JP6240064B2 - 散乱媒質の深さ分解した物理的及び/又は光学的特性を決定する方法 - Google Patents
散乱媒質の深さ分解した物理的及び/又は光学的特性を決定する方法 Download PDFInfo
- Publication number
- JP6240064B2 JP6240064B2 JP2014508554A JP2014508554A JP6240064B2 JP 6240064 B2 JP6240064 B2 JP 6240064B2 JP 2014508554 A JP2014508554 A JP 2014508554A JP 2014508554 A JP2014508554 A JP 2014508554A JP 6240064 B2 JP6240064 B2 JP 6240064B2
- Authority
- JP
- Japan
- Prior art keywords
- depth
- biological structure
- information
- exemplary
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 128
- 230000003287 optical effect Effects 0.000 title claims description 46
- 230000000704 physical effect Effects 0.000 title claims description 13
- 238000012014 optical coherence tomography Methods 0.000 claims description 78
- 230000011218 segmentation Effects 0.000 claims description 21
- 238000004458 analytical method Methods 0.000 claims description 13
- 238000003745 diagnosis Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000013016 damping Methods 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 description 55
- 239000010410 layer Substances 0.000 description 38
- 208000010412 Glaucoma Diseases 0.000 description 26
- 238000005259 measurement Methods 0.000 description 21
- 210000003583 retinal pigment epithelium Anatomy 0.000 description 21
- 238000012545 processing Methods 0.000 description 19
- 238000002310 reflectometry Methods 0.000 description 16
- 239000013598 vector Substances 0.000 description 15
- 230000002207 retinal effect Effects 0.000 description 13
- 210000004204 blood vessel Anatomy 0.000 description 10
- 230000003993 interaction Effects 0.000 description 10
- 238000012706 support-vector machine Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 9
- 230000002238 attenuated effect Effects 0.000 description 8
- 210000003733 optic disk Anatomy 0.000 description 8
- 238000013507 mapping Methods 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000010801 machine learning Methods 0.000 description 5
- 238000010606 normalization Methods 0.000 description 5
- 210000001525 retina Anatomy 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 210000003161 choroid Anatomy 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 210000004126 nerve fiber Anatomy 0.000 description 3
- 210000002445 nipple Anatomy 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 210000003786 sclera Anatomy 0.000 description 3
- 208000003098 Ganglion Cysts Diseases 0.000 description 2
- 206010025421 Macule Diseases 0.000 description 2
- 208000005400 Synovial Cyst Diseases 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/102—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/10—Eye inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02083—Interferometers characterised by particular signal processing and presentation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/0209—Low-coherence interferometers
- G01B9/02091—Tomographic interferometers, e.g. based on optical coherence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4709—Backscatter
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Immunology (AREA)
- Medical Informatics (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
提示する方法は、光と媒質との相互作用、及び検出器で得られた信号をモデル化し、反復的に逆問題を解いて、媒質の物理的又は光学的特性を局所的に算出する。
(入射光の例示的な減衰)
局所的に均一な層を通る入射光の例示的な伝播の間、入射光の出力は、下式に従って減衰する。
入射光の出力を定める他の方法としては、減衰出力A(x)を分析することである。
そのような例示的な後方散乱は、例示的なOCTシステム、及び/又は手順によって実際に測定した信号でなくてもよい。その代わりに、信号は、検出器に達する前に、組織表面に戻る途中で、組織によって再び減衰される可能性があり、ここで、S(x)は、深さxにおいて散乱して組織表面に到達する光の強度を記述する。
例示的な分析は、OCT画像データI(x)からμ(x)を直接算出する方法を提供しなくてもよいが、本開示の例示的な実施形態によれば、画像データから、及びμ(x)から後方散乱信号を算出/決定することができ、及び後方散乱信号からそのようなμ(x)を決定することができる。μ(x)及びβB(x)の両方が未知の場合、減衰係数は直接算出されそうにない。その代わりに、例示的な数値的手順を実施して、両方の値を推定することができる。
1.μ(0)(x)を小さい値に初期設定し(ブロック310)、kを0に設定する(ブロック320)。
2.k←k+1(ブロック330)。
3.μ(k−1)(x)及びI(x)から、βB(k)(x)を算出する(式8)(ブロック340)。
4.βB(k)(x)から、μ(k)(x)を算出する(式11)(ブロック350)。
5.収束が起こったか否か決定し(ブロック360)、収束していなければ、収束に達するまで、手順2〜5(ブロック330〜360)を繰り返す。
6.μ(x)←μ(k)(x)を決定する(ブロック370)。
本明細書において示す例示的な数学的な式は、連続的な場合において使用できることがある。特定の現実の測定は離散的であることがあり、従って例示的な離散的な一連の式を導くべきである。それぞれ異なる仮定に基づく、様々な例示的な離散化を使用することができる。そのような例示的な離散化の一つは、以下のように記載される。
本開示の更に例示的な実施形態によれば、システム、方法、及びコンピュータアクセス可能媒体は、更なる効果を含む更なる変形をすることができる。例えば、特定の例示的なOCT手順、及びシステムにおいて、限られた可干渉距離は、結果として、いわゆるゼロ―遅延ライン(静的ミラーの位置によって決定することができる)から増加する距離における深さについての、減少した信号になることがある。この信号の減少は、指数関数及び/又は他の崩壊関数によってモデル化することができ、並びに例示的な手順及び/又はシステムに含まれることができる。限られた焦点の深さは、同様の方法でモデル化することができ、ここで、正確な焦点のパラメーターを考慮に入れて、焦点内の軸方向の位置にわたる光の収集効率を修正する。本開示による例示的なシステム、方法、及びコンピュータアクセス可能媒体の、他の例示的な変形としては、ノイズの処理を挙げることができる。例えば、ショットノイズの算出、又はシステムノイズを記載する参照用測定に基づく可能性がある小さな値を、OCTデータから減算して、ほとんど信号を散乱させずに、領域におけるノイズの蓄積を減らすことができる。複数の散乱光を使用することは、結果としてバックグラウンド信号になることがある。この寄与は、本開示の例示的な実施形態による減算によって、モデル化することができ、及び説明することができる。隣接するピクセルのデータを結合して、局所的に散乱する信号のより良好な推定を得ることができる。当業者に知られている様々な規格化の方法は、βB(x)、及びμ(x)の両方の評価に用いることができ、それによって組織の構造についての事前知識を取り入れることができる。
本開示の例示的な実施形態によるシステム、方法、及びコンピュータアクセス可能媒体は、更に一般的に適用可能であるが、健康な人の眼の例示的な網膜OCT画像10を示す、図1における例示的な図に注目が集まる。図1に示すように、血管は、下に横たわる組織(矢印10)の激しいシェーディングを生ずることがあり、均一であると推定される組織の層は、様々な明るさを示している(RPE、矢印20)。
本開示の更に他の例示的な実施形態によれば、図4のフロー図において説明したように、更なる手順を提供することができる。例えば、図4に示すように、ブロック405において、データを得ることができ、ブロック410の取得データから網膜サンプルのOCTデータ(例えば画像OCTデータ)を決定/得ることができ、そのようなOCTデータの少なくともいくつかは、ブロック420において、網膜層に関してセグメント化することができる。ブロック410からの実際のOCTデータ、及びブロック420からのセグメント化データ(ブロック430を経て次に進められる)は、ブロック440において組み合わせて、例示的な特性、例えば平均強度、又は層からの分散を生ずることができる。特性の決定からの、規格化していない層データは、ブロック450において第二の層データについて標準化して、ブロック460における規格化したデータを生ずることができる。規格化したデータは、ブロック470における数値的な結果、例えば特定の網膜領域についての値へと処理することができ、及び/又は規格化したデータは、ブロック480における数値的な結果の画像的な表示、例えば画像へと処理することができる。そのような例示的な手順に関する更なる詳細を以下に提供する。
例えば、本開示の一つの例示的な実施形態において、(ブロック405における)データの取得は、例示的なOCTシステム、例えばスペクトラリス(Spectralis)OCT(ハイデルベルクエンジニアリング(Heidelberg Engineering)、ハイデルベルク(Heidelberg)、ドイツを参照)、又は例示的な光周波数領域干渉法(OFDI)システムによって行うことができる。そのような例示的なシステムからの、スペクトル分解した干渉データは、画像データへと処理することができる(ブロック410)。複数の走査又はA―ラインは、改善されたSNRのために平均することができる。異なる光学、波長、サンプリング密度、又は解像度を有するものを含む、任意の他の例示的なOCTシステムを、本開示の例示的な実施形態と共に使用することができることを理解すべきである。
例示的なセグメント化手順(ブロック420を参照)の目的は、OCT画像における類似の組織型の可干渉領域を定めることであることができる。例えば、従って、OCTデータをセグメント化する一つの例示的な方法は、本明細書に記載されており、他の方法を用いることもできることを理解すべきである。そのような例示的な方法は、OCTデータポイント(又はピクセル)ごとに特徴ベクトルを定め、機械学習アルゴリズムによる自動的な分類を行い、任意の例示的な規格化手順を使用して、滑らかな結果を生ずることに基づいている。方法は、異なる組織型の間の界面に焦点を当てており、従って、セグメント化の結果は、関心のある界面「より上」又は「より下」である。界面を組み合わせることによって、組織をセグメント化することができる。
ピクセルの測定した後方散乱は、その分類についての不十分なデータを提供する。例えば、類似の後方散乱特性を有する異なる組織があり、従って、その特性のみに基づいて分離できないことがある。しかしながら、周囲組織の後方散乱に基づく特徴と組み合わせて、固有の標識化を行うことができる。従って、それぞれのピクセルは、ピクセルの領域を囲むデータによって増大することができ、結果としてそれぞれのピクセルについての特徴ベクトルになる。例示的な方法は、一度に一つのA―ラインにおいて見ることができるが、隣接するA―ラインもまた確実に考慮に入れることができる。
例示的な分類器は、それぞれの入力又は特徴ベクトル
ピクセルの分類の例示的な処理は、分類標識を有するピクセルの体積につながる可能性がある。これらの例示的な標識は、例示的な分類手順によれば、ピクセルが、関心のある界面より上又はより下にある可能性があることを意味することができる。例示的な分類結果は、いくつかのエラーを含むことがあり、場合によっては結果として誤って割り当てられた標識となることがある。更に、誤分類されたA―ラインに画像アーチファクトが導かれることがあり、位置決めのエラーは界面における不連続性につながることがある。界面としての標識においてあらゆる変化を使用することは、場合によっては層の非現実的な形態につながる可能性がある。その代わりに、本開示の特定の例示的な実施形態によれば、いくつかの制約を適用することによって、検出した界面を規則化することができる。界面の曲率を制約することによって、平滑性を制御することができる。
それぞれの例示的なOCT後方散乱測定について、例示的なセグメント化手順(ブロック420)は、ピクセルが、関心のある組織型に属するか否かを意味する標識(例えば、ブロック430のセグメント化データ)を生ずることができる。それぞれのA―ラインについて、選択した組織型に対応するそれらの測定値は保持される。A―ラインの例示的な結果データを分析して(例えば、図4のブロック440)、例えば、そのデータのいくつかの特性を記載する単一の値、例えばその平均又は分散を生ずる(例えば、図4のブロック450)。それぞれのA―ラインについて、そのような例示的な処理を繰り返すことによって、A―ラインを得た位置にマップされることがある一連の値を生ずることができる。そのような例示的な値は、(例えばライン走査についての)プロットとして、又は(例えばラスタスキャンについての)画像として、表示される。
組織に到達する入射光の例示的な出力は、様々なパラメーター、例えば光源出力、媒質不透明部、他の組織層との相互作用等に依存する可能性がある。これらの例示的なパラメーターは、事前に既知でなくてもよく、経時的に変化することができ、いくつかのパラメーターはそれぞれの患者によって、又はそれぞれの場所によってさえ異なることがある。組織との相互作用の後、後方散乱光の強度は、同様のパラメーターによって再び影響を受ける可能性がある。
A―ライン当たりに組み合わせた後方散乱データを更に分析して(例えば、図4のブロック470)、選択した組織に関する更なる情報を提供することができる。例えば、緑内障においては、RNFLがより薄くなるだけでなく、通常、減少した後方散乱を示す。健康な目からのデータに基づいて、RNFLの後方散乱特性のための規範的なデータを導くことができる。新しいデータを分析するとき、後方散乱特性を規範的なデータと比較して、観察したRNFL後方散乱が正常範囲内であるか、又は範囲外であるかを容易に評価することができる。厚みのデータから従来的に導くことができるような、規範的なデータにおける一つの利点としては、厚みはしばしば特定の位置に依存するが、走査全体にわたって組織型が均一な後方散乱特性を有することがあるということである。これは、観察した値の正常範囲を減らし、従って感度の高い診断システム及び手順につながることがある。
傍乳頭網膜領域の例示的な画像を、スペクトラリスOCTシステムで走査した10の通常の目、及び30の緑内障の目(例えば、軽度の、中度の、及び重度の緑内障の、それぞれ10の目)の4つの固定した場所で分析した。RNFL及びGCIPLの反射率を、網膜色素上皮に対して測定した。通常の目と緑内障の目との間の反射率の違いを調査した。RNFLの反射率は、通常の目より、緑内障の目において著しく低い(例えば、軽度においてp=0.018、中度においてp=0.001、及び高度な緑内障の目においてp<0.001)ことが決定された。通常の目と緑内障の目との間のGCIPLの反射率における著しい違いはなかった。RNFLとGCIPLとの間の比率は、通常の目より、緑内障の目において著しく低かった(軽度の、中度の、及び重度の緑内障の目についてp<0.001)。
参加者らを、一度、スペクトラリスOCTシステムで走査した。両方の目の傍乳頭網膜領域は、20度×20度の体積走査によって走査した。この走査は、それぞれ約512のA―スキャンからなる約193のB―走査を含んだ。それぞれのB―走査は、(例えば、ART値5のスペクトラリスOCTシステム上の、内蔵視標追跡システムを使用した)同じ場所における平均5つのB―走査であった。各B―走査と次のB―操作との間の横方向の距離は、約30μmであった。体積走査は、私有の全体的な品質スコアが15dB未満である場合、又は内蔵された最大取得時間300秒のために体積走査が不完全であった場合、除外した。
通常の目(510)、及び緑内障の目(520)の、例示的なスペクトル領域(SD)OCT画像を、それぞれ図5A、及び5Bに示す。図5A、及び5Bにおいて、緑内障の目のRNFLのグレースケールを通常の目と比較することができ、緑内障の目の減少した反射率を表している。反射率における例示的な結果を、図6A、及び6Bのグラフに示す。具体的には、図6Aは、通常の目、軽度の、中度の、及び重度の緑内障の目についての、RNFL(網膜神経繊維層)及びGCIPL(神経節細胞層+内網状層)の反射率を示すグラフを説明しており、平均(太いライン)として、場所、すなわち視神経乳頭に対して耳側、上側、鼻側、及び下側ごと別々に示す。図6Bは、同じものについての、RNFLとGCIPLとの間の比率を示すグラフを示す。図6Aに提供する例示的な反射率を、RPE(網膜色素上皮)の反射率に対する比率として表す。
本開示の例示的な実施形態による例示的な方法は、領域にわたって規格化したRNFLの反射率を平均することによって、データから数値的なアウトプットを生ずることができる。この例示的な場合において、視神経乳頭の周りのバンドを使用した。10の通常の目、及び8つの緑内障の目について、この平均を算出し、結果を図7のグラフに示す。群間の大きな違いに注目されたい。両方の群についての分布の重複は、かなり小さくなることができ、診断ツールとして使用することができることを示している。血管を有する領域を除外し、単純な平均より高度な測定を使用することは、例示的な結果を更に改善することができる。更に、分析は、データの一部のみにすることもできる。図8のグラフにおいて、上側、鼻側、下側、及び耳側の四半部について、例示的な平均の分布を示す。
対応するA―ラインの横断的な位置に一致することができる例示的な表示方法を選択することによって、それぞれ選択的に組み合わせたA―ラインについての例示的な値を、より良好な解釈のために表示することができる(例えば、図4のブロック480)。直線に沿った走査については、従来のプロットを用いることができる。乳頭を中心においた円形の走査については、例示的なTSNITプロットを用いることができる。この種の例示的なプロットにおいて、(乳頭に対する)角度を、x軸に沿ってプロットすることができ、対応する値をy軸に沿って示すことができる。x軸は、耳側に始まり、上側、鼻側、及び下側の領域を通って進み、並びに耳側で終わるように選択することができる。ラスタスキャンについては、それぞれのx及びy位置がラスタ点の位置に対応し、並びに値がグレースケールで、又は擬似カラーマップで示される、例示的な画像を生じることができる。一つのA―ライン当たりに複数の値が導かれる場合、そのような例示的な値を表示することができる。
図10は、本開示によるシステムの例示的な実施形態の例示的な略図を示す。例えば、本明細書に記載された本開示による例示的な手順は、処理装置及び/又はコンピューティング装置102によって行うことができる。そのような処理/コンピューティング装置102は、例えば全体的に若しくは部分的に、限定されないが、例えば一つ以上のマイクロプロセッサを含むことができるコンピュータ/プロセッサ104、並びにコンピュータアクセス可能媒体(例えば、RAM、ROM、ハードディスク、又は他の記憶装置)に記憶された使用命令であることができ、又はこれを含むことができる。
[1]
少なくとも一つの生物学的構造体の、少なくとも一つの特性を決定する方法であって、
(a)上記少なくとも一つの生物学的構造体の範囲内の、複数の特定の深さにおいて受け取られる複数の信号を得る工程であって、上記信号のうち第一の信号の少なくとも一つは上記特定の深さの第一の深さから得られ、上記信号のうち第二の信号の少なくとも一つは上記特定の深さの第二の深さから得られ、上記第一の深さと上記第二の深さとが互いに異なる、工程と、
(b)上記信号、及び上記少なくとも一つの生物学的構造体の推定特性に基づいて、情報を決定する工程と、
(c)上記少なくとも一つの生物学的構造体の範囲内の、所定の深さより近い上記特定の深さから提供される信号に関する上記情報の少なくとも一部を除外することによって、上記情報に基づいて少なくとも一つの算出特性を決定する工程であって、上記算出特性が減衰特性である工程と、
を含む、方法。
[2]
項目1に記載の方法であって、
(d)手順(b)において、上記少なくとも一つの生物学的構造体の上記少なくとも一つの特性を得るために、上記推定特性を手順(c)の上記算出特性と交換して、手順(b)及び(c)を少なくとも一回繰り返す工程、
を更に含む、方法。
[3]
上記信号が光干渉断層解析信号、又は超音波信号である、項目1に記載の方法。
[4]
上記少なくとも一つの算出特性が、上記少なくとも一つの生物学的構造体の散乱媒質の局所的な光学的特性を含んでおり、上記局所的な光学的特性を、上記特定の深さの範囲からの情報を使用して決定する、項目1に記載の方法。
[5]
より浅い深さから得られる情報と、より深い第二の深さにおいて得られる情報とを使用して、上記局所的な光学的特性を決定する、項目4に記載の方法。
[6]
上記少なくとも一つの構造体へと届く放射強度の推定値を得るために、上記第二の深さから得られる情報を合計することを更に含む、項目5に記載の方法。
[7]
上記情報が、上記少なくとも一つの構造体からの局所的な後方散乱エネルギーである、項目1に記載の方法。
[8]
上記局所的な後方散乱エネルギーを、光干渉断層解析手順で測定する、項目7に記載の方法。
[9]
上記局所的な光学的特性が減衰係数を含む、項目4に記載の方法。
[10]
上記少なくとも一つの算出特性が、上記少なくとも一つの構造体の範囲内の様々な深さにおいて推定された情報から反復的に決定された、少なくとも一つの光学的特性、又は少なくとも一つの物理的特性を含む、項目4に記載の方法。
[11]
上記少なくとも一つの算出特性を、診断のため、又は手動セグメント化若しくは自動セグメント化の少なくとも一つのために使用する、項目4に記載の方法。
[12]
上記少なくとも一つの算出特性が、算出した減衰を含む、項目1に記載の方法。
[13]
上記推定特性が推定した減衰である、項目1に記載の方法。
[14]
少なくとも一つの生物学的構造体の、少なくとも一つの特性を決定するためのシステムであって、
上記少なくとも一つの生物学的構造体の範囲内の、複数の特定の深さにおいて受け取られる複数の信号を得るよう構成された、少なくとも一つの第一の装置であって、上記信号のうち第一の信号の少なくとも一つは上記特定の深さの第一の深さから得られ、上記信号のうち第二の信号の少なくとも一つは上記特定の深さの第二の深さから得られ、上記第一の深さと上記第二の深さとが互いに異なる、第一の装置と;
上記信号、及び上記少なくとも一つの生物学的構造体の推定特性に基づく情報、並びに
上記少なくとも一つの生物学的構造体の範囲内の、所定の深さより近い上記特定の深さから提供された信号に関する上記情報の少なくとも一部を除外することによる上記情報に基づく、少なくとも一つの算出特性であって、減衰特性である少なくとも一つの算出特性
を決定するよう構成された、少なくとも一つの第二のコンピューティング装置と;
を含む、システム。
[15]
上記少なくとも一つの第二のコンピューティング装置が、
(d)手順(b)において、上記少なくとも一つの第二のコンピューティング装置が、上記少なくとも一つの生物学的構造体の上記少なくとも一つの特性を得るために、上記推定特性を手順(c)の上記算出特性と交換して、手順(b)及び(c)を少なくとも一回繰り返すように、
更に構成されている、項目14に記載のシステム。
[16]
上記信号が光干渉断層解析信号、又は超音波信号である、項目14に記載のシステム。
[17]
上記少なくとも一つの算出特性が、上記少なくとも一つの生物学的構造体の散乱媒質の局所的な光学的特性を含んでおり、上記少なくとも一つの第二のコンピューティング装置が、上記特定の深さの範囲からの情報を用いて、上記局所的な光学的特性を決定するよう更に構成されている、項目14に記載のシステム。
[18]
上記少なくとも一つの第二のコンピューティング装置が、より浅い深さから得られる情報、及びより深い第二の深さにおいて得られる情報を用いて、上記局所的な光学的特性を決定するよう構成されている、項目17に記載のシステム。
[19]
上記少なくとも一つの第二のコンピューティング装置が、上記少なくとも一つの構造体へと届く放射強度の推定値を得るために、上記第二の深さから得られる情報を合計するよう更に構成されている、項目18に記載のシステム。
[20]
上記情報が、上記少なくとも一つの構造体からの局所的な後方散乱エネルギーである、項目14に記載のシステム。
[21]
上記局所的な後方散乱エネルギーが、光干渉断層解析手順によって測定される、項目20に記載のシステム。
[22]
上記局所的な光学的特性が減衰係数を含む、項目17に記載のシステム。
[23]
上記少なくとも一つの算出特性が、少なくとも一つの光学的特性、又は少なくとも一つの物理的特性を含んでおり、上記少なくとも一つの第二のコンピューティング装置が、上記少なくとも一つの構造体の範囲内の、様々な深さにおいて推定された情報から、上記少なくとも一つの算出特性を反復的に決定するよう、更に構成されている、項目17に記載のシステム。
[24]
上記少なくとも一つの第二のコンピューティング装置が、上記少なくとも一つの算出特性を、診断のため、又は手動セグメント化若しくは自動セグメント化の少なくとも一つのために使用するよう、更に構成されている、項目17に記載のシステム。
[25]
上記少なくとも一つの算出特性が算出した減衰を含む、項目14に記載したシステム。
[26]
上記推定特性が推定した減衰である、項目14に記載したシステム。
[27]
少なくとも一つの生物学的構造体の、少なくとも一つの特性を決定するためのソフトウェアを含む、非一時的コンピュータアクセス可能媒体であって、コンピューティング装置が上記ソフトウェアを実施する際に、上記コンピューティング装置が、
(a)上記少なくとも一つの生物学的構造体の範囲内の、複数の特定の深さにおいて受け取られる複数の信号の受け取りであって、上記信号のうち第一の信号の少なくとも一つは上記特定の深さの第一の深さから得られ、上記信号のうち第二の信号の少なくとも一つは上記特定の深さの第二の深さから得られ、上記第一の深さと上記第二の深さとが互いに異なる、受け取りと;
(b)上記信号、及び上記少なくとも一つの生物学的構造体の推定特性に基づく、情報の決定と;
(c)上記少なくとも一つの生物学的構造体の範囲内の、所定の深さより近い上記特定の深さから提供された信号に関する上記情報の少なくとも一部を除外することによる、上記情報に基づく少なくとも一つの算出特性の決定であって、上記算出特性が減衰特性である、決定と、
を含む手順を行うよう構成されている、コンピュータアクセス可能媒体。
Claims (23)
- 少なくとも一つの生物学的構造体の、少なくとも一つの特性を決定する方法であって、
(a)前記少なくとも一つの生物学的構造体の範囲内の、複数の特定の深さにおいて受け取られる複数の信号を得る工程であって、前記信号のうち第一の信号の少なくとも一つは前記特定の深さの第一の深さから得られ、前記信号のうち第二の信号の少なくとも一つは前記特定の深さの第二の深さから得られ、前記第一の深さは前記第二の深さよりも浅い、工程と、
(b)前記信号、及び前記少なくとも一つの生物学的構造体の推定散乱特性に関する情報を決定する工程と、
(c)前記少なくとも一つの生物学的構造体の範囲内の、前記特定の深さより前記少なくとも一つの生物学的構造体の表面に近い前記第一及び第二の深さから提供される信号に関する前記情報の少なくとも一部を、工程(b)で決定された情報から除外することによって、前記信号に関する前記情報に基づいて少なくとも一つの算出減衰特性を決定する工程と、
を含む、方法。 - 請求項1に記載の方法であって、
(d)手順(b)及び(c)を、前記推定散乱特性及び前記算出減衰特性が収束するまで繰り返し、前記推定散乱特性を手順(c)の前記算出減衰特性と交換して、前記少なくとも一つの生物学的構造体の前記少なくとも一つの特性を得る、工程、
を更に含む、方法。 - 前記信号が光干渉断層解析信号である、請求項1に記載の方法。
- 前記少なくとも一つの算出減衰特性が、前記少なくとも一つの生物学的構造体の散乱媒質の局所的な光学的特性を含んでおり、前記局所的な光学的特性を、前記特定の深さの範囲からの情報を使用して決定する、請求項1に記載の方法。
- 前記第一及び第二の深さにおいて得られる情報を使用して、前記局所的な光学的特性を決定する、請求項4に記載の方法。
- 前記少なくとも一つの生物学的構造体へと届く放射強度の推定値を得るために、前記第二の深さから得られる情報を合計することを更に含む、請求項5に記載の方法。
- 前記情報が、前記少なくとも一つの生物学的構造体からの局所的な後方散乱エネルギーである、請求項1に記載の方法。
- 前記局所的な後方散乱エネルギーを、光干渉断層解析手順で測定する、請求項7に記載の方法。
- 前記局所的な光学的特性が減衰係数を含む、請求項4に記載の方法。
- 前記少なくとも一つの算出減衰特性が、前記少なくとも一つの生物学的構造体の範囲内の様々な深さにおいて推定された情報から反復的に決定された、少なくとも一つの光学的特性、又は少なくとも一つの物理的特性を含む、請求項4に記載の方法。
- 前記少なくとも一つの算出減衰特性を、手動セグメント化若しくは自動セグメント化の少なくとも一つのために使用する、請求項4に記載の方法。
- 少なくとも一つの生物学的構造体の、少なくとも一つの特性を決定するためのシステムであって、
(a)前記少なくとも一つの生物学的構造体の範囲内の、複数の特定の深さにおいて受け取られる複数の信号であって、前記信号のうち第一の信号の少なくとも一つは前記特定の深さの第一の深さから得られ、前記信号のうち第二の信号の少なくとも一つは前記特定の深さの第二の深さから得られ、前記第一の深さは前記第二の深さよりも浅い、信号を得て;
(b)前記信号、及び前記少なくとも一つの生物学的構造体の推定散乱特性に関する情報を決定し;並びに
(c)前記少なくとも一つの生物学的構造体の範囲内の、前記特定の深さより前記少なくとも一つの生物学的構造体の表面に近い前記第一及び第二の深さから提供された信号に関する前記情報の少なくとも一部を、工程(b)で決定された情報から除外することによって、前記信号に関する前記情報に基づいて少なくとも一つの算出減衰特性を決定する
よう構成された、少なくとも一つのコンピューティング装置を含む、システム。 - 前記少なくとも一つのコンピューティング装置が、
(d)手順(b)及び(c)を前記推定散乱特性及び前記算出減衰特性が収束するまで繰り返し、前記推定散乱特性を手順(c)の前記算出減衰特性と交換して、前記少なくとも一つの生物学的構造体の前記少なくとも一つの特性を得るように、
更に構成されている、請求項12に記載のシステム。 - 前記信号が光干渉断層解析信号である、請求項12に記載のシステム。
- 前記少なくとも一つの算出減衰特性が、前記少なくとも一つの生物学的構造体の散乱媒質の局所的な光学的特性を含んでおり、前記少なくとも一つのコンピューティング装置が、前記特定の深さの範囲からの情報を用いて、前記局所的な光学的特性を決定するよう更に構成されている、請求項12に記載のシステム。
- 前記少なくとも一つのコンピューティング装置が、前記第一及び第二の深さにおいて得られる情報を用いて、前記局所的な光学的特性を決定するよう構成されている、請求項15に記載のシステム。
- 前記少なくとも一つのコンピューティング装置が、前記少なくとも一つの生物学的構造体へと届く放射強度の推定値を得るために、前記第二の深さから得られる情報を合計するよう更に構成されている、請求項16に記載のシステム。
- 前記情報が、前記少なくとも一つの生物学的構造体からの局所的な後方散乱エネルギーである、請求項12に記載のシステム。
- 前記局所的な後方散乱エネルギーが、光干渉断層解析手順によって測定される、請求項18に記載のシステム。
- 前記局所的な光学的特性が減衰係数を含む、請求項15に記載のシステム。
- 前記少なくとも一つの算出減衰特性が、少なくとも一つの光学的特性、又は少なくとも一つの物理的特性を含んでおり、前記少なくとも一つのコンピューティング装置が、前記少なくとも一つの生物学的構造体の範囲内の、様々な深さにおいて推定された情報から、前記少なくとも一つの算出減衰特性を反復的に決定するよう、更に構成されている、請求項15に記載のシステム。
- 前記少なくとも一つのコンピューティング装置が、前記少なくとも一つの算出減衰特性を、診断のため、又は手動セグメント化若しくは自動セグメント化の少なくとも一つのために使用するよう、更に構成されている、請求項17に記載のシステム。
- 少なくとも一つの生物学的構造体の、少なくとも一つの特性を決定するためのソフトウェアを含む、非一時的コンピュータアクセス可能媒体であって、コンピューティング装置が前記ソフトウェアを実施する際に、前記コンピューティング装置が、
(a)前記少なくとも一つの生物学的構造体の範囲内の、複数の特定の深さにおいて受け取られる複数の信号の受け取りであって、前記信号のうち第一の信号の少なくとも一つは前記特定の深さの第一の深さから得られ、前記信号のうち第二の信号の少なくとも一つは前記特定の深さの第二の深さから得られ、前記第一の深さは前記第二の深さよりも浅い、受け取りと;
(b)前記信号、及び前記少なくとも一つの生物学的構造体の推定散乱特性に基づく、情報の決定と;
(c)前記少なくとも一つの生物学的構造体の範囲内の、前記特定の深さより前記少なくとも一つの生物学的構造体の表面に近い前記第一及び第二の深さから提供された信号に関する前記情報の少なくとも一部を、工程(b)で決定された情報から除外することによる、前記信号に関する前記情報に基づく少なくとも一つの算出減衰特性の決定と、
を含む手順を行うよう構成されている、コンピュータアクセス可能媒体。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161480869P | 2011-04-29 | 2011-04-29 | |
US61/480,869 | 2011-04-29 | ||
US201261585916P | 2012-01-12 | 2012-01-12 | |
US61/585,916 | 2012-01-12 | ||
PCT/US2012/035234 WO2012149175A1 (en) | 2011-04-29 | 2012-04-26 | Means for determining depth-resolved physical and/or optical properties of scattering media |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014516646A JP2014516646A (ja) | 2014-07-17 |
JP6240064B2 true JP6240064B2 (ja) | 2017-11-29 |
Family
ID=47067623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014508554A Active JP6240064B2 (ja) | 2011-04-29 | 2012-04-26 | 散乱媒質の深さ分解した物理的及び/又は光学的特性を決定する方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8721077B2 (ja) |
JP (1) | JP6240064B2 (ja) |
WO (1) | WO2012149175A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210196126A1 (en) * | 2017-10-13 | 2021-07-01 | The Research Foundation for the State University of the New York | System, method, and computer-accessible medium for subsurface capillary flow imaging by wavelength-division-multiplexing swept-source optical doppler tomography |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9117133B2 (en) * | 2008-06-18 | 2015-08-25 | Spectral Image, Inc. | Systems and methods for hyperspectral imaging |
US9179834B2 (en) * | 2013-02-01 | 2015-11-10 | Kabushiki Kaisha Topcon | Attenuation-based optic neuropathy detection with three-dimensional optical coherence tomography |
US9955865B2 (en) | 2013-04-11 | 2018-05-01 | Novartis Ag | Method and system to detect ophthalmic tissue structure and pathologies |
US9905008B2 (en) * | 2013-10-10 | 2018-02-27 | University Of Rochester | Automated fundus image field detection and quality assessment |
US9526412B2 (en) * | 2014-01-21 | 2016-12-27 | Kabushiki Kaisha Topcon | Geographic atrophy identification and measurement |
CN106415660A (zh) * | 2014-04-07 | 2017-02-15 | Mimo股份公司 | 用于分析表示生物组织的三维体积的图像数据的方法 |
US9740710B2 (en) * | 2014-09-02 | 2017-08-22 | Elekta Inc. | Systems and methods for segmenting medical images based on anatomical landmark-based features |
US9554755B2 (en) | 2014-10-13 | 2017-01-31 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer readable media for predicting early onset glaucoma |
JP2016086867A (ja) * | 2014-10-30 | 2016-05-23 | 株式会社トーメーコーポレーション | 光断層画像撮影装置 |
US10117568B2 (en) * | 2015-01-15 | 2018-11-06 | Kabushiki Kaisha Topcon | Geographic atrophy identification and measurement |
WO2017075089A1 (en) * | 2015-10-28 | 2017-05-04 | Loma Linda University | System and method to analyze various retinal layers |
JP7049061B2 (ja) * | 2017-03-06 | 2022-04-06 | 花王株式会社 | 血流の評価方法 |
WO2018187239A1 (en) * | 2017-04-03 | 2018-10-11 | Hogan Joshua Noel | Home monitoring optical coherence tomography system |
US10473603B2 (en) | 2017-04-18 | 2019-11-12 | Saudi Arabian Oil Company | Apparatus, system and method for inspecting composite structures using quantitative infra-red thermography |
US10564108B2 (en) | 2017-07-03 | 2020-02-18 | Saudi Arabian Oil Company | Apparatus and method for nondestructively inspecting fiberglass and nonmetallic pipes |
US10918275B2 (en) | 2017-10-12 | 2021-02-16 | The Chinese University Of Hong Kong | Optical texture analysis of the inner retina |
CN108535681B (zh) * | 2018-02-05 | 2021-09-28 | 西安电子科技大学 | 一种透过散射介质的目标4d跟踪系统及方法 |
KR102085818B1 (ko) | 2018-03-07 | 2020-03-06 | 고려대학교 산학협력단 | 산란 매질 내부의 타겟 오브젝트에 빛을 집속시키는 방법 |
JP7262929B2 (ja) * | 2018-04-19 | 2023-04-24 | キヤノン株式会社 | 画像処理装置、画像処理方法及びプログラム |
WO2020036182A1 (ja) * | 2018-08-14 | 2020-02-20 | キヤノン株式会社 | 医用画像処理装置、医用画像処理方法及びプログラム |
JP7229881B2 (ja) | 2018-08-14 | 2023-02-28 | キヤノン株式会社 | 医用画像処理装置、学習済モデル、医用画像処理方法及びプログラム |
US10546216B1 (en) | 2019-04-11 | 2020-01-28 | Seetree Systems Ltd. | Recurrent pattern image classification and registration |
US20230062256A1 (en) * | 2020-01-29 | 2023-03-02 | The Regents Of The University Of Michigan | Multi-modal imaging for cell tracking |
KR20220142465A (ko) * | 2020-02-14 | 2022-10-21 | 액티브 서지컬, 인크. | 레이저 스펙클 신호들을 처리하기 위한 시스템들 및 방법들 |
Family Cites Families (244)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2339754A (en) | 1941-03-04 | 1944-01-25 | Westinghouse Electric & Mfg Co | Supervisory apparatus |
GB1257778A (ja) | 1967-12-07 | 1971-12-22 | ||
US3601480A (en) | 1968-07-10 | 1971-08-24 | Physics Int Co | Optical tunnel high-speed camera system |
JPS4932484U (ja) | 1972-06-19 | 1974-03-20 | ||
FR2253410A5 (ja) | 1973-12-03 | 1975-06-27 | Inst Nat Sante Rech Med | |
US3941121A (en) | 1974-12-20 | 1976-03-02 | The University Of Cincinnati | Focusing fiber-optic needle endoscope |
US3983507A (en) | 1975-01-06 | 1976-09-28 | Research Corporation | Tunable laser systems and method |
US3973219A (en) | 1975-04-24 | 1976-08-03 | Cornell Research Foundation, Inc. | Very rapidly tuned cw dye laser |
US4141362A (en) | 1977-05-23 | 1979-02-27 | Richard Wolf Gmbh | Laser endoscope |
GB2030313A (en) | 1978-06-29 | 1980-04-02 | Wolf Gmbh Richard | Endoscopes |
FR2448728A1 (fr) | 1979-02-07 | 1980-09-05 | Thomson Csf | Dispositif joint tournant pour liaison par conducteurs optiques et systeme comportant un tel dispositif |
US4300816A (en) | 1979-08-30 | 1981-11-17 | United Technologies Corporation | Wide band multicore optical fiber |
US4295738A (en) | 1979-08-30 | 1981-10-20 | United Technologies Corporation | Fiber optic strain sensor |
US4428643A (en) | 1981-04-08 | 1984-01-31 | Xerox Corporation | Optical scanning system with wavelength shift correction |
US5065331A (en) | 1981-05-18 | 1991-11-12 | Vachon Reginald I | Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies |
GB2106736B (en) | 1981-09-03 | 1985-06-12 | Standard Telephones Cables Ltd | Optical transmission system |
US4479499A (en) | 1982-01-29 | 1984-10-30 | Alfano Robert R | Method and apparatus for detecting the presence of caries in teeth using visible light |
US4601036A (en) | 1982-09-30 | 1986-07-15 | Honeywell Inc. | Rapidly tunable laser |
HU187188B (en) | 1982-11-25 | 1985-11-28 | Koezponti Elelmiszeripari | Device for generating radiation of controllable spectral structure |
CH663466A5 (fr) | 1983-09-12 | 1987-12-15 | Battelle Memorial Institute | Procede et dispositif pour determiner la position d'un objet par rapport a une reference. |
US5318024A (en) | 1985-03-22 | 1994-06-07 | Massachusetts Institute Of Technology | Laser endoscope for spectroscopic imaging |
EP0590268B1 (en) | 1985-03-22 | 1998-07-01 | Massachusetts Institute Of Technology | Fiber Optic Probe System for Spectrally Diagnosing Tissue |
US4607622A (en) | 1985-04-11 | 1986-08-26 | Charles D. Fritch | Fiber optic ocular endoscope |
US4631498A (en) | 1985-04-26 | 1986-12-23 | Hewlett-Packard Company | CW Laser wavemeter/frequency locking technique |
US5040889A (en) | 1986-05-30 | 1991-08-20 | Pacific Scientific Company | Spectrometer with combined visible and ultraviolet sample illumination |
CA1290019C (en) | 1986-06-20 | 1991-10-01 | Hideo Kuwahara | Dual balanced optical signal receiver |
US4770492A (en) | 1986-10-28 | 1988-09-13 | Spectran Corporation | Pressure or strain sensitive optical fiber |
CA1339426C (en) | 1987-09-01 | 1997-09-02 | Michael R. Layton | Hydrophone demodulator circuit and method |
US4892406A (en) | 1988-01-11 | 1990-01-09 | United Technologies Corporation | Method of and arrangement for measuring vibrations |
FR2626367B1 (fr) | 1988-01-25 | 1990-05-11 | Thomson Csf | Capteur de temperature multipoints a fibre optique |
FR2626383B1 (fr) | 1988-01-27 | 1991-10-25 | Commissariat Energie Atomique | Procede de microscopie optique confocale a balayage et en profondeur de champ etendue et dispositifs pour la mise en oeuvre du procede |
US4925302A (en) | 1988-04-13 | 1990-05-15 | Hewlett-Packard Company | Frequency locking device |
EP0782027B1 (en) | 1988-07-13 | 2003-04-16 | Optiscan Pty Ltd | Scanning microscope |
GB8817672D0 (en) | 1988-07-25 | 1988-09-01 | Sira Ltd | Optical apparatus |
US4868834A (en) | 1988-09-14 | 1989-09-19 | The United States Of America As Represented By The Secretary Of The Army | System for rapidly tuning a low pressure pulsed laser |
DE3833602A1 (de) | 1988-10-03 | 1990-02-15 | Krupp Gmbh | Spektrometer zur gleichzeitigen intensitaetsmessung in verschiedenen spektralbereichen |
WO1990006718A1 (en) | 1988-12-21 | 1990-06-28 | Massachusetts Institute Of Technology | A method for laser induced fluorescence of tissue |
US5046501A (en) | 1989-01-18 | 1991-09-10 | Wayne State University | Atherosclerotic identification |
US5317389A (en) | 1989-06-12 | 1994-05-31 | California Institute Of Technology | Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography |
US4965599A (en) | 1989-11-13 | 1990-10-23 | Eastman Kodak Company | Scanning apparatus for halftone image screen writing |
DD293205B5 (de) | 1990-03-05 | 1995-06-29 | Zeiss Carl Jena Gmbh | Lichtleiterfuehrung fuer ein medizinisches Beobachtungsgeraet |
US5039193A (en) | 1990-04-03 | 1991-08-13 | Focal Technologies Incorporated | Fibre optic single mode rotary joint |
US5262644A (en) | 1990-06-29 | 1993-11-16 | Southwest Research Institute | Remote spectroscopy for raman and brillouin scattering |
US5197470A (en) | 1990-07-16 | 1993-03-30 | Eastman Kodak Company | Near infrared diagnostic method and instrument |
GB9015793D0 (en) | 1990-07-18 | 1990-09-05 | Medical Res Council | Confocal scanning optical microscope |
US5845639A (en) | 1990-08-10 | 1998-12-08 | Board Of Regents Of The University Of Washington | Optical imaging methods |
US5127730A (en) | 1990-08-10 | 1992-07-07 | Regents Of The University Of Minnesota | Multi-color laser scanning confocal imaging system |
US5305759A (en) | 1990-09-26 | 1994-04-26 | Olympus Optical Co., Ltd. | Examined body interior information observing apparatus by using photo-pulses controlling gains for depths |
US5202745A (en) | 1990-11-07 | 1993-04-13 | Hewlett-Packard Company | Polarization independent optical coherence-domain reflectometry |
JP3035336B2 (ja) | 1990-11-27 | 2000-04-24 | 興和株式会社 | 血流測定装置 |
US5228001A (en) | 1991-01-23 | 1993-07-13 | Syracuse University | Optical random access memory |
US6198532B1 (en) | 1991-02-22 | 2001-03-06 | Applied Spectral Imaging Ltd. | Spectral bio-imaging of the eye |
US5293872A (en) | 1991-04-03 | 1994-03-15 | Alfano Robert R | Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy |
US6501551B1 (en) | 1991-04-29 | 2002-12-31 | Massachusetts Institute Of Technology | Fiber optic imaging endoscope interferometer with at least one faraday rotator |
US5465147A (en) | 1991-04-29 | 1995-11-07 | Massachusetts Institute Of Technology | Method and apparatus for acquiring images using a ccd detector array and no transverse scanner |
US5956355A (en) | 1991-04-29 | 1999-09-21 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser |
US6111645A (en) | 1991-04-29 | 2000-08-29 | Massachusetts Institute Of Technology | Grating based phase control optical delay line |
WO1992019930A1 (en) | 1991-04-29 | 1992-11-12 | Massachusetts Institute Of Technology | Method and apparatus for optical imaging and measurement |
