JP6238936B2 - アナログ・デジタル変換で使用するための方法および装置 - Google Patents

アナログ・デジタル変換で使用するための方法および装置 Download PDF

Info

Publication number
JP6238936B2
JP6238936B2 JP2015140190A JP2015140190A JP6238936B2 JP 6238936 B2 JP6238936 B2 JP 6238936B2 JP 2015140190 A JP2015140190 A JP 2015140190A JP 2015140190 A JP2015140190 A JP 2015140190A JP 6238936 B2 JP6238936 B2 JP 6238936B2
Authority
JP
Japan
Prior art keywords
dac
voltage
switch
capacitance
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015140190A
Other languages
English (en)
Other versions
JP2016036131A (ja
Inventor
ニランジャン レディ スラヴァラプ,
ニランジャン レディ スラヴァラプ,
ペーター ボグナー,
ペーター ボグナー,
クリフォード ファイヴィー,
クリフォード ファイヴィー,
ヘルビヒ ヴァッピス,
ヘルビヒ ヴァッピス,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of JP2016036131A publication Critical patent/JP2016036131A/ja
Application granted granted Critical
Publication of JP6238936B2 publication Critical patent/JP6238936B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors
    • H03M1/468Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors in which the input S/H circuit is merged with the feedback DAC array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/002Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/0863Continuously compensating for, or preventing, undesired influence of physical parameters of noise of switching transients, e.g. glitches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)

Description

アナログ・デジタル(ADC)キャパシタンスの事前充電に関係する技法が、本明細書において開示される。たとえば、DACキャパシタンスは、アナログ・デジタル変換器(ADC)に使用される。アナログ・デジタル変換器の入力は、スイッチト・キャパシタ負荷を形成することができる。たとえば、逐次比較型アナログ・デジタル変換器(SAR−ADC)の入力は、外部のサンプルアンドホールド(S/H)装置、またはSAR−ADC内部のサンプルアンドホールド機能のいずれかを用いて、アナログ入力電圧信号を取り込む。SAR−ADCは、このアナログ入力電圧と、SAR−ADCで使用される基準電圧の既知の端数値とを比較する。この基準電圧は、SAR−ADCの入力電圧範囲全体を決定する。
今日では、逐次比較型アナログ・デジタル変換器は、容量性デジタル・アナログ変換器(C−DAC)を使用して、連続的にビット組合せを比較し、該当するビットをデータ・レジスタにセットするか、または消去する。SAR−ADC変換器の入力において、入力信号はまずスイッチに「入力される」。スイッチを閉じると、このスイッチは、比較器と、入力、基準端子、またはアースのいずれかとの間に選択的に接続された容量性アレイと直列に、スイッチ抵抗を形成する。容量性アレイが入力信号を捕捉すると、入力スイッチが開いて、入力信号から容量性アレイを切断する。次に、選択的に、容量性アレイの少なくとも1つのDACキャパシタンスが、基準端子に接続される。全てのDACキャパシタンスに、電荷が再分配される。したがって、比較器入力での電圧が変動する。サンプリング・キャパシタンスでの電圧が、選択されたDACキャパシタンスによって表される基準電圧の端数値よりも大きい場合は、比較器が0レベルの信号を出力し、小さい場合には、比較器は1レベルの信号を出力する。
以下の説明では、簡略化された概要を提示して、本発明の1つまたは複数の態様の基本的な理解を得る。この概要は、本発明を広範囲に概観するものではなく、本発明の重要もしくは重大な要素を識別するものではなく、またはその範囲を詳細に説明するものでもない。むしろ、この概要の主な目的は、後に提示されるより詳細な説明への導入部として、簡略化された形態で本発明のいくつかの概念を提示することである。
一態様では、独立方法クレームに定義した方法を説明する。別の態様では、独立装置クレームに定義した装置を説明する。各従属クレームは、1つまたは複数の態様での、本発明による実施形態を定義する。特に但し書きがない限り、これらの実施形態の特徴を互いに組み合わせてもよいことに留意されたい。たとえば、方法の実施形態の各要素は、装置の実施形態において実装してもよい。たとえば、装置の一実施形態の特徴を使用して、方法の一実施形態のステップを実行してもよい。
説明する実施形態は、たとえば、アナログ・デジタル変換の分野に役立てることができる。いくつかの実施形態による逐次近似レジスタ・アナログ・デジタル変換器(SAR−ADC、本明細書ではSAR変換器ともいう)の入力において、入力信号はまず、スイッチに「入力」され、ここで、閉じたスイッチが容量性アレイと直列にスイッチ抵抗を形成する。これらスイッチト・キャパシタの一方の端子(「比較器側の端子」)が、比較器の反転入力に結合される。もう一方の端子(「基準側の端子」)は、入力電圧、基準電圧、またはアースに接続することができる。初めに、基準側の端子が入力信号に結合する。容量性アレイが入力信号を完全に捕捉すると、入力スイッチが開き、SAR変換器が変換プロセスを開始する。変換プロセス中、アナログ信号のデジタル表現における最大有効ビット(MSB)に関連するキャパシタの基準側端子が基準電圧に接続され、もう一方のキャパシタがアースに接続される。これを実行することによって、全てのキャパシタに電荷が再分配される。充電の平衡度に従って、比較器の反転入力の電圧が上下する。比較器の反転入力の電圧が、基準電圧の半分よりも高い場合、変換器は、MSBに「0」を割り当て、その値を、SAR−ADCのシリアル・ポートから送出する。この電圧が、基準電圧の半分よりも低い場合、変換器は、値「1」をシリアル・ポートから送出し、MSBキャパシタをアースに接続する。MSBの割当てに続いて、このプロセスをMSB−1キャパシタで繰り返す。SAR−ADC変換プロセスを実行するのに要する時間は、捕捉時間および変換時間からなる。変換プロセス全体が終了すると、SAR−ADCは、スリープ・モードに入ることができる。
前述の通り、ADCは、スイッチト・キャパシタを使用することができる。スイッチト・キャパシタは、基準電圧を使用して充電することができ、この基準電圧には電圧降下が生じる。典型的な構成では、いくつかのスイッチト・キャパシタが同期して動作し、こうした構成においては、充電電流が蓄積して電流スパイクが発生し、これによって機能不良が生じる恐れがある。前述の従来技法およびそれに関連する問題に関して、本明細書において開示される技法の少なくとも1つの効果は、同様機能の従来方法よりも効率的に、記載された方法を実行できることでもよい。少なくとも1つの効果は、同様機能の従来装置よりも効率的に、記載された装置を動作させることができることでもよい。
特許請求の範囲に記載の範囲もしくは意味を曲げて解釈し、またはそれを限定するために使用されるものではないという了解の下に、この概要が提示されている。この概要は、特許請求される主題の重要な特徴または本質的な特徴を識別するものではなく、特許請求される主題の範囲を限定する際の手助けとして使用されるものでもない。他の方法、装置、およびシステムも開示される。以下の詳細な説明を読み、添付図面を見れば、追加の特徴および利点が当業者には理解されよう。
各図面を参照して、特許請求される主題を以下で詳細に説明する。詳細な説明では、添付図を参照する。図面全体を通して同じ参照番号を使用して、同様の特徴および構成要素を参照する。複数桁の参照番号を使用して、実施形態の各要素を示す。複数の実施形態が記載されている場合、複数桁の参照番号の最下位数は、様々な実施形態で同様な特徴および構成要素を示すが、最上位数は、対応する図に示してある特定の実施形態を示すことができる。説明を簡単にするために、様々な実施形態での同様の要素は、通常、ある実施形態でその要素に初めて言及するときにしか紹介しないことになる。スイッチの図を考慮して、以下の図面規則を使用する。すなわち、開いたスイッチが「o」で示してあり、閉じたスイッチが「o」なしで示してある。
いくつかの実施形態によるアナログ・デジタル変換装置の例示的な実装を概略的に示す図である。 図1に示したアナログ・デジタル変換装置における、いくつかの実施形態による容量性デジタル・アナログ変換器(C−DAC)の例示的な実装を示す回路図である。 図2に示した容量性デジタル・アナログ変換器(DAC)における、いくつかの実施形態によるスイッチ構成の例示的な実装を示す回路図である。 図3に示したスイッチ構成を動作させるときの、スイッチの状態を示す時間表である。 図3に示した例示的な実装の、いくつかの実施形態による一変形形態を示す図である。 図3に示した例示的な実装の、いくつかの実施形態によるさらに別の変形形態を示す図である。 いくつかの実施形態による容量性デジタル・アナログ変換器(C−DAC)の例示的な実装を示す回路図である。
説明することを目的とし、特許請求される主題を完全に理解するために、数多くの具体的な詳細を説明する。しかし、場合によっては、特許請求される主題は、これらの具体的な詳細がなくても実施できることが明らかになる可能性がある。
この開示は、アナログ・デジタル変換器(ADC)で使用するための回路を、実装し動作させるための技法を対象とするものであり、このADCは、本明細書で「C−DAC」変換器または単に「DAC」とも短く呼ばれる、いわゆる容量性デジタル・アナログ変換器(C−DAC)を有し、これは、ADCでのサンプリング・キャパシタンスに蓄えられる充電と比較する際に使用される充電用の貯蔵装置として使用するためのものであり、このキャパシタは集合的にサンプリング・キャパシタンスと呼ばれる。本明細書に記載の技法は、適所において、または従来のADC回路の基準電圧源に加えて、さらなる電圧源を使用する。追加の電圧源は、高抵抗基準電圧源からC−DACに流れる電流を低減するように構成される。従来の解決策と比較すると、少なくとも1つの効果は、基準電圧源からC−DAC変換器に流れる電流の量を下げることでもよい。したがって、実施形態によっては、少なくともある程度まで基準電圧源での電圧降下を回避することができるが、なぜならば、基準電圧源からC−DACに流れる必要のある電流が少ないからである。従来の解決策と比較すると、少なくとも1つの効果は、電流スパイク、およびADCの動作安定性へのこのようなスパイクの悪影響を回避することでもよい。本明細書に記載の技法によっては、基準電圧源の代わりに、または特に基準電圧源を補うものとして、さらなる電圧源を使用する。
図1は、いくつかの実施形態による装置を実装する、例示的なアナログ・デジタル変換器(ADC)100を概略的に示す図である。ADC100は、複数の機能ブロックおよび/または回路ブロックを備える。具体的には、ADC100は、逐次近似レジスタ(SAR)120、容量性デジタル・アナログ変換器(C−DAC)140、サンプルアンドホールド(S/H)ユニット160、および比較器180を備える。本明細書においては、機能ブロックおよび/または回路ブロックとして、先に開示した要素について述べるが、場合によっては、別々に開示された2つのブロックが、2つの機能を提供するように構成された単一の回路ブロックを形成できることを理解されたい。ADC100は、クロック・ライン115を介して、クロック信号CLKを受信するように構成される。実施形態によっては、クロック信号CLKは、ADC100の一実装環境で使用されるマスタ・クロック信号から得られる。実施形態によっては、クロック信号CLKは、特にADC100とともに使用するために生成される。実施形態によっては、ADC100は、クロック信号CLKを生成するように構成されたクロック信号発生器を備える。クロック信号CLKについて述べるが、クロック信号CLKは、このクロック信号CLKの受信側として開示された特定の回路または機能について、必要に応じてクロック信号を代表するものであることを理解されたい。したがって、逐次近似レジスタ(SAR)120やC−DAC変換器140など、ADC100の互いに異なる部分に供給されるクロック信号CLKは、実施形態によっては両者において同じではなく、同様にして、ADC100の互いに異なる部分に結合しているクロック・ライン115への言及は、実施形態によっては、ADC100の結合部分において必要に応じて、それぞれのクロック信号CLKを送出するように構成された別々のラインを指す。さらに、ADC100は、基準電圧ライン135を介して基準電圧信号VREFを受信し、また入力電圧ライン155を介して入力電圧信号VINを受信するように構成される。ADC100は、供給電圧ライン110に結合されており、このラインの電圧は供給電圧レベルVDDに設定されている。本明細書において、「結合(coupled)」という用語は、「接続(connected)」および「直接接続(directly connected)」の意味に限定されないが、その意味をも含む。たとえば、いくつかの実施形態によれば、供給電圧ライン110にADC100を直接接続することができ、この場合に抵抗値が最小になる。いくつかの実施形態によれば、供給電圧ライン110へのADC100の結合には、たとえばレベル・シフタおよび/またはフィルタなどの回路素子が含まれ得る。逐次近似レジスタ(SAR)120は、デジタル制御信号D0、D1、D2、...、DN−2、DN−1を選択的に出力するように構成された、N本のデジタル信号ラインのグループ130に結合される。さらに、ADC100は、SAR出力ライン126を介して、デジタル制御信号D0、D1、D2、...、DN−2、DN−1がアナログ・デジタル変換の結果であることを示すエンドオブコンバージョン信号EOCを出力するように構成される。
逐次近似レジスタ(SAR)120は、クロック信号CLKを受信するためのクロック端子121、およびSAR供給電圧分岐118を介して供給電圧ライン110に接続された端子128を有する。本明細書において、「端子」という用語は、ラインの端部、ソケット、プラグ、または用語「端子」に関連する他の構造上の終始点を意味することに限定されない。むしろ、「端子」という用語は、回路の動作時に、指定された信号を受信するよう定めることができる回路での位置、たとえばクロック端子121の場合には、クロック信号CLKが供給される、かつ/またはクロック信号CLKを送出する任意の回路部分を示すために使用される。逐次近似レジスタ(SAR)120は、N本のデジタル信号ラインのグループ130を介してC−DAC変換器140に結合され、C−DAC変換器140を制御する際に使用するためデジタル制御信号D0、D1、D2、...、DN−2、DN−1を選択的に出力するように構成される。本明細書においては、本明細書で開示されるこうした原理が、SAR120からC−DAC変換器140に出力される全てのデジタル制御信号に同様に適用されるので、SAR120からC−DAC変換器140に出力される単一のデジタル制御信号、たとえば説明を簡単にするためにデジタル制御信号D2などについて一例として言及すると、文字「D」のみを使用してデジタル制御信号を示すことができ、添え字を省くことになる。いくつかの実施形態によれば、逐次近似レジスタ(SAR)120は、比較器180に結合されていて、フィードバック・ライン190を介して、フィードバック信号FBを比較器180から受信するように構成されたフィードバック端子122を備える。逐次近似レジスタ(SAR)120は、SAR出力ライン126を介して、エンドオブコンバージョン信号125を出力するように構成された、ADC制御出力端子125を有する。
いくつかの実施形態によれば、容量性デジタル・アナログ変換器(C−DAC)140は、たとえば何らかの基準電圧源(図示せず)から基準電圧ライン135を介して受信するための、または他の方法で基準電圧信号VREFに設定するための基準電圧端子141を有する。容量性デジタル・アナログ変換器(C−DAC)140は、C−DAC供給電圧分岐138を介して供給電圧ライン110に接続された供給電圧端子148を有する。実施形態によっては、C−DAC変換器140は、放電ライン139を介してアース(接地)101に結合されたDACバイアス端子146を有する。実施形態によっては、C−DACバイアス端子146は、アース電圧とは異なる電圧レベルに設定された、アナログ・デジタル変換器(ADC)100のバイアス電圧端子に結合することができる。C−DAC変換器140は、一群のデジタル信号入力端子142を備えており、このデジタル信号入力端子はそれぞれ、デジタル信号ラインのグループ130のデジタル信号ラインに結合され、デジタル制御信号DをSAR120から受信するように構成される。いくつかの実施形態によれば、C−DAC変換器140は、DAC基準ライン175を介して、DAC電圧信号VDACを変換器180に出力するように構成されたDAC出力端子145を備える。実施形態によっては、逐次近似レジスタ(SAR)120は、クロック・ライン115に結合されてクロック信号CLKを受信する、SARクロック端子149を有する。
いくつかの実施形態によれば、サンプルアンドホールド(S/H)ユニット160は、入力電圧ライン155を介して入力電圧信号VINを受信するための、入力電圧信号端子161を有する。実装によっては、入力電圧信号VINは、時間とともに変動することがあるアナログ信号である。入力電圧信号VINを供給して、ADCによってデジタル化することができる。実施形態によっては、入力電圧信号端子161から見ると、サンプルアンドホールド(S/Hユニット160は、高インピーダンス回路である。実施形態によっては、この高インピーダンスは、少なくとも10kオームとすることができる。さらに、サンプルアンドホールド(S/H)ユニット160は、S/H供給電圧分岐158を介して供給電圧ライン110に結合された、供給電圧端子168を備える。サンプルアンドホールド(S/H)ユニット160は、サンプルアンドホールド・ライン176を介して、サンプルアンドホールド電圧信号VSHを比較器180に出力するように構成された、サンプルアンドホールド出力端子165を備える。いくつかの実施形態によれば、実装によっては、高インピーダンス入力源からサンプルアンドホールド・ユニット160を分離するための演算増幅器(オペアンプ)を使用する、ADCドライバ回路が設けられる。フィルタ抵抗132およびフィルタ・キャパシタンス133を有するR/C低域通過回路は、演算増幅器とサンプルアンドホールド・ユニット160との間を行き交う機能を実行する役割を負うことができる。低域通過回路の抵抗は、低域通過回路のキャパシタンスから増幅器の出力段を分離することによって、増幅器を安定に保つ。低域通過回路のキャパシタンスは、サンプルアンドホールド・ユニット160に安定な入力源を提供する。
比較器180は、DAC基準ライン175を介してDAC電圧信号VDACを受信するように構成された、負の入力端子(−)を有する。比較器180は、サンプルアンドホールド・ライン176を介してサンプルアンドホールド電圧信号を受信するように構成された、正の入力端子(+)を有する。さらに、比較器180は、比較器供給電圧分岐178を介して供給電圧ライン110に接続された、供給電圧端子188を備える。比較器180は、フィードバック・ライン190を介して、逐次近似レジスタ(SAR)120のフィードバック端子122にフィードバック信号FBを出力するように構成される。
図2は、図1に示したアナログ・デジタル変換装置における、いくつかの実施形態による容量性デジタル・アナログ変換器(C−DAC)の例示的な実装を示す回路図である。C−DAC変換器140は、N個のデジタル・アナログ(DAC)キャパシタンス、144a、144b、144cを備える。本明細書においては、本明細書で開示されるこうした原理が、全てのデジタル・アナログ・キャパシタンスに同様に適用されるので、単一のDACキャパシタンス、たとえば説明を簡単にするためにDACキャパシタンス144aなどについて一例として言及すると、参照番号「144」のみを使用してDACキャパシタンスを示すことになり、文字の接尾語は省くことになる。DACキャパシタンス144a、144b、144cの片側は、DAC基準ライン175に結合される。実施形態によっては、DACキャパシタンス144a、144b、144cの片側は、DAC基準ライン175に直接接続される。DACキャパシタンス144のもう一方の側は、関連するDACスイッチ構成143a、143b、143cにそれぞれ結合される。本明細書においては、本明細書で開示されるこうした原理が、全てのDACスイッチに同様に適用されるので、単一のDACスイッチ構成、たとえば説明を簡単にするためにDACスイッチ構成143aなどについて一例として言及すると、参照番号「143」のみを使用してDACスイッチ構成を示すことができ、文字の接尾語は省いてもよい。実施形態によっては、DACキャパシタンス144のもう一方の側は、関連するDACスイッチ143に直接接続される。図2に示した実施形態では、DACスイッチ構成143a、143b、143cは、3つの異なる接続状態にそれぞれ設定できるようにする、N個の3投式スイッチとして設けられる。DACスイッチ構成143の例示的な構成を詳細に論じるとき、以下に示す通り、他の実装でも同様の効果を実現することができ、同等な機能をもたらすことができることを理解されたい。事前充電状態では、DACスイッチ構成143は、(たとえば、DACスイッチ144aの場合に示すように)関連するDACキャパシタンス144をDAC電圧源分岐138に結合するように設定される。基準充電状態では、DACスイッチ構成143は、(たとえば、DACスイッチ144bの場合に示すように)関連するDACキャパシタンス144を基準電圧ライン135に結合するように設定される。放電状態では、DACスイッチ構成144は、(たとえば、DACスイッチ144cの場合に示すように)関連するDACキャパシタンス144を放電ライン139に結合するように設定される。
C−DAC変換器140は、N個のデジタル信号入力端子142a、142bを備えており、これらの端子は、SAR120(図2には図示せず)から、デジタル信号ライン130a、130b、130cのグループ130上のデジタル制御信号D2、DN−2、DN−1を受信するように構成される。本明細書においては、本明細書で開示されるこうした原理が、全てのデジタル信号ラインに同様に適用されるので、単一のデジタル信号ライン、たとえば説明を簡単にするためにデジタル信号ライン130aなどについて一例として言及すると、グループの参照番号「130」のみを使用してデジタル信号ラインを示すことになり、文字の接尾語は省くことになる。C−DAC変換器140は、SARユニット120から受信したデジタル信号ライン130a、130b、130c上のデジタル制御信号を、デジタル信号ライン130a、130b、130cに関連するDACスイッチ143a、143b、143cに送るように構成される。したがって、以下のいくつかの実施形態のより詳細な議論から明らかになるように、たとえば、C−DAC変換器140を制御する際にデジタル制御信号を使用して、DACスイッチ143のスイッチ状態を制御することができる。実施形態によっては、図2に示すように、DACスイッチ制御回路147a、147b、147cが設けられ、逐次近似レジスタ(SAR)120から受信されたデジタル制御信号D2、DN−2、DN−1を処理し、処理済みのデジタル制御信号としての信号であるデジタル制御信号D2、DN−2、DN−1を、デジタル信号ライン130a、130b、130cに関連するDACスイッチ143a、143b、143cに供給するように構成される。実施形態によっては、処理は、たとえばクロック信号CLKを考慮に入れて、DACスイッチ143a、143b、143cを不定状態に設定するのを回避する。
一実施形態では、C−DAC変換器140の基準電圧端子141が、基準電圧ライン135上のノード134に結合されたフィルタ抵抗132およびフィルタ・キャパシタンス133を備えるフィルタ構成に結合される。
図3は、図2に示した容量性デジタル・アナログ変換器(DAC)における、いくつかの実施形態による3投式スイッチ143の一構成の例示的な実装を示す回路図である。ほんの一例として、事前充電状態に設定されたスイッチ構成143aの一構成の実施形態が示してある。DACスイッチ構成143は、CLOSE状態にあるときに、DACキャパシタンス144をDAC供給電圧分岐138に結合するように構成された、事前充電スイッチ1431を備える。さらに、DACスイッチ構成143は、CLOSE状態にあるときに、DACキャパシタンス144を基準電圧ライン135に結合するように構成された、基準電圧スイッチ1432を備える。DACスイッチ構成143は、CLOSE状態にあるときに、DACキャパシタンス144を放電ライン139に結合するように構成された、放電スイッチ1433を備える。さらに、実施形態によっては、DACスイッチ構成143は、事前充電スイッチ1431、基準電圧スイッチ1432、および放電スイッチ1433それぞれの制御端子にデジタル制御信号Dを供給するように構成された、デジタル信号ライン130の分岐1301、1302、1303を備える。いくつかの実施によれば、DACスイッチ構成143は、事前充電スイッチ1431、基準電圧スイッチ1432、および放電スイッチ1433それぞれについて少なくとも1つ、トランジスタを備える。一実施形態では、スイッチ構成143aは、事前充電スイッチ1431、基準電圧スイッチ1432、および放電スイッチ1433のうち2つのスイッチが同時にCLOSE状態にならないように構成される。デジタル制御信号Dを供給するためのデジタル信号ライン130に関連して、本明細書で開示され説明される1つのDACスイッチ構成143は、DACスイッチ構成143a、143b、143cについて例示的なものであり、一実施形態では、全てのDACスイッチ構成のグループについて、容量性デジタル・アナログ変換器(C−DAC)140に含まれ、3つの状態の間で切り替えるように構成されることを理解されたい。
次に、図4を参照しながら、いくつかの実施形態の動作を開示することになる。図4は、ある期間TCAP全体を通して、図3に示した容量性デジタル・アナログ変換器の実装を動作させて、事前充電段階、基準充電段階、および放電段階を含む作業段階のサイクル400の処理を受けるときのスイッチの状態を示す時間表である。
例示的なアナログ・デジタル変換器(ADC)100の動作全体を通して、クロック・ライン115に供給されるクロック信号CLKは、HIGHレベルとLOWレベルの間で周期的に切り替わる。本明細書において、クロック処理および/または信号処理についての用語「HIGH」レベルおよび「LOW」レベルは、特に別段の言及がない限り、単に2つのクロック状態または信号状態をそれぞれ区別するだけのものであり、これらの用語は交換可能に使用することができる。すなわち、説明された動作は、逆の信号処理または混合信号処理、すなわち場合によっては、図4に時刻t0および時刻t4で示したクロック信号CLKの例に示すように、立下り信号エッジまたは立上り信号エッジで実施することもできる。より具体的には、図4には、時刻t0と時刻t2の間の参照番号401で、あるクロック期間TCLKが示してある。この例では、クロック信号CLKは、デューティ・サイクルが50%であるが、別のデューティ・サイクル値を使用することもできる。クロック信号CLKを使用して、本明細書に記載の動作を同期する。実施形態によっては、クロック信号CLKは、逐次近似レジスタ(SAR)120の動作を同期し、それに応じて、このレジスタは、クロック信号CLKに同期した容量性デジタル・アナログ変換器(C−DAC)140にデジタル制御信号D0、D1、D2...DN−2、DN−1を出力する。実施形態によっては、逐次近似レジスタ(SAR)120の動作は、別個のクロックなど別のクロック源に同期することができる。たとえば、比較器180の動作、ならびに逐次近似レジスタ(SAR)120の動作に、別のクロック源を使用してもよい。いくつかの実装によれば、SAR120は、選択装置として動作可能であり、DACスイッチ構成143a、143b、143cを選択して、事前充電段階、基準充電段階、および放電段階の各作業段階のサイクルの処理を受けるように構成される。したがって、いくつかの実装によっては、以下に述べるように、DACスイッチ構成143a、143b、143cのうち選択されたスイッチ構成が、SAR120からデジタル制御信号を受信してもよい。
時刻t0において、DACスイッチ構成143の事前充電スイッチ1431、基準電圧スイッチ1432、および放電スイッチ1433はOPEN状態である。クロック信号CLKに同期されると、逐次近似レジスタ(SAR)120は、とりわけ、関連するデジタル信号ライン上にデジタル制御信号Dを出力する。容量性デジタル・アナログ変換器(C−DAC)140、特にデジタル信号ライン130に接続するように結合されたスイッチ構成143では、デジタル制御信号Dが、事前充電スイッチ1431、基準電圧スイッチ1432、および放電スイッチ1433に分配される。
時刻t1において、選択されたDACキャパシタンス144の事前充電段階、基準充電段階、および放電段階を含む、作業段階のサイクル400が開始する。事前充電スイッチ1431で受信されたデジタル制御信号Dによって、事前充電スイッチ1431がCLOSE状態に設定される。したがって、事前充電スイッチ1431は、供給電圧ライン110からDAC供給電圧分岐138および事前充電スイッチ1431を介してDACキャパシタンス144に電荷が流れるための接続を実現する。時間間隔405において、基準電圧スイッチ1432および放電スイッチ1433が、開状態であり(図3には図示せず)、その結果、DACキャパシタンス144は、基準電圧ライン135を介して充電を受けることもなく、アースに放電することもない。DACキャパシタンス144を供給電圧のレベルVDDの近くにまで充電するのに十分長い、dt1の長さの時間間隔405の後、t2において、受信したデジタル制御信号Dが、事前充電スイッチ1431を制御してOPEN状態にする。したがって、事前充電スイッチ1431は、電圧源ライン110からDACキャパシタンス144を切断する。長さdt2の時間間隔410において、DACスイッチ構成143の事前充電スイッチ1431、基準電圧スイッチ1432、および放電スイッチ1433はOPEN状態である。したがって、2つのスイッチがCLOSE状態でオーバラップすること、およびそれに関連して回路状態が不確定になること、電圧源からアースに流れる短絡回路電流、ならびに装置の安全動作に不都合な他の影響が確実に回避される。いくつかの実施形態によれば、時間間隔405の長さdt1と比較して、時間間隔410の長さdt2を短くすることができ、この実装を製造する際に使用される製造プロセスの技術的なパラメータが、時間間隔410の最短の長さdt2を決定することができる。
時刻t3において、基準電圧スイッチ1432で受信されたデジタル制御信号Dが、基準電圧スイッチ1432を制御してCLOSE状態にする。したがって、基準電圧スイッチ1432は、基準電圧源から基準電圧フィルタ構成132、133、134、基準電圧ライン135、および基準電圧スイッチ1432を介してDACキャパシタンス144に電荷が流れるための接続を実現する。DACキャパシタンス144を基準電圧のレベルVREFにまで充電するのに十分長い、dt3の長さの時間間隔415の後、t4において、受信したデジタル制御信号Dが、基準電圧スイッチ1432を制御してOPEN状態にする。したがって、基準電圧スイッチ1432は、基準電圧ライン135からDACキャパシタンス144を切断する。長さdt4の時間間隔420において、DACスイッチ構成143の事前充電スイッチ1431、基準電圧スイッチ1432、および放電スイッチ1433はOPEN状態である。したがって、2つのスイッチがCLOSE状態でオーバラップすること、および回路状態が不確定になること、電圧源からアースに流れる短絡回路電流、ならびに装置の安全動作に不都合な他の影響が確実に回避される。時間間隔405の長さdt1と比較して、時間間隔410の長さdt4を短くすることができる。
時刻t5において、放電スイッチ1433で受信されたデジタル制御信号D2が、放電スイッチ1433を制御してCLOSE状態にする。したがって、放電スイッチ1433は、DACキャパシタンス144から放電スイッチ1433および放電ライン139を介してアース101に電荷が流れるための接続を実現する。実装によっては、アース以外の何か他のバイアス電圧レベルに放電を実行してもよい。実施形態によっては、図示してはいないが、充電に関して本明細書において開示される原理は、放電にも適用することができる。したがって、2つ以上の段階で様々な電位に放電が実行される。たとえば、第1の放電段階では、バイアス電圧レベルに放電が実行され、次いで第2の放電段階では、バイアス電圧レベルとは異なるアース電圧レベルに放電が実行される。DACキャパシタンス144をアースでのバイアス電圧レベルの近くにまで放電するのに十分長い、dt5の長さの時間間隔425の後、t6において、受信したデジタル制御信号Dが、放電スイッチ1433を制御してOPEN状態にする。したがって、放電スイッチ1433は、アース101からDACキャパシタンス144を切断する。長さdt6の時間間隔430において、DACスイッチ構成143の事前充電スイッチ1431、基準電圧スイッチ1432、および放電スイッチ1433はOPEN状態である。したがって、2つのスイッチがCLOSE状態でオーバラップすること、および回路状態が不確定になること、電圧源からアースに流れる短絡回路電流、ならびに装置の安全動作に不都合な他の影響が確実に回避される。時間間隔405の長さdt1と比較して、時間間隔430の長さdt6を短くすることができる。
時刻t7において、DACキャパシタンス144aの事前充電、基準充電、および放電の作業段階の別サイクル400が開始してこのサイクルを繰り返し、これは、時刻t1で開始し、期間TCAPの間実行される。実施形態によっては、たとえば、図4に示した実装の場合のように、デジタル・アナログ(DAC)キャパシタンス144aの事前充電が、クロック信号CLKのある期間TCLK401において完了する。対照的に、基準電圧VREFのレベルへの充電が、クロック期間TCLK401の倍数で完了する。したがって、実装に必要性に応じて、電流の流れを最適化することができる。具体的には、ある相対的に強いパルスで、電圧源から電流を引いてきて、基準電圧源から電流を引いてくる前に既に事前充電している間に、基準電圧レベルに必要となるDACキャパシタンス144a上の充電のほとんどを供給することができる。したがって、DACキャパシタンス144を基準電圧レベルにまで充電するには、基準電圧源から引いてくる電流が少なくて済み、基準電圧源からの電流の流れに関連する欠点がこのように回避される。
一実施形態では、供給電圧VDDのレベルの近く、またはちょうど供給電圧VDDのレベルにまでDACキャパシタンス144を事前充電することにより、基準電圧ライン135に結合された基準電圧源からの必要以上の充電の流れが回避されるが、それというのも、DACキャパシタンス144の事前充電電圧レベルが、基準電圧源の基準電圧レベルVREFとは異なる程度にしか、電荷が流れないからである。
図5は、図3に示した例示的な実装の変形形態を示す図であり、この変形形態はさらに、いくつかの実施形態による電圧レベル回路を備える。電圧レベル回路は、電圧源ライン110とDAC電圧源分岐138の間に結合されたソースフォロア137を備える。さらに、電圧レベル回路は、基準電圧ライン135上のノード134とソースフォロア137との間に接続された電源制御ライン136を備える。電圧レベル回路は、供給電圧レベルVDDとは異なる電圧レベルにまで、DACキャパシタンス144の事前充電を実行できるようにする機能を、前述の実施形態に提供する。したがって、供給電圧レベルVDDに関係なく、この装置は、基準電圧VREFのレベルに近い、または基準電圧VREFのレベルにほぼ等しい、事前充電電圧のレベルを達成するように構成することができる。少なくとも1つの効果は、基準電圧源上の基準充電電流負荷が特に低いことでもよい。
図6は、図3に示した例示的な実装のさらに別の変形形態を示す図であり、この変形形態は、いくつかの実施形態によるタイミング回路を備える。このタイミング回路は、デジタル信号ライン130と、容量性スイッチ構成143によく似ている容量性スイッチ構成643との間に結合されたタイミング・ブロック600で示してある。いくつかの実施によれば、前述のADC100のC−DAC変換器140では、容量性スイッチ構成643が、容量性スイッチ構成143に取って代わることができることを理解されたい。以下に説明するように、いくつかの実施形態によれば、タイミング・ブロック600は、SAR120から供給されるデジタル制御信号Dを処理し、デジタル制御信号Dを処理した結果として、イネーブル信号を容量性スイッチ構成643に供給するように構成される。本明細書において、「処理」という用語は、少なくとも、デジタル制御信号Dを複数の信号経路上に分配すること、デジタル制御信号Dに論理演算(たとえば、NOT演算、AND演算など)を実行すること、およびデジタル制御信号Dの遅延のうちの1つまたは複数を意味することができる。
容量性スイッチ構成643は、事前充電スイッチ6431、基準電圧スイッチ6432、および放電スイッチ6433を備える。さらに、容量性スイッチ構成643は、事前充電スイッチ6431に結合され、制御信号を事前充電スイッチ6431に供給するように構成された、事前充電信号分岐6301を備える。さらに、容量性スイッチ構成643は、基準電圧スイッチ6432に結合され、制御信号を基準電圧スイッチ6432に供給するように構成された、基準電圧充電信号分岐6302を備える。さらに、容量性スイッチ構成643は、放電スイッチ6433に結合され、制御信号を放電スイッチ6433に供給するように構成された、放電信号分岐6303を備える。例示的な一実装によれば、容量性スイッチ構成643は、イネーブル信号の制御下のスイッチ、たとえば事前充電スイッチ6431、基準電圧スイッチ6432、および放電スイッチ6433に供給されるイネーブル信号を、LOWレベルに変更することで、このスイッチを制御してOPEN状態にするように構成される。さらに、容量性スイッチ構成643は、イネーブル信号をHIGHレベルに変更することで、制御されたスイッチをCLOSE状態に設定するように構成される。
タイミング・ブロック600内のタイミング回路は、第1の分岐ノード601を備え、デジタル信号ライン130の経路は、デジタル信号分岐611、621、631に分岐する。事前充電信号分岐611が、事前充電制御ANDゲート610への第1の入力に結合されており、基準電圧充電デジタル信号分岐621が、基準電圧充電制御ANDゲート620に結合される。放電デジタル信号分岐631は、放電制御信号反転器630に結合される。さらに、基準電圧充電デジタル信号分岐621は、第2の分岐ノード602を備え、ここで、遅延要素604への経路が分岐し、この経路は、所定の時間だけ遅延要素604に入力されるデジタル制御信号の出力を遅延するように構成される。遅延要素604の出力は、事前充電制御信号分岐605を介して、事前充電制御信号反転器608に結合される。事前充電制御信号反転器608の出力は、反転信号ライン612を介して、事前充電制御ANDゲート610の第2の出力に結合される。さらに、遅延要素604の出力は、遅延信号ライン622を介して、基準電圧充電制御ANDゲート620の第2の入力に結合される。
次に、具体的には図4および図6を参照して、タイミング・ブロック600の動作を簡潔に説明する。時刻t0において、デジタル制御信号Dが、LOWレベルからHIGHレベルに変化する(図4に参照番号441で示す)。したがって、事前充電制御ANDゲート610への第1の入力は、第1のノード601および事前充電デジタル信号分岐611を介して、LOWレベルからHIGHレベルに変化するデジタル制御信号Dを受信する。事前充電制御ANDゲート610への第2の入力を考慮すると、デジタル制御信号Dは、第2のノード602を介して遅延要素604にも供給される。しかし、遅延要素604は、LOWレベルからHIGHレベルへの変化441の出力を遅延する。その間に、遅延要素604は、分岐605を介して、事前充電制御信号反転器608に供給されるLOWレベルのデジタル制御信号を出力し続ける。したがって、事前充電制御信号反転器608は、反転信号ライン612を介して、事前充電制御ANDゲート610の第2の入力にHIGHレベル信号を出力する。したがって、事前充電制御ANDゲート610は、事前充電スイッチ6431へのHIGHレベルの事前充電イネーブル信号を、事前充電信号分岐6301に出力する。したがって、遷移している短い時間間隔dt6の後、事前充電スイッチ6431は、CLOSE状態に設定され、時刻t1において、作業段階の1サイクル400の動作が開始するが、それというのも、電源ライン110から、事前充電スイッチ6431を介して、DACキャパシタンス144に電荷が流れ始めるからである。
時刻t2において、遅延要素604は、遅延時間間隔dt1が終了した後に、LOWレベルからHIGHレベルへの信号変化を出力する。したがって、事前充電制御信号反転器608は、HIGHレベルでの信号を受信し、事前充電制御ANDゲート610の第2の入力にLOWレベル信号を出力する。したがって、事前充電制御ANDゲート610は、事前充電スイッチ6431へのLOWレベルの事前充電イネーブル信号を、事前充電信号分岐6301に出力する。したがって、事前充電スイッチ6431は、OPEN状態に設定され、充電が終了して、電源ライン110からDACキャパシタンス144に流れる。
やはり時刻t2において、基準電圧充電制御ANDゲート620の第2の入力が、遅延要素604から出力されるときにLOWレベルからHIGHレベルに変化するイネーブル信号を受信する。したがって、基準電圧充電制御ANDゲート620は、基準電圧スイッチ6432に対する基準電圧充電イネーブル信号のLOWレベルからHIGHレベルへの変化を、基準電圧充電信号分岐6302に出力する。したがって、基準電圧スイッチ6432はCLOSE状態に設定される。
時刻t3において、遷移時間間隔dt2が終了した後に、事前充電スイッチ6431での切替え状態が完了する。所定の遅延時間間隔dt1が十分に長かったと仮定すれば、時刻t3のこの時点において、DACキャパシタンス144が充電されて、供給電圧VDDのレベルになる。
さらに、時刻t3において、遷移時間間隔dt2が終了した後に、基準電圧スイッチ6432での切替え状態が完了する。DACキャパシタンス上の電圧レベルが基準電圧レベルVREFよりも低いと仮定すれば、基準電圧源から、基準電圧フィルタ構成132、133、134、基準電圧ライン135、および基準電圧スイッチ6432を介して、DACキャパシタンス144に電荷が流れる。
時刻t4において、デジタル制御信号Dが、HIGHレベルからLOWレベルに変化する(図4に参照番号442で示す)。したがって、基準電圧充電制御ANDゲート620の第1の入力は、基準電圧充電デジタル信号分岐621を介して、HIGHレベルからLOWレベルに変化するデジタル制御信号Dを受信する。したがって、基準電圧充電制御ANDゲート620は、基準電圧スイッチ6432に対する基準電圧充電イネーブル信号のHIGHレベルからLOWレベルへの変化を、基準電圧充電信号分岐6302に出力する。したがって、基準電圧スイッチ6432はOPEN状態に設定される。
さらに、時刻t4において、放電制御信号反転器630は、第1のノードおよび放電デジタル信号分岐631を介して、HIGHレベルからLOWレベルに変化するデジタル制御信号Dを受信する。したがって、放電制御信号反転器630は、放電スイッチ6433に対するHIGHレベルの放電制御信号を、放電信号分岐6303に出力する。
時刻t5において、遷移時間間隔dt4が終了した後に、基準電圧スイッチ6432での切替え状態が完了する。時間間隔dt3が十分に長かったと仮定すれば、時刻t5のこの時点において、DACキャパシタンス144が充電されて、基準電圧VREFのレベルになる。
さらに、時刻t5において、遷移時間間隔dt4が終了した後に、基準電圧スイッチ6433での切替え状態が完了し、放電スイッチ6433がCLOSE状態に設定され、DACキャパシタンス144から、放電スイッチ6433および放電ライン139を介して、アース101に電荷が流れる。
時刻t6において、デジタル制御信号Dが、やはりLOWレベルからHIGHレベルに変化する(図4に参照番号443で示す)。遷移時間間隔dt6が終了した後に、結果として、放電スイッチ6433での切替えが完了する。同様に、充電および放電のサイクルの始まりに関して先に述べた、事前充電スイッチ6431での切替えが完了する。
遷移している短い時間間隔dt6の後、作業段階の1サイクル400が完了する。
選択されたDACキャパシタンス144を動作させるための、スイッチ構成143、643のタイミング制御の他の実装は、本開示の範囲内にある。実施形態によっては、先に開示された回路の回路素子は全て、同じ製造技術で製造されて、集積回路チップなど装置のそれぞれの実施形態を実装するのに使用される製造技術に関係なく、所与の回路設計の時間および温度に依存する一貫した挙動を実現する。
代替実施形態によっては、充電段階に関して先に開示された原理が放電段階にも適用され、したがって、この放電段階は、事前放電および放電を、単独で、または事前充電および充電を包含する充電段階と組み合わせて包含し、本開示の範囲内にあることを理解されたい。したがって、実施形態によっては、容量性スイッチ構成は、それぞれのキャパシタンスを事前放電することに関連するスイッチ制御回路を備えるように構成される。
いくつかの実施形態による一態様では、この記述により、アナログ・デジタル変換、具体的にはアナログ・デジタル変換用の回路を動作させる際に使用するための方法が説明されている。この回路は、複数のデジタル・アナログ(DAC)キャパシタンスにおいて、少なくとも1つのDACキャパシタンスを含む。一実施形態は、第1の充電電圧レベルに設定された第1の電圧源を、この少なくとも1つのDACキャパシタンスに切り替えるステップを含む。少なくとも1つの効果は、DACキャパシタンスが、場合によっては第1の充電電圧レベルで事前充電または事前放電され、事前充電の場合には、第1の電圧源から少なくとも1つのDACキャパシタンスに電荷が流れ、または事前放電の場合には、少なくとも1つのDACキャパシタンスから第1の電圧源に電荷が流れることでもよい(したがって、第1の電圧源は「第1の電圧低下」を生じる)。一実施形態では、たとえば事前充電の場合、第1の電圧源は供給電圧源である。少なくとも1つの効果は、供給電圧源から充電電流を引いても、他の電圧源に悪影響を及ぼさないことでもよい。実施形態によっては、事前放電の場合、第1の充電電圧レベルとしての事前放電電圧レベルに事前放電電圧端子が設定されることにより、少なくとも1つのDACキャパシタンスと第1の電圧源との結合が実行される。一実施形態は、少なくとも1つのDACキャパシタンスから第1の電圧源を分離するステップを含む。少なくとも1つの効果は、少なくとも1つのDACキャパシタンスの電圧が、第1の充電電圧レベルに保持されることでもよい。一実施形態は、基準電圧レベルに設定された第2の電圧源を、この少なくとも1つのDACキャパシタンスに切り替えるステップを含む。実施形態によっては、事前放電および放電を実装することで、基準電圧レベルは、事前放電電圧レベルとは異なる放電電圧レベルである。実施形態によっては、放電電圧レベルはアースになる。少なくとも1つの効果は、少なくとも1つのDACキャパシタンスが、場合によっては基準電圧レベルで充電または放電され、充電の場合には、第2の電圧源から少なくとも1つのDACキャパシタンスに電荷が流れ、または放電の場合には、少なくとも1つのDACキャパシタンスから第2の電圧源に電荷が流れることでもよい(したがって、第2の電圧源は「第2の電圧低下」を生じる)。一実施形態では、第2の電圧源は基準電圧源である。少なくとも1つの効果は、第1の電圧源のみが使用される場合よりも高い確度で、基準電圧レベルなど所定の電圧レベルを保持できることでもよい。
一実施形態は、少なくとも1つのDACキャパシタンスから第2の電圧源を分離するステップを含む。少なくとも1つの効果は、DACキャパシタンスの電圧が、第2の電圧レベルに保持されることでもよい。一実施形態は、少なくとも1つのDACキャパシタンスを、放電電圧レベルに設定された放電端子に切り替えるステップを含む。少なくとも1つの効果は、サンプルアンドホールド回路の以前のサンプリング・サイクル中に収集された電荷が、DACキャパシタンスから放電されることでもよい。
一実施形態では、それぞれの切替えは、事前充電段階、基準充電段階、および放電段階を含む一連の作業段階における、互いに異なる作業段階に入ることを示す。一実施形態では、任意の2つの作業段階の間にオーバラップはない。一実施形態は、事前充電電圧レベルを基準電圧レベルに設定するステップを含む。少なくとも1つの効果は、基準充電段階において、少なくとも1つのDACキャパシタンスに電荷が流れないことでもよい。
実装によっては、充電と放電の両方が、それぞれ事前充電および事前放電を含む。したがって、充電で使用するための第1の基準電圧源、および放電で使用するための第2の基準電圧源が設けられ、互いに異なる電圧レベルに設定される。たとえば、前述の通り、第1の基準電圧レベルは基準電圧レベルであり、第2の基準電圧レベル、すなわち放電電圧レベルはアース電圧のレベルである。さらに、実施形態によっては、事前充電で使用するように構成された第1の電圧源、および事前放電で使用するように構成された第1の電圧源は、同じ電圧レベルに設定された同じ第1の電圧源である。しかし、実施形態によっては、事前充電で使用するように構成された第1の電圧源、および事前放電で使用するように構成された別の第1の電圧源は、別々に設けられ、互いに異なる電圧レベルに設定される。
一実施形態は、供給電圧レベルから、事前充電電圧レベルを導出するステップを含む。少なくとも1つの効果は、基準電圧源が、DACキャパシタンスを事前充電することによって影響されないことでもよい。基準電圧への不要な影響を補償するために通常設けられるバッファは、これを省くことができ、または従来よりも狭い面積で設計することができる。一実施形態では、供給電圧レベルは基準電圧レベルである。少なくとも1つの効果は、基準充電段階において、基準電圧源からの電流の流れが回避されることでもよいが、それというのも、事前充電段階においては、DACキャパシタンスが、供給電圧源の確度で基準電圧レベルに既に充電されているからである。
一実施形態は、少なくとも1つのDACキャパシタンスに一連の作業段階を選択的に適用するための切替えを制御するステップを含む。同時には必要とならないDACキャパシタンスの事前充電、充電、および放電に関連する変位電流による電力損失を、こうして回避することができる。一実施形態は、周期的なパターンを有するクロック信号を供給するステップと、このクロック信号への切替えおよび/または分離を同期するステップとを含む。したがって、各作業段階はクロック信号の倍数であり、各作業段階のいずれかに入るための切替えは、クロック信号に同期することができる。一実施形態では、基準充電段階の持続時間は、事前充電段階の持続時間の数倍分だけ継続する。
この記述は、いくつかの実施形態による一態様では、アナログ・デジタル変換で使用するための装置を説明する。一実施形態は、基準電圧に設定するように構成された基準電圧端子と、この基準電圧端子に切替え可能に結合された少なくとも1つのデジタル・アナログ(DAC)キャパシタンスと、少なくとも1つのDACキャパシタンスに結合され、少なくとも1つのDACキャパシタンスを選択的に切り替えて、基準電圧を受けるように構成された選択装置と、少なくとも1つのDACキャパシタンスに結合され、基準電圧を受けるように選択された少なくとも1つのDACキャパシタンス上に蓄えられた蓄積電荷を表すDAC電圧を出力するように構成されたバイアス端子と、供給電圧に設定するように構成された供給電圧端子とを備え、少なくとも1つのDACキャパシタンスが供給電圧端子に切替え可能に結合される。少なくとも1つの効果は、少なくとも1つのDACキャパシタンスに基準電圧が印加されているときに、装置がDAC電圧を供給することでもよい。実施形態によっては、この装置は、少なくとも事前放電段階および最終放電段階を含む複数の段階で、少なくとも1つのデジタル・アナログ変換器(DAC)のキャパシタンスを放電するように構成される。DACキャパシタンスを充電することに関して、このセクションで開示した原理を適用すると、第1の放電電圧レベルまで事前放電している間、および第2の放電電圧レベルまで事前放電している間に放電が実行される。
一実施形態は、供給電圧端子と少なくとも1つのDACキャパシタンスとの間に結合され、供給電圧端子から少なくとも1つのDACキャパシタンスへの電荷の流れを制御するように構成された事前充電スイッチを備える。少なくとも1つの効果は、供給電圧端子を使用して、DACキャパシタンスを事前充電できることでもよい。
一実施形態は、供給電圧端子と事前充電スイッチの間に結合されたバッファを備える。少なくとも1つの効果は、供給電圧レベルとは異なり、かつ/または基準電圧レベルに近い事前充電電圧レベルをバッファが供給して、基準電圧端子を介して引かれる電流を低減し、基準電圧源から多量の電流を引くことの悪影響を回避できることでもよい。一実施形態では、バッファはソースフォロアとして設けられる。したがって、少なくとも1つのDACキャパシタンスを事前充電するために、また事前充電を制御するために、様々な電圧源を使用することができる。
一実施形態は、少なくとも1つのDACキャパシタンスに結合され、電流パルスを供給して、少なくとも1つのDACキャパシタンスを事前充電するように構成されたパルス発生器を備える。実施形態によっては、少なくとも1つの別のパルス発生器が設けられ、その結果、DACキャパシタンスのグループがそれぞれ、互いに異なるパルス発生器と連動し、DACキャパシタンスの各グループが、少なくとも1つのDACキャパシタンスを包含し、DACキャパシタンスのどの2つのグループも、共通のDACキャパシタンスを有することはない。一実施形態では、パルス発生器は、事前充電スイッチと同じタイプの回路素子から構成される。少なくとも1つの効果は、装置性能の依存性、たとえば装置を製造する際に使用されるプロセス技術、装置の動作温度、装置の動作電圧などへの依存性が、パルス発生器および事前充電スイッチにとって同じであることでもよい。様々な依存性を補償するための追加の補償回路を使用しなくても済む。一実施形態では、パルス発生器は、長さが基準電圧とは無関係の事前充電電流パルスを生成するように構成することができる。一実施形態では、パルス発生器は、少なくとも1つのDACキャパシタンスのうちのいくつかを事前充電するように構成される。一実施形態では、パルス発生器は、少なくとも1つのDACキャパシタンスのうちの全てのDACキャパシタンスを事前充電するように構成される。一実施形態では、パルス発生器は、事前充電パルスの持続時間を制御するように構成される。少なくとも1つの効果は、事前充電パルスの幅をデジタル処理で制御できることでもよい。
一実施形態は、周期的なパターンを有するクロック信号を供給するように構成され、事前充電スイッチに結合されて、事前充電スイッチの制御に作用する信号発生器を備える。実施形態によっては、少なくとも1つの別の信号発生器が設けられ、その結果、DACキャパシタンスのグループがそれぞれ、互いに異なる信号発生器と連動し、DACキャパシタンスの各グループが、少なくとも1つのDACキャパシタンスを包含し、DACキャパシタンスのどの2つのグループも、共通のDACキャパシタンスを有することはない。少なくとも1つの効果は、DACキャパシタンスが事前充電される事前充電段階を実装できることでもよい。一実施形態は、クロック発生器と事前充電スイッチの間に結合されて、事前充電スイッチの制御に作用し、基準電圧端子からDACキャパシタンスへの電流の流れを遅延するように構成された遅延要素を備える。少なくとも1つの効果は、単一のスイッチ制御信号によって複数のスイッチを連続してアドレスすることができ、遅延要素が、連続して制御される2つのスイッチの切替えの間に遅延をもたらすことでもよい。遅延の持続時間を使用して、DACキャパシタンスを事前充電することができ、それにより、基準電圧端子から流れる電荷の量を低減することができる。
この記述は、いくつかの実施形態による一態様では、アナログ・デジタル変換で使用するための機器を説明する。一実施形態は、入力電圧を受けるように構成された入力電圧端子と、DAC端子においてDAC電圧を供給するように構成されたデジタル・アナログ(DAC)装置と、入力電圧端子およびDAC端子に結合され、制御出力信号を供給するように構成された制御出力を有する比較器とを備え、本明細書において開示される実施形態のうち任意の実施形態によるDAC装置が設けられる。少なくとも1つの効果は、この機器が動作して、比較器の制御出力において、入力電圧端子で供給される入力電圧を、入力電圧のレベルを表すデジタル制御信号に供給することでもよい。
本明細書において、「例示的」という用語は、代表例、具体例、または例証としての働きをもつことを意味するために本明細書で使用される。本明細書で「例示的」と記述されたいかなる態様または設計も、必ずしも好ましいものとして、または他の態様もしくは設計に勝って有利であると解釈されるものではない。むしろ、例示的という用語を使用することは、具体的に概念および技法を提示するものである。本明細書において、たとえば「技法」という用語は、本明細書に記載の文脈が示すように、1つまたは複数の装置、機器、システム、方法、製品、および/またはコンピュータ読取り可能な命令を指してもよい。本明細書において、「または」という用語は、排他的な「または」ではなく、包含的な「または」を意味するものである。すなわち、別段の指定がない限り、または文脈から明らかでない限り、「XはAまたはBを利用する」は、自然な包含的置換のいずれをも意味するものである。すなわち、XがAを利用する場合である。本明細書において、本出願および添付の特許請求の範囲で使用される冠詞としての「a」および「an」という用語は一般に、別段の指定がない限り、または単数形を指すと文脈から明らかでない限り、「1つまたは複数」を意味するものと解釈すべきである。本明細書において、「結合された」および「接続された」という用語は、様々な用語がどのように結びついているかを説明するのに使用されてきた。このように説明してきた様々な要素の結びつきは、直接的でもよく、間接的でもよい。
態様によっては、機器との関連で説明してきたが、これらの態様はまた、対応する機能性の説明を示し、ブロックまたは装置が、機能の機能性もしくは特徴に対応する。同様に、機能性との関連で説明される態様はまた、対応するブロックもしくはアイテム、または対応する機器の特徴の説明を示す。本明細書に記載の様々な実施形態の特徴は、特に具体的な記載のない限り、互いに組み合わせてもよいことを理解されたい。本明細書において特定の実施形態を例示し、説明してきたが、様々な代替実装および/または同等な実装を、図示して説明した特定の実施形態の代わりとしてもよいことが当業者には理解されよう。本出願は、本明細書において議論した特定の実施形態の任意の改変形態または変形形態を包含するものである。本発明は、特許請求の範囲およびその均等物によってのみ限定されるものである。本明細書において論じた例示的な実装/実施形態は、様々な構成要素を組み合わせてもよい。本明細書における実装は、例示的な実施形態に関して説明してある。しかし、実装の個々の態様は、別々に特許請求してもよく、また様々な実施形態の特徴のうち1つまたは複数を組み合わせてもよいことを理解すべきである。場合によっては、よく知られた特徴を省いて、または簡略化して、例示的な実装の説明を明らかにする。例示的な実装の上記説明では、説明するために、具体的な数、材料構成、および他の詳細について述べて、特許請求の範囲に記載の本発明をよりよく説明する。しかし、特許請求される本発明は、本明細書に記載の例示的な詳細とは異なる詳細を使用して実施してもよいことが、当業者には明白になろう。発明者は、説明した例示的な実施形態/実装を、本質的には例示的なものであると考える。発明者は、これら例示的な実施形態/実装が、添付特許請求の範囲に記載の範囲を限定するものとは考えていない。むしろ、発明者は、特許請求される本発明が、現在または将来の他の技術とともに、他の方式で実施され、また実装されてもよいことを企図してきた。実施形態/実装、および方法/プロセスを説明する順序は、限定的なものと解釈するものではなく、説明された任意の数の実装およびプロセスを組み合わせてもよい。たとえば、いくつかの実装が、第1および第2の機能に関して先に説明されたとき、例示されていない他の実装は、第1の機能(第2の機能ではなく)のみを含んでもよく、または第1の機能(第2の機能ではなく)のみを含んでもよい。先に開示した概念の他の置換えおよび組合せも、本開示内にあるものと企図されている。本開示は、こうした全ての修正形態および変更形態を含み、以下の特許請求の範囲に記載の範囲によってのみ限定される。上記構成要素(たとえば、要素および/またはリソース)によって実行される様々な機能を考慮すると、本明細書で示した本開示の例示的な実装での機能を実行する開示された構造とは構造的に同等ではないが、こうした構成要素を記述するのに使用される用語は、別段の定めがない限り、(たとえば、機能的に同等な)説明された構成要素の指定された機能を実行する任意の構成要素に対応するものである。
100 アナログ・デジタル変換器
101 アース(接地)
110 供給電圧ライン
130 デジタル信号ライン
132 フィルタ抵抗
133 フィルタ・キャパシタンス
135 基準電圧ライン
140 デジタル・アナログ変換器
141 基準電圧端子
143 DACスイッチ
144 デジタル・アナログ・キャパシタンス
146 DACバイアス端子
180 比較器
604 遅延要素
643 容量性スイッチ構成
1431 事前充電スイッチ
1432 基準電圧スイッチ
1433 放電スイッチ
6431 事前充電スイッチ
6432 基準電圧スイッチ
6433 放電スイッチ

Claims (16)

  1. アナログ・デジタル変換回路を動作させる方法であって、前記アナログ・デジタル変換回路が、複数のデジタル・アナログ(DAC)キャパシタンスにおいて、少なくとも1つのDACキャパシタンスを含み、前記方法が、
    供給電圧レベルに結合された充電電圧スイッチであって、充電電圧レベルに設定されるよう構成される充電電圧スイッチの供給電圧端子から前記充電電圧レベルを導出するステップであって、前記充電電圧レベルが、前記供給電圧レベルおよび前記充電電圧スイッチの基準電圧端子に供給される基準電圧レベルに基づいて設定されている、ステップと、
    前記少なくとも1つのDACキャパシタンスを前記充電電圧レベルに設定された第1の電圧源に切り替えるステップと、
    前記第1の電圧源から前記少なくとも1つのDACキャパシタンスを分離するステップと、
    前記少なくとも1つのDACキャパシタンスを前記基準電圧レベルに設定された第2の電圧源に切り替えるステップと、
    前記第2の電圧源から前記少なくとも1つのDACキャパシタンスを分離するステップと、
    前記少なくとも1つのDACキャパシタンスを放電電圧レベルに設定された第3の電圧源に切り替えるステップと、
    を含み、
    前記少なくとも1つのDACキャパシタンスを前記第1の電圧源、前記第2の電圧源、および、前記第3の電圧源に切り替えるステップは、前記少なくとも1つのDACキャパシタンス上に蓄えられた蓄積電荷を表すDAC電圧に基づいてい
    前記充電電圧スイッチは、前記供給電圧端子から前記少なくとも1つのDACキャパシタンスへの電荷の流れを制御するように構成されている、
    方法。
  2. 前記充電電圧レベルが、事前充電電圧レベルである、請求項1に記載の方法。
  3. それぞれの切り替えるステップが、事前充電段階、基準充電段階、および放電段階を含む一連の作業段階における、互いに異なる作業段階に入ることを示し、任意の2つの作業段階の間にオーバラップがない、請求項1または2に記載の方法。
  4. 記少なくとも1つのDACキャパシタンスに前記一連の作業段階を選択的に適用するために前記切り替えるステップを制御するステップを含む、請求項3に記載の方法。
  5. 前記事前充電電圧レベルを前記基準電圧レベルに設定するステップを含む、請求項2から4のいずれか一項に記載の方法。
  6. 周期的なパターンを有するクロック信号を供給するステップと、前記クロック信号への切替えおよび/または分離を同期するステップとを含む、請求項1から5のいずれか一項に記載の方法。
  7. 前記基準充電段階の持続時間が、前記事前充電段階の持続時間の数倍分だけ継続する、請求項3から6のいずれか一項に記載の方法。
  8. アナログ・デジタル変換で使用するための回路装置であって、
    基準電圧に設定されるように構成された基準電圧端子と、
    供給電圧に設定されるように構成された供給電圧端子と、
    前記供給電圧端子に結合され、前記供給電圧および前記基準電圧に基づく事前充電電圧に設定されるように構成された、事前充電スイッチと、
    放電電圧に設定されるように構成された放電電圧端子と、
    前記基準電圧端子、前記事前充電スイッチ、および、前記放電電圧端子に切替え可能に結合された少なくとも1つのデジタル・アナログ(DAC)キャパシタンスと、
    前記少なくとも1つのDACキャパシタンスに結合され、前記少なくとも1つのDACキャパシタンスを選択的に切り替えて、
    第1の作業段階における前記基準電圧、
    第2の作業段階における前記事前充電電圧、および
    第3の作業段階における前記放電電圧、
    を受けるように構成された選択装置と、
    前記少なくとも1つのDACキャパシタンスに結合され、前記少なくとも1つのDACキャパシタンス上に蓄えられた蓄積電荷を表すDAC電圧を出力するように構成されたバイアス端子と、
    を備え、
    前記選択装置は、前記少なくとも1つのDACキャパシタンスを、前記DAC電圧に基づいて、前記第1、第2、および第3の作業段階間で選択的に切り替えるように構成されてい
    前記事前充電スイッチは、前記供給電圧端子と前記少なくとも1つのDACキャパシタンスとの間に結合され、前記供給電圧端子から前記少なくとも1つのDACキャパシタンスへの電荷の流れを制御するように構成されている、
    回路装置。
  9. 前記供給電圧端子と前記事前充電スイッチの間に結合されたバッファをさらに備える、請求項に記載の回路装置。
  10. 前記少なくとも1つのDACキャパシタンスに結合され、電流パルスを供給して、前記少なくとも1つのDACキャパシタンスを事前充電するように構成されたパルス発生器をさらに備える、請求項8または9に記載の回路装置。
  11. 前記パルス発生器が、前記事前充電スイッチと同じ製造技術で製造された回路素子から構成される、請求項10に記載の回路装置。
  12. 前記パルス発生器が、前記少なくとも1つのDACキャパシタンスのうちのいくつかを事前充電するように構成される、請求項10または11に記載の回路装置。
  13. 前記パルス発生器が、前充電パルスの持続時間を制御するように構成される、請求項10から12のいずれか一項に記載の回路装置。
  14. 周期的なパターンを有するクロック信号を供給するように構成され、前記事前充電スイッチに結合されて、前記事前充電スイッチの制御に作用する信号発生器をさらに備える、請求項に記載の回路装置。
  15. クロック発生器と前記事前充電スイッチの間に結合されて、前記事前充電スイッチの制御に作用し、前記基準電圧端子から前記DACキャパシタンスへの電流の流れを遅延するように構成された遅延要素をさらに備える、請求項に記載の回路装置。
  16. 入力電圧を受けるように構成された入力電圧端子と、デジタル・アナログ端子においてデジタル・アナログ電圧を供給するように構成されたデジタル・アナログ回路装置と、前記入力電圧端子および前記デジタル・アナログ端子に結合され、制御出力信号を供給するように構成された制御出力を有する比較器とを備え、請求項8から15のいずれか一項に記載の回路装置によるデジタル・アナログ装置が設けられる、アナログ・デジタル変換機器。
JP2015140190A 2014-07-16 2015-07-14 アナログ・デジタル変換で使用するための方法および装置 Active JP6238936B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014110012.3 2014-07-16
DE102014110012.3A DE102014110012B4 (de) 2014-07-16 2014-07-16 Verfahren und Vorrichtung zur Verwendung bei der Analog-zu-Digital-Umwandlung

Publications (2)

Publication Number Publication Date
JP2016036131A JP2016036131A (ja) 2016-03-17
JP6238936B2 true JP6238936B2 (ja) 2017-11-29

Family

ID=55021522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015140190A Active JP6238936B2 (ja) 2014-07-16 2015-07-14 アナログ・デジタル変換で使用するための方法および装置

Country Status (3)

Country Link
US (1) US9590653B2 (ja)
JP (1) JP6238936B2 (ja)
DE (1) DE102014110012B4 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10122376B2 (en) * 2016-11-04 2018-11-06 Analog Devices Global Reference precharge techniques for analog-to-digital converters
WO2018119143A1 (en) * 2016-12-23 2018-06-28 Avnera Corporation Reference disturbance mitigation in successive approximation register analog to digtal converter
US10608851B2 (en) 2018-02-14 2020-03-31 Analog Devices Global Unlimited Company Continuous-time sampler circuits
US11025264B2 (en) 2019-01-24 2021-06-01 Analog Devices, Inc. Distributed ADC for enhanced bandwidth and dynamic range
CN116366067A (zh) * 2021-12-27 2023-06-30 圣邦微电子(北京)股份有限公司 一种模数转换器及其操作方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3748886B2 (ja) * 1994-04-29 2006-02-22 アナログ・デバイセス・インコーポレーテッド システム校正付き電荷再分布アナログ−デジタル変換器
US5600322A (en) 1994-04-29 1997-02-04 Analog Devices, Inc. Low-voltage CMOS analog-to-digital converter
JPH07336224A (ja) 1994-06-07 1995-12-22 Hitachi Ltd A/d変換回路
US6020841A (en) * 1998-01-20 2000-02-01 Microchip Technology Incorporated Driver circuit for low voltage operation of a successive approximation register (SAR) analog to digital (A/D) converter and method therefor
JP2002043942A (ja) 2000-07-24 2002-02-08 Mitsubishi Electric Corp A/d変換器
JP4181058B2 (ja) 2004-01-20 2008-11-12 株式会社東芝 アナログ/デジタルコンバータおよびそれを搭載したマイクロコンピュータ
US7106237B1 (en) * 2004-04-01 2006-09-12 Stmicroelectronics S.R.L. Low consumption and low noise analog-digital converter of the SAR type and method of employing it
EP2061152B1 (en) * 2004-05-05 2013-07-10 ST-Ericsson SA Switched capacitance circuit
US6958722B1 (en) * 2004-06-11 2005-10-25 Texas Instruments Incorporated SAR ADC providing digital codes with high accuracy and high throughput performance
JP2006311144A (ja) * 2005-04-27 2006-11-09 Sanyo Electric Co Ltd デジタルアナログ変換器、およびそれを用いた逐次比較型アナログデジタル変換器
US7834796B2 (en) * 2006-02-02 2010-11-16 National University Of Singapore Analog-to-digital converter
US7414557B2 (en) * 2006-12-15 2008-08-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for feedback signal generation in sigma-delta analog-to-digital converters
JP4324202B2 (ja) * 2007-01-25 2009-09-02 シャープ株式会社 A/d変換器
US7969167B2 (en) * 2009-01-28 2011-06-28 Freescale Semiconductor, Inc. Capacitance-to-voltage interface circuit with shared capacitor bank for offsetting and analog-to-digital conversion
US7796079B2 (en) * 2009-01-28 2010-09-14 Freescale Semiconductor, Inc. Charge redistribution successive approximation analog-to-digital converter and related operating method
KR101716782B1 (ko) * 2010-09-30 2017-03-16 삼성전자 주식회사 디지털-아날로그 변환 회로 및 이를 포함하는 아날로그-디지털 변환기
TWI482438B (zh) * 2012-09-26 2015-04-21 Realtek Semiconductor Corp 連續漸進式數位類比轉換器及其方法
JP2014078909A (ja) * 2012-10-12 2014-05-01 Sony Corp D/a変換回路
KR102025093B1 (ko) * 2013-05-28 2019-09-25 한국전자통신연구원 펄스 생성기 및 이를 포함하는 아날로그-디지털 변환기
US9077355B2 (en) * 2013-08-20 2015-07-07 Broadcom Corporation Switched capacitance converter

Also Published As

Publication number Publication date
DE102014110012A1 (de) 2016-01-21
DE102014110012B4 (de) 2022-09-01
JP2016036131A (ja) 2016-03-17
US9590653B2 (en) 2017-03-07
US20160020778A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6238936B2 (ja) アナログ・デジタル変換で使用するための方法および装置
US7265705B1 (en) Opamp and capacitor sharing scheme for low-power pipeline ADC
US8339186B2 (en) Voltage level shift circuits and methods
US20060284754A1 (en) Programmable dual input switched-capacitor gain stage
US9774345B1 (en) Successive approximation register analog-to-digital converter
US7986256B2 (en) A/D converter
JP5257955B2 (ja) 可変利得をもつアナログ−デジタル変換器とその方法
US7224306B2 (en) Analog-to-digital converter in which settling time of amplifier circuit is reduced
US8749425B1 (en) Reference charge cancellation for analog-to-digital converters
CN107835018B (zh) 电路、模数转换器和方法
JP2019047339A (ja) 逐次比較型アナログデジタル変換器
CN108233907B (zh) 多路复用器的预充电电路
US8963763B2 (en) Configuring an analog-digital converter
CN113162623A (zh) 一种基于电阻分压和电容积分的转换电路和数模转换器
US6965258B2 (en) Sample-and-hold with no-delay reset
US7446573B1 (en) Comparator systems and methods
JP4639162B2 (ja) アナログ・ディジタル変換器
US10498352B1 (en) Capacitative digital-to-analog converter with reduced data-dependent loading of voltage reference
CN215222164U (zh) 用于复用器的输入电路和用于模数转换器的输入电路
JP2003188726A (ja) A/dコンバータ及びシステム及びコンパレータ
KR101354650B1 (ko) 연속 근사 아날로그-디지털 변환기
JP5732031B2 (ja) パイプライン型a/dコンバータ
US8274420B2 (en) Successive approximation analog-to-digital converter
WO2018164928A1 (en) High speed buffering for time-interleaved adcs with reduced isi and increased voltage gain
JP2010081221A (ja) A/d変換器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250