部(ガスインジェクタ)であるアンモニアガスノズル51aが収納されている。このアンモニアガスノズル51aの下端部は、当該プラズマ発生領域12cを構成する反応管12の内壁面を気密に貫通して、アンモニアガスの供給源55aに接続されている。このアンモニアガスノズル51aにおける前記供給源55a側の端部は、図1に示すように、途中部位にて分岐して、窒素(N)ガスなどのパージガスの供給源55cに接続されている。
プラズマ発生領域12cの外側(反応管12の外側)には、図2に示すように、アンモニアガスノズル51aから供給されるアンモニアガスをプラズマ化するために、当該プラズマ発生領域12cを左右から挟むように、例えばインコネル(ニッケル(Ni)合金)などの導電部材からなる一対のプラズマ発生用電極61、61が設けられている。プラズマ発生用電極61、61の各々は、ウエハボート11の長さ方向に亘って伸びるように形成されると共に、プラズマ発生領域12cに近接する位置に配置されている。プラズマ発生用電極61、61は、平面で見てアンモニアガスノズル51aよりも反応管12の径方向内側に位置している。また、プラズマ発生用電極61には、スイッチ部62及び整合器63を介して、周波数及び出力電力が夫々例えば13.56MHz及び1kWの高周波電源64が接続されている。即ち、一対のプラズマ発生用電極61、61のうち一方のプラズマ発生用電極61には高周波電源64が接続され、他方のプラズマ発生用電極61はアースされている。プラズマ発生用電極61、61は、プラズマ用の導電部材をなしている。
また、ウエハボート11から見てプラズマ発生用電極61、61の背面側には、プラズマ発生領域12cを左右両側から挟むように、導電部材(この例では既述のニッケル合金などの金属)により各々構成された一対の粒子捕集用電極71、71が配置されている。従って、これら粒子捕集用電極71、71は、平面で見てアンモニアガスノズル51aよりも反応管12の径方向外側に位置している。粒子捕集用電極71、71は、プラズマ発生領域12cにて発生する浮遊粒子(パーティクル)を捕集するためのものであり、ウエハボート11の長さ方向に沿って亘って伸びるように形成されると共に、プラズマ発生領域12cに近接するように配置されている。従って、粒子捕集用電極71、71は、誘電部材(反応管12を構成する石英部材)を介して、アンモニアガスが供給される処理領域を臨むように配置されている。
粒子捕集用電極71、71には、スイッチ部72を介して直流電源73のプラス(正)側の端子が各々接続されている。この例では、直流電源73は、0V〜1000Vのプラスの電圧を各粒子捕集用電極71、71に印加できるように構成されている。
そして、図2に示すように、ウエハボート11に近接する位置におけるプラズマ発生領域12cから見て左右両側には、シリコンを含む原料ガスこの例ではジクロロシラン(DCS)ガスを供給するための原料ガスノズル51b、51bが配置されている。これら原料ガスノズル51b、51bは、ウエハボート11の長さ方向に亘って伸びると共に、下端位置にて互いに合流して、反応管12の内壁面を気密に貫通して、原料ガスの供給源55bに接続されている。図1中52はガス吐出口であり、各ウエハWの載置位置毎に形成されている。
また、反応管12の内壁面におけるこれらガスノズル51a、51bの貫通位置の近傍位置には、図1に示すように、フッ化水素(HF)ガスやフッ素(F)ガスなどのクリーニングガスの供給源55dから伸びるクリーニングガスノズル51cが気密に挿入されている。このクリーニングガスノズル51cの先端部は、ウエハボート11の下方位置にて開口している。図1中53はバルブ、54は流量調整部である。尚、図2ではクリーニングガスノズル51cの記載を省略している。
内管12bにおいてプラズマ発生領域12cに対向する部位には、図1及び図2にも示すように、概略円形状の排気口17が形成されており、この排気口17は、上下方向に亘って複数箇所に例えば等間隔に並んでいる。また、外管12aにおいてプラズマ発生領域12cから見て側方側に離間した位置には、図2に示すように、先端部がフランジ状に伸び出すと共に石英により構成された排気ポート21が形成されており、従って排気ポート21は、反応管12の一部をなしていると言える。この排気ポート21には、例えばステンレスなどからなるフランジ部21aが例えば図示しないボルトなどにより気密に固定されている。フランジ部21aから伸びる排気路22には、バラフライバルブなどの圧力調整部23を介して真空排気機構である真空ポンプ24が接続されている。尚、図1では、図示の便宜上、排気ポート21やフランジ部21aをプラズマ発生領域12cに対向する位置に描画している。