US6485413B1 (en) | 1991-04-29 | 2002-11-26 | The General Hospital Corporation | Methods and apparatus for forward-directed optical scanning instruments |
US5748598A (en) | 1995-12-22 | 1998-05-05 | Massachusetts Institute Of Technology | Apparatus and methods for reading multilayer storage media using short coherence length sources |
US6564087B1 (en) | 1991-04-29 | 2003-05-13 | Massachusetts Institute Of Technology | Fiber optic needle probes for optical coherence tomography imaging |
US6134003A (en) | 1991-04-29 | 2000-10-17 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope |
US5441053A (en) | 1991-05-03 | 1995-08-15 | University Of Kentucky Research Foundation | Apparatus and method for multiple wavelength of tissue |
DE4128744C1 (ja) | 1991-08-29 | 1993-04-22 | Siemens Ag, 8000 Muenchen, De | |
US5353790A (en) | 1992-01-17 | 1994-10-11 | Board Of Regents, The University Of Texas System | Method and apparatus for optical measurement of bilirubin in tissue |
US5248876A (en) | 1992-04-21 | 1993-09-28 | International Business Machines Corporation | Tandem linear scanning confocal imaging system with focal volumes at different heights |
US5486701A (en) | 1992-06-16 | 1996-01-23 | Prometrix Corporation | Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness |
US5716324A (en) | 1992-08-25 | 1998-02-10 | Fuji Photo Film Co., Ltd. | Endoscope with surface and deep portion imaging systems |
US5772597A (en) | 1992-09-14 | 1998-06-30 | Sextant Medical Corporation | Surgical tool end effector |
US5698397A (en) | 1995-06-07 | 1997-12-16 | Sri International | Up-converting reporters for biological and other assays using laser excitation techniques |
EP0669820B1 (en) | 1992-11-18 | 1997-04-16 | Spectrascience, Inc. | Apparatus for diagnostic imaging |
US5383467A (en) | 1992-11-18 | 1995-01-24 | Spectrascience, Inc. | Guidewire catheter and apparatus for diagnostic imaging |
US5987346A (en) | 1993-02-26 | 1999-11-16 | Benaron; David A. | Device and method for classification of tissue |
DE4309056B4 (de) | 1993-03-20 | 2006-05-24 | Häusler, Gerd, Prof. Dr. | Verfahren und Vorrichtung zur Ermittlung der Entfernung und Streuintensität von streuenden Punkten |
DE4310209C2 (de) | 1993-03-29 | 1996-05-30 | Bruker Medizintech | Optische stationäre Bildgebung in stark streuenden Medien |
DE4314189C1 (de) | 1993-04-30 | 1994-11-03 | Bodenseewerk Geraetetech | Vorrichtung zur Untersuchung von Lichtleitfasern aus Glas mittels Heterodyn-Brillouin-Spektroskopie |
US5454807A (en) | 1993-05-14 | 1995-10-03 | Boston Scientific Corporation | Medical treatment of deeply seated tissue using optical radiation |
EP0627643B1 (en) | 1993-06-03 | 1999-05-06 | Hamamatsu Photonics K.K. | Laser scanning optical system using axicon |
US5803082A (en) | 1993-11-09 | 1998-09-08 | Staplevision Inc. | Omnispectramammography |
US5983125A (en) | 1993-12-13 | 1999-11-09 | The Research Foundation Of City College Of New York | Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy |
US5450203A (en) | 1993-12-22 | 1995-09-12 | Electroglas, Inc. | Method and apparatus for determining an objects position, topography and for imaging |
US5411016A (en) | 1994-02-22 | 1995-05-02 | Scimed Life Systems, Inc. | Intravascular balloon catheter for use in combination with an angioscope |
US5590660A (en) | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
DE4411017C2 (de) | 1994-03-30 | 1995-06-08 | Alexander Dr Knuettel | Optische stationäre spektroskopische Bildgebung in stark streuenden Objekten durch spezielle Lichtfokussierung und Signal-Detektion von Licht unterschiedlicher Wellenlängen |
TW275570B (ja) | 1994-05-05 | 1996-05-11 | Boehringer Mannheim Gmbh | |
US5459325A (en) | 1994-07-19 | 1995-10-17 | Molecular Dynamics, Inc. | High-speed fluorescence scanner |
US6159445A (en) | 1994-07-20 | 2000-12-12 | Nycomed Imaging As | Light imaging contrast agents |
ES2233727T3 (es) | 1994-08-18 | 2005-06-16 | Carl Zeiss Meditec Ag | Aparato quirurgico asistido por tomografia de coherencia optica. |
US5491524A (en) | 1994-10-05 | 1996-02-13 | Carl Zeiss, Inc. | Optical coherence tomography corneal mapping apparatus |
US5740808A (en) | 1996-10-28 | 1998-04-21 | Ep Technologies, Inc | Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions |
US5817144A (en) | 1994-10-25 | 1998-10-06 | Latis, Inc. | Method for contemporaneous application OF laser energy and localized pharmacologic therapy |
US6033721A (en) | 1994-10-26 | 2000-03-07 | Revise, Inc. | Image-based three-axis positioner for laser direct write microchemical reaction |
US5600486A (en) | 1995-01-30 | 1997-02-04 | Lockheed Missiles And Space Company, Inc. | Color separation microlens |
RU2100787C1 (ru) | 1995-03-01 | 1997-12-27 | Геликонов Валентин Михайлович | Оптоволоконный интерферометр и оптоволоконный пьезоэлектрический преобразователь |
US5526338A (en) | 1995-03-10 | 1996-06-11 | Yeda Research & Development Co. Ltd. | Method and apparatus for storage and retrieval with multilayer optical disks |
US5697373A (en) | 1995-03-14 | 1997-12-16 | Board Of Regents, The University Of Texas System | Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies |
US5735276A (en) | 1995-03-21 | 1998-04-07 | Lemelson; Jerome | Method and apparatus for scanning and evaluating matter |
US5621830A (en) | 1995-06-07 | 1997-04-15 | Smith & Nephew Dyonics Inc. | Rotatable fiber optic joint |
US5785651A (en) | 1995-06-07 | 1998-07-28 | Keravision, Inc. | Distance measuring confocal microscope |
WO1997001167A1 (en) | 1995-06-21 | 1997-01-09 | Massachusetts Institute Of Technology | Apparatus and method for accessing data on multilayered optical media |
ATA107495A (de) | 1995-06-23 | 1996-06-15 | Fercher Adolf Friedrich Dr | Kohärenz-biometrie und -tomographie mit dynamischem kohärentem fokus |
JP3819032B2 (ja) | 1995-08-24 | 2006-09-06 | ザ・テキサス・エイ・アンド・エム・ユニバーシティ・システム | 組織およびその他のランダム媒体における蛍光寿命に基づく撮像および分光分析 |
US6615071B1 (en) | 1995-09-20 | 2003-09-02 | Board Of Regents, The University Of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
DE19542955C2 (de) | 1995-11-17 | 1999-02-18 | Schwind Gmbh & Co Kg Herbert | Endoskop |
US5719399A (en) | 1995-12-18 | 1998-02-17 | The Research Foundation Of City College Of New York | Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough |
US5840023A (en) | 1996-01-31 | 1998-11-24 | Oraevsky; Alexander A. | Optoacoustic imaging for medical diagnosis |
US5862273A (en) | 1996-02-23 | 1999-01-19 | Kaiser Optical Systems, Inc. | Fiber optic probe with integral optical filtering |
US5843000A (en) | 1996-05-07 | 1998-12-01 | The General Hospital Corporation | Optical biopsy forceps and method of diagnosing tissue |
ATA84696A (de) | 1996-05-14 | 1998-03-15 | Adolf Friedrich Dr Fercher | Verfahren und anordnungen zur kontrastanhebung in der optischen kohärenztomographie |
US5795295A (en) | 1996-06-25 | 1998-08-18 | Carl Zeiss, Inc. | OCT-assisted surgical microscope with multi-coordinate manipulator |
US5842995A (en) | 1996-06-28 | 1998-12-01 | Board Of Regents, The Univerisity Of Texas System | Spectroscopic probe for in vivo measurement of raman signals |
US5840075A (en) | 1996-08-23 | 1998-11-24 | Eclipse Surgical Technologies, Inc. | Dual laser device for transmyocardial revascularization procedures |
WO1998013715A1 (fr) | 1996-09-27 | 1998-04-02 | Vincent Lauer | Microscope generant une representation tridimensionnelle d'un objet |
DE19640495C2 (de) | 1996-10-01 | 1999-12-16 | Leica Microsystems | Vorrichtung zur konfokalen Oberflächenvermessung |
US5843052A (en) | 1996-10-04 | 1998-12-01 | Benja-Athon; Anuthep | Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds |
US6044288A (en) | 1996-11-08 | 2000-03-28 | Imaging Diagnostics Systems, Inc. | Apparatus and method for determining the perimeter of the surface of an object being scanned |
US5872879A (en) | 1996-11-25 | 1999-02-16 | Boston Scientific Corporation | Rotatable connecting optical fibers |
US5871449A (en) | 1996-12-27 | 1999-02-16 | Brown; David Lloyd | Device and method for locating inflamed plaque in an artery |
US5991697A (en) | 1996-12-31 | 1999-11-23 | The Regents Of The University Of California | Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media |
US5760901A (en) | 1997-01-28 | 1998-06-02 | Zetetic Institute | Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation |
US5801826A (en) | 1997-02-18 | 1998-09-01 | Williams Family Trust B | Spectrometric device and method for recognizing atomic and molecular signatures |
US6120516A (en) | 1997-02-28 | 2000-09-19 | Lumend, Inc. | Method for treating vascular occlusion |
US5968064A (en) | 1997-02-28 | 1999-10-19 | Lumend, Inc. | Catheter system for treating a vascular occlusion |
US6010449A (en) | 1997-02-28 | 2000-01-04 | Lumend, Inc. | Intravascular catheter system for treating a vascular occlusion |
WO1998040007A1 (en) | 1997-03-13 | 1998-09-17 | Biomax Technologies, Inc. | Methods and apparatus for detecting the rejection of transplanted tissue |
US5994690A (en) | 1997-03-17 | 1999-11-30 | Kulkarni; Manish D. | Image enhancement in optical coherence tomography using deconvolution |
US6117128A (en) | 1997-04-30 | 2000-09-12 | Kenton W. Gregory | Energy delivery catheter and method for the use thereof |
US5887009A (en) | 1997-05-22 | 1999-03-23 | Optical Biopsy Technologies, Inc. | Confocal optical scanning system employing a fiber laser |
US6002480A (en) | 1997-06-02 | 1999-12-14 | Izatt; Joseph A. | Depth-resolved spectroscopic optical coherence tomography |
DE69840791D1 (de) | 1997-06-02 | 2009-06-10 | Joseph A Izatt | Doppler-abbildung einer strömung mittels optischer kohaerenztomografie |
US6208415B1 (en) | 1997-06-12 | 2001-03-27 | The Regents Of The University Of California | Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography |
US5920390A (en) | 1997-06-26 | 1999-07-06 | University Of North Carolina | Fiberoptic interferometer and associated method for analyzing tissue |
US6048349A (en) | 1997-07-09 | 2000-04-11 | Intraluminal Therapeutics, Inc. | Systems and methods for guiding a medical instrument through a body |
US5921926A (en) | 1997-07-28 | 1999-07-13 | University Of Central Florida | Three dimensional optical imaging colposcopy |
US5892583A (en) | 1997-08-21 | 1999-04-06 | Li; Ming-Chiang | High speed inspection of a sample using superbroad radiation coherent interferometer |
US6014214A (en) | 1997-08-21 | 2000-01-11 | Li; Ming-Chiang | High speed inspection of a sample using coherence processing of scattered superbroad radiation |
US6069698A (en) | 1997-08-28 | 2000-05-30 | Olympus Optical Co., Ltd. | Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object |
US5920373A (en) | 1997-09-24 | 1999-07-06 | Heidelberg Engineering Optische Messysteme Gmbh | Method and apparatus for determining optical characteristics of a cornea |
US5951482A (en) | 1997-10-03 | 1999-09-14 | Intraluminal Therapeutics, Inc. | Assemblies and methods for advancing a guide wire through body tissue |
US6193676B1 (en) | 1997-10-03 | 2001-02-27 | Intraluminal Therapeutics, Inc. | Guide wire assembly |
US6091984A (en) | 1997-10-10 | 2000-07-18 | Massachusetts Institute Of Technology | Measuring tissue morphology |
US6134010A (en) | 1997-11-07 | 2000-10-17 | Lucid, Inc. | Imaging system using polarization effects to enhance image quality |
US6165170A (en) | 1998-01-29 | 2000-12-26 | International Business Machines Corporation | Laser dermablator and dermablation |
AU758078B2 (en) | 1998-02-26 | 2003-03-13 | General Hospital Corporation, The | Confocal microscopy with multi-spectral encoding |
US6831781B2 (en) | 1998-02-26 | 2004-12-14 | The General Hospital Corporation | Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy |
US6134033A (en) | 1998-02-26 | 2000-10-17 | Tyco Submarine Systems Ltd. | Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems |
US6048742A (en) | 1998-02-26 | 2000-04-11 | The United States Of America As Represented By The Secretary Of The Air Force | Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers |
US6066102A (en) | 1998-03-09 | 2000-05-23 | Spectrascience, Inc. | Optical biopsy forceps system and method of diagnosing tissue |
US6174291B1 (en) | 1998-03-09 | 2001-01-16 | Spectrascience, Inc. | Optical biopsy system and methods for tissue diagnosis |
US6151522A (en) | 1998-03-16 | 2000-11-21 | The Research Foundation Of Cuny | Method and system for examining biological materials using low power CW excitation raman spectroscopy |
US6175669B1 (en) | 1998-03-30 | 2001-01-16 | The Regents Of The Universtiy Of California | Optical coherence domain reflectometry guidewire |
US6384915B1 (en) | 1998-03-30 | 2002-05-07 | The Regents Of The University Of California | Catheter guided by optical coherence domain reflectometry |
DE19814057B4 (de) | 1998-03-30 | 2009-01-02 | Carl Zeiss Meditec Ag | Anordnung zur optischen Kohärenztomographie und Kohärenztopographie |
US6053613A (en) | 1998-05-15 | 2000-04-25 | Carl Zeiss, Inc. | Optical coherence tomography with new interferometer |
US6549801B1 (en) | 1998-06-11 | 2003-04-15 | The Regents Of The University Of California | Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity |
AU5101699A (en) | 1998-07-15 | 2000-02-07 | Corazon Technologies, Inc. | Methods and devices for reducing the mineral content of vascular calcified lesions |
US6166373A (en) | 1998-07-21 | 2000-12-26 | The Institute For Technology Development | Focal plane scanner with reciprocating spatial window |
AU6417599A (en) | 1998-10-08 | 2000-04-26 | University Of Kentucky Research Foundation, The | Methods and apparatus for (in vivo) identification and characterization of vulnerable atherosclerotic plaques |
US6274871B1 (en) | 1998-10-22 | 2001-08-14 | Vysis, Inc. | Method and system for performing infrared study on a biological sample |
