JP6221917B2 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
JP6221917B2
JP6221917B2 JP2014084461A JP2014084461A JP6221917B2 JP 6221917 B2 JP6221917 B2 JP 6221917B2 JP 2014084461 A JP2014084461 A JP 2014084461A JP 2014084461 A JP2014084461 A JP 2014084461A JP 6221917 B2 JP6221917 B2 JP 6221917B2
Authority
JP
Japan
Prior art keywords
cooling water
compressor
engine
air
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014084461A
Other languages
English (en)
Other versions
JP2015203394A (ja
Inventor
秀一 平林
秀一 平林
国彦 陣野
国彦 陣野
洋晃 松本
洋晃 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014084461A priority Critical patent/JP6221917B2/ja
Priority to US14/662,958 priority patent/US9604521B2/en
Priority to CN201510178248.1A priority patent/CN105034744B/zh
Publication of JP2015203394A publication Critical patent/JP2015203394A/ja
Application granted granted Critical
Publication of JP6221917B2 publication Critical patent/JP6221917B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00314Arrangements permitting a rapid heating of the heating liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/503Battery correction, i.e. corrections as a function of the state of the battery, its output or its type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/24Control of the engine output torque by using an external load, e.g. a generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0829Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to special engine control, e.g. giving priority to engine warming-up or learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両に関し、特に、内燃機関の冷却系統および空調装置を備えた車両に関する。
エンジンの冷却水と空調装置の冷媒との間での熱交換が可能に構成された車両が知られている。たとえば特開2012−218463号公報(特許文献1)に開示された車両用空調装置は、暖房運転に伴なって生じる空調装置の冷媒の熱をエンジンの冷却水に放熱して、冷却水を温める。このように、冷媒の熱を有効に活用してエンジン冷却水を温めることにより、エンジンを早期に暖機することができる。
特開2012−218463号公報
特許文献1のような空調装置を用いたエンジン暖機制御が実行されるのは、ユーザ操作により空調装置が起動され、空調要求が生じた場合である。つまり、ユーザ操作に依存してエンジン暖機制御が実行されるか否かが決定される。その結果、ユーザが空調装置を操作しない場合には、エンジンを暖機して燃費を向上させることができない可能性がある。
本発明は上記課題を解決するためになされたものであり、その目的は、エンジンの冷却系統および空調装置を備えた車両において、ユーザ操作に依存せずに燃費を向上させることが可能な技術を提供することである。
本発明のある局面に従う車両は、内燃機関と、冷却系統と、空調装置と、熱交換器と、空調装置を制御する制御装置とを備える。冷却系統は、冷却水を用いて内燃機関を冷却することが可能に構成される。空調装置は、冷媒を圧縮する圧縮機を含み、空調要求に応じて圧縮機を駆動して車室内を空調する。熱交換器は、冷却水と冷媒との間で熱交換する。制御装置は、空調要求がない場合であっても、圧縮機を駆動して冷媒からの放熱により冷却水を温める。好ましくは、制御装置は、空調要求がない場合であっても、内燃機関の暖機が完了状態でないときには、圧縮機の駆動を許可する。
本発明のある局面に従う車両の制御方法において、車両は、内燃機関と、冷却系統と、空調装置と、熱交換器とを含む。冷却系統は、冷却水を用いて内燃機関を冷却することが可能に構成される。空調装置は、冷媒を圧縮する圧縮機を含み、空調要求に応じて圧縮機を駆動して車室内を空調する。熱交換器は、冷却水と冷媒との間で熱交換する。上記制御方法は、空調要求の有無を判定するステップと、空調要求がないと判定された場合であっても、圧縮機を駆動して冷媒からの放熱により冷却水を温めるステップとを備える。好ましくは、上記温めるステップにおいて、空調要求がない場合であっても、内燃機関の暖機が完了状態でないときには、圧縮機の駆動を許可する。
上記構成および方法によれば、空調要求がない場合であっても、すなわちユーザが空調装置の起動操作を行なわなくても、圧縮機が駆動される。そして、圧縮機の駆動により加熱された冷媒の熱を冷却水に放熱させることによって冷却水が温められるので、内燃機関を暖機することができる。このように、ユーザ操作に依存せずに内燃機関が暖機されるので、ユーザ操作に依存せずに燃費を向上させることができる。
好ましくは、車両は、蓄電装置と、回転電機とをさらに備える。回転電機は、内燃機関の出力および蓄電装置の電力のうちの少なくとも一方を用いて駆動力を発生させるとともに、内燃機関の出力を用いて発電して、蓄電装置を蓄電することが可能に構成される。制御装置は、蓄電装置のSOC(State Of Charge)を所定の範囲内に維持するCS(Charge Sustaining)モードと、SOCを消費するCD(Charge Depleting)モードとを選択的に設定可能である。制御装置は、空調要求がない場合に、CSモード時には圧縮機の駆動を許可する一方で、CDモード時には圧縮機の駆動を禁止する。
CDモード時には、内燃機関が停止状態のまま走行するEV走行が行なわれる可能性が高いため、内燃機関を暖機しても燃費の向上にはつながりにくい。上記構成によれば、CDモード時には圧縮機の駆動が禁止されるので、圧縮機の駆動により不要なエネルギが消費されることを防止できる。一方、CSモード時には、回転電機で発電された電力によりSOCを所定の範囲内に維持するために、内燃機関の駆動頻度がCDモード時よりも高い。上記構成によれば、CSモード時には空調要求がない場合であっても圧縮機の駆動が許可される。これにより、ユーザ操作に依存せずに内燃機関が暖機されるので、燃費を向上させることができる。このように、走行モードに応じて無駄な暖機によるエネルギ消費を抑制しつつ燃費を向上させることができる。
より好ましくは、制御装置は、空調要求がなく、かつCSモードの場合に、内燃機関の暖機が完了状態でないときには圧縮機の駆動を許可する一方で、内燃機関の暖機が完了状態のときには圧縮機の駆動を禁止する。
内燃機関の暖機がすでに完了状態のときには、圧縮機を駆動する必要はない。上記構成によれば、内燃機関の暖機が完了状態のときには圧縮機の駆動が禁止されるので、圧縮機の駆動により不要なエネルギが消費されることを防止できる。一方で、内燃機関の暖機がまだ完了状態でないときには、圧縮機の駆動が許可される。これにより、ユーザの操作に依存せずに内燃機関が暖機されるので、燃費を向上させることができる。このように、内燃機関の暖機の進行状況に応じて無駄な暖機によるエネルギ消費を抑制しつつ燃費を向上させることができる。
好ましくは、制御装置は、空調要求がある場合には、車室内に吹き出される空気の目標吹出温度に基づいて圧縮機の回転速度を制御する一方で、空調要求がない場合には、冷却水の温度に基づいて圧縮機の回転速度を制御する。
上記構成によれば、空調要求がある場合には、車室内に吹き出される空気の目標吹出温度に基づいて圧縮機の回転速度が制御される。これにより、車室内の温度をユーザ所望の温度に近づけることができる。これに対し、空調要求がない場合には、車室内の温度調整を考慮する必要はないので、内燃機関の暖機を優先することが可能である。したがって、冷却水の温度に基づいて圧縮機の回転速度を制御することで、内燃機関を早期に暖機することができる。
より好ましくは、制御装置は、空調装置の暖房運転時と、空調装置の冷房運転時と、空調装置の停止時とに応じて圧縮機の回転速度を可変に設定する。
必要とされる圧縮機の回転速度は、空調装置の運転状況(暖房運転時、冷房運転時、および停止時)に応じて異なる。上記構成によれば、空調装置の運転状況に応じた適切な圧縮機の回転速度を設定することができる。
より好ましくは、空調装置の停止時の回転速度は、圧縮機のエネルギ効率に基づいて設定される。
空調装置の停止時には、空調装置の暖房性能あるいは冷房性能を考慮して圧縮機の回転速度を決定する必要はない。上記構成によれば、空調停止時には圧縮機のエネルギ効率に基づいて、たとえばエネルギ効率が最も高くなる値に圧縮機の回転速度を設定することにより、圧縮機の駆動に必要なエネルギを低減することができる。
好ましくは、冷却系統は、ヒータコアと、バイパス経路と、切換部とを含む。ヒータコアは、冷却水と車室内に吹き出される空気との間で熱交換する。バイパス経路は、ヒータコアに通水しない経路に冷却水を循環させることが可能なように形成される。切換部は、冷却水がヒータコアおよびバイパス経路のうちのいずれか一方を流れるように切り換える。制御装置は、空調装置の冷房運転時には、冷却水がバイパス経路を流れるように切換部を制御する。
より好ましくは、冷却系統は、ヒータコアを通過する風量を調整するための調整部をさらに含む。制御装置は、空調装置の冷房運転時において、車室内に吹き出される空気の一部がヒータコアを通過するように調整部を制御する場合には、冷却水がヒータコアを流れるように切換部を制御する。一方、制御装置は、車室内に吹き出される空気がヒータコアを通過しないように調整部を制御する場合には、冷却水がバイパス経路を流れるように切換部を制御する。
より好ましくは、制御装置は、空調装置の停止時には、冷却水がバイパス経路を流れるように切換部を制御する。
冷房運転時および空調装置の停止時には、ヒータコアに冷却水を流す必要がない場合がある。上記構成によれば、ヒータコアに冷却水を流す必要がない場合には、切換部の制御によりヒータコアに通水しない経路が形成される。これにより、加熱が必要な冷却水の量が少なくて済むので、冷却水の温度が上昇し易くなる。したがって、より早期に内燃機関を暖機することができる。
好ましくは、車両は、蓄電装置と、回転電機とをさらに備える。回転電機は、内燃機関の出力および蓄電装置の電力のうちの少なくとも一方を用いて駆動力を発生させるとともに、内燃機関の出力を用いて発電して、蓄電装置を蓄電することが可能に構成される。制御装置は、蓄電装置のSOCが低くなるに従って、圧縮機の回転速度を低く設定する。
圧縮機での電力消費により蓄電装置のSOCが低下すると、SOCを回復するために内燃機関が始動される場合がある。上記構成によれば、たとえば、蓄電装置のSOCが所定値を下回る場合には、SOCが所定値を上回る場合と比べて、圧縮機の回転速度を低く設定する。これにより、SOCが低い場合には圧縮機での消費電力を抑えることができるので、SOCの低下速度が低減される。したがって、SOC回復のために内燃機関が始動される可能性を小さくすることができる。
好ましくは、冷却系統は、ヒータコアと、バイパス経路と、切換部と、冷却水の温度を検出する温度検出部とを含む。ヒータコアは、冷却水と車室内に吹き出される空気との間で熱交換する。バイパス経路は、ヒータコアに通水しない経路に冷却水を循環させることが可能なように形成される。切換部は、冷却水が内燃機関およびバイパス経路のうちのいずれか一方を流れるように切り換える。制御装置は、冷却水の温度が所定値を上回る場合には、冷却水が内燃機関を流れるように切換部を制御する一方で、冷却水の温度が所定値を下回る場合には、冷却水がバイパス経路を流れるように切換部を制御する。
上記構成によれば、内燃機関の始動初期段階などで冷却水の温度が所定値を下回る場合には、内燃機関に通水しないように切換部が制御される。これにより、内燃機関の暖機が冷却水で阻害されないので、内燃機関を早期に暖機することができる。それに加えて、熱交換器によって加熱が必要な冷却水の量が少なくて済むので、暖房性能の早期確保を実現することができる。
本発明によれば、エンジンの冷却系統および空調装置を備えた車両において、ユーザ操作に依存せずに燃費を向上させることができる。
本発明の実施の形態1に係る車両の構成を概略的に示す全体ブロック図である。 図1に示すヒートポンプシステムの構成を詳細に示すブロック図である。 実施の形態1におけるヒートポンプシステムと、比較例におけるヒートポンプシステムとの間でコンプレッサの駆動状態を比較するための図である。 実施の形態1におけるヒートポンプシステムの制御処理を説明するためのフローチャートである。 実施の形態1の変形例におけるヒートポンプシステムの制御処理を説明するためのフローチャートである。 CSモードおよびCDモードを説明するための図である。 実施の形態2におけるコンプレッサの駆動状態をCSモードとCDモードとの間で比較するための図である。 実施の形態2におけるヒートポンプシステムの制御処理を説明するためのフローチャートである。 実施の形態3におけるヒートポンプシステムの構成を詳細に示すブロック図である。 空調装置の運転状況に応じた冷却水の経路およびエアミックスドアの開度を説明するための図である。 実施の形態3におけるヒートポンプシステムの制御処理を説明するためのフローチャートである。 バッテリのSOCとコンプレッサ回転速度との関係を説明するための図である。 実施の形態4におけるヒートポンプシステムの制御処理を説明するためのフローチャートである。 実施の形態5におけるヒートポンプシステムの構成を詳細に示すブロック図である。 冷却水温度に応じた冷却水の経路を説明するための図である。 実施の形態5におけるヒートポンプシステムの制御処理を説明するためのフローチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態1]
<車両の全体構成>
図1は、本発明の実施の形態1に係る車両の構成を概略的に示す全体ブロック図である。図1を参照して、車両1は、ハイブリッド車両であって、エンジン100と、モータジェネレータ10(MG1)と、モータジェネレータ20(MG2)と、動力分割機構30と、減速機40と、バッテリ150と、PCU(Power Control Unit)250と、ECU(Electronic Control Unit)300と、駆動輪350とを備える。
エンジン100は、ガソリンエンジンまたはディーゼルエンジン等の内燃機関である。エンジン100は、ECU300による制御信号C1に基づいて、車両1が走行するための駆動力を出力する。
モータジェネレータ10,20の各々は、たとえば永久磁石がロータ(いずれも図示せず)に埋設された三相交流回転電機である。モータジェネレータ10は、バッテリ150の電力を用いてエンジン100を始動する。また、モータジェネレータ10は、エンジン100の出力を用いて発電することも可能である。モータジェネレータ10によって発電された交流電力は、PCU250により直流電力に変換されてバッテリ150に充電される。モータジェネレータ10によって発電された交流電力は、モータジェネレータ20に供給される場合もある。
モータジェネレータ20は、バッテリ150から供給される電力およびモータジェネレータ10により発電された電力のうちの少なくとも一方を用いて駆動力を発生する。モータジェネレータ20で発生した駆動力は、駆動輪350に伝達される。また、車両1の回生制動時には、車両1の運動エネルギが駆動輪350からモータジェネレータ20に伝達され、モータジェネレータ20が駆動される。モータジェネレータ20によって発電された交流電力は、PCU250により直流電力に変換されてバッテリ150に充電される。
動力分割機構30は、たとえばサンギヤと、ピニオンギヤと、キャリアと、リングギヤ(いずれも図示せず)とを含む遊星歯車機構である。動力分割機構30は、エンジン100によって発生した動力を、駆動輪350に伝達される動力と、モータジェネレータ10に伝達される動力とに分割する。減速機40は、動力分割機構30またはモータジェネレータ20からの動力を駆動輪350に伝達する。
PCU250は、ECU300からの制御信号C2に基づいて、バッテリ150に蓄えられた直流電力を交流電力に変換して、モータジェネレータ10,20に供給する。また、PCU250は、モータジェネレータ10,20で発電された交流電力を直流電力に変換して、バッテリ150に供給する。
バッテリ150は、再充電可能に構成された蓄電装置である。バッテリ150としては、たとえばニッケル水素電池もしくはリチウムイオン電池などの二次電池、または電気二重層キャパシタなどのキャパシタを採用することができる。
バッテリ150には電池センサ152が設けられている。電池センサ152は、電流センサ、電圧センサおよび温度センサ(いずれも図示せず)を包括的に標記したものである。電圧センサは、バッテリ150の電圧VBを検出する。電流センサは、バッテリ150に入出力される電流IBを検出する。温度センサは、バッテリ150の温度TBを検出する。各センサは、その検出結果をECU300に出力する。ECU300は、バッテリ150の電圧VB、電流IBおよび温度TBに基づいて、バッテリ150のSOCを推定する。
車両1は、ヒートポンプシステム50をさらに備える。ヒートポンプシステム50は、エンジン冷却系統60と、空調装置80と、エンジン冷却系統60および空調装置80の間で熱交換するための熱交換器110とを含む。ヒートポンプシステム50の構成については、後に詳細に説明する。
また、車両1には、空調装置80の駆動/停止、暖房運転/冷房運転、および設定温度をユーザが選択するための操作パネル400が設けられている。ユーザが操作パネル400を操作して空調装置80を駆動すると、空調要求REQがECU300に出力される。
さらに、車両1には、車室内の温度(室温)TIを検出する室温センサ410と、外気の温度(外気温)TOを検出する外気温センサ420と、日射量LXを検出する照度センサ430とが設けられている。
ECU300は、CPU(Central Processing Unit)と、メモリと、バッファ(いずれも図示せず)とを含む。ECU300は、各センサからの信号の入力、ならびにメモリに記憶されたマップおよびプログラムに基づいて、制御信号を出力するとともに、車両1が所望の状態となるように各機器を制御する。
<エンジン冷却系統>
図2は、図1に示すヒートポンプシステム50の構成を詳細に示すブロック図である。図2を参照して、エンジン冷却系統60は、冷却水通路61内の冷却水を循環させることによってエンジン100を冷却することが可能に構成されている。一方で、冷却水の温度がエンジン100の温度よりも高い場合には、冷却水を循環させることによってエンジン100の暖機を早めることができる。
冷却水通路61には、ウォータポンプ62と、ラジエータ63と、サーモスタット64と、水温センサ65と、熱交換器110と、ヒータコア66とが設けられている。
ウォータポンプ62は、冷却水通路61内の冷却水を循環させるための電動ポンプである。ウォータポンプ62の電動モータ(図示せず)の回転速度は、ECU300からの制御信号C3に応じて制御される。
ラジエータ63は、ラジエータ63を通過する冷却水と外気との間での熱交換により、冷却水の熱を外気に放熱させる。
サーモスタット64は、サーモスタット64を通過する冷却水の温度に応じて開度が調整される。冷却水温度Twが高温の場合、サーモスタット64は開放されて、ラジエータ63を経由する経路が形成される(矢印AR1参照)。これにより、冷却水の熱が外気に放熱される。一方、エンジン100の始動直後など冷却水温度Twが比較的低い場合には、サーモスタット64は閉止されて、ラジエータ63を経由しない経路が形成される(矢印AR2参照)。
水温センサ65は、冷却水の温度(冷却水温度)Twを検出し、その検出結果をECU300に出力する。ECU300は、冷却水温度Twに基づいて、エンジン100の暖機が完了しているか否かを判定することができる。
ヒータコア66は、ヒータコア66を通過する冷却水と車室内へ送られる空気との間で熱交換する。これにより、冷却水の熱が車室内に放熱される。
ヒータコア66の上流側には、ヒータコア66を通過する風量を調整するためのエアミックスドア67(調整部)が設けられている。エアミックスドア67の制御の詳細については後述する。
<空調装置>
空調装置80は、冷媒通路81内の冷媒を循環させることによって、暖房運転または冷房運転を実行することが可能に構成されている。冷媒通路81には、コンプレッサ82と、熱交換器110と、膨張弁83と、開閉弁84と、室外機85と、膨張弁86と、開閉弁87と、エバポレータ88と、アキュムレータ89とが設けられている。暖房運転時の冷媒の流れ方向を矢印AR3で示し、冷房運転時の冷媒の流れ方向を矢印AR4で示す。
コンプレッサ82は、冷媒通路81内の冷媒を圧縮することによって、高温高圧の冷媒を送出する。コンプレッサ82の電動モータ(図示せず)の回転速度(以下、コンプレッサ回転速度とも称する)Ncは、ECU300からの制御信号C4に応じて制御される。
膨張弁83と開閉弁84とは互いに並列に設けられる。開閉弁84が閉止されると、冷媒は膨張弁83を通過する。この際に冷媒は減圧膨張により冷却される。一方、開閉弁84が開放されると、冷媒は膨張弁83をバイパスして室外機85へと導かれる。室外機85は、冷媒通路81内の冷媒と外気との間で熱交換する。
同様に、膨張弁86と開閉弁87とは互いに並列に設けられる。開閉弁87が閉止されると、冷媒は膨張弁86を通過する。この際に冷媒は減圧膨張により冷却される。エバポレータ88は、減圧膨張後の低温の冷媒と車室内に送風される空気との間で熱交換する。一方、開閉弁87が開放されると、冷媒は膨張弁86をバイパスしてアキュムレータ89へと導かれる。アキュムレータ89は、冷媒の気液を分離して余剰冷媒を蓄える気液分離器である。
<HVACユニット>
HVAC(Heating, Ventilation, and Air Conditioning)ユニット90は、車室内に設けられる機器を収容するユニットである。HVACユニット90には、切換装置91と、送風機92と、エバポレータ88と、エアミックスドア67と、ヒータコア66と、バイパス通路93と、吹出口94とが設けられている。
切換装置91は、車室内の空気と外気とを切り換えるために用いられる。送風機92は、切換装置91を介して導入された空気を車室内に向けて送風する。バイパス通路93は、エバポレータ88通過後の空気がヒータコア66をバイパスして流れるようにするための通路である。
エアミックスドア67は、エバポレータ88の下流側かつヒータコア66の上流側に設けられている。エアミックスドア67の開度を調整するための電動モータ(図示せず)は、ECU300からの制御信号C5に応じて制御される。エアミックスドア67の開度に応じて、エバポレータ88通過後の空気のうち、ヒータコア66を通過する空気とバイパス通路93を通過する空気との風量の割合が調整される。そして、ヒータコア66通過後の空気とバイパス通路93通過後の空気とが混合され、吹出口94から車室内へ吹き出される。
<暖房運転>
暖房運転時には、開閉弁84が閉止される一方で、開閉弁87が開放される。そのため、冷媒通路81内の冷媒の循環経路は、矢印AR3で示す経路となる。コンプレッサ82で圧縮された高温高圧の冷媒は、熱交換器110における熱交換によってエンジン冷却系統60の冷却水に放熱する。温められた冷却水の熱がヒータコア66で放熱されて車室内が暖房される。さらに、冷媒は膨張弁83での減圧膨張により一旦冷却されて、室外機85へ到達する。室外機85は、暖房運転時には低温の冷媒に吸熱させる吸熱器として機能する。室外機85で温められた冷媒は、開閉弁87およびアキュムレータ89を通って、コンプレッサ82へ戻る。
このようにヒートポンプシステム50では、熱交換器110での熱交換によりエンジン100の冷却水を温めるエンジン暖機制御を実行することが可能である。また、エンジン100の暖機が完了した状態であれば、エンジン100の熱を用いて冷却水を温めることも可能である。なお、エンジン100からの放熱と熱交換器110での熱交換とを併用して冷却水温度Twを上昇させることもできる。
<冷房運転>
冷房運転時には、開閉弁84が開放される一方で、開閉弁87が閉止される。そのため、冷媒通路81内の冷媒の循環経路は、矢印AR4で示す経路となる。コンプレッサ82で圧縮された高温高圧の冷媒は、開閉弁84を通って室外機85へ到達する。室外機85は、冷房運転時には高温の冷媒を放熱させる放熱器として機能する。室外機85で冷却された冷媒は、膨張弁86によってさらに冷却される。そして、エバポレータ88において冷媒と車室内へ送風される空気との間で熱交換が行なわれることにより、車室内への空気が冷却される。
次に、暖房運転時および冷房運転時における温度調整の手法の一例について説明する。まず、ECU300は、吹出口94から吹き出される温度の目標値(目標吹出温度TAO:Temperature Airflow Temperature)を演算する。目標吹出温度TAOは、たとえば操作パネル400での設定温度、室温センサ410からの室温TI、外気温センサ420からの外気温TO、および照度センサ430からの日射量LXなどに基づいて演算することができる。
ECU300のメモリ(図示せず)には、エバポレータ88の温度の目標値(目標蒸発器温度TEO:Target Evaporation Temperature)と目標吹出温度TAOとの関係が、たとえばマップとして保持されている。ECU300は、このマップを参照して、目標吹出温度TAOから目標蒸発器温度TEOを演算する。
エバポレータ88には、エバポレータ88からの吹出空気温度Teを検出する温度センサ(図示せず)が設けられている。ECU300は、吹出空気温度Teの検出値が目標蒸発器温度TEOの演算値に近づくようにフィードバック制御を実行する。具体的には、ECU300は、吹出空気温度Teと目標蒸発器温度TEOとの偏差に応じた制御信号C4をコンプレッサ82に出力することにより、コンプレッサ回転速度Ncを制御する。このようなコンプレッサ回転速度Ncの制御と上述のエアミックスドア67の開度調整とによって、吹出口94から吹き出される空気の温度を所望の値に調整することができる。
ここで、本実施の形態における制御を比較例における制御と比較しながら説明する。なお、比較例の車両およびヒートポンプシステムの構成は、図1に示す車両1および図2に示すヒートポンプシステム50の構成とそれぞれ同等であるため、説明は繰り返さない。
図3は、実施の形態1におけるヒートポンプシステム50と、比較例におけるヒートポンプシステムとの間でコンプレッサの駆動状態(駆動および停止)を比較するための図である。
図3を参照して、暖房運転時および冷房運転時におけるコンプレッサの駆動状態は、本実施の形態と比較例とでいずれも同等である。すなわち、暖房運転時には、エンジンの暖機が完了する前にはコンプレッサが駆動されてエンジン暖機を促進する一方で、エンジンの暖機が完了するとコンプレッサは停止される。また、冷房運転時は、エンジンの暖機が完了しているか否かに拘らず、コンプレッサは駆動される。
一方で、空調装置の停止時におけるコンプレッサの駆動状態は、実施の形態1と比較例とで異なる。比較例では、空調装置が停止している場合、コンプレッサは停止状態のままである。つまり、空調停止時には、コンプレッサを駆動してエンジンの冷却水を温めるエンジン暖機制御は実行されない。
比較例では、暖房運転時または冷房運転時、すなわち空調装置が起動されている時にのみエンジン暖機制御が実行される。しかしながら、一般に、暖房運転および冷房運転はユーザ操作に基づく空調要求に応じて開始されるので、ユーザが空調装置を起動しない限りエンジン暖機制御が実行されることはない。つまり、比較例では、ユーザ操作に依存してエンジン暖機制御が実行されるか否かが決定される。その結果、ユーザが空調装置を起動しない場合には、エンジンの暖機を促進して燃費を向上させることができない。
本実施の形態においては、空調装置80が停止状態の場合であっても、コンプレッサ82を駆動してエンジン暖機制御を実行する。これにより、空調装置80が停止している場合にも熱交換器110での熱交換によりエンジン100の冷却水が加熱されるので、エンジン100を早期に暖機して燃費を向上させることができる。
図4は、実施の形態1におけるヒートポンプシステム50の制御処理を説明するためのフローチャートである。このフローチャートは、所定の条件成立時あるいは所定の期間経過毎にメインルーチンから呼び出されて実行される。なお、フローチャートの各ステップは、基本的にはECU300によるソフトウェア処理によって実現されるが、ECU300内に作製された電子回路によるハードウェア処理によって実現されてもよい。
図1、図2および図4を参照して、ステップ(以下、単にSと記載する)100において、ECU300は、目標吹出温度TAOおよび目標蒸発器温度TEOを演算する。ECU300は、たとえば操作パネル400の設定温度等に基づいて目標吹出温度TAOを演算するとともに、メモリに保持されたマップを参照して、目標吹出温度TAOから目標蒸発器温度TEOを演算する。
S110において、ECU300は、操作パネル400からの空調要求REQがあるか否か、すなわち空調装置80の暖房運転または冷房運転がユーザによって選択されたか否かを判定する。
空調要求REQがある場合(S110においてYES)、ECU300は、暖房運転が選択されているか否かを判定する(S120)。暖房運転が選択されている場合(S120においてYES)、ECU300は、さらに、エンジン100の暖機の進行状況を判定する(S130)。具体的には、ECU300は、水温センサ65からの冷却水温度Twに基づいて、エンジン100の暖機が完了しているか否かを判定する。
エンジン100の暖機がすでに完了している場合(S130においてYES)、エンジン100で冷却水を温めて十分な暖房性能を確保できるので、エンジン暖機制御を実行する必要はない。そのため、ECU300は、コンプレッサ82を停止させる(あるいは停止状態に保つ)(S140)。
一方、エンジン100の暖機がまだ完了していない場合(S130においてNO)には、ECU300は、コンプレッサ82を駆動してエンジン暖機制御を実行する(S150)。
また、冷房運転が選択されている場合(S120においてNO)には、ECU300は、エンジン100の暖機が完了しているか否かに拘らず、コンプレッサ82を駆動する(S160)。冷房運転にはコンプレッサ82の駆動が必須だからである。
さらに、空調装置80が停止している場合(S110においてNO)には、ECU300は、エンジン100の暖機が完了しているか否かを判定する(S170)。エンジン100の暖機が完了している場合(S170においてYES)、ECU300は、それ以上エンジン100を暖機する必要はないので、コンプレッサ82を停止させる(S180)。
一方、エンジン100の暖機が完了していない場合(S170においてNO)には、ECU300は、コンプレッサ82を駆動してエンジン暖機制御を実行する(S190)。
このように、本実施の形態によれば、空調装置80が停止している場合であっても、エンジンの暖機が完了する前であれば、コンプレッサ82を駆動してエンジン暖機制御を実行する(S190参照)。これにより、空調装置80が停止している場合にも熱交換器110での熱交換によりエンジン100の冷却水が加熱されるので、エンジン100を早期に暖機することができる。その結果、燃費を向上させることができる。
ここで、コンプレッサ82に求められる能力(冷媒の吐出量)は、空調装置80の運転状況(暖房運転時、冷房運転時、および停止時)に応じて異なる。本実施の形態によれば、空調装置80の運転状況に応じて、適切なコンプレッサ回転速度Ncを設定することができる。以下、運転状況に応じたコンプレッサ回転速度Ncの設定例について説明する。
暖房運転時における回転速度Nc1(S150参照)は、熱負荷が大きい場合(たとえば冷却水温度Twが所定値よりも低いため冷却水の大幅な温度上昇が必要な場合)には、空調装置80から吹き出される空気が熱くなり過ぎずユーザが快適に感じる範囲内で、できるだけ高い値(たとえばコンプレッサ82の設計上許容される最高速度)に設定することが好ましい。これにより、冷媒の温度が速く上昇するので、熱交換器110で熱交換される熱量も大きくなり、エンジン100の暖機に要する時間を短くすることができる。
その反面、コンプレッサ回転速度Ncを高い値に設定すると、エンジン100の暖機時間は短くなるものの、コンプレッサ82の消費エネルギが大きくなる。そのため、消費エネルギの増加を抑えたい場合には、回転速度Nc1を上記最高速度より低く設定してもよい。
一例として、エンジン暖機制御の開始直後には回転速度Nc1を相対的に低く設定する一方で、冷却水温度Twがある程度上昇してから回転速度Nc1を増加させてもよい。回転速度Nc1を低く設定している期間には、消費エネルギの増加を抑えつつ、エンジン100の暖機をやや早めることができる。回転速度Nc1をさらに増加させた期間には、消費エネルギは増加するものの、エンジン100の暖機を大きく早めることができる。このように、回転速度Nc1の大きさを調整することにより、従来の車両(空調装置を用いたエンジン暖機制御を実行可能でない車両)と同等以上の暖房性能を確保しつつ、回転速度Nc1が最高速度の場合よりも少ない消費エネルギでエンジン100の暖機時間を短くすることができる。
また、冷房運転時における回転速度Nc2(S160参照)は、上述の説明と同様に、熱負荷が大きい場合には、空調装置80から吹き出される空気が冷たくなり過ぎずユーザが快適に感じる範囲内で、できるだけ高い値に設定することが好ましい。これにより、エンジン100の暖機時間を短くすることができる。
さらに、空調装置80の停止時には、空調装置80の暖房性能または冷房性能を考慮する必要はないので、エンジン100の暖機による燃費向上を主目的とすればよい。そのため、停止状態における回転速度Nc3(S190参照)は、コンプレッサ82のエネルギ効率(COP:Coefficient Of Performance)が最も高くなる値に設定することが好ましい。これにより、コンプレッサ82の消費エネルギを最も低減することができる。
[実施の形態1の変形例]
実施の形態1では、暖房運転時における回転速度Nc1(図4のS150参照)および冷房運転時における回転速度Nc2(S160参照)は、いずれも目標吹出温度TAOおよび目標蒸発器温度TEOに基づいて決定される。これは、暖房運転時および冷房運転時にはユーザ所望の温度に室温を近づけるために、吹出口94における空気の温度を用いてフィードバック制御を行なう必要があるためである。
しかしながら、空調装置80の停止時において回転速度Nc3(S190参照)を決定する際には、車室内の空調を考慮して吹出口94の空気の温度を用いる必要はない。実施の形態1の変形例によれば、空調装置80の停止時におけるコンプレッサ回転速度Ncは、冷却水温度Twに基づいて決定される。
図5は、実施の形態1の変形例におけるヒートポンプシステム50の制御処理を説明するためのフローチャートである。図5を参照して、このフローチャートは、S175を含む点、およびS190に代えてS192を含む点において図4に示すフローチャートと異なる。それ以外の処理は図4に示す処理と同等であるため、詳細な説明は繰り返さない。
S175では、空調要求REQがなく、かつ、エンジン100の暖機が完了していない。この場合、ECU300は、冷却水温度Twの目標値(目標冷却水温度)TWOを算出する。そして、ECU300は、目標冷却水温度TWOに基づいてコンプレッサ回転速度Ncを回転速度Nc4に設定して、コンプレッサ82を駆動する(S192)。
空調要求REQがない場合、車室内の空調を考慮する必要はないので、エンジン100の暖機を優先することができる。したがって、冷却水温度Twに基づいてコンプレッサ回転速度Ncを制御することで、エンジン100の暖機時間を一層短くすることが可能になる。
ここで、目標冷却水温度に基づくフィードバック制御の実現例を説明する。まず、エンジン100を暖機するのに必要な目標冷却水温度TWOが演算される。たとえば、ECU300は、外気温TOと目標冷却水温度TWOとの対応関係を表わすマップを保持しており、外気温センサ420による外気温TOの検出値から目標冷却水温度TWOを演算することができる。そして、ECU300は、たとえば所定のマップあるいは関係式に基づいて、その目標冷却水温度TWOを実現するのに必要な熱交換器110の温度の目標値(目標熱交換器温度)を演算する。
また、コンプレッサ82と熱交換器110との間には、冷媒の温度を検出する冷媒温度センサ(図示せず)が設けられている。ECU300は、冷媒温度センサによる冷媒温度の検出値と目標熱交換器温度との偏差が小さくなるように、コンプレッサ82のフィードバック制御を行なう。
このように、冷媒温度が目標熱交換器温度に到達するように冷媒を温めることにより、エンジン100の暖機に必要な冷却水温度Twまで冷却水を温めることができる。なお、エンジン100の暖機の進行状況を判定可能であれば、上記の制御は冷却水温度Twに基づく制御に限定されるものではない。たとえば、排気ガスの温度、排気ガスを浄化する触媒の温度、エンジンオイルの温度、あるいはエンジン100を始動してからの経過時間に基づいて、暖機の進行状況を判定することも可能である。また、冷媒センサは冷媒の温度を検出すると説明したが、冷媒の温度と圧力との間には相関が存在するので、圧力センサを用いて圧力から温度を推定してもよい。
[実施の形態2]
ハイブリッド車両には複数の走行モードを有するものがある。実施の形態2では、走行モードに応じてコンプレッサの駆動状態が決定される例について説明する。なお、実施の形態2に係る車両の構成は図1に示す車両1の構成と同等であるため、説明は繰り返さない。
ECU300は、バッテリ150のSOCを所定の範囲内(あるいは所定値)に維持するCS(Charge Sustaining)モードと、SOCを消費するCD(Charge Depleting)モードとを選択的に設定可能である。
図6は、CSモードおよびCDモードを説明するための図である。図6を参照して、横軸は時間軸を表わし、縦軸はバッテリ150のSOCを表わす。
CDモードは、基本的にはバッテリ150に蓄えられた電力を消費するモードである。CDモードでの走行時には、SOCを維持することを目的としたエンジン100の始動は行われない。CSモードは、SOCを所定の範囲内に維持するモードである。一例として、時刻tcにおいてSOCが所定値Stgに低下するとCSモードが選択されて、その後のSOCは制御範囲R内に維持される。このように、CSモードではSOCを維持するためにエンジン100が駆動される。
なお、CDモードは、エンジン100を常時停止させて走行するEV走行に限定されるものではない。また、CSモードも、エンジン100を常時駆動させて走行するHV走行に限定されるものではない。CDモードにおいてもCSモードにおいても、EV走行とHV走行とが実行され得る。
図7は、実施の形態2におけるコンプレッサ82の駆動状態をCSモードとCDモードとの間で比較するための図である。図7を参照して、CSモードにおけるコンプレッサ82の駆動状態は、図3に示す実施の形態1におけるコンプレッサ82の駆動状態と同等である。
暖房運転の場合、空調装置80に加えてエンジン100によって暖房性能が確保される。CSモードでは、エンジン100の暖機が完了する前には、コンプレッサ82を駆動して、暖房性能を確保するとともにエンジン100を暖機する。CSモードではエンジン100が始動される頻度が高いので、エンジン100は暖機された状態に維持され易い。したがって、一旦エンジン100の暖機が完了すると、多くの場合、エンジン100によって十分な暖房性能を確保できるため、コンプレッサ82を停止することが可能である。
これに対し、CDモードにおいては、エンジン100の暖機完了後であってもコンプレッサ82の駆動が許可される。上述のようにCDモードではSOCを維持するためにエンジン100の始動が行なわれず、EV走行が主に行なわれる。EV走行ではエンジン100が駆動されないので、一旦、エンジン100が暖機されたとしてもエンジン100の温度が次第に低下して、暖房性能が確保できなくなる場合がある。この場合、暖房性能を確保するために、CDモードであってもエンジン100が始動され得る。しかし、CDモードにおいては、このようなエンジン100の始動は燃費を悪化させるため、できるだけ避けることが望ましい。
そこで、実施の形態2によれば、CDモードの暖房運転時においては、エンジンの暖機完了後であっても、エンジン暖機制御の実行が許可される。これにより、EV走行が継続されたとしても冷却水温度Twの低下が防止されるので、エンジン100を暖機された状態に維持することができる。その結果として、暖房性能確保を目的にエンジン100を始動する必要がなくなるので、燃費を向上させることができる。
冷房運転には、ヒートポンプシステム50の原理上、コンプレッサ82の駆動が必須である。そのため、冷房運転時には走行モードに拘らず、また、エンジン100の暖機が完了しているか否かに拘らず、コンプレッサ82は駆動される。
一方、空調停止時には、CDモードにおいては、エンジン100の暖機完了前であってもコンプレッサ82の駆動が禁止される。CDモードでは主にEV走行が行なわれるので、エンジン100を暖機しても燃費の向上にはつながりにくい。本実施の形態によれば、CDモードにおいてはコンプレッサ82の駆動が禁止されるので、コンプレッサ82の駆動にエネルギが消費されることを防止できる。
これに対し、CSモードではエンジン100の暖機が完了する前であればコンプレッサ82の駆動は許可される。CSモード時には、SOCを制御範囲R内に維持するために、HV走行が行なわれる割合が相対的に高い。そのため、ユーザ操作に依存してエンジン暖機制御が実行されるか否かが決定されると、燃費を向上させることができない場合がある。ユーザ操作に依存せずにエンジン暖機制御を実行することにより、燃費を向上させることができる。
なお、空調停止時には、ユーザによる暖房要求がないため、エンジン100の暖機完了後には暖房性能確保を目的にエンジン100を暖機された状態に維持する必要はない。したがって、CSモードであってもCDモードであっても、エンジン100の暖機完了後にはコンプレッサ82の駆動は禁止される。
図8は、実施の形態2におけるヒートポンプシステム50の制御処理を説明するためのフローチャートである。図8を参照して、S200,S210,S220の処理は、図4に示すS100,S110,S120の処理とそれぞれ同等であるため説明は繰り返さない。
空調要求REQがあり、かつ暖房運転が選択されている場合、S225において、ECU300は、走行モードがCSモードであるか否かを判定する。走行モードがCSモードの場合(S225においてYES)、ECU300は、エンジン100の暖機が完了しているか否かを判定する(S230)。
エンジン100の暖機がすでに完了している場合(S230においてYES)、エンジン100で冷却水を温めて十分な暖房性能を確保できるので、ECU300は、コンプレッサ82を停止させる(S240)。
一方、エンジン100の暖機がまだ完了していない場合(S230においてNO)には、ECU300は、コンプレッサ82の駆動を許可してエンジン暖機制御を実行する(S250)。具体的には、CSモードであれば車両1がHV走行中およびEV走行中に拘らず、ECU300は、コンプレッサ82およびウォータポンプ62を駆動する。この際、ECU300は、コンプレッサ回転速度Ncを回転速度Nc1に設定する。
走行モードがCDモードの場合(S225においてNO)には、ECU300は、エンジン100の暖機が完了しているか否かに拘らず、回転速度Nc5に設定してコンプレッサ82を駆動する(S255)。回転速度Nc5は、回転速度Nc1と等しい値であっても異なる値であってもよい。これにより、エンジン100の暖機がまだ完了していない場合には、エンジン100は暖機される。あるいは、エンジン100の暖機がすでに完了している場合には、その状態が維持される。したがって、暖房性能確保を目的としたエンジン100の始動を避けることができる。
また、冷房運転が選択されている場合(S220においてNO)には、処理はS260に進められる。S260における処理は、図4に示すS160における処理と同等であるので説明は繰り返さない。
さらに、空調要求REQがない場合(S210においてNO)、ECU300は、走行モードがCSモードであるか否かを判定する(S265)。走行モードがCSモードの場合(S265においてYES)、ECU300は、エンジン100の暖機が完了しているか否かを判定する(S270)。
エンジン100の暖機がすでに完了している場合(S270においてYES)、CSモードではそれ以上エンジン100を暖機する必要はないので、ECU300は、コンプレッサ82の駆動を禁止する(S280)。一方、エンジン100の暖機が完了していない場合(S270においてNO)には、ECU300は、コンプレッサ82を駆動してエンジン暖機制御を実行する(S290)。
これに対し、走行モードがCDモードの場合(S265においてNO)には、ECU300は、コンプレッサ82の駆動を禁止する(S295)。CDモード時にはEV走行を行なう可能性が高いので、エンジン100を暖機しても燃費の向上にはつながりにくい。また、空調要求がないため、暖房性能を確保する必要もない。本実施の形態によれば、CDモード時にはコンプレッサ82の駆動を禁止することにより、コンプレッサ82の駆動にエネルギが消費されることを防止できる。
[実施の形態3]
実施の形態3では、冷却水の経路を切り換えることにより、実施の形態1,2よりも早期にエンジンの暖機が可能な構成を説明する。
図9は、実施の形態3におけるヒートポンプシステムの構成を示すブロック図である。図9を参照して、ヒートポンプシステム50Aは、冷却水通路61にバイパス経路68および三方弁69が設けられている点において、図2に示すヒートポンプシステム50と異なる。ヒートポンプシステム50Aの他の構成はヒートポンプシステム50の対応する構成と同等であるため、説明は繰り返さない。
また、実施の形態3では、冷房運転に強モードと弱モードとが存在する。三方弁69およびエアミックスドア67の開度は、空調装置80の運転状況(暖房運転、強モードでの冷房運転、弱モードでの冷房運転、および停止状態)に応じて制御される。
図10は、空調装置80の運転状況に応じた冷却水の経路およびエアミックスドア67の開度を説明するための図である。図10を参照して、図10(a)は、暖房運転時の状態を示す。図10(b)は、強モードでの冷房運転時の状態を示す。図10(c)は、弱モードでの冷房運転時の状態を示す。図10(d)は、空調装置80の停止時の状態を示す。なお、各運転状況における冷却水の経路を太線で表わしている。また、ヒータコア66を通過する空気を矢印AR5で示し、バイパス通路93を通過する空気を矢印AR6で示す。
バイパス経路68は、図10(b)および(d)に示すように、ヒータコア66に通水しない経路に冷却水を循環させることが可能なように形成される。三方弁69(切換部)は、冷却水がヒータコア66およびバイパス経路68のうちのいずれか一方を流れるように切り換える。なお、三方弁69に代えて2つの開閉弁を設けてもよい。
暖房運転時における三方弁69は、冷却水がヒータコア66を流れるように制御される(経路A)。また、エアミックスドア67の開度調整により、車室内へ吹き出される空気の温度が調整される。
強モードでの冷房運転時における三方弁69は、冷却水がバイパス経路68を流れるように制御される(経路B)。また、エアミックスドア67は、車室内への空気がヒータコア66を通過しないように制御される。つまり、エアミックスドア67の開度は0に設定される。
弱モードでの冷房運転時における三方弁69は、冷却水がヒータコア66を流れるように制御される(経路C)。また、エアミックスドア67は、車室内への空気の一部分がヒータコア66へ導かれる一方で、それ以外の部分がバイパス通路93へ導かれるように制御されて、温度が調整される。
空調装置80の停止時における三方弁69は、冷却水がバイパス経路68を流れるように制御される(経路D)。なお、エアミックスドア67の開度は特に限定されず、エアミックスドア67は開状態であっても閉状態であってもよい。
図11は、実施の形態3におけるヒートポンプシステム50Aの制御を説明するためのフローチャートである。図10および図11を参照して、S300〜S340の処理は、図4に示すS100〜S140の処理とそれぞれ同等であるため説明は繰り返さない。
エンジン100の暖機が完了していない場合(S330においてNO)、ECU300は、経路Aを形成するように三方弁69を制御する(S348)。また、ECU300は、エバポレータ88通過後の空気がヒータコア66を通過するように、エアミックスドア67を制御する。そして、ECU300は、コンプレッサ回転速度Ncを回転速度Nc1に設定してコンプレッサ82を駆動し、エンジン暖機制御を実行する(S350)。
冷房運転が要求されている場合(S320においてNO)、ECU300は、冷房運転が強モードか弱モードかを判定する(S335)。
冷房運転が強モードの場合(S335においてYES)、ECU300は、エバポレータ88通過後の空気がヒータコア66には流れないように、エアミックスドア67の開度を0に設定する。これにより、空気はバイパス通路93を通過するので、ヒータコア66に冷却水を流す必要はない。したがって、ECU300は、冷却水がヒータコア66を流れない経路Bを形成するように三方弁69を制御する(S353)。言い換えると、ECU300は、車室内に吹き出される空気がヒータコア66を通過しないようにエアミックスドア67を制御する場合には、冷却水がバイパス経路68を流れるように三方弁69を制御する。そして、ECU300は、コンプレッサ回転速度Ncを回転速度Nc6に設定して、コンプレッサ82を駆動する(S355)。回転速度Nc6は、弱モード時における回転速度Nc2よりも大きい値であることが好ましい。
一方、冷房運転が弱モードの場合(S335においてNO)には、ECU300は、エバポレータ88通過後の空気の一部がヒータコア66を通過し、それ以外の部分がバイパス通路93を通過するようにエアミックスドア67を制御する。そのため、冷却水がヒータコア66を流れる経路Cを形成するように三方弁69を制御する(S358)。言い換えると、車室内に吹き出される空気の一部がヒータコア66を通過するようにエアミックスドア67を制御する場合には、冷却水がヒータコア66を流れるように三方弁69を制御する。そして、ECU300は、コンプレッサ回転速度Ncを回転速度Nc2に設定して、コンプレッサ82を駆動する(S360)。
空調要求REQがなく、エンジン100の暖機が完了している場合(S310においてNOかつS370においてYES)のS380の処理は、図4に示すS180の処理と同等であるため説明は繰り返さない。
エンジン100の暖機が完了していない場合(S370においてNO)、空調装置80は停止しておりヒータコア66には空気が流れないので、ヒータコア66に冷却水を流す必要がない。したがって、ECU300は、ヒータコア66に冷却水が流れない経路Dを形成するように三方弁69を制御する(S388)。そして、ECU300は、コンプレッサ回転速度Ncを回転速度Nc3に設定しコンプレッサ82を駆動して、エンジン暖機制御を実行する(S390)。
このように本実施の形態によれば、ヒータコア66に冷却水を流す必要がない場合には、三方弁69の制御により、冷却水がヒータコア66に代えてバイパス経路68を流れる経路(経路B,D)が形成される。これにより、エンジン100の暖機のために加熱が必要な冷却水の量が少なくてよいので、冷却水温度Twが上昇し易くなる。したがって、より早期にエンジン100を暖機することができる。
[実施の形態4]
エンジンの暖機が完了した状態でエンジンが停止している場合において、コンプレッサの駆動によりバッテリのSOCが低下すると、SOCを回復するためにエンジンが始動される場合がある。このようなコンプレッサの駆動によるエンジンの始動は、燃費の悪化につながるため避けることが望ましい。そこで、実施の形態4では、SOCに応じてコンプレッサ回転速度Ncを変更する。より具体的には、SOCが低くなるに従って、コンプレッサ回転速度を低く設定する。これにより、SOCが低いほどコンプレッサの消費電力を小さくすることができるので、SOCの低下速度が低減される。その結果、エンジンが始動されにくくなる。
図12は、バッテリ150のSOCとコンプレッサ回転速度Ncとの関係を説明するための図である。図12を参照して、横軸はSOCを表わし、縦軸はコンプレッサ回転速度Ncを表わす。SOCが所定値Sc以上の場合には、コンプレッサ回転速度NcはNc3に設定される。一方、SOCが所定値Sc未満の場合には、コンプレッサ回転速度Ncは、Nc3よりも小さいNc7に設定される。
図13は、実施の形態4に係るヒートポンプシステム50の制御処理を説明するためのフローチャートである。図2、図12および図13を参照して、S400〜S480の処理は、図4に示すS100〜S180の処理とそれぞれ同等であるため説明は繰り返さない。
S470においてエンジン100の暖機が完了していない場合(S470においてNO)、ECU300は、バッテリ150のSOCが所定値Scよりも大きいか否かを判定する(S440)。
SOCが所定値Scよりも大きい場合(S440においてYES)、SOC回復のためにエンジン100が始動される可能性は低いので、ECU300は、コンプレッサ回転速度NcをNc3に設定する(S490)。
一方、SOCが所定値Sc以下の場合(S440においてNO)には、SOCがさらに低下するとエンジン100が始動される可能性が高いので、ECU300は、コンプレッサ回転速度NcをNc3よりも低いNc7に設定する(S495)。
このように、本実施の形態によれば、バッテリ150のSOCが所定値Sc以下の場合には、SOCが所定値Scよりも高い場合と比べて、コンプレッサ回転速度Ncを低く設定する。これによりコンプレッサ82の消費電力が小さくなるので、SOCの低下速度が低減される。したがって、SOC回復のためにエンジン100が始動される可能性を小さくすることができる。
なお、図12では、バッテリ150のSOCが所定値Sc以下になると、コンプレッサ回転速度Ncをステップ的に小さく変化させる例について説明した。しかし、SOCが低くなるに従ってコンプレッサ回転速度Ncを低く設定するのであれば、コンプレッサ回転速度Ncの変化の仕方はこれに限定されるものではない。SOCが減少するに従って、コンプレッサ回転速度Ncが直線的あるいは曲線的に減少するようにしてもよい。また、SOCが所定値Sc以下の場合には、コンプレッサ回転速度Ncを0に設定してコンプレッサ82の駆動を禁止してもよい。
[実施の形態5]
本実施の形態では、エンジンの早期暖機と空調装置の暖房性能の確保とを両立するために、冷却水の経路を切り換える制御について説明する。
図14は、実施の形態5におけるヒートポンプシステムの構成を示すブロック図である。図14を参照して、ヒートポンプシステム50Bは、冷却水にエンジン100をバイパスさせるためのバイパス経路70および三方弁71が設けられている点において、図2に示すヒートポンプシステム50と異なる。ヒートポンプシステム50Bの他の構成は、ヒートポンプシステム50の対応する構成と同等であるため、説明は繰り返さない。
図15は、冷却水温度Twに応じた冷却水の経路を説明するための図である。図15を参照して、図10(a)は冷却水温度Twが所定値よりも高い場合の経路Pを示す。図10(b)は、冷却水温度Twが所定値以下の場合の経路Qを示す。
冷却水温度Twが所定値よりも高い場合における三方弁71は、冷却水がエンジン100およびヒータコア66の双方を通過して循環するように制御される(経路P)。これに対し、エンジン100の始動初期などで冷却水温度Twが所定値以下の場合には、三方弁71は、冷却水がエンジン100を通過せずに循環するように制御される(経路Q)。
冷却水温度Twが所定値以下の場合には、冷却水をエンジン100に流してもエンジン100の暖機を早める効果は乏しい。あるいは、冷却水によりエンジン100が冷却されて、エンジン100の暖機が完了するまで余計に時間を要する。
そこで、本実施の形態によれば、冷却水が温まるまではエンジン100に冷却水を流さず(経路Q参照)、冷却水が温まった後にエンジン100に冷却水を流す(経路P参照)。これにより、エンジン100の暖機が冷却水によって阻害されることが防止されるので、エンジン100を早期に暖機することができる。さらに、エンジン100に冷却水を流していないときには、熱交換器110によって加熱が必要な冷却水の量が少なくてよいので、冷却水温度Twが上昇し易い。したがって、暖房性能を早期に確保することができる。
図16は、実施の形態5におけるヒートポンプシステム50Bの制御処理を説明するためのフローチャートである。図16を参照して、S500〜S520の処理は、図5に示すS100〜S120の処理とそれぞれ同等であるため、説明は繰り返さない。
S525において、ECU300は、エンジン100が駆動中であるか否かを判定する。エンジン100が駆動中の場合(S525においてYES)、処理はS530に進められ、ECU300は、エンジン100の暖機が完了しているか否かを判定する。
エンジン100の暖機が完了している場合(S530においてYES)、エンジン100の熱で冷却水を温めることができるため、ECU300は、エンジン100に冷却水が流れる経路Pを形成するように三方弁71を制御する(S538)。そして、ECU300は、コンプレッサ82を停止する(S540)。多くの場合、エンジン100の熱で暖房性能を確保できるためである。なお、エンジン100の熱だけでは十分な暖房性能を確保できない場合には、コンプレッサ82を駆動してもよい。
一方、エンジン100の暖機が完了していない場合(S530においてNO)には、ECU300は、冷却水温度Twが所定値よりも大きいか否かを判定する(S535)。
冷却水温度Twが所定値よりも高いとき(S535においてYES)、エンジン100に冷却水を流してもエンジン100の暖機が阻害されることはないので、ECU300は、経路Pを形成するように三方弁71を制御する(S548)。そして、ECU300は、コンプレッサ82を駆動してエンジン暖機制御を実行する(S550)。
一方、冷却水温度Twが所定値以下のとき(S535においてNO)には、エンジン100に冷却水を流すとエンジン100の暖機が阻害されるので、ECU300は、エンジン100に冷却水が流れない経路Qを形成するように三方弁71を制御する(S551)。また、ECU300は、コンプレッサ82を駆動する(S552)。経路Qが形成されているときには、熱交換器110によって加熱が必要な冷却水の量が少なくてよいので、冷却水温度Twを早期に上昇させることができる。これにより、暖房性能を早期に確保することができる。
S525において、エンジン100が停止中の場合(S525においてNO)、処理はS553に進められ、ECU300は、エンジン100の暖機が完了しているか否かを判定する。
エンジン100の暖機が完了しているとき(S553においてYES)、エンジン100の熱で冷却水を温めることができるため、ECU300は、エンジン100に冷却水が流れる経路Pを形成するように三方弁71を制御する(S555)。そして、ECU300は、コンプレッサ82を駆動する(S556)。エンジン100は停止中であるので、エンジン100の熱だけでは継続的に暖房性能を確保できないためである。
一方、エンジン100の暖機が完了していない場合(S553においてNO)には、ECU300は、冷却水温度Twが所定値よりも大きいか否かを判定する(S554)。
冷却水温度Twが所定値よりも高いとき(S554においてYES)、ECU300は、エンジン100に冷却水が流れない経路Qを形成するように三方弁71を制御する(S557)。そして、ECU300は、コンプレッサ82を駆動する(S550)。エンジン100は十分に暖機されていない一方で冷却水温度Twはある程度高いので、エンジン100に冷却水を流しても冷却水温度Twの上昇につながらない可能性がある。むしろ、経路Qを形成して熱交換器110によって加熱が必要な冷却水の量が少なくてすむため、冷却水温度Twを早期に上昇させることができる。
冷却水温度Twが所定値以下のとき(S554においてNO)にも、ECU300は、経路Qを形成するように三方弁71を制御する(S559)。そして、ECU300は、コンプレッサ82を駆動する(S560)。熱交換器110によって加熱が必要な冷却水の量が少なくてよいので、冷却水温度Twを早期に上昇させることができるためである。
なお、空調要求REQがない場合(S510においてNO)、図5に示すS170以降の処理と同等の処理が実行される。また、冷房運転が要求されている場合(S520においてNO)、S160の処理と同等の処理が実行される。
このように、本実施の形態によれば、エンジン100の駆動中にエンジン100の暖機が完了していない場合(S530においてNO)において、冷却水温度Twが所定値よりも高いとき(S535においてYES)には、エンジン100に冷却水を流してもエンジン100の暖機が阻害されることはないので、エンジン100に冷却水が流れるように三方弁71が制御される(S548)。
これに対し、冷却水温度Twが所定値以下のとき(S535においてNO)には、エンジン100に冷却水が流れないように三方弁71が制御される(S551)。これにより、エンジン100の暖機が冷却水で阻害されないので、エンジン100を早期に暖機することができる。さらに、熱交換器110によって加熱が必要な冷却水の量が少なくてよいので、暖房性能の早期確保を実現することができる。
エンジン100の停止中にエンジン100の暖機が完了していない状態の場合(S553においてNO)には、冷却水温度Twに拘らず、エンジン100に冷却水が流れない経路Qが形成される(S557,S559)。エンジン100に冷却水を流しても、エンジン100の温度が十分に高くないので、冷却水温度Twの温度上昇にはつながりにくい。それよりは、エンジン100に冷却水を流さないことで、熱交換器110によって加熱が必要な冷却水の量が少なくなるので、冷却水温度Twを早期に上昇させることができる。
なお、上述の実施の形態1〜5および実施の形態1の変形例は、適宜組み合わせて実行することができる。たとえば、実施の形態2のCSモードおよびCDモードに応じた制御(図8参照)に、実施の形態1に変形例の目標冷却水温度TWOに基づく制御(図5のS175参照)を組み合わせてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、10,20 モータジェネレータ、30 動力分割機構、40 減速機、50,50A,50B ヒートポンプシステム、60,60A,60B エンジン冷却系統、61 冷却水通路、62 ウォータポンプ、63 ラジエータ、64 サーモスタット、65 水温センサ、66 ヒータコア、67 エアミックスドア、69,71 三方弁、68,71 バイパス経路、70 空調装置、81 冷媒通路、82 コンプレッサ、83,86 膨張弁、84,87 開閉弁、85 室外器、88 エバポレータ、89 アキュムレータ、90 室内空調ユニット、91 切換装置、92 送風機、93 バイパス経路、94 吹出口、100 エンジン、110 熱交換器、150 バッテリ、152 電池センサ、250 PCU、300 ECU、350 駆動輪、400 操作パネル、410 室温センサ、420 外気温センサ、430 照度センサ。

Claims (11)

  1. 内燃機関と、
    冷却水を用いて前記内燃機関を冷却することが可能に構成された冷却系統と、
    冷媒を圧縮する圧縮機を含み、空調要求に応じて前記圧縮機を駆動して車室内を空調する空調装置と、
    前記冷却水と前記冷媒との間で熱交換する熱交換器と、
    蓄電装置と、
    前記内燃機関の出力および前記蓄電装置の電力のうちの少なくとも一方を用いて駆動力を発生させるとともに、前記内燃機関の出力を用いて発電して、前記蓄電装置を蓄電することが可能に構成された回転電機と、
    前記空調装置を制御する制御装置とを備え、
    前記制御装置は、
    前記空調要求がない場合であっても前記圧縮機を駆動して、前記冷媒からの放熱により前記冷却水を温め
    前記蓄電装置のSOC(State Of Charge)を所定の範囲内に維持するCS(Charge Sustaining)モードと、前記SOCを消費するCD(Charge Depleting)モードとを選択的に設定可能であり、前記空調要求がない場合に、前記CSモード時には前記圧縮機の駆動を許可する一方で、前記CDモード時には前記圧縮機の駆動を禁止する、車両。
  2. 前記制御装置は、前記空調要求がない場合であっても、前記内燃機関の暖機が完了状態でないときには、前記圧縮機の駆動を許可する、請求項1に記載の車両。
  3. 前記制御装置は、前記空調要求がなく、かつ前記CSモードの場合に、前記内燃機関の暖機が完了状態でないときには前記圧縮機の駆動を許可する一方で、前記内燃機関の暖機が完了状態のときには前記圧縮機の駆動を禁止する、請求項1または2に記載の車両。
  4. 前記制御装置は、前記空調要求がある場合には、前記車室内に吹き出される空気の目標吹出温度に基づいて前記圧縮機の回転速度を制御する一方で、前記空調要求がない場合には、前記冷却水の温度に基づいて前記圧縮機の回転速度を制御する、請求項1〜3のいずれか1項に記載の車両。
  5. 前記制御装置は、前記空調装置の暖房運転時と、前記空調装置の冷房運転時と、前記空調装置の停止時とに応じて前記圧縮機の回転速度を可変に設定する、請求項1〜4のいずれか1項に記載の車両。
  6. 前記空調装置の停止時の前記回転速度は、前記圧縮機のエネルギ効率に基づいて設定される、請求項に記載の車両。
  7. 内燃機関と、
    冷却水を用いて前記内燃機関を冷却することが可能に構成された冷却系統と、
    冷媒を圧縮する圧縮機を含み、空調要求に応じて前記圧縮機を駆動して車室内を空調する空調装置と、
    前記冷却水と前記冷媒との間で熱交換する熱交換器と、
    前記空調装置を制御する制御装置とを備え、
    前記冷却系統は、
    前記冷却水と前記車室内に吹き出される空気との間で熱交換するヒータコアと、
    前記ヒータコアに通水しない経路に前記冷却水を循環させることが可能なように形成されたバイパス経路と、
    前記冷却水が前記ヒータコアおよび前記バイパス経路のうちのいずれか一方を流れるように切り換えるための切換部とを含み、
    前記制御装置は、
    前記空調要求がない場合であっても前記圧縮機を駆動して、前記冷媒からの放熱により前記冷却水を温め、
    前記空調装置の冷房運転時には、前記冷却水が前記バイパス経路を流れるように前記切換部を制御する、車両。
  8. 前記冷却系統は、前記ヒータコアを通過する風量を調整するための調整部をさらに含み、
    前記制御装置は、前記空調装置の冷房運転時において、
    前記車室内に吹き出される空気の一部が前記ヒータコアを通過するように前記調整部を制御する場合には、前記冷却水が前記ヒータコアを流れるように前記切換部を制御する一方で、
    前記車室内に吹き出される空気が前記ヒータコアを通過しないように前記調整部を制御する場合には、前記冷却水が前記バイパス経路を流れるように前記切換部を制御する、請求項に記載の車両。
  9. 前記制御装置は、前記空調装置の停止時には、前記冷却水が前記バイパス経路を流れるように前記切換部を制御する、請求項7または8に記載の車両。
  10. 内燃機関と、
    冷却水を用いて前記内燃機関を冷却することが可能に構成された冷却系統と、
    冷媒を圧縮する圧縮機を含み、空調要求に応じて前記圧縮機を駆動して車室内を空調する空調装置と、
    前記冷却水と前記冷媒との間で熱交換する熱交換器と、
    蓄電装置と、
    前記内燃機関の出力および前記蓄電装置の電力のうちの少なくとも一方を用いて駆動力を発生させるとともに、前記内燃機関の出力を用いて発電して、前記蓄電装置を蓄電することが可能に構成された回転電機と
    前記空調装置を制御する制御装置とを備え、
    前記制御装置は、
    前記空調要求がない場合であっても前記圧縮機を駆動して、前記冷媒からの放熱により前記冷却水を温め、
    前記蓄電装置のSOCが低くなるに従って、前記圧縮機の回転速度を低く設定する、車両。
  11. 内燃機関と、
    冷却水を用いて前記内燃機関を冷却することが可能に構成された冷却系統と、
    冷媒を圧縮する圧縮機を含み、空調要求に応じて前記圧縮機を駆動して車室内を空調する空調装置と、
    前記冷却水と前記冷媒との間で熱交換する熱交換器と、
    前記空調装置を制御する制御装置とを備え、
    前記冷却系統は、
    前記冷却水と前記車室内に吹き出される空気との間で熱交換するヒータコアと、
    前記内燃機関に通水しない経路に前記冷却水を循環させることが可能なように形成されたバイパス経路と、
    前記冷却水が前記内燃機関および前記バイパス経路のうちのいずれか一方を流れるように切り換えるための切換部と、
    前記冷却水の温度を検出する温度検出部とを含み、
    前記制御装置は、
    前記空調要求がない場合であっても前記圧縮機を駆動して、前記冷媒からの放熱により前記冷却水を温め、
    前記冷却水の温度が所定値を上回る場合には、前記冷却水が前記内燃機関を流れるように前記切換部を制御する一方で、前記冷却水の温度が前記所定値を下回る場合には、前記冷却水が前記バイパス経路を流れるように前記切換部を制御する、車両。
JP2014084461A 2014-04-16 2014-04-16 車両 Active JP6221917B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014084461A JP6221917B2 (ja) 2014-04-16 2014-04-16 車両
US14/662,958 US9604521B2 (en) 2014-04-16 2015-03-19 Vehicle and method for controlling vehicle
CN201510178248.1A CN105034744B (zh) 2014-04-16 2015-04-15 车辆和用于控制车辆的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014084461A JP6221917B2 (ja) 2014-04-16 2014-04-16 車両

Publications (2)

Publication Number Publication Date
JP2015203394A JP2015203394A (ja) 2015-11-16
JP6221917B2 true JP6221917B2 (ja) 2017-11-01

Family

ID=54321275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084461A Active JP6221917B2 (ja) 2014-04-16 2014-04-16 車両

Country Status (3)

Country Link
US (1) US9604521B2 (ja)
JP (1) JP6221917B2 (ja)
CN (1) CN105034744B (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015620B2 (ja) * 2013-10-16 2016-10-26 トヨタ自動車株式会社 車両
US9950638B2 (en) * 2015-07-10 2018-04-24 Ford Global Technologies, Llc Preconditioning an electric vehicle
US10787057B2 (en) * 2015-10-01 2020-09-29 Denso Corporation Air conditioner for vehicle
JP6394580B2 (ja) * 2015-12-11 2018-09-26 株式会社デンソー 車両の制御装置
JP6534924B2 (ja) * 2015-12-24 2019-06-26 トヨタ自動車株式会社 車両用制御装置
JP6485390B2 (ja) * 2016-03-08 2019-03-20 株式会社デンソー 冷凍サイクル装置
JP2017165142A (ja) * 2016-03-14 2017-09-21 カルソニックカンセイ株式会社 空調装置
JP6778871B2 (ja) * 2016-06-03 2020-11-04 本田技研工業株式会社 車両用空調装置
KR20180067260A (ko) * 2016-12-12 2018-06-20 현대자동차주식회사 하이브리드 차량의 엔진 제어 장치 및 방법
JP6624107B2 (ja) * 2017-02-10 2019-12-25 株式会社豊田中央研究所 車両の熱管理制御装置、熱管理制御プログラム
CN110077193B (zh) * 2018-01-25 2021-03-26 宝沃汽车(中国)有限公司 车辆的控制方法、系统及车辆
JP7373265B2 (ja) * 2018-01-29 2023-11-02 株式会社デンソー 制御装置
JP7114920B2 (ja) * 2018-02-07 2022-08-09 トヨタ自動車株式会社 熱エネルギー制御システム、熱量分配器、車両の熱エネルギー制御方法
US10717339B2 (en) * 2018-03-21 2020-07-21 Toyota Motor Engineering & Manufacturing North America, Inc. Start and stop blower map based on sunload to improve fuel economy
KR20190120936A (ko) * 2018-04-17 2019-10-25 한온시스템 주식회사 차량의 열관리 시스템
US11124041B2 (en) 2018-05-03 2021-09-21 Paccar Inc Systems and methods for heating and cooling a vehicle using a heat pump
JP7119698B2 (ja) * 2018-07-24 2022-08-17 株式会社デンソー 車両用空調装置
KR102589025B1 (ko) * 2018-07-25 2023-10-17 현대자동차주식회사 전기자동차용 공조장치 제어방법
US10392018B1 (en) * 2018-09-27 2019-08-27 Ford Global Technologies, Llc Vehicle and regenerative braking control system for a vehicle
CN109823188A (zh) * 2019-01-10 2019-05-31 乾碳国际公司 混动商用车再生制动和缓速系统
CN112208300B (zh) * 2020-11-16 2022-02-08 广东鼎立汽车空调有限公司 一种汽车空调变频控制方法
US20220305876A1 (en) * 2021-03-24 2022-09-29 Ford Global Technologies, Llc Methods and systems for instant cabin heat for a vehicle
WO2022207882A1 (fr) * 2021-03-31 2022-10-06 Valeo Systemes Thermiques Dispositif de gestion thermique d'un habitacle
JP2023003032A (ja) * 2021-06-23 2023-01-11 トヨタ自動車株式会社 車両用空調装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005032277B4 (de) 2004-07-12 2019-08-14 Denso Corporation Dampfkompressionskälteerzeuger
JP4631426B2 (ja) * 2004-12-21 2011-02-16 株式会社デンソー 蒸気圧縮式冷凍機
JP2006188156A (ja) * 2005-01-06 2006-07-20 Denso Corp 蒸気圧縮式冷凍機
JP4201011B2 (ja) * 2006-03-27 2008-12-24 トヨタ自動車株式会社 蓄熱装置
CN101623997A (zh) * 2008-07-07 2010-01-13 胜盟机械有限公司 车辆节能空调装置
US7908877B2 (en) * 2008-07-18 2011-03-22 GM Global Technology Operations LLC Vehicle HVAC control
CN101876471B (zh) * 2009-04-30 2012-11-21 比亚迪股份有限公司 一种车用空调制冷系统的控制方法
JP5659925B2 (ja) * 2011-04-04 2015-01-28 株式会社デンソー 車両用空調装置
JP5403006B2 (ja) * 2011-07-31 2014-01-29 株式会社デンソー 車両用空調装置
DE112012004082T5 (de) * 2011-09-30 2014-10-02 Sanden Corporation Rankine-Zyklus
JP5783080B2 (ja) * 2012-02-13 2015-09-24 株式会社デンソー ハイブリッド車両の制御装置
JP5853948B2 (ja) * 2012-12-27 2016-02-09 株式会社デンソー 熱交換器
JP6197745B2 (ja) * 2013-07-31 2017-09-20 株式会社デンソー 車両用冷凍サイクル装置
US9682685B2 (en) * 2013-08-13 2017-06-20 Ford Global Technologies, Llc Methods and systems for condensation control
JP6232911B2 (ja) * 2013-10-11 2017-11-22 株式会社デンソー 車両制御装置
JP6015620B2 (ja) * 2013-10-16 2016-10-26 トヨタ自動車株式会社 車両
JP5884807B2 (ja) * 2013-10-16 2016-03-15 トヨタ自動車株式会社 ハイブリッド車両
JP6197657B2 (ja) * 2014-01-14 2017-09-20 株式会社デンソー 車両用熱管理システム
JP6252186B2 (ja) * 2014-01-15 2017-12-27 株式会社デンソー 車両用熱管理システム
US9914338B2 (en) * 2014-03-06 2018-03-13 GM Global Technology Operations LLC Thermal management system for a vehicle
JP6028756B2 (ja) * 2014-03-19 2016-11-16 トヨタ自動車株式会社 電池温度調節装置

Also Published As

Publication number Publication date
CN105034744B (zh) 2017-12-29
US20150298522A1 (en) 2015-10-22
CN105034744A (zh) 2015-11-11
US9604521B2 (en) 2017-03-28
JP2015203394A (ja) 2015-11-16

Similar Documents

Publication Publication Date Title
JP6221917B2 (ja) 車両
JP5712780B2 (ja) 電気自動車用の空調制御装置
JP5884807B2 (ja) ハイブリッド車両
US10232844B2 (en) Hybrid vehicle and method for controlling same
US7621142B2 (en) Cooling system and hybrid vehicle including cooling system
JP6232911B2 (ja) 車両制御装置
CN105916712B (zh) 车辆用空调装置
JP2010132078A (ja) 蓄電器加温装置
JP2011116331A (ja) 電気自動車の空気調和装置とその制御方法
JP6183133B2 (ja) 電池暖機システム
JP2018151117A (ja) 電池冷却システム
KR20170139204A (ko) 차량용 배터리 온도조절장치 및 이를 구비한 차량용 공조장치
JP2015191703A (ja) 電池温度調節装置
JP6136474B2 (ja) ハイブリッド車の制御装置
JP2015223859A (ja) 制御装置
JP2014121228A (ja) 車両
JP7371467B2 (ja) 車両用エネルギーマネジメントシステム
JP5772646B2 (ja) 車両用空調装置
JP7151684B2 (ja) 車両制御装置
JP2017114179A (ja) 車両の空調装置
JP2019132136A (ja) 制御装置
JP2015189348A (ja) 車両
JP2023122819A (ja) 車両
JP2015182582A (ja) 車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6221917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151