この半導体製造装置には、図1に示すように、装置全体の動作のコントロールを行うためのコンピュータからなる制御部100が設けられており、この制御部100のメモリ内には後述の成膜処理を行うためのプログラムが格納されている。このプログラムは、ハードディスク、コンパクトディスク、光磁気ディスク、メモリカード、フレキシブルディスクなどの記憶媒体である記憶部101から制御部100内にインストールされる。
次に、上述実施の形態の作用について説明する。ここで、反応管12内では、複数枚のウエハWに対するバッチ式の成膜処理が既に複数回行われており、従って反応管12(詳しくは内管12b)の内壁面やウエハボート11の表面には、反応生成物である窒化シリコン膜が付着物として付着している。反応管12内は、ウエハWの成膜処理を行う成膜温度(例えば500℃)よりも低温例えば300℃に設定されている。そのため、前記付着物は、反応管12内の昇降温に伴って、反応管12やウエハボート11との熱膨張収縮率の差によって、当該反応管12の内壁面やウエハボート11の表面から脱離しやすくなっている。
このような状況下において、未処理のウエハWを積載したウエハボート11を反応管12内に気密に搬入すると共に、図3(c)に示すように、当該反応管12の真空引きを行う(t0)。また、反応管12内が成膜温度となるようにヒータ13に通電する。次いで、反応管12内が成膜処理を行う時の処理圧力となるように圧力調整部23(バタフライバルブの開度)を設定すると共に、図3(a)に示すように、当該反応管12内にジクロルシランガスを供給する(t1)。このジクロルシランガスが各ウエハWの表面に接触すると、ジクロルシランガスの成分がウエハWの表面に吸着して吸着層が形成される。この吸着層は、ウエハWの表面だけでなく、反応管12の内壁面やウエハボート11の表面にも形成される。尚、図3は、各ガスやプラズマの供給、反応管12内の雰囲気の置換及びパーティクルの捕集の各工程についてのタイムチャートを示しており、各チャートでは各々の工程を行っているか否か(オン/オフ)を表していて、ガスの流量や排気量などの推移については省略している。
続いて、ジクロルシランガスの供給を停止した後、図3(c)に示すように、反応管12内の雰囲気の置換を行う(t2)。具体的には、反応管12を真空引きした後、パージガスを反応管12内に供給する。次いで、パージガスの供給を停止して、反応管12内を処理圧力に設定する。そして、プラズマ発生用電極61に高周波電力を供給すると共に、図3(b)に示すように、アンモニアガスノズル51aからプラズマ発生領域12cにアンモニアガスを供給する(t3)。
アンモニアガスは、プラズマ発生用電極61、61間の領域に到達すると、あるいは当該領域の近傍位置に到達すると、これらプラズマ発生用電極61、61間に供給される高周波電力によってプラズマ化されて、イオンやラジカルなどの活性種となる。この活性種がウエハWの表面における既述の吸着層に接触すると、当該吸着層が窒化されて、窒化シリコンからなる反応層が形成される。従って、反応管12の内壁面やウエハボート11の表面に形成された吸着層についても窒化されて反応層が形成される。
ここで、アンモニアガスから発生する活性種が反応管12の内壁面に接触すると、この内壁面に付着した付着物が当該内壁面から脱離して、浮遊粒子(パーティクル)1となる。あるいは、イオンによって反応管12を構成する石英部材そのものがいわばエッチングされて、浮遊粒子1として反応管12から脱離する場合もある。
そして、アンモニアガスのプラズマ中(プラズマ発生領域12c)には、図4に示すように、電気的に中性なラジカルなどの中性粒子の他に、プラスイオン及び電子が発生している。この電子は、マイナスに帯電しており、しかもプラスイオンよりも重量が軽くて小さい(衝突断面積が小さい)。従って、プラズマ発生用電極61、61間の電界中では電子は高速で移動する一方、プラスイオンはそれ程移動しない。即ち、電子は、プラスイオンよりも平均自由行程が長い。そのため、プラズマ発生領域12cに浮遊している浮遊粒子1には、プラスイオンよりも電子が多く衝突するので、当該浮遊粒子1はマイナスに帯電する。
しかる後、図3(b)、(c)に示すように、プラズマ発生用電極61、61への給電及びアンモニアガスの供給を停止すると共に、反応管12内の真空排気とパージガスの供給とをこの順番で行って、反応管12内の雰囲気を置換する。また、反応管12内の雰囲気を置換する工程と並行して、当該反応管12内に浮遊する浮遊粒子1の集塵(除去)を行う。具体的には、図3(d)に示すように、粒子捕集用電極71、71に対して0V〜1000Vのプラスの直流電圧を印加する(t4)。
既述のように、浮遊粒子1がマイナスに帯電しているので、図5に示すように、この浮遊粒子1は、クーロン力によりプラスの電荷(プラスの静電界)に引き寄せられて、直流電源73が接続された粒子捕集用電極71に向かってプラズマ発生領域12cを通流する。そして、前記粒子捕集用電極71とプラズマ発生領域12cとの間に介在している反応管12(内管12b)の内壁面に衝突して、この内壁面に付着する。即ち、粒子捕集用電極71にプラスの直流電圧を印加すると、反応管12が誘電部材により構成されているので、当該粒子捕集用電極71に近接する反応管12の内壁面では、粒子捕集用電極71側の部位が誘電分極によりマイナスに帯電し、一方浮遊粒子1側(反応管12の内部側)の部位がプラスに帯電する。そのため、反応管12内の浮遊粒子1は、静電気力により反応管12の内壁面に引き寄せられて、この内壁面に付着(吸着)する。このように浮遊粒子1が反応管12の内壁面に電気的に吸着することから、その後の工程において粒子捕集用電極71への給電を停止しても、当該浮遊粒子1は反応管12の内壁面に吸着し続ける。尚、図5では、図示の都合上、粒子捕集用電極71と共にプラズマ発生用電極61についても描画している。
しかる後、図3(c)、(d)に示すように、粒子捕集用電極71への給電を停止すると共に、パージガスの供給を停止する(t5)。こうして以上説明したジクロルシランガスの供給工程と、反応管12内の雰囲気の置換工程と、アンモニアガスのプラズマの供給工程と、反応管12内の雰囲気の置換工程及び浮遊粒子1の集塵工程とからなる成膜サイクルを多数回に亘って繰り返す。これら成膜サイクルによって、既述の反応層が多層に亘って積層されて、窒化シリコンからなる薄膜が形成される。
その後、ウエハボート11を反応管12から下方側に取り出した後、後続の未処理のウエハWに対する成膜処理を開始する前、あるいは各ウエハWへのバッチ処理を複数回行った後、反応管12内のクリーニングを行う。具体的には、空の(ウエハWを積載していない)ウエハボート11を反応管12内に気密に搬入して、反応管12内を成膜温度よりも低い温度(例えば350℃)に設定すると共に、当該反応管12内にクリーニングガスを供給する。反応管12内では、成膜処理によって反応管12の内壁面に形成された反応生成物と共に、粒子捕集用電極71への給電により反応管12の内壁面に付着した浮遊粒子1についてもエッチングされて、排気ポート21に向かって排気される。
上述の実施の形態によれば、ウエハWに対してプラズマを用いて成膜処理を行うにあたり、反応管12を介して処理領域を臨む位置に粒子捕集用電極71を設けて、この粒子捕集用電極71にプラスの直流電圧を印加している。そのため、プラズマ中の浮遊粒子1がマイナスに帯電することを利用して、当該浮遊粒子1を反応管12の内壁面に捕集できる。従って、ウエハWへの浮遊粒子1の付着を抑制できるので、歩留まりの低下を抑えることができる。
ここで、排気ポート21が反応管12の下方側の領域に設けられているので、反応管12の内部における上方側の領域ではガス流が滞留しやすく、このため前記上方側の領域では、ウエハWに浮遊粒子1が付着しやすい。一方、粒子捕集用電極71について、反応管12の長さ方向に亘って設けているので、当該反応管12の長さ方向に亘って浮遊粒子1を捕集できる。
そして、浮遊粒子1を捕集する工程について、ALD法における成膜サイクルの一部(反応管12内の雰囲気の置換工程)と並行して行っているので、浮遊粒子1を捕集するために前記成膜サイクルとは別の工程を新たに設ける場合と比べて、スループットの低下を抑えることができる。また、この浮遊粒子1を捕集する工程は、ジクロルシランガスやアンモニアガスの供給工程とは時間を隔てているので、成膜処理に悪影響を及ぼさずに済む。
更に、本発明では、浮遊粒子1がプラズマ発生直後に多く発生すること、及びプラズマ発生用電極61に供給する高周波電力を増やすにつれて浮遊粒子1の発生量が多くなることを見いだした上で、プラズマの発生直後に浮遊粒子1を捕集している。そのため、浮遊粒子1が飛散してしまう前に当該浮遊粒子1を捕集できる。従って、本発明は、互いに反応するジクロルシランガス及びアンモニアガスのプラズマを交互に供給して成膜処理を行うALD法と極めて親和性が高い手法であると言える。
また、浮遊粒子1について、反応管12の内壁面に捕集しており、従って当該内壁面をクリーニングする通常の工程で浮遊粒子1を除去できるので、捕集済みの浮遊粒子1を取り除く別の工程を設けずに済む。
続いて、本発明の他の実施の形態について説明する。図6は、粒子捕集用電極71について、ウエハボート11から見てプラズマ発生用電極61、61の背面側に設けることに代えて、プラズマ発生用電極61、61に対してウエハボート11を介して対向する位置に配置した例を示している。即ち、粒子捕集用電極71は、内管12bにおける排気口17に近接する位置にて、外管12aの外側に設けられている。この例においても、既述の例と同じシーケンスにより成膜処理及び浮遊粒子1の除去が行われる。
図7は、粒子捕集用電極71について、内管12bと外管12aとの間における当該内管12bの排気口17に近接(対向)する位置に配置した例を示している。粒子捕集用電極71は、クリーニングガスによる劣化(酸化)を防止するために石英などの誘電部材からなる保護管81によって長さ方向に亘って覆われており、外管12aの内壁面を介して反応管12内に気密に挿入されている。従って、この例においても、粒子捕集用電極71は、誘電部材(保護管81や内管12b)を介して処理領域を臨むように配置されており、既述の各例と同様の作用及び効果が得られる。
図8は、保護管81により被覆した粒子捕集用電極71について、内管12bと外管12aとの間において排気ポート21に近接する位置に配置した例を示している。具体的には、一対の粒子捕集用電極71、71のうち一方の粒子捕集用電極71は、排気ポート21からウエハボート11側を見た時に、当該排気ポート21よりも左側に配置され、他方の粒子捕集用電極71は排気ポート21よりも右側に配置されている。
更に、図9は、内管12bと外管12aとの間の領域に、複数の粒子捕集用電極71を周方向に並べた例を示している。即ち、前記領域には、粒子捕集用電極71が複数本この例では7本互いに等間隔となるように配置されており、これら7本の粒子捕集用電極71には夫々直流電源73がスイッチ部72を介して接続されている。こうして各々の粒子捕集用電極71から当該粒子捕集用電極71の外側に向かう電界が形成される。図9では、外管12aの外側に粒子捕集用電極71を配置しても良い。
以上説明した各例において、粒子捕集用電極71にプラスの直流電圧を印加するタイミングとしては、アンモニアガスのプラズマを発生させた後に続く反応管12内の置換工程と重なる時間帯に設定したが、成膜サイクルを行っている間に亘って粒子捕集用電極71に給電しても良い。即ち、未処理のウエハWを積載したウエハボート11を反応管12内に搬入した後、成膜処理が終了するまでに亘って、粒子捕集用電極71にプラスの直流電圧を印加しても良い。この場合には、浮遊粒子1が発生すると速やかに当該浮遊粒子1が捕集されるので、更に歩留まりの低下を抑制できる。このようにアンモニアガスのプラズマを発生させている時も浮遊粒子1の捕集を行うにあたって、既述の図2の構成では、当該プラズマに対してプラスの直流電圧が印加される領域がウエハボート11とは反対側に位置しているので、当該領域がプラズマに悪影響を及ぼすことを抑制できる。
図10は、プラズマ発生用電極61を粒子捕集用電極71と兼用した例を示している。即ち、一対のプラズマ発生用電極61、61のうち一方のプラズマ発生用電極61には、整合器63及び高周波電源64と、直流電源73とが接続されている。そして、前記一方のプラズマ発生用電極61と整合器63及び直流電源73との間には、当該一方のプラズマ発生用電極61を整合器63側と直流電源73側との間で切り替え自在に構成されたスイッチ部82が設けられている。一対のプラズマ発生用電極61、61の他方はアースされている。
この例では、アンモニアガスのプラズマを発生させる時はスイッチ部82を高周波電源64(整合器63)側に切り替えて、一方浮遊粒子1の捕集を行う時はスイッチ部82が直流電源73側に切り替えられる。従って、プラズマの発生に伴ってマイナスに帯電した浮遊粒子1が滞留する領域と、プラスの直流電圧が印加される領域とが互いに重なり合うので、良好に浮遊粒子1を捕集できる。また、粒子捕集用電極71、71を設けずに済むことから、スペース的にも有利である。
更に、図11は、一対のプラズマ発生用電極61、61のうち一方のプラズマ発生用電極61には、整合器63を介して高周波電源64を接続し、他方のプラズマ発生用電極61については、スイッチ部72により直流電源73とアースとの間で切り替え自在に構成した例を示している。従って、この例では、アンモニアガスをプラズマ化する時には、スイッチ部62をオンにすると共にスイッチ部72をアース側に切り替える。一方、浮遊粒子1の捕集を行う時には、スイッチ部62をオフにすると共に、スイッチ部72を直流電源73側に切り替える。このような構成であっても既述の例と同様の効果が得られる。
続いて、図12及び図13は、反応管12を単管タイプに構成した例を示している。具体的には、下面側が開口する概略円筒形状の反応管12は、誘電部材例えば石英からなるマニホールド18により気密に支持されている。各ガスノズル51a〜51cは、このマニホールド18を介して反応管12内に気密に収納されている。排気ポート21についても、このマニホールド18に形成されており、当該マニホールド18と同様に石英により構成されている。尚、図12及び図13では、既述の図1及び図2と同じ構成の部材については同じ符号を付して説明を省略している。また、図12では加熱炉本体14などの描画を省略している。
また、この例では、粒子捕集用電極71、71は、既述の図1及び図2に対応するように、ウエハボート11から見てプラズマ発生用電極61、61の背面側に配置されている。図12中91は、反応管12の天井面とウエハボート11との間に設けられた石英からなる概略円板状の天板であり、この天板91は、外周面が反応管12の内壁に対して周方向に亘って溶接されている。このように反応管12を単管タイプに構成した場合であっても、既述の各例と同様の効果が得られる。
この単管タイプの反応管12を用いた場合についても、既述の図6、図8〜図11のように粒子捕集用電極71を配置しても良い。
図14は、排気ポート21を挟むように粒子捕集用電極71、71を配置した例を示している。即ち、図12及び図13に示したように、排気ポート21は反応管12と同じ材質(石英)により構成されている。そのため、排気ポート21を挟むように配置した粒子捕集用電極71、71から見ると、ウエハボート11側にはいずれも石英により構成されたマニホールド18や反応管12を介して、ウエハWが置かれる処理領域が対向している。このように粒子捕集用電極71、71を設けることにより、排気ポート21に向かって通流する浮遊粒子1を捕集できる。
反応管12を二重管として構成した既述の図1や図2の構成においても、排気ポート21を挟むように粒子捕集用電極71、71を配置しても良い。
また、図15は、例えば概略板状に構成した粒子捕集用電極71を天板91の上に配置した例を示している。即ち、既に説明したように、反応管12の内部における上方側の領域では、下方側の領域よりも浮遊粒子1が滞留しやすい。そこで、この例では前記上方側の領域にて滞留する浮遊粒子1を捕集するために、天板91の上に粒子捕集用電極71を配置している。従って、浮遊粒子1は、石英からなる天板91の下面に吸着して、既述の各例と同様の効果が得られる。このようにウエハボート11の上方側に粒子捕集用電極71を配置するにあたって、反応管12に対して上方側に離間した位置に配置しても良い。
また、粒子捕集用電極71を天板91の上に配置する代わりに、即ちウエハボート11の上方側に設ける代わりに、蓋体25の上に粒子捕集用電極71を配置して、ウエハボート11側から落下する浮遊粒子1を捕集しても良い。この場合には、粒子捕集用電極71を覆うように石英からなる保護管81が設けられる。また、図1や図2のように反応管12を二重管として構成した場合についても、反応管12内の上方側や下方側に粒子捕集用電極71を配置しても良い。
粒子捕集用電極71については、保護管81内に収納する場合には、例えばメッシュ状に形成しても良い。
更に、浮遊粒子1を捕集するにあたって、ALD法における成膜サイクルのうち少なくとも一部の工程と並行して行うようにしたが、当該成膜サイクルを一旦停止して浮遊粒子1を捕集しても良い。具体的には、既に詳述した通りにアンモニアガスのプラズマを供給する工程までを行った後、アンモニアガスの供給及び高周波電源64への給電を停止すると共に、反応管12内の排気やパージガスの供給を行わずに、粒子捕集用電極71への給電を行う。その後、粒子捕集用電極71への給電を停止した後、反応管12内の排気及びパージガスの供給、更には後続の成膜サイクルを行う。
更にまた、以上述べた各例では、原料ガスと反応ガスのプラズマとを交互にウエハWに供給するALD法について説明したが、これら原料ガスとプラズマとを同時にウエハWに供給するCVD(Chemical Vapor Deposition)法により薄膜を形成しても良い。この場合には、粒子捕集用電極71には成膜処理を行っている間に亘ってプラスの直流電圧が印加される。
既述のプラズマ処理としては、シリコン系の原料ガスと酸素ガスのプラズマとを用いて酸化シリコン(Si−O)膜を成膜するプロセスであっても良い。また、アンモニアガスをプラズマ化するにあたっては、一対のプラズマ発生用電極61、61間に電界を形成するCCP(容量結合)プラズマに代えて、プラズマ発生用電極61をコイル状に巻回して、ICP(誘導結合)プラズマを発生させても良い。
また、粒子捕集用電極71に印加する直流電圧としては、マイナスの直流電圧であっても良く、この場合にはプラスに帯電した浮遊粒子1が捕集される。即ち、例えば反応管12の内壁面から離間した位置であって且つ当該内壁面の影響を受けない位置のプラズマを「バルクプラズマ」と呼ぶと、このバルクプラズマ中では、既述のように浮遊粒子1はマイナスに帯電する。一方、前記内壁面の近傍では、図16に示すようにシース領域120が形成されており、このシース領域120では、同図下段に示すように、前記バルクプラズマに対して反対の電位となっている。従って、バルクプラズマ中において発生した浮遊粒子1は速やかに反応管12の内壁面に吸着されるため、前記シース領域120を通過して当該内壁面に到達するものの、一方シース領域120にて発生した浮遊粒子1についてはこのシース領域120にて滞留するプラスのイオンに衝突されてプラスに帯電する。従って、このようにプラスに帯電してシース領域120に浮遊している浮遊粒子1については、粒子捕集用電極71に印加されるマイナスの直流電圧によって捕集される。
更に、粒子捕集用電極71に対して交流電圧(高周波電圧)を印加しても良い。即ち、既述のように、マイナスあるいはプラスに帯電した浮遊粒子1が例えば反応管12の内壁に一度捕集されると、この浮遊粒子1はその後直流電源73への給電を停止しても、当該内壁から脱離しにくくなる。従って、マイナスの電位とプラスの電位とを交互に粒子捕集用電極71に給電すると、マイナスに帯電した浮遊粒子1とプラスに帯電した浮遊粒子1とが交互に捕集される。このような交流電圧を印加するにあたり、プラスの電圧値よりもマイナスの電圧値が小さくなるようにしても良く、この場合にはマイナスに帯電した浮遊粒子1がより多く捕集される。本発明の成膜方法としては、ウエハWを加熱せずに常温で成膜を行っても良い。
W ウエハ
11 ウエハボート
12 反応管
61 プラズマ発生用電極
71 粒子捕集用電極
21 排気ポート

Claims (12)

  1. 複数の基板を棚状に保持した基板保持具を縦型の石英からなる反応管内に搬入して成膜処理を行う半導体製造装置において、
    前記基板に処理ガスを供給するための処理ガス供給部と、
    この処理ガス供給部から供給される処理ガスをプラズマ化するために高周波電力が供給されるプラズマ用の導電部材と、
    誘電部材を介して前記反応管内の空間を臨むように設けられ、当該反応管内のパーティクルをクーロン力により前記誘電部材側に引き込むために電圧が印加される電極と、
    前記反応管内を真空排気する排気口と、を備え
    前記反応管は、内管及び外管からなり、前記内管及び前記外管の間の隙間を介して処理ガスが排気される二重管構造として構成され、
    前記電極は、前記誘電部材をなす石英部材により覆われると共に、前記隙間に設けられていることを特徴とする半導体製造装置。
  2. 複数の基板を棚状に保持した基板保持具を縦型の石英からなる反応管内に搬入して成膜処理を行う半導体製造装置において、
    前記基板に処理ガスを供給するための処理ガス供給部と、
    この処理ガス供給部から供給される処理ガスをプラズマ化するために高周波電力が供給されるプラズマ用の導電部材と、
    前記反応管を介して当該反応管内の空間を臨むように設けられ、当該反応管内のパーティクルをクーロン力により当該反応管側に引き込むために電圧が印加される電極と、
    前記反応管内を真空排気する排気口と、を備え
    前記反応管の側周壁には、外方に向けて膨らむ凸部が上下方向に沿って設けられ、
    前記プラズマ用の導電部材は、前記反応管の外側にて前記凸部に臨むように配置され、
    前記処理ガス供給部は、平面で見て前記プラズマ用の導電部材よりも前記反応管の径方向外側に位置し、
    前記電極は、平面で見て前記処理ガス供給部よりも前記反応管の径方向内側にて前記凸部に臨むように当該反応管の外側に配置されていることを特徴とする半導体製造装置。
  3. 複数の基板を棚状に保持した基板保持具を縦型の石英からなる反応管内に搬入して成膜処理を行う半導体製造装置において、
    前記基板に処理ガスを供給するための処理ガス供給部と、
    この処理ガス供給部から供給される処理ガスをプラズマ化するために高周波電力が供給されるプラズマ用の導電部材と、
    誘電部材を介して前記反応管内の空間を臨むように設けられ、当該反応管内のパーティクルをクーロン力により前記誘電部材側に引き込むために電圧が印加される電極と、
    前記反応管内を真空排気する排気口と、
    前記基板に原料ガスを供給する原料ガス供給部と、
    前記基板に雰囲気置換用の置換ガスを供給するガス供給部と、
    前記基板に原料ガスとプラズマ化された処理ガスとを、置換ガスによる前記反応管内の雰囲気の置換ステップを介して交互に複数回供給するステップと、少なくとも前記置換ステップを行う時に前記電極に電圧を印加するステップとを実行するように制御信号を出力する制御部と、を備えたことを特徴とする半導体製造装置。
  4. 複数の基板を棚状に保持した基板保持具を縦型の石英からなる反応管内に搬入して成膜処理を行う半導体製造装置において、
    前記基板に処理ガスを供給するための処理ガス供給部と、
    この処理ガス供給部から供給される処理ガスをプラズマ化するために高周波電力が供給されるプラズマ用の導電部材と、
    誘電部材を介して前記反応管内の空間を臨むように設けられ、当該反応管内のパーティクルをクーロン力により前記誘電部材側に引き込むために電圧が印加される電極と、
    前記反応管内を真空排気する排気口と、を備え
    前記プラズマ用の導電部材は、前記電極を兼用し、
    前記処理ガスをプラズマ化する時には前記プラズマ用の導電部材に高周波電圧を供給し、処理ガスをプラズマ化しない時には前記電極に電圧を印加するために給電路の切り替えを行うためのスイッチが設けられていることを特徴とする半導体製造装置。
  5. 前記反応管内にクリーニングガスを供給する供給部を備え、
    前記制御部は、前記電圧を印加するステップに続いて、前記反応管内を排気すると共に当該反応管内にクリーニングガスを供給して、前記パーティクルを前記反応管内から排出するように制御信号を出力することを特徴とする請求項に記載の半導体製造装置。
  6. 前記誘電部材は、前記反応管であり、
    前記電極は、前記反応管の外側に配置されていることを特徴とする請求項3、4または5に記載の半導体製造装置。
  7. 前記誘電部材は、前記電極を覆う石英部材であり、
    前記電極は、前記反応管の内部に設けられていることを特徴とする請求項3、4または5に記載の半導体製造装置。
  8. 前記電極は、前記基板保持具の天板と対向して配置されていることを特徴とする請求項3、4または5に記載の半導体製造装置。
  9. 前記電極は、前記基板保持具の長さ方向に沿って設けられていることを特徴とする請求項1ないしのいずれか一つに記載の半導体製造装置。
  10. 複数の基板を棚状に保持した基板保持具を縦型の石英からなる反応管内に搬入して成膜処理を行う成膜処理方法において、
    前記基板に処理ガス供給部から処理ガスを供給する工程と、
    プラズマ用の導電部材に高周波電力を供給して、前記処理ガス供給部から供給される処理ガスをプラズマ化する工程と、
    誘電部材を介して前記反応管内の空間を臨むように設けられた電極に電圧を印加して、クーロン力により前記誘電部材側に前記反応管内のパーティクルを引き込む工程と、
    前記反応管内を真空排気する工程と、
    前記基板を加熱する工程と、を含み
    前記処理ガスをプラズマ化する工程の前に、前記基板に原料ガスを供給する工程を行い、
    前記処理ガスをプラズマ化する工程と前記原料ガスを供給する工程とは、置換ガスによって前記反応管内の雰囲気を置換する工程を介して交互に複数回行われ、
    前記パーティクルを引き込む工程は、少なくとも前記置換する工程を行う時に実行されることを特徴とする成膜処理方法。
  11. 前記パーティクルを引き込む工程の後、前記反応管内を排気すると共に当該反応管内にクリーニングガスを供給して、前記パーティクルを前記反応管内から排出する工程を行うことを特徴とする請求項10に記載の成膜処理方法。
  12. コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
    前記コンピュータプログラムは、請求項10または11に記載の成膜処理方法を実施するようにステップが組まれていることを特徴とする記憶媒体。
JP2014040628A 2014-03-03 2014-03-03 半導体製造装置、成膜処理方法及び記憶媒体 Active JP6248707B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040628A JP6248707B2 (ja) 2014-03-03 2014-03-03 半導体製造装置、成膜処理方法及び記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040628A JP6248707B2 (ja) 2014-03-03 2014-03-03 半導体製造装置、成膜処理方法及び記憶媒体

Publications (2)

Publication Number Publication Date
JP2015167157A JP2015167157A (ja) 2015-09-24
JP6248707B2 true JP6248707B2 (ja) 2017-12-20

Family

ID=54257919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040628A Active JP6248707B2 (ja) 2014-03-03 2014-03-03 半導体製造装置、成膜処理方法及び記憶媒体

Country Status (1)

Country Link
JP (1) JP6248707B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020572A1 (en) * 2020-07-16 2022-01-20 Tokyo Electron Limited Plasma processing apparatus and plasma processing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047658U (ja) * 1990-05-10 1992-01-23
JPH05217964A (ja) * 1992-02-04 1993-08-27 Sony Corp ドライエッチング装置およびドライエッチング方法
JPH10321604A (ja) * 1997-05-22 1998-12-04 Nec Kyushu Ltd プラズマ処理装置
JPH11121435A (ja) * 1997-10-08 1999-04-30 Fujitsu Ltd 基板処理装置及び基板処理方法
JP3037291B1 (ja) * 1998-11-17 2000-04-24 山形日本電気株式会社 半導体処理装置用容器
JP2001247955A (ja) * 2000-03-06 2001-09-14 Olympus Optical Co Ltd 真空成膜装置
JP3578739B2 (ja) * 2001-09-27 2004-10-20 Necエレクトロニクス株式会社 プラズマ装置
JP4418193B2 (ja) * 2003-08-22 2010-02-17 東京エレクトロン株式会社 パーティクル除去装置及びパーティクル除去方法及びプラズマ処理装置
JP4245012B2 (ja) * 2006-07-13 2009-03-25 東京エレクトロン株式会社 処理装置及びこのクリーニング方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020572A1 (en) * 2020-07-16 2022-01-20 Tokyo Electron Limited Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JP2015167157A (ja) 2015-09-24

Similar Documents

Publication Publication Date Title
TWI809154B (zh) 成膜裝置及成膜方法
JP5971144B2 (ja) 基板処理装置及び成膜方法
US9087676B2 (en) Plasma processing method and plasma processing apparatus
TWI571930B (zh) 電漿處理方法及電漿處理裝置
JP2007150012A (ja) プラズマ処理装置および方法
JP7271330B2 (ja) 載置台及びプラズマ処理装置
JP5281811B2 (ja) プラズマ処理用環状部品、プラズマ処理装置、及び外側環状部材
JP6126475B2 (ja) 基板処理装置
KR102146600B1 (ko) 기판 처리 장치 및 기판 처리 방법
US20060011213A1 (en) Substrate transfer device and cleaning method thereof and substrate processing system and cleaning method thereof
TWI811421B (zh) 用於處理腔室的塗層材料
JP6662249B2 (ja) 基板処理装置及び基板処理方法
US20140284308A1 (en) Plasma etching method and plasma etching apparatus
JP2017010993A (ja) プラズマ処理方法
JP6248707B2 (ja) 半導体製造装置、成膜処理方法及び記憶媒体
TWI593012B (zh) Plasma processing method and plasma processing device
WO2001001467A1 (fr) Procede et appareil de traitement de la poussiere de particules fines indesirables dans un plasma
JP2020072190A (ja) 洗浄方法及び洗浄システム
US8974600B2 (en) Deposit protection cover and plasma processing apparatus
KR20160030364A (ko) 플라즈마 처리 장치 및 클리닝 방법
JP2007258379A (ja) プラズマ処理装置
JP2022018801A (ja) プラズマ処理装置及びプラズマ処理方法
KR101649315B1 (ko) 내부클리닝기능을 갖는 유도결합 플라즈마 처리장치 및 방법
JP2000355768A (ja) プラズマcvd装置におけるクリーニング方法
JP2003289069A (ja) 基板処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R150 Certificate of patent or registration of utility model

Ref document number: 6248707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171228

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250