US6324419B1 (en) | 1998-10-27 | 2001-11-27 | Nejat Guzelsu | Apparatus and method for non-invasive measurement of stretch |
US6191862B1 (en) | 1999-01-20 | 2001-02-20 | Lightlab Imaging, Llc | Methods and apparatus for high speed longitudinal scanning in imaging systems |
US6272376B1 (en) | 1999-01-22 | 2001-08-07 | Cedars-Sinai Medical Center | Time-resolved, laser-induced fluorescence for the characterization of organic material |
US6445944B1 (en) | 1999-02-01 | 2002-09-03 | Scimed Life Systems | Medical scanning system and related method of scanning |
US6615072B1 (en) | 1999-02-04 | 2003-09-02 | Olympus Optical Co., Ltd. | Optical imaging device |
US6185271B1 (en) | 1999-02-16 | 2001-02-06 | Richard Estyn Kinsinger | Helical computed tomography with feedback scan control |
US6264610B1 (en) | 1999-05-05 | 2001-07-24 | The University Of Connecticut | Combined ultrasound and near infrared diffused light imaging system |
US6353693B1 (en) | 1999-05-31 | 2002-03-05 | Sanyo Electric Co., Ltd. | Optical communication device and slip ring unit for an electronic component-mounting apparatus |
US6208887B1 (en) | 1999-06-24 | 2001-03-27 | Richard H. Clarke | Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions |
US7426409B2 (en) | 1999-06-25 | 2008-09-16 | Board Of Regents, The University Of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
GB9915082D0 (en) | 1999-06-28 | 1999-08-25 | Univ London | Optical fibre probe |
US6359692B1 (en) | 1999-07-09 | 2002-03-19 | Zygo Corporation | Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry |
DE60020566T2 (de) | 1999-07-30 | 2006-05-04 | Boston Scientific Ltd., St. Michael | Katheter mit antrieb und kupplung zur dreh- und längsverschiebung |
US6687010B1 (en) | 1999-09-09 | 2004-02-03 | Olympus Corporation | Rapid depth scanning optical imaging device |
US6198956B1 (en) | 1999-09-30 | 2001-03-06 | Oti Ophthalmic Technologies Inc. | High speed sector scanning apparatus having digital electronic control |
US6393312B1 (en) | 1999-10-13 | 2002-05-21 | C. R. Bard, Inc. | Connector for coupling an optical fiber tissue localization device to a light source |
US6308092B1 (en) | 1999-10-13 | 2001-10-23 | C. R. Bard Inc. | Optical fiber tissue localization device |
JP2001125009A (ja) | 1999-10-28 | 2001-05-11 | Asahi Optical Co Ltd | 内視鏡装置 |
EP1232377B1 (de) | 1999-11-24 | 2004-03-31 | Haag-Streit Ag | Verfahren und vorrichtung zur messung optischer eigenschaften wenigstens zweier voneinander distanzierter bereiche in einem transparenten und/oder diffusiven gegenstand |
US6680780B1 (en) | 1999-12-23 | 2004-01-20 | Agere Systems, Inc. | Interferometric probe stabilization relative to subject movement |
WO2001054580A1 (en) | 2000-01-27 | 2001-08-02 | National Research Council Of Canada | Visible-near infrared spectroscopy in burn injury assessment |
US6556305B1 (en) | 2000-02-17 | 2003-04-29 | Veeco Instruments, Inc. | Pulsed source scanning interferometer |
AU2001259435A1 (en) | 2000-05-03 | 2001-11-12 | Stephen T Flock | Optical imaging of subsurface anatomical structures and biomolecules |
JP4460117B2 (ja) | 2000-06-29 | 2010-05-12 | 独立行政法人理化学研究所 | グリズム |
WO2002014944A1 (en) | 2000-08-11 | 2002-02-21 | Crystal Fibre A/S | Optical wavelength converter |
US7625335B2 (en) | 2000-08-25 | 2009-12-01 | 3Shape Aps | Method and apparatus for three-dimensional optical scanning of interior surfaces |
WO2002021170A1 (en) | 2000-09-05 | 2002-03-14 | Arroyo Optics, Inc. | System and method for fabricating components of precise optical path length |
DE60141090D1 (de) | 2000-10-30 | 2010-03-04 | Gen Hospital Corp | Optische systeme zur gewebeanalyse |
JP3842101B2 (ja) | 2000-10-31 | 2006-11-08 | 富士写真フイルム株式会社 | 内視鏡装置 |
US6687036B2 (en) | 2000-11-03 | 2004-02-03 | Nuonics, Inc. | Multiplexed optical scanner technology |
US6665075B2 (en) | 2000-11-14 | 2003-12-16 | Wm. Marshurice University | Interferometric imaging system and method |
DE10057539B4 (de) | 2000-11-20 | 2008-06-12 | Robert Bosch Gmbh | Interferometrische Messvorrichtung |
US6558324B1 (en) | 2000-11-22 | 2003-05-06 | Siemens Medical Solutions, Inc., Usa | System and method for strain image display |
US6856712B2 (en) | 2000-11-27 | 2005-02-15 | University Of Washington | Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition |
US6501878B2 (en) | 2000-12-14 | 2002-12-31 | Nortel Networks Limited | Optical fiber termination |
US6687007B1 (en) | 2000-12-14 | 2004-02-03 | Kestrel Corporation | Common path interferometer for spectral image generation |
EP1700573A3 (en) | 2000-12-28 | 2010-12-01 | Palomar Medical Technologies, Inc. | Apparatus for therapeutic EMR treatment of the skin |
US7826059B2 (en) | 2001-01-22 | 2010-11-02 | Roth Jonathan E | Method and apparatus for polarization-sensitive optical coherence tomography |
US6563995B2 (en) | 2001-04-02 | 2003-05-13 | Lightwave Electronics | Optical wavelength filtering apparatus with depressed-index claddings |
US6552796B2 (en) | 2001-04-06 | 2003-04-22 | Lightlab Imaging, Llc | Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography |
DE10118760A1 (de) | 2001-04-17 | 2002-10-31 | Med Laserzentrum Luebeck Gmbh | Verfahren zur Ermittlung der Laufzeitverteilung und Anordnung |
JP2004528111A (ja) | 2001-04-30 | 2004-09-16 | ザ・ジェネラル・ホスピタル・コーポレイション | 焦点特性とコヒーレンス・ゲートを制御するために動的フィードバックを用いた、光干渉トモグラフィにおける写像性と感度を改善するための方法及び装置 |
US20030103995A1 (en) | 2001-06-04 | 2003-06-05 | Hamblin Michael R. | Detection and therapy of vulnerable plaque with photodynamic compounds |
US6879851B2 (en) | 2001-06-07 | 2005-04-12 | Lightlab Imaging, Llc | Fiber optic endoscopic gastrointestinal probe |
US6702744B2 (en) | 2001-06-20 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
US6685885B2 (en) | 2001-06-22 | 2004-02-03 | Purdue Research Foundation | Bio-optical compact dist system |
US20040166593A1 (en) | 2001-06-22 | 2004-08-26 | Nolte David D. | Adaptive interferometric multi-analyte high-speed biosensor |
US6980299B1 (en) | 2001-10-16 | 2005-12-27 | General Hospital Corporation | Systems and methods for imaging a sample |
US7006231B2 (en) | 2001-10-18 | 2006-02-28 | Scimed Life Systems, Inc. | Diffraction grating based interferometric systems and methods |
US20030216719A1 (en) | 2001-12-12 | 2003-11-20 | Len Debenedictis | Method and apparatus for treating skin using patterns of optical energy |
US6947787B2 (en) | 2001-12-21 | 2005-09-20 | Advanced Cardiovascular Systems, Inc. | System and methods for imaging within a body lumen |
US7355716B2 (en) | 2002-01-24 | 2008-04-08 | The General Hospital Corporation | Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands |
US7116887B2 (en) | 2002-03-19 | 2006-10-03 | Nufern | Optical fiber |
US7113818B2 (en) | 2002-04-08 | 2006-09-26 | Oti Ophthalmic Technologies Inc. | Apparatus for high resolution imaging of moving organs |
US20030236443A1 (en) | 2002-04-19 | 2003-12-25 | Cespedes Eduardo Ignacio | Methods and apparatus for the identification and stabilization of vulnerable plaque |
JP4135551B2 (ja) | 2002-05-07 | 2008-08-20 | 松下電工株式会社 | ポジションセンサ |
US7283247B2 (en) | 2002-09-25 | 2007-10-16 | Olympus Corporation | Optical probe system |
AU2003269460A1 (en) | 2002-10-18 | 2004-05-04 | Arieh Sher | Atherectomy system with imaging guidewire |
US6847449B2 (en) | 2002-11-27 | 2005-01-25 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for reducing speckle in optical coherence tomography images |
EP1426799A3 (en) | 2002-11-29 | 2005-05-18 | Matsushita Electric Industrial Co., Ltd. | Optical demultiplexer, optical multi-/demultiplexer, and optical device |
JP4148771B2 (ja) | 2002-12-27 | 2008-09-10 | 株式会社トプコン | 医療機械のレーザ装置 |
US7623908B2 (en) * | 2003-01-24 | 2009-11-24 | The Board Of Trustees Of The University Of Illinois | Nonlinear interferometric vibrational imaging |
US7567349B2 (en) | 2003-03-31 | 2009-07-28 | The General Hospital Corporation | Speckle reduction in optical coherence tomography by path length encoded angular compounding |
EP2319404B1 (en) | 2003-01-24 | 2015-03-11 | The General Hospital Corporation | System and method for identifying tissue low-coherence interferometry |
JP4135550B2 (ja) | 2003-04-18 | 2008-08-20 | 日立電線株式会社 | 半導体発光デバイス |
US7376455B2 (en) | 2003-05-22 | 2008-05-20 | Scimed Life Systems, Inc. | Systems and methods for dynamic optical imaging |
US7263394B2 (en) | 2003-06-04 | 2007-08-28 | Tomophase Corporation | Coherence-gated optical glucose monitor |
US6943881B2 (en) | 2003-06-04 | 2005-09-13 | Tomophase Corporation | Measurements of optical inhomogeneity and other properties in substances using propagation modes of light |
US7198777B2 (en) * | 2003-06-17 | 2007-04-03 | The Board Of Trustees Of The University Of Illinois | Optical contrast agents for optically modifying incident radiation |
US20040260182A1 (en) | 2003-06-23 | 2004-12-23 | Zuluaga Andres F. | Intraluminal spectroscope with wall contacting probe |
US20050083534A1 (en) | 2003-08-28 | 2005-04-21 | Riza Nabeel A. | Agile high sensitivity optical sensor |
CN103181753B (zh) | 2003-10-27 | 2016-12-28 | 通用医疗公司 | 用于使用频域干涉测量法进行光学成像的方法和设备 |
DE10351319B4 (de) | 2003-10-31 | 2005-10-20 | Med Laserzentrum Luebeck Gmbh | Interferometer für die optische Kohärenztomographie |
US7551293B2 (en) | 2003-11-28 | 2009-06-23 | The General Hospital Corporation | Method and apparatus for three-dimensional spectrally encoded imaging |
DE10358735B4 (de) | 2003-12-15 | 2011-04-21 | Siemens Ag | Kathetereinrichtung umfassend einen Katheter, insbesondere einen intravaskulären Katheter |
EP1722669A4 (en) | 2004-02-27 | 2009-05-27 | Optiscan Pty Ltd | OPTICAL ELEMENT |
EP1771755B1 (en) | 2004-07-02 | 2016-09-21 | The General Hospital Corporation | Endoscopic imaging probe comprising dual clad fibre |
US7417740B2 (en) | 2004-11-12 | 2008-08-26 | Medeikon Corporation | Single trace multi-channel low coherence interferometric sensor |
EP1887926B1 (en) | 2005-05-31 | 2014-07-30 | The General Hospital Corporation | System and method which use spectral encoding heterodyne interferometry techniques for imaging |
US20070121196A1 (en) | 2005-09-29 | 2007-05-31 | The General Hospital Corporation | Method and apparatus for method for viewing and analyzing of one or more biological samples with progressively increasing resolutions |
US7593559B2 (en) * | 2005-11-18 | 2009-09-22 | Duke University | Method and system of coregistrating optical coherence tomography (OCT) with other clinical tests |
WO2007090147A2 (en) * | 2006-01-31 | 2007-08-09 | The Board Of Trustees Of The University Of Illinois | Method and apparatus for measurement of optical properties in tissue |
WO2009033064A2 (en) * | 2007-09-05 | 2009-03-12 | The General Hospital Corporation | Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging |
JP2011521747A (ja) * | 2008-06-02 | 2011-07-28 | ライトラブ イメージング, インコーポレイテッド | 光コヒーレンストモグラフィ画像から組織特徴を取得する定量的方法 |
JP5183406B2 (ja) * | 2008-10-03 | 2013-04-17 | キヤノン株式会社 | 生体情報処理装置及び生体情報処理方法 |
-
2012
- 2012-04-26 WO PCT/US2012/035234 patent/WO2012149175A1/en active Application Filing
- 2012-04-26 JP JP2014508554A patent/JP6240064B2/ja active Active
- 2012-04-26 US US13/456,541 patent/US8721077B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210196126A1 (en) * | 2017-10-13 | 2021-07-01 | The Research Foundation for the State University of the New York | System, method, and computer-accessible medium for subsurface capillary flow imaging by wavelength-division-multiplexing swept-source optical doppler tomography |
US11771321B2 (en) * | 2017-10-13 | 2023-10-03 | The Research Foundation For Suny | System, method, and computer-accessible medium for subsurface capillary flow imaging by wavelength-division-multiplexing swept-source optical doppler tomography |
Also Published As
Publication number | Publication date |
---|---|
US8721077B2 (en) | 2014-05-13 |
US20120274896A1 (en) | 2012-11-01 |
JP2014516646A (ja) | 2014-07-17 |
WO2012149175A9 (en) | 2016-06-09 |
WO2012149175A1 (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6240064B2 (ja) | 散乱媒質の深さ分解した物理的及び/又は光学的特性を決定する方法 | |
JP7193343B2 (ja) | 機械学習技法を用いたoctアンギオグラフィにおけるアーチファクトを減少させるための方法及び装置 | |
US9105123B2 (en) | Non-linear projections of 3-D medical imaging data | |
US8079711B2 (en) | Method for finding the lateral position of the fovea in an SDOCT image volume | |
US7782464B2 (en) | Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images | |
JP5913392B2 (ja) | 神経障害解析装置 | |
EP2293714B1 (en) | Quantitative methods for obtaining tissue characteristics from optical coherence tomography images | |
US9418423B2 (en) | Motion correction and normalization of features in optical coherence tomography | |
JP5697733B2 (ja) | 3次元光コヒーレンストモグラフィを用いた視神経障害の検出 | |
Dubose et al. | Statistical models of signal and noise and fundamental limits of segmentation accuracy in retinal optical coherence tomography | |
JP2008510585A (ja) | 試料の機械的歪み及び弾性的性質を測定するプロセス、システム及びソフトウェア | |
US10251550B2 (en) | Systems and methods for automated segmentation of retinal fluid in optical coherence tomography | |
US11284792B2 (en) | Methods and systems for enhancing microangiography image quality | |
US9101293B2 (en) | Automated analysis of the optic nerve head: measurements, methods and representations | |
Silva et al. | Signal-carrying speckle in optical coherence tomography: a methodological review on biomedical applications | |
Zhong et al. | A high-accuracy and high-efficiency digital volume correlation method to characterize in-vivo optic nerve head biomechanics from optical coherence tomography | |
JP2021168920A (ja) | 低コヒーレンス干渉法のための方法及び装置 | |
JP2023055202A (ja) | 医療診断装置、及び、篩状板の3次元データ及び画像を用いた病態評価方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150420 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160329 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6240064 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |