JP6242700B2 - タービン翼の製造方法 - Google Patents

タービン翼の製造方法 Download PDF

Info

Publication number
JP6242700B2
JP6242700B2 JP2014017837A JP2014017837A JP6242700B2 JP 6242700 B2 JP6242700 B2 JP 6242700B2 JP 2014017837 A JP2014017837 A JP 2014017837A JP 2014017837 A JP2014017837 A JP 2014017837A JP 6242700 B2 JP6242700 B2 JP 6242700B2
Authority
JP
Japan
Prior art keywords
forged
turbine blade
cooling
manufacturing
forged body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014017837A
Other languages
English (en)
Other versions
JP2015145629A (ja
Inventor
浩平 羽田野
浩平 羽田野
大山 宏治
宏治 大山
康朗 松波
康朗 松波
尚之 梅津
尚之 梅津
▲修▼平 黒木
▲修▼平 黒木
原口 英剛
英剛 原口
卓美 松村
卓美 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014017837A priority Critical patent/JP6242700B2/ja
Priority to DE112015000578.1T priority patent/DE112015000578B4/de
Priority to US15/106,901 priority patent/US10105752B2/en
Priority to PCT/JP2015/052238 priority patent/WO2015115443A1/ja
Priority to KR1020167015737A priority patent/KR101791807B1/ko
Priority to CN201580003138.XA priority patent/CN105829657B/zh
Publication of JP2015145629A publication Critical patent/JP2015145629A/ja
Application granted granted Critical
Publication of JP6242700B2 publication Critical patent/JP6242700B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • B21K3/04Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like blades, e.g. for turbines; Upsetting of blade roots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/02Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from one piece
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0018Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/25Manufacture essentially without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、タービン翼の製造方法に関する。
ステンレス部材を鍛造又は圧延により所定形状に加工した後、鍛造等されたステンレス部材に対して、溶体化等のために熱処理する場合がある。
例えば、以下の特許文献1には、1000〜1300℃の高温下で鍛造等したステンレス部材を冷却した後、再び、このステンレス部材に対して950〜1125℃の高温下で熱処理する技術が開示されている。この技術では、加熱後のステンレス部材を5〜4℃/minの冷却速度で急冷している。
この特許文献1に記載の技術の他、本発明と関連する技術として、特許文献2に記載されている技術がある。この技術では、アルミニウム合金部材を熱処理のために加熱した後、このアルミ合金部材に対して、複数のノズルから冷却媒体を吹き付けて、アルミニウム合金部材を急冷している。金属部材を急冷する場合、部材の形状によって、温度低下しやすい部分と温度低下しにくい部分とが生じるため、金属部材中に高温部と低温部とが生じる。この結果、金属部材の冷却過程で金属部材中に熱応力が発生し、ひずみが生じる。そこで、特許文献2に記載の技術では、アルミニウム合金部材の急冷過程でのひずみを抑制するため、複数のノズルから吹き出す冷却媒体の流量等を調節している。
特開2012−140690号 特開2007−146204号
上記特許文献2に記載の技術は、アルミニウム合金部材に対する技術である。ステンレス部材は、アルミニウム合金部材と異なる性質を有する。このため、ステンレス部材を熱処理のために加熱した後、このステンレス部材に対して、上記特許文献2に記載の技術をそのまま適用しても、冷却過程でひずみを抑制することが難しい。また、特許文献2に記載の技術は、比較的低温の熱処理に対して有効である。例えば、500℃程度以下の比較的低温の熱処理であれば、輻射放熱の影響が小さいため、対流による熱伝達を制御すれば、熱処理対象物の温度の制御が可能である。一方、例えば、析出硬化型ステンレス鋼等に必要な溶体化処理は、例えば、1000℃程度の高温が必要である。この場合、輻射放熱を制御しないと、熱処理対象物の温度の制御は難しい。
本発明は、ステンレス鋼のタービン翼を製造するにあたって、ステンレス鋼の部材を熱処理した後、冷却する過程で部材に発生する変形を抑制することを目的とする。
本発明は、ステンレス鋼を鍛造して、鍛造体を形成する工程と、前記鍛造体を熱処理する工程と、前記熱処理後の前記鍛造体を冷却する工程と、を含み、前記熱処理及び前記冷却では、複数の前記鍛造体が整列され、かつ隣接する前記鍛造体同士が、タービン翼のプラットホームとなる部分から前記タービン翼の長手方向における中央までの間に相当する部分の少なくとも一部が向かい合わされて輻射熱によって温め合うように配置される、タービン翼の製造方法である。
熱処理及び冷却において、鍛造体を整列して設置することで、輻射による放熱量のばらつきが抑制される。このため、本発明に係るタービン翼の製造方法は、1つの鍛造体内での冷却速度のばらつきが抑制されるので、鍛造体毎の変形のばらつきを抑制できる。このように、本発明に係るタービン翼の製造方法は、例えば、ステンレス鋼のタービン翼を製造するにあたって、ステンレス鋼の部材を熱処理した後、冷却する過程で部材に発生する変形を抑制することができる。本発明に係るタービン翼の製造方法は、ステンレス鋼に限られず、1000℃程度まで鍛造体が昇温する熱処理すべてに有効である。
複数の前記鍛造体は、収納用の構造体に収納されて前記熱処理及び前記冷却が行われ、前記構造体の内側と対向して収納される前記鍛造体と前記構造体との間には、保温用の遮蔽体が設置されることが好ましい。遮蔽体は、自身と対向するそれぞれの鍛造体の冷却速度を低下させることができる。このため、鍛造体の厚肉部と薄肉部との温度差が小さくなり、鍛造体の変形が抑制される。
前記遮蔽体は板状の部材であり、その厚みは、前記鍛造体の、前記タービン翼のプラットホームとなる部分から前記タービン翼の長手方向における中央までの間に相当する部分でのいずれかの断面の最大厚みと同等であることが好ましい。遮蔽体の輻射熱による保温効果を、鍛造体の輻射熱による保温効果と同等にすることができるので、単体の鍛造体の温度ばらつき及び複数の鍛造体の温度ばらつきを抑制して、冷却時における鍛造体の変形及び変形のばらつきを抑制することができる。
前記最大厚みは、前記熱処理の後に、前記鍛造体に発生する曲がりの起点での断面の最大厚みであることが好ましい。冷却時における鍛造体に発生する主な変形は、鍛造体の曲がりがある。鍛造体の曲がりは、曲がりの起点の影響が大きい。遮蔽体の厚みを、鍛造体に発生する曲がりの起点での断面の最大厚みとすることにより、曲がりの起点近傍における温度のばらつきを抑制できるので、遮蔽体の変形を効果的に抑制することができる。
前記冷却の工程において、複数の前記鍛造体には、冷却用の気体が整流して供給されることが好ましい。冷却用の気体が整流されて部材に供給されることにより、冷却中の鍛造体の変形を抑制できる。
前記ステンレス鋼は、析出硬化型ステンレスであることが好ましい。析出硬化型のステンレス鋼は、加熱時及び冷却時に相変態が起こり、変形が発生しやすいが、本発明に係るタービン翼の製造方法によれば、鍛造体及びタービン翼の変形を効果的に抑制できる。
本発明は、ステンレス鋼のタービン翼を製造するにあたって、ステンレス鋼の部材を熱処理した後、冷却する過程で部材に発生する変形を抑制することができる。
図1は、実施形態に係る動翼が備えられた蒸気タービンの概略構成図である。 図2は、実施形態に係るタービン翼を示す概略図である。 図3は、実施形態に係るタービン翼の製造方法の一例を示すフローチャートである。 図4は、実施形態に係るタービン翼の製造方法における素材の温度変化の一例を示す図である。 図5は、熱処理工程での鍛造体の状態を示す図である。 図6は、鍛造体の長手方向と直交する平面で鍛造体を切ったときの断面形状を示す断面図である。 図7は、本実施形態に係るタービン翼の製造方法でのバスケット内における鍛造体の配置例を示す図である。 図8は、鍛造体の断面箇所を示す図である。 図9は、図7に示すバスケットよりも大きいバスケットを用いた場合の鍛造体の配置例を示す図である。 図10は、平面視が長方形のバスケットに複数の鍛造体を収納した例を示す図である。 図11は、平面視が円形のバスケット内に複数の鍛造体10を収納する他の例を示す図である。 図12は、平面視が円形のバスケット内に複数の鍛造体10を収納する他の例を示す図である。 図13は、冷却工程の一例を示す図である。 図14は、整流用の構造体の一例を示す図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。
(蒸気タービンについて)
図1は、実施形態に係る動翼が備えられた蒸気タービンの概略構成図である。図1に示すように、蒸気タービン1において、ケーシング11は、中空形状を呈し、回転軸としてのロータ12が複数の軸受13によって回転自在に支持されている。ケーシング11内には、タービン翼15及び静翼16が配設されている。タービン翼15は、ロータ12に形成された円盤状のロータディスク14の外周にその周方向に沿って、複数並設され固定されている。静翼16は、ケーシング11の内壁にその周方向に沿って、複数並設され固定されている。これらのタービン翼15及び静翼16は、ロータ12の軸方向に沿って交互に配設されている。
また、ケーシング11内には、上記のタービン翼15及び静翼16が配設され、蒸気が通過する蒸気通路17が形成されている。この蒸気通路17には、蒸気が供給される入口として蒸気供給口18が形成され、蒸気が外部に排出される出口として蒸気排出口19が形成されている。
(タービン翼の構造)
図2は、実施形態に係るタービン翼を示す概略図である。タービン翼15は、翼根部21と、プラットホーム22と、翼部23と、シュラウド24とを含む。翼根部21は、ロータディスク14に埋設され、タービン翼15をロータディスク14に固定する。プラットホーム22は、翼根部21と一体となる湾曲したプレート形状物である。翼部23は、基端部がプラットホーム22に固定され、先端部がケーシング11の内壁面側に延出しており、翼長方向に向かうに従って捩じられている。シュラウド24は、翼部23の先端部に固定されており、隣接するタービン翼15のシュラウド24と接触して、タービン翼15を固定したり、タービン翼15の振動を抑制したりする部材である。
翼部23の両翼面における翼長方向の略中央部に、突起状のスタブ25が形成されている。このスタブ25は、隣接するタービン翼15のスタブ25と接触して、タービン翼15を固定したり、タービン翼15の振動を抑制したりする部分である。タービン翼15は図1に示す蒸気タービン1の動翼であるが、本実施形態に係るタービン翼の製造方法の提供対象は、タービンの動翼には限定されない。
(タービン翼の製造方法)
図3は、実施形態に係るタービン翼の製造方法の一例を示すフローチャートである。図4は、実施形態に係るタービン翼の製造方法における素材の温度変化の一例を示す図である。図4の縦軸は、タービン翼15の素材の温度Tmであり、横軸は経過時間Tiである。本実施形態に係るタービン翼の製造方法は、鍛造工程(ステップS1)と、冷却工程(ステップS2)と、バリ取り工程(ステップS3)と、熱処理工程(ステップS4)と、機械加工工程(ステップS5)とを含む。
ステップS1の鍛造工程において、余肉部が設けられた翼部23の形状となるように加工された上下一組の金型内に、素材の再結晶温度以上の温度に加熱されたタービン翼15の素材を設置し、熱間型鍛造が行われる。図4のOPaが鍛造工程である。本実施形態において、タービン翼15の素材は、例えば、ステンレス鋼である。より具体的には、17−4PHのような析出硬化型のステンレス鋼である。鍛造工程が終了すると、余肉部31が設けられた翼部23の形状の鍛造体が成型される。次に、ステップS2の冷却工程へ進む。
ステップS2の冷却工程においては、鍛造工程において成型された高温状態の鍛造体が冷却される。図4のOPbが鍛造工程での冷却工程である。鍛造体は、次工程のバリ取り工程に適した温度にまで冷却される。次に、ステップS3のバリ取り工程へ進む。
ステップS3のバリ取り工程においては、鍛造工程での型鍛造の際に、素材が上下の金型の隙間に入り込むこと等によって形成された鍛造物の不要な部分(バリ)が除去される。次に、ステップS4の熱処理工程へ進む。
ステップS4の熱処理工程においては、鍛造体に対して熱処理を施す。この熱処理は、溶体化処理OPc、安定化処理OPd及び時効処理OPeを含む。熱処理工程は、前工程(鍛造工程)で鍛造物に発生した残留応力及び冷却過程で鍛造物に発生した熱応力の開放及び鍛造体を時効硬化させる。次に、ステップS5の機械加工工程へ進む。
ステップS5の機械加工工程においては、切削加工によって鍛造体の余肉部が切削される。また、機械加工工程では、切削加工により、翼部23の基端部側(翼根側)にプラットホーム22が形成され、先端部側(翼頂側)にシュラウド24が形成される。このようにして、目的とする最終形状を有するタービン翼15が製造される。
(熱処理工程について)
図5は、熱処理工程での鍛造体の状態を示す図である。図6は、鍛造体の長手方向と直交する平面で鍛造体を切ったときの断面形状を示す断面図である。熱処理工程では、鍛造体10を収納用の構造体30(以下、適宜バスケット30という)に収納して、加熱炉40内に設置される。熱処理工程の時効処理OPeにおいて、鍛造体10は500℃程度に加熱されて保持された後、30分以内に温度を500℃程度低下させる必要があるので、鍛造体10は冷却が必要になる。
一般に、鍛造体10のような金属部材は、その形状に応じて、冷却され易い(言い換えると加熱され易い)部分と、冷却されにくい(言い換えると加熱されにくい)部分とがある。金属部材の冷却され易い部分は、具体的には、単位質量当たりの表面積が大きい大表面積部であり、金属部材で冷却されにくい部分は、単位質量当たりの表面積が小さい小表面積部である。
例えば、本実施形態の場合、図6に示すように、鍛造体における前端10Lを含む前端部10LP及び後端10Tを含む後端部10TPは、これら前端部10LPと後端部10TPとの間の中央部10CPに比べて、翼厚みの寸法が小さいため、単位質量当たりの表面積が大きい大表面積部Aを成し、冷却され易い部分となる。
前端部10LPと後端部10TPとの間に存在する最大直径部TNmaxを含む中央部10CPは、単位質量当たりの表面積が小さい小表面積部Bを成し、冷却されにくい部分を成す。このような金属部材を加熱又は冷却すると、金属部材中に高温部と低温部とが生じる。この結果、金属部材を加熱又は冷却する過程で、金属部材中に大きな熱応力が発生し、変形及びひずみが生じる。また、熱処理後の鍛造体10を冷却する場合、冷却開始初期に、翼の最大直径部TNmaxと前端部10LP及び後端部10TPとの間に温度差が発生する結果、大きな熱応力が発生し、鍛造体10には変形及びひずみが発生する。
金属部材を加熱炉40で加熱する場合、金属部材が配置されている加熱炉40内の温度、つまり雰囲気温度の上昇に伴って、金属部材の温度が上昇する。一方、金属部材を加熱炉40から出して冷却する場合、金属部材の温度に対して、その雰囲気温度が常温であり、金属部材の温度とその雰囲気温度との温度差が大きいため、加熱時の温度上昇率に対して冷却時の温度低下率の方が大きい。このため、加熱時には、金属部材中の高温部と低温部との温度が小さいが、冷却時には金属部材中の高温部と低温部との温度差が大きくなる。よって、冷却時における金属部材中の高温部と低温部との温度差を抑制することが、熱応力の発生を抑え、変形及びひずみの抑制につながる。
析出硬化型ステンレス鋼の鍛造体10を熱処理した後に冷却する場合、その後期において、鍛造体10がMS(マルテンサイト)点以下の温度となり、相変態を開始する。相変態により鍛造体10は膨張するが、最大直径部TNmaxと前端部10LP及び後端部10TPとで、変態の進行具合が異なるため(温度差による)、膨張差による応力が発生する。また、相変態途中の過渡的な段階で応力が作用すると、非常に変形しやすい(変態塑性)。よって、鍛造体10を熱処理した後、冷却する際に、最大直径部TNmax(又は中央部10CP)と前端部10LP及び後端部10TPとの間における温度差を抑制することが、熱応力の発生を抑え、鍛造体10の変形及びひずみの抑制につながる。
図7は、本実施形態に係るタービン翼の製造方法でのバスケット内における鍛造体の配置例を示す図である。図8は、鍛造体の断面箇所を示す図である。図8に示す鍛造体10は、切削加工前なので、切削によって取り除かれる余肉部31を有している。翼根側から翼頂側、すなわちプラットホーム22側からシュラウド24側に向かう方向を、タービン翼15又は鍛造体10の長手方向(翼頂方向)という。図8に示す、シュラウド24側からプラットホーム22側に向かって、A−A〜H−H、J−J〜N−Nの計13箇所の位置は、タービン翼15又は鍛造体10の長手方向における位置を示す。
本実施形態に係るタービン翼の製造方法は、熱処理工程及び冷却工程において、図7に示すバスケット30に複数の鍛造体10を収納する。複数の鍛造体10を収納したバスケット30は、図5に示す加熱炉40に収納されて熱処理される。熱処理が終了したら、例えば、バスケット30を加熱炉40から取り出して冷却する。
本実施形態に係るタービン翼の製造方法は、図7に示すように、複数の鍛造体10が整列される。隣接する鍛造体10同士は、図2に示すタービン翼15のプラットホーム22となる部分からタービン翼15の長手方向(翼長方向)における中央までの間に相当する部分の少なくとも一部が向かい合わされ、かつ輻射熱によって温め合うように配置される。本実施形態において、複数の鍛造体10が整列されると、鍛造体10のサクション側SUと圧力側PRとが対向し、かつ一列に配置されて、鍛造体10の列が形成される。図7に示す例において、1つの鍛造体10の列は3個の鍛造体10を含む。バスケット30は、2つの鍛造体10の列を収納する。タービン翼15の長手方向(翼長方向)における中央は、図8のH−Hで示される部分である。
このように、鍛造体10を整列して設置することで、輻射による放熱量のばらつきが抑制される。このため、本実施形態に係るタービン翼の製造方法は、1つの鍛造体10内での冷却速度のばらつきが抑制されるので、鍛造体10毎の変形のばらつきを抑制できる。
鍛造体10の曲がりを抑制するためには、曲がりの起点の曲がり量を低減することが好ましい。このため、熱処理及び冷却の後に、鍛造体10に曲がりが発生する場合、少なくとも、その曲がりの起点を含みかつその近傍が、隣接する鍛造体10同士の輻射熱によって温め合うようにすることが好ましい。曲がりの起点における最大直径部TNmax(又は中央部10CP)と前端部10LP及び後端部10TPとの間の温度分布が抑制されるので、鍛造体10の曲がりを効果的に抑制できる。鍛造体10の曲がりの起点は、スタブ25よりもプラットホーム22側、より具体的には、タービン翼15又は鍛造体10の長手方向における中央までの間に相当する部分よりもプラットホーム22側である。本実施形態では、位置K−Kが鍛造体10の曲がりの起点となる。
本実施形態では、図7に示すように、バスケット30の内側30IWと対向して収納される鍛造体10とバスケット30との間には、保温用の遮蔽体32が設置されることが好ましい。遮蔽体32は、自身と対向するそれぞれの鍛造体10の冷却速度を低下させることができるので、例えば最大直径部TNmaxのような厚肉部と、例えば前端部10LP及び後端部10TPのような薄肉部との温度差が小さくなって、鍛造体10の変形が抑制される。
本実施形態において、遮蔽体32は、図8に示すように板状の部材である。本実施形態において、遮蔽体32は、平面視が長方形の部材である。本実施形態において、隣接する鍛造体10同士は輻射熱によって互いに温め合うように整列してバスケット30内に収納される。遮蔽体32と対向する鍛造体10も、遮蔽体32との間で互いに温め合うことにより、バスケット30に収納された複数の鍛造体10の冷却速度のばらつきが抑制される。このため、本実施形態では、遮蔽体32として、鍛造体10と輻射率が同程度の部材を用いることが好ましい。例えば、遮蔽体32を、鍛造体10と同一の材料としたり、表面の色又は状態を鍛造体10と同様にしたりすることにより、鍛造体10と遮蔽体32とで輻射率を同程度とすることが好ましい。
前述したように、鍛造体10の曲がりを抑制するためには、曲がりの起点の曲がり量を低減することが好ましい。このため、熱処理及び冷却の後に、鍛造体10に曲がりが発生する場合、少なくとも、その曲がりの起点を含みかつその近傍が、鍛造体10と対向する遮蔽体32の輻射熱によって温め合うようにすることが好ましい。曲がりの起点における最大直径部TNmax(又は中央部10CP)と前端部10LP及び後端部10TPとの間の温度分布が抑制されるので、鍛造体10の曲がりを効果的に抑制できる。図7に示すように、本実施形態において、遮蔽体32は、前端部10LP及び後端部10TP側には配置されていない。
鍛造体10及びタービン翼15は、プラットホーム22側からシュラウド24側に向かって捩れている。遮蔽体32は、鍛造体10及びタービン翼15の捩れに合わせた形状であってもよいが、本実施形態のように遮蔽体32を板状の部材とすることにより、遮蔽体32の製造が容易になる。この場合、鍛造体10の曲がりの起点における断面が、遮蔽体32と対向するようにすることが好ましい。このようにすることで、その曲がりの起点を含みかつその近傍を、遮蔽体32の輻射熱によって温めて、冷却後における鍛造体10の曲がりを抑制することができる。
図8に示す、遮蔽体32の厚みtは、タービン翼15のプラットホーム22となる部分からタービン翼15の長手方向における中央までの間に相当する部分でのいずれかの断面の最大厚みTNmaxと同等であることが好ましい。この場合、遮蔽体32の厚みtは、曲がりの起点における断面の最大厚みTNmaxと同等であることが好ましい。このようにすれば、鍛造体10の曲がりに最も影響を与える曲がりの起点における、鍛造体10と遮蔽体32との輻射熱のやりとりを、隣接する鍛造体10同士と同様にすることができる。その結果、冷却後における鍛造体10の曲がりを抑制することができる。
遮蔽体32の長手方向における長さLは、バスケット30内に設置された遮蔽体32が、鍛造体10の曲がりの起点と対向する程度の長さであればよい。本実施形態において、遮蔽体32の長さLは、鍛造体10の長手方向における長さと同程度である。このようにすることで、鍛造体10の曲がりの起点以外の部分についても、ある程度輻射熱による保温効果が期待できる。
遮蔽体32の長手方向と直交する方向における幅Wは、バスケット30内に設置された遮蔽体32が、鍛造体10の曲がりの起点における幅方向の全範囲と対向する程度の大きさであればよい。このようにすることで、遮蔽体32は、鍛造体10の曲がりの起点を輻射熱によって効率よく温めることができる。
図9は、図7に示すバスケットよりも大きいバスケットを用いた場合の鍛造体の配置例を示す図である。本実施形態において、バスケット30の大きさは問わない。バスケット30が大きくなった場合、バスケット30は、より多くの鍛造体10を収納することができる。この場合も、前述したように、複数の鍛造体10は、タービン翼15のプラットホーム22となる部分からタービン翼15の長手方向における中央までの間に相当する部分の少なくとも一部が向かい合わされ、かつ輻射熱によって温め合うように整列して配置されていればよい。また、バスケット30と鍛造体10との間には、遮蔽体32が設けられることが好ましい。
図10は、平面視が長方形のバスケットに複数の鍛造体を収納した例を示す図である。本実施形態において、鍛造体10を収納するバスケットの形状は問わず、例えば、図7及び図9に示すような平面視が円形のバスケット30であってもよいし、図10に示すような平面視が長方形のバスケット30aであってもよい。本例では、バスケット30aの長手方向に沿って、複数の鍛造体10が2列配置されている。バスケットの形状に関わらず、複数の鍛造体10は、タービン翼15のプラットホーム22となる部分からタービン翼15の長手方向における中央までの間に相当する部分の少なくとも一部が向かい合わされ、かつ輻射熱によって温め合うように整列して配置されていればよい。
バスケット30と鍛造体10との間には、遮蔽体32が設けられることが好ましい。本例において、遮蔽体32は、バスケット30aの長手方向における両側に設けられる。それぞれの遮蔽体32は、鍛造体10のサクション側SU及びこれとは異なる鍛造体10の圧力側PRと対向している。
図11及び図12は、平面視が円形のバスケット内に複数の鍛造体10を収納する他の例を示す図である。図11に示す例では、複数の鍛造体10を完全には整列させていない。このようにすると、各鍛造体10の温度のばらつきの抑制効果は低下するが、バスケット30内に設置される各鍛造体の自由度を向上させることができる。図12に示す例では、平面視が円形のバスケット30内に、バスケット30の中心から放射状に複数の鍛造体10が収納される。この場合、図7に示す遮蔽体32はバスケット30に設けられなくてもよい。このため、遮蔽体32が設置されない分、バスケット30内に収納できる鍛造体10の数を増加させることができる。それぞれの鍛造体10は、遮蔽体32からの輻射熱で温められず、隣接する鍛造体10からの輻射熱で温められる。このため、図12に示す配置は、遮蔽体32を用いる場合と比較して、複数の鍛造体10間における温度のばらつきを抑制することができる。
図13は、冷却工程の一例を示す図である。図14は、整流用の構造体の一例を示す図である。熱処理工程の後の冷却工程において、例えば、ファン33によって、バスケット30に収納された複数の鍛造体10に冷却用の気体(以下、適宜冷却風という)を送ってこれらを冷却してもよい。ファン33は、制御装置34によって制御される。本実施形態において、ファン33と鍛造体10との間には、整流用の構造体として、整流板35が設置される。整流板35は、図14に示すように、複数の貫通孔35Hを有している。ファン33から送風された冷気風が複数の貫通孔35Hを通過する際に、冷却風が整流されて鍛造体10に送られる。ファン33からの冷却風が整流されて鍛造体10に供給されることにより、冷却中の鍛造体10の変形が抑制される。すなわち、整流板35は、ファン33からの冷却風が鍛造体10を直撃することを緩和し、また、冷却速度の制御を可能にする。整流板35が備える貫通孔35Hの大きさ及び数は、鍛造体10の冷却に要求される冷却条件に応じて適宜変更できる。
本実施形態において、鍛造体10の素材として析出硬化型ステンレス鋼が用いられる例を説明した。マルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト二層ステンレス鋼も、析出硬化型ステンレスと同様に、加熱時及び冷却時に相変態が起こるので、これらを素材としてタービン翼15を製造する場合も、本実施形態に係るタービン翼の製造方法が適用できる。
以上、説明したように、本実施形態に係るタービン翼の製造方法は、冷却速度を遅くすることにより、厚肉部と薄肉部の温度差を小さくすることができるので、ステンレス鋼のタービン翼を製造するにあたって、ステンレス鋼の部材を熱処理した後、冷却する過程で部材に発生する変形(ひずみ)を抑制し、残留応力を低減できる。本実施形態に係るタービン翼の製造方法は、冷却後の工程で実行されるひずみ修正での作業量低減及びその後の機械加工時の変形を低減できる。
前述した内容により本実施形態が限定されるものではない。前述した本実施形態の構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。前述した構成要素は適宜組み合わせることが可能である。また、本実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更を行うことができる。
1 蒸気タービン
10 鍛造体
10CP 中央部
10L 前端
10LP 前端部
10T 後端
10TP 後端部
11 ケーシング
12 ロータ
13 軸受
14 ロータディスク
15 タービン翼
16 静翼
17 蒸気通路
18 蒸気供給口
19 蒸気排出口
21 翼根部
22 プラットホーム
23 翼部
24 シュラウド
25 スタブ
30、30a バスケット(収納用の構造体)
30IW 内側
31 余肉部
32 遮蔽体
33 ファン
34 制御装置
35 整流板
35H 貫通孔
40 加熱炉
A 大表面積部
B 小表面積部
L 長さ
OPc 溶体化処理
OPd 安定化処理
OPe 時効処理
PR 圧力側
SU サクション側
Ti 経過時間
Tm 温度
TNmax 最大直径部
W 幅

Claims (10)

  1. ステンレス鋼を鍛造して、鍛造体を形成する工程と、
    前記鍛造体を熱処理する工程と、
    前記熱処理後の前記鍛造体を冷却する工程と、を含み、
    前記熱処理及び前記冷却では、複数の前記鍛造体が整列され、かつ隣接する前記鍛造体同士が、タービン翼のプラットホームとなる部分から前記タービン翼の長手方向における中央までの間に相当する部分の少なくとも一部が向かい合わされて輻射熱によって温め合い、前記鍛造体における単位質量当たりの表面積が大きい大表面積部と単位質量当たりの表面積が小さい小表面積部との冷却速度のばらつきを抑制するように配置される、タービン翼の製造方法。
  2. 複数の前記鍛造体は、収納用の構造体に収納されて前記熱処理及び前記冷却が行われ、
    前記構造体の内側と対向して収納される前記鍛造体と前記構造体との間には、保温用の遮蔽体が設置される、請求項1に記載のタービン翼の製造方法。
  3. 前記遮蔽体は板状の部材であり、その厚みは、
    前記鍛造体の、前記タービン翼のプラットホームとなる部分から前記タービン翼の長手方向における中央までの間に相当する部分でのいずれかの断面の最大厚みと同等である、請求項1又は請求項2に記載のタービン翼の製造方法。
  4. 前記最大厚みは、前記熱処理の後に、前記鍛造体に発生する曲がりの起点での断面の最大厚みである請求項3に記載のタービン翼の製造方法。
  5. 複数の前記鍛造体は、前記鍛造体のサクション側と圧力側とが対向して配置された列を形成する、請求項1から請求項4のいずれか1項に記載のタービン翼の製造方法。
  6. 複数の前記鍛造体の一部は、前記鍛造体のサクション側と圧力側とが対向して配置された列を形成し、複数の前記鍛造体の残部は、整列せずに配置される、請求項1から請求項4のいずれか1項に記載のタービン翼の製造方法。
  7. 複数の前記鍛造体は、複数の列を形成する、請求項5または6に記載のタービン翼の製造方法。
  8. 複数の前記鍛造体は、収納用の構造体に収納されて前記熱処理及び前記冷却が行われ、前記構造体の中心から放射状に配置されている、請求項1に記載のタービン翼の製造方法。
  9. 前記冷却の工程において、複数の前記鍛造体には、冷却用の気体が整流して供給される、請求項1から請求項のいずれか1項に記載のタービン翼の製造方法。
  10. 前記ステンレス鋼は、析出硬化型ステンレスである、請求項1から請求項のいずれか1項に記載のタービン翼の製造方法。
JP2014017837A 2014-01-31 2014-01-31 タービン翼の製造方法 Expired - Fee Related JP6242700B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014017837A JP6242700B2 (ja) 2014-01-31 2014-01-31 タービン翼の製造方法
DE112015000578.1T DE112015000578B4 (de) 2014-01-31 2015-01-27 Verfahren zur Herstellung einer Turbinenschaufel
US15/106,901 US10105752B2 (en) 2014-01-31 2015-01-27 Turbine blade manufacturing method
PCT/JP2015/052238 WO2015115443A1 (ja) 2014-01-31 2015-01-27 タービン翼の製造方法
KR1020167015737A KR101791807B1 (ko) 2014-01-31 2015-01-27 터빈날개의 제조방법
CN201580003138.XA CN105829657B (zh) 2014-01-31 2015-01-27 涡轮叶片的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014017837A JP6242700B2 (ja) 2014-01-31 2014-01-31 タービン翼の製造方法

Publications (2)

Publication Number Publication Date
JP2015145629A JP2015145629A (ja) 2015-08-13
JP6242700B2 true JP6242700B2 (ja) 2017-12-06

Family

ID=53757016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014017837A Expired - Fee Related JP6242700B2 (ja) 2014-01-31 2014-01-31 タービン翼の製造方法

Country Status (6)

Country Link
US (1) US10105752B2 (ja)
JP (1) JP6242700B2 (ja)
KR (1) KR101791807B1 (ja)
CN (1) CN105829657B (ja)
DE (1) DE112015000578B4 (ja)
WO (1) WO2015115443A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3766993A4 (en) * 2018-03-16 2021-12-08 Ihi Corporation OBJECT PROCESSING METHOD AND DEVICE
JP7217378B1 (ja) 2022-06-15 2023-02-02 三菱重工業株式会社 タービン部品の変形を制御する方法
CN115178697B (zh) * 2022-07-11 2023-02-03 武汉中誉鼎力智能科技有限公司 一种钢铝混合锻压成形的加热方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615841U (ja) * 1992-06-29 1994-03-01 三菱マテリアル株式会社 鍛造用金型
US7216694B2 (en) * 2004-01-23 2007-05-15 United Technologies Corporation Apparatus and method for reducing operating stress in a turbine blade and the like
JP2007146204A (ja) 2005-11-25 2007-06-14 Nissan Motor Co Ltd アルミニウム合金材の熱処理装置および熱処理方法
JP2007155357A (ja) * 2005-11-30 2007-06-21 Kobe Steel Ltd 直径計測方法又は直径計測装置
US20080181808A1 (en) * 2007-01-31 2008-07-31 Samuel Vinod Thamboo Methods and articles relating to high strength erosion resistant titanium alloy
JP2010001548A (ja) * 2008-06-23 2010-01-07 Sanyo Special Steel Co Ltd 加熱炉内の鋼材配置間隔決定方法
JP5700323B2 (ja) * 2009-06-08 2015-04-15 独立行政法人物質・材料研究機構 金属熱処理炉
CN201883122U (zh) * 2010-07-27 2011-06-29 方明钢业(漳州)有限公司 一种高效节能金属带材连续退火炉
JP2012140690A (ja) 2011-01-06 2012-07-26 Sanyo Special Steel Co Ltd 靭性、耐食性に優れた二相系ステンレス鋼の製造方法
JP5718262B2 (ja) * 2012-02-23 2015-05-13 三菱日立パワーシステムズ株式会社 耐エロージョン性を有する蒸気タービン動翼とその製造方法、それを用いた蒸気タービン
CN102994715A (zh) 2012-11-26 2013-03-27 西安航空动力股份有限公司 一种控制0Cr17Ni4Cu4Nb材料锻造叶片变形的方法

Also Published As

Publication number Publication date
US20160339507A1 (en) 2016-11-24
DE112015000578T5 (de) 2016-11-03
JP2015145629A (ja) 2015-08-13
WO2015115443A1 (ja) 2015-08-06
CN105829657B (zh) 2018-08-31
KR101791807B1 (ko) 2017-10-30
KR20160086397A (ko) 2016-07-19
CN105829657A (zh) 2016-08-03
DE112015000578B4 (de) 2018-07-19
US10105752B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
JP6186219B2 (ja) エアフォイル製造システム及び方法
JP6242700B2 (ja) タービン翼の製造方法
US6344098B1 (en) High strength steam turbine rotor and methods of fabricating the rotor without increased stress corrosion cracking
JP5332371B2 (ja) 軸受装置の製造方法及び軸受装置
CN104854314A (zh) 涡轮的动叶片的制造方法
WO2018103088A1 (zh) 一种轴承钢热处理工艺
US10370734B2 (en) Method for heat treatment of stainless member, and method for producing forged stainless product
US10633731B2 (en) Method for producing enhanced fatigue and tensile properties in integrally bladed rotor forgings
US10006113B2 (en) Gamma titanium dual property heat treat system and method
CN106119509B (zh) 一种kmn材料半开式三元叶轮的真空亚温气淬工艺
JP2005194620A (ja) アルミニウム合金パイプ及びその製造方法
CN219772210U (zh) 一种铜管加工退火装置
EP2937510A1 (en) Turbine with improved cooling means
JPH0931541A (ja) 高Crフェライト鋼管の製造方法
JP2004330213A (ja) ステッケルミル圧延設備のファーネスコイラ
US9313832B2 (en) Method and system for localized heat treating using susceptor
JPH0972682A (ja) フィンチューブ及びその製造方法
JP2008261034A (ja) 金属ストリップ連続熱処理炉
CN104789746A (zh) 一种用于输送机配件的铸铁热处理工艺
JP2015038234A (ja) 鋼帯の製造方法および製造設備
JPH0280518A (ja) タービンブレードの局部焼入方法

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171108

R150 Certificate of patent or registration of utility model

Ref document number: 6242700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees