JP6193898B2 - 自律走行作業車の制御装置 - Google Patents

自律走行作業車の制御装置 Download PDF

Info

Publication number
JP6193898B2
JP6193898B2 JP2015024537A JP2015024537A JP6193898B2 JP 6193898 B2 JP6193898 B2 JP 6193898B2 JP 2015024537 A JP2015024537 A JP 2015024537A JP 2015024537 A JP2015024537 A JP 2015024537A JP 6193898 B2 JP6193898 B2 JP 6193898B2
Authority
JP
Japan
Prior art keywords
work vehicle
work
magnetic field
travel
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015024537A
Other languages
English (en)
Other versions
JP2016148937A (ja
Inventor
誠 山村
誠 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015024537A priority Critical patent/JP6193898B2/ja
Priority to ES16154050.5T priority patent/ES2691233T3/es
Priority to EP16154050.5A priority patent/EP3056960B1/en
Priority to US15/016,156 priority patent/US9888625B2/en
Publication of JP2016148937A publication Critical patent/JP2016148937A/ja
Application granted granted Critical
Publication of JP6193898B2 publication Critical patent/JP6193898B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Guiding Agricultural Machines (AREA)
  • Harvester Elements (AREA)

Description

本発明は、エリアワイヤによって画定された作業領域を自律走行して芝刈りなどの作業を行う自律走行作業車の制御装置に関する。
この種の自律走行作業車の制御装置として、従来、予めエリアワイヤを流れる電流によって生じる磁界強度を磁気センサで検出しつつエリアワイヤに沿って作業車を走行させ、そのときの作業車の進行変位と走行距離とをYawセンサと車輪速センサとでそれぞれ検出することで、ビットマップ上に走行予定領域(作業領域)の境界線を表す走行軌跡を生成するようにした装置が知られている(例えば特許文献1参照)。
特許文献1記載の装置は、走行予定領域の境界線を表す走行軌跡を生成した後、Yawセンサと車輪速センサの検出値に基づきビットマップ上の作業車の位置を特定する。また、特許文献1記載の装置は地磁気センサを備え、所定方位に向けた直進走行作業時に地磁気センサの出力に基づいてYawセンサの出力を較正する。
特開2012−79022号公報
しかしながら、上記特許文献1記載の装置は、Yawセンサと車輪速センサの検出値に基づき作業車の位置を特定(検出)するため、作業車の位置を精度よく検出できないおそれがある。また、特許文献1記載の装置は、地磁気センサの出力に基づいてYawセンサの出力を較正することで、作業車の直進走行時の位置精度を担保する。しかしながら、地磁気センサ等の位置検出センサは一般に高価であるため、地磁気センサを備える構成は、装置全体の価格上昇を招く。
本発明の一態様は、走行手段を有する作業車に、予め敷設されたエリアワイヤによって画定される作業領域を自律走行させる自律走行作業車の制御装置であって、作業車の車体に車幅方向に互いに離間して配置され、それぞれがエリアワイヤを流れる電流によって発生する磁界強度を検出する一対の磁気センサと、作業車の旋回角を検出する旋回角検出部と、作業車の走行距離を検出する走行距離検出部と、作業車が自律走行により作業を行う作業モードの前のトレースモードにおいて、エリアワイヤに沿って作業車が走行するように一対の磁気センサのうちの一方の磁気センサをエリアワイヤの内側に位置させながら一対の磁気センサのうちの他方の磁気センサの検出値に基づき走行手段を制御するとともに、作業モードにおいて、一対の磁気センサの検出値に基づき作業車が作業領域内を自律走行するように走行手段を制御する走行制御部と、トレースモード時に旋回角検出部により検出された旋回角と走行距離検出部により検出された走行距離とに基づき、作業領域の境界線に沿った走行経路を生成する経路生成部と、トレースモード時に一方の磁気センサにより検出された磁界強度を走行経路に対応付けて記憶する記憶部と、作業モードにおいて、一対の磁気センサにより検出された磁界強度と記憶部に記憶された磁界強度との比較結果に基づき、作業車の位置を特定する位置特定部とを備え、位置特定部は、作業モード時に作業車が境界線に接近して一対の磁気センサにより記憶部に記憶された磁界強度と同一またはほぼ同一の磁界強度検出されると、作業車の位置を特定することを特徴とする。
本発明によれば、トレースモード時に、エリアワイヤの内側の磁気センサにより検出された磁界強度を記憶し、作業モード時に、この記憶された磁界強度と磁気センサにより検出された磁界強度との比較結果に基づいて作業車の位置を特定する。したがって、地磁気センサ等の位置検出センサを用いることなく、作業車の位置を精度よく検出することができる。
本発明の実施形態に係る自律走行作業車の構成を概略的に示す側面図。 本発明の実施形態に係る自律走行作業車の構成を概略的に示す平面図。 本発明の実施形態に係る自律走行作業車によって作業を行う作業領域の一例を示す図。 エリアワイヤからの距離と磁界強度との関係を示す図。 本発明の実施形態に係る自律走行作業車の制御装置の構成を示すブロック図。 図5のECUの機能的構成を示すブロック図。 図6の経路生成部による走行経路の生成手順を説明する図。 図6の経路生成部によりトレースモード時に生成されたビットマップ上の走行経路の一例を示す図。 図5のECUにおいて実行される処理の一例を示すフローチャート。 本発明の実施形態に係る自律走行作業車をトレースモードで走行させたエリアワイヤの配置を示す図。 図10のエリアワイヤに沿って自律走行作業車を走行させることにより得られた磁気センサの出力を示す図。
以下、図1〜図11を参照して本発明の実施形態について説明する。図1は、本発明の実施形態に係る自律走行作業車の構成を概略的に示す側面図であり、図2は平面図である。本発明の自律走行作業車(以下、単に作業車と呼ぶ場合もある)は、種々の作業車に適用することができるが、本実施形態では、特に芝刈り作業を行う芝刈り機に適用する。なお、以下では、平面視における作業車の直進方向(長さ方向)および直進方向に垂直な車幅方向を、それぞれ前後方向および左右方向と定義するとともに、作業車の高さ方向を上下方向と定義し、この定義に従い各部の構成を説明する。
図1,2に示すように、自律走行作業車1は、シャシ11とフレーム12とを有する車体10と、車体10を接地面GRから走行可能に支持する左右一対の前輪13および左右一対の後輪14とを備える。前輪13は、ステー11aを介してシャシ11の前側に回転可能に取り付けられている。後輪14は、前輪13よりも大径であり、シャシ11の後側に直接、回転可能に取り付けられている。作業車1は、ユーザ自身が搬送可能な重量および寸法を有する。一例を挙げると、作業車1の全長(前後方向長さ)は500mm程度、全幅は300mm程度、高さは300mm程度である。
シャシ11とフレーム12とで包囲された作業車1の内部空間15には、作業機16と、作業機駆動用の作業モータ17と、後輪駆動用の走行モータ18と、充電ユニット19と、バッテリ20と、収納ボックス30とが配置される。
作業機16は、回転体と回転体に取り付けられた芝刈り用のブレードとを有し、全体が略円盤形状を呈する。作業機16は、回転体中央の回転軸を上下方向に向けて配置され、高さ調節機構21により接地面GRからのブレードの高さを調整可能に構成される。高さ調節機構21は、例えばユーザにより操作可能なねじを備える。作業モータ17は、作業機16の上方に配置された電動モータにより構成され、その出力軸が回転体の回転軸に連結され、回転体と一体にブレードを回転駆動する。
走行モータ18は、左右の後輪14の左右内側に配置された一対の電動モータ18L,18Rにより構成される。走行モータ18L,18Rの出力軸は、左右の後輪14の回転軸にそれぞれ連結され、走行モータ18L,18Rは、左右の後輪14を互いに独立に回転駆動する。すなわち、作業車1は、前輪13を従動輪、後輪14を駆動輪として構成され、走行モータ18L,18Rは、左右の後輪14を互いに独立に正転(前進方向への回転)または逆転(後進方向への回転)させる。左右の後輪14の回転に速度差を生じさせることで、作業車1は任意の方向に旋回することができる。
例えば、左右の後輪14をそれぞれ正転させた際に、右後輪14の回転速度が左後輪14の回転速度よりも速いと、その速度差に応じた旋回角で作業車1は左方に旋回する。一方、左後輪14の回転速度が右後輪14の回転速度よりも速いと、その速度差に応じた旋回角で作業車1は右方に旋回する。左右の後輪14を互いに同一速度で一方を正転、他方を逆転させると、作業車1はその場で旋回する。
充電ユニット19は、AC/DC変換器を含み、フレーム12の前端部に設けられた充電端子22に配線を介して接続されるとともに、バッテリ20に配線を介して接続されている。充電端子22は、接点22aを有し、充電端子22が接点22aを介して充電ステーション3(図3参照)に接続することで、バッテリ20に充電することができる。バッテリ20は、配線を介して作業モータ17と走行モータ18とに接続され、作業モータ17と走行モータ18とは、バッテリ20から供給される電力により駆動する。なお、バッテリ20の電圧は、図示しない電圧センサにより検出される。
収納ボックス30は、作業車1の中央位置付近に配置されている。収納ボックス30の内部には基板30a(図5参照)が配置され、基板30a上に電子制御ユニット(以下、ECUと呼ぶ)31と、Yawセンサ32と、Gセンサ33と、温度センサ34とが実装されている。
ECU31は、CPU,ROM,RAM、その他の周辺回路などを有する演算処理装置を含んで構成されるマイクロコンピュータである。Yawセンサ32は、作業車1の高さ方向の軸線(Z軸)回りに生じる角速度(ヨーレート)を示す信号を出力する角速度センサであり、Yawセンサ32の出力信号を用いて、作業車1のZ軸回りの旋回角を算出することができる。Gセンサ33は、作業車1に作用する直交3軸(X軸、Y軸、Z軸)方向の加速度を示す信号を出力する加速度センサである。
さらに作業車1は、接触センサ36と、一対の車輪速センサ37と、リフトセンサ38と、操作スイッチ25と、ディスプレイ28と、磁気センサ40とを備える。
接触センサ36は、作業車1が障害物等に接触してフレーム12がシャシ11から離脱するとオン信号を出力する。一対の車輪速センサ37は、左右の後輪14の車輪速を示す信号をそれぞれ出力し、車輪速センサ37の出力信号を用いて作業車1の走行距離を算出することができる。リフトセンサ38は、フレーム12がシャシ11から持ち上げられたときにオン信号を出力する。操作スイッチ25は、ユーザにより操作され、作業車1の動作開始等を指令するメインスイッチ26と、非常停止を指令する非常停止スイッチ27とを含む。ディスプレイ28は、ユーザに提供するための各種情報を表示する。磁気センサ40は、磁界の大きさ(磁界強度)を示す信号を出力する。
本実施形態では、作業車1の前側に左右方向に離間して2個の磁気センサ40(磁気センサ40R,40L)が配置されている。より具体的には、図2に示すように、作業車1の車幅方向中心を通り直進方向に向かう中心線CLに対して左右対称に一対の磁気センサ40R,40Lが配置されている。したがって、磁気センサ40R,40L間の距離をd0とすると、中心線CLから磁気センサ40R,40Lまでの距離d1,d2は互いに等しく、d0/2である。なお、各磁気センサ40R,40Lは互いに同一構成であり、同一の磁界が作用した状態で互いに同一の信号を出力する。
以上のように構成された作業車1は、予め定められた作業領域を自律走行する。図3は、作業領域ARの一例を示す図である。作業領域ARは、予め敷設(例えば接地面GRから所定深さに埋設)されたエリアワイヤ2によって画定される。エリアワイヤ2には電流が流され、これにより作業領域ARに磁界が発生する。なお、エリアワイヤ2上には、バッテリ20を充電するための充電ステーション3が配置される。作業領域ARは、作業車1の走行範囲を規定し、作業予定領域の他、作業を行わない非作業の領域を含んでもよい。
図4は、エリアワイヤ2からの距離dと磁界強度Hとの関係を示す図である。図4に示すように、磁界強度Hは、エリアワイヤ2からの距離dに応じて変化する。すなわち、磁界強度Hは、エリアワイヤ上において0となり、作業領域ARの内側でプラス、外側でマイナスの値となる。作業領域ARの内側において、磁界強度Hはエリアワイヤ2からの距離dの増加に伴い右上がりに上昇し、その後、右下がりに低下する。右上がりの範囲(0≦d≦da)は、磁気センサ40R,40L間の距離d0よりも短い。
本実施形態では、ECU31からの指令により、作業車1を作業モードとトレースモードとで動作させる。作業モードは、作業車1が作業領域AR内を自律走行しながら作業(芝刈り作業)を行うモードである。トレースモードは、エリアワイヤ2に沿って作業車1を走行させるモードである。トレースモードは、作業モードの前に実行され、トレースモードで作業領域ARを画定する。
より具体的には、トレースモードにおいて、図3に示すように一対の磁気センサ40R,40Lのうち一方の磁気センサ(例えば40L)をエリアワイヤ2の内側に位置させた状態で、他方の磁気センサ(例えば40R)がエリアワイヤ2上を矢印A方向に移動するように、エリアワイヤ2に沿って作業車1を周回走行させる。すなわち、磁気センサ40Rの出力を監視し、磁気センサ40Rによって検出される磁界強度Hが0となるように走行モータ18を制御する。例えば、磁気センサ40Rによって検出される磁界強度Hがプラスになると作業車1を右側に旋回させ、磁界強度Hがマイナスになると作業車1を左側に旋回させる。これにより、磁気センサ40Rをエリアワイヤ2に近づけ、磁気センサ40Rにより検出される磁界強度Hを0に維持する。この場合、他方の磁気センサ40Lにより検出される磁界強度Hは、図4に示すようにエリアワイヤ2からの距離d0に応じたプラスの値H0となる。
ところで、エリアワイヤ2は屈曲して敷設され、その一部に特徴的な部位を含む。例えば、図3に示すように、障害物を迂回する外回り部P1や、狭小の作業領域ARを包囲する内回り部P2や、内回りの角部P3等を含む。図3において、外回り部P1,内回り部P2,角部P3を構成するエリアワイヤ2をそれぞれワイヤ部2a〜2fと定義する。
外回り部P1においては、ワイヤ部2aによって生じる磁界の向きとこれに対向するワイヤ部2bによって生じる磁界の向きとが互いに反対となる。このため、ワイヤ部2aによって生じる磁界の一部がワイヤ部2bによって生じる磁界によって相殺され、磁気センサ40Lにより検出される磁界強度は小さくなる。一方、内回り部P2においては、ワイヤ部2cによって生じる磁界の向きとこれに対向するワイヤ部2dによって生じる磁界の向きとが互いに同一となる。このため、ワイヤ部2cによって生じる磁界にワイヤ部2dによって生じる磁界が加算され、磁気センサ40Lにより検出される磁界強度は大きくなる。角部P3においても同様に、磁気センサ40Lにより検出される磁界強度は大きくなる。
このように、トレースモードにおいて磁気センサ40Lにより検出される磁界強度は、エリアワイヤ2からの距離が一定(=d0)であるとしても、作業車1の周囲のエリアワイヤ2の配置パターンに応じて変化する。すなわち、図4の距離d0における磁界強度H0は、作業車1の周囲の複数のワイヤ部2a〜2fからの影響を受け、エリアワイヤ上の作業車1の位置に応じて増減する。この点を考慮し、本実施形態では、トレースモード時に磁気センサ40Lにより検出された磁界強度Hを記憶することで、後述するように作業モード時における作業車1の位置を特定する。
図5は、本発明の実施形態に係る自律走行作業車の制御装置の構成を示すブロック図である。図5に示すように、基板30aには、ECU31と、Yawセンサ32と、Gセンサ33と、温度センサ34と、作業モータドライバ17aと、走行モータドライバ18aとが実装されている。また、基板30aには、接触センサ36と、車輪速センサ37と、リフトセンサ38と、一対の磁気センサ40R,40Lと、操作スイッチ25と、ディスプレイ28と、充電ユニット19と、バッテリ20と、作業モータ17と、一対の走行モータ18L,18Rとが接続されている。
Yawセンサ32と、Gセンサ33と、温度センサ34と、接触センサ36と、車輪速センサ37と、リフトセンサ38と、磁気センサ40L,40Rと、操作スイッチ25とからの信号は、それぞれECU31に入力される。ECU31はこれらからの入力信号に基づき所定の処理を実行し、作業モータドライバ17aを介して作業モータ17に制御信号を出力するとともに、走行モータドライバ18aを介して走行モータ18L,18Rに制御信号を出力する。
図6は、ECU31の機能的構成を示すブロック図である。ECU31は、モード切換部311と、走行制御部312と、経路生成部313と、記憶部314と、位置特定部315と、作業済み領域特定部316とを有する。
モード切換部311は、作業モードとトレースモードとの切換を実行する。操作スイッチ25(メインスイッチ26)のオンによる作業車1の動作開始直後は、モード切換部311はトレースモードに切り換え、エリアワイヤ2に沿って作業車1を走行(トレース走行)させる。トレースモードにおける所定の処理が終了すると、モード切換部311はトレースモードから作業モードに切り換え、作業領域ARを作業車1に自律走行させて作業を行わせる。なお、電圧センサにより検出されるバッテリ20の電圧が所定値以下になると、作業モードからトレースモードへ切り換え、トレース走行により作業車1を充電ステーション3へ帰還させる。
走行制御部312は、トレースモードにおいて、一方の磁気センサ(例えば40L)をエリアワイヤ2の内側に位置させながら他方の磁気センサ(例えば40R)の検出値に基づき走行モータ18L,18を制御する。すなわち、磁気センサ40Rにより検出された磁界強度Hが0を維持するように、磁気センサ40Rの出力に応じて作業車1の旋回角を調整しながら作業車1を走行させる。これにより、図3に示すように磁気センサ40Rがエリアワイヤ2上を移動し、作業車1がエリアワイヤ2に沿って周回する。
経路生成部313は、トレースモード時に検出された作業車1の旋回角θと走行距離Lとに基づき、エリアワイヤ2によって画定される作業領域ARの境界線に沿った走行経路PAを生成する。旋回角θは、Yawセンサ32により検出される角速度を経路生成部313が時間積分することによって取得する。走行距離Lは、車輪速センサ37により検出される車輪速を経路生成部313が時間積分することによって取得する。左右の車輪速センサ37の出力が異なる場合には、その平均値を用いて走行距離Lを算出すればよい。
本実施形態では、複数のセルを配列してなるビットマップ上に走行経路PA(PAc)を生成する。図7は、走行経路PAcの生成手順を説明する図である。図7では、一辺が所定長さa(例えば200mm)の正方形状のセル51を、X軸とY軸とを含む水平面(XY平面)内に格子状に配列してビットマップ50を形成する。各セル51は所定位置(例えば充電ステーション3)を基準とした位置情報を含む。なお、セル51の寸法は適宜変更可能であり、作業機16の作業幅(ブレード最外径)に一致するように寸法を設定してもよい。
走行経路PAcの生成にあたっては、まず、Yawセンサ32からの信号に基づき所定時間Δt(例えば100ms)毎に基準線(例えばX軸)に対する作業車1の旋回角Δθを検出する。さらに、車輪速センサ37からの信号に基づき所定時間Δtの間に作業車1が走行した走行距離ΔLを検出する。
次いで、検出された旋回角Δθと走行距離ΔLとを用いて、次式(I)により、基準位置(例えば充電ステーション3の位置)に対するXY平面上における所定時間Δt毎の作業車1の移動点Pの位置座標(X,Y)を算出する。
X=ΔL×cosΔθ,Y=ΔL×sinΔθ ・・・(I)
図7に示すように、算出された移動点Pを順次直線で結ぶことにより、走行経路PAが得られる。この走行経路PAを含むセル51a(斜線部)がビットマップ上の走行経路PAcを構成する。このようにしてビットマップ上にセル単位で走行経路PAcを生成する。走行経路PA(PAc)は作業領域ARの境界線となる。
図8は、作業車1を実際にエリアワイヤ2に沿ってトレース走行させることにより得られたビットマップ上の走行経路PAcの一例を示す図である。なお、図8は走行経路PAcの生成途中の状態を示す。図8より明らかなように、エリアワイヤ2と走行経路PAc(斜線部)とは良好に対応しており、本実施形態のようにエリアワイヤ2に沿って作業車1を走行させることで、境界線を示す良好な走行経路PAcが得られる。
記憶部314は、トレースモード時に境界線の内側の磁気センサ(例えば40L)により検出された磁界強度Hを走行経路PAに対応付けて記憶する。とくに本実施形態のように走行経路PAをセル単位で記憶する場合、記憶部314は、走行経路PAcを含むビットマップ上のセル51aの属性データとして、走行経路PAcを識別するための走行経路情報だけでなく磁界強度Hも記憶する。なお、走行経路PAcとなったセル51aではなく、その内側のセル51に対応付けて、磁気センサ40Lにより検出された磁界強度Hを記憶するようにしてもよい。例えば、セル寸法が磁気センサ40L,40R間の距離d0よりも小さい場合には、走行経路PAcを構成するセル51a上に磁気センサ40Lが存在しない可能性がある。この場合には、走行経路PAcを構成するセル51aよりも内側のセル51の属性データとして磁界強度Hを記憶すればよい。
位置特定部315は、作業モードにおいて、予め記憶部314に記憶された磁界強度H(以降、これを記憶済み磁界強度Haと呼ぶ)と一対の磁気センサ40L,40Rにより検出された磁界強度H(以降、これを検出磁界強度Hbと呼ぶ)との比較結果に基づき、作業車1の位置を特定する。すなわち、作業車1が作業領域AR内を走行してエリアワイヤ2上のセル51aに到達すると、磁気センサ40L,40Rの少なくとも一方は、記憶済み磁界強度Haと同一ないしほぼ同一の磁界強度Hを検出する。したがって、Yawセンサ32と車輪速センサ37からの信号に基づき作業領域AR内における作業車1のおおよその位置を把握した上で、その位置近傍における記憶済み磁界強度Haの中から、検出磁界強度Hbと一致するものを探索する。
とくに本実施形態では、ビットマップ上のセル51(51a)に対応付けて、換言すればセル51の属性データとして磁界強度Hを記憶する。したがって、位置特定部315は、各セル51aに対応する記憶済み磁界強度Haと検出磁界強度Hbとを比較し、両者が一致するセル51aを探索し、このセル51aの位置情報により作業車1の位置を特定する。これにより、作業領域AR内に勾配や轍等が存在し、Yawセンサ32と車輪速センサ37からの信号によって把握される作業車1の位置と実際の作業車1の位置との間にずれが生じた場合であっても、作業車1の位置を精度よく検出することができる。
記憶済み磁界強度Haの変化が少ない領域、例えば隣り合うセル51aの記憶済み磁界強度Hにほとんど差がない領域においては、検出磁界強度Hbと各セル51aの記憶済み磁界強度Haとを比較するだけでは、作業車1の位置を精度よく特定できないおそれがある。この場合、作業モード時に走行経路PAの一部を作業車1が一時的に走行(トレース走行)するように走行制御部312が走行モータ18を制御するとともに、複数点の検出磁界強度を取得し、複数の検出磁界強度Hbと記憶済み磁界強度Haとの比較結果に基づき、位置特定部316が作業車1の位置を特定してもよい。
例えば、複数の検出磁界強度Hbと複数の記憶済み磁界強度Haとが一致するか否かを判定することにより作業車1の位置を特定してもよい。このように複数のセル51aの記憶済み磁界強度Haと検出磁界強度Hbとを比較することで、作業車1の位置検出精度をより一層高めることができる。なお、検出磁界強度Hbと記憶済み磁界強度Haとが一致するか否かではなく、検出磁界強度Hbと記憶済み磁界強度Haとが所定の相関関係を有するか否か、例えば検出磁界強度Hbに所定の係数を乗じた値が記憶済み磁界強度Haに一致するか否かを判定することにより、作業車1の位置を特定してもよい。
作業済み領域特定部316は、位置特定部315により特定された作業車1の位置に基づき、作業車1が作業を行った作業済み領域、換言すれば作業モードにおいて作業車1が通過した領域(作業済み領域)を特定する。例えば、作業モード時に走行制御部312は、作業車1が境界線(走行経路PA)に到達する度に所定ピッチずつ位置をずらしながら作業領域内で所定方向に沿って作業車1を繰り返し往復走行させ(これをパラレル走行と呼ぶ)、あるいは作業車1が境界線に到達する度に任意に方向を変えながら作業領域内で作業車1をランダムに走行させる(これをランダム走行と呼ぶ)。
この場合、位置特定部315は、作業車1が境界線に接近する度に、記憶済み磁界強度Haと検出磁界強度Hbとを比較して作業車1の位置を特定する。作業済み領域特定部316は、Yawセンサ32と車輪速センサ37とからの信号および位置特定部315により特定された作業車の位置情報に基づいて、作業領域内の作業車1の作業済み走行経路を特定する。本実施形態では、この作業済み走行経路をセル単位で特定し、作業済み走行経路上のセル51の属性データとして、作業済み領域と未作業領域とを識別する作業済み情報を記憶する。これによりビットマップ上の作業済み領域をセル単位で把握することができる。
図9は、ECU31において実行される処理の一例、とくにトレースモード時の処理を示すフローチャートである。このフローチャートに示す処理は、例えば充電ステーション3に作業車1が接続された状態で、ユーザにより操作スイッチ25(メインスイッチ26)がオンされると開始される。
ステップS1では、走行制御部312での処理により、走行モータ18に制御信号を出力し、作業車1を後進走行させる。これにより作業車1が充電ステーション3から離脱する。次いで、ステップS2に進む。
ステップS2では、走行制御部312での処理により、走行モータ18に制御信号を出力し、一方の磁気センサ(例えば40L)がエリアワイヤ2の内側に、他方の磁気センサ(例えば40R)がエリアワイヤ2上にそれぞれ位置するとともに、作業車1の直進方向がエリアワイヤ2と平行になるように、作業車1を旋回させる。すなわち、トレース走行の準備をする。次いで、ステップS3に進む。
ステップS3では、走行制御部312での処理により、磁気センサ40Rにより検出された磁界強度Hが0となるように、磁気センサ40Rの出力に応じてエリアワイヤ2に沿って作業車1をトレース走行させる。次いで、ステップS4に進む。
ステップS4では、経路生成部313での処理により、Yawセンサ32により検出された作業車1の旋回角θと車輪速センサ37により検出された走行距離Lとに基づき、作業領域ARの境界線に沿った走行経路PAを生成する。より具体的には、ビットマップ50上にセル単位で走行経路PAcを生成し、走行経路PAcを含むセル51aの位置情報によって走行経路PAc(境界線)の位置を特定する。次いで、ステップS5に進む。
ステップS5では、記憶部314での処理により、境界線の内側の磁気センサ40Lにより検出された磁界強度Hを走行経路PAに対応付けて記憶する。より具体的には、走行経路PAcを含むビットマップ上のセル51aの属性データとして、走行経路情報とともに磁界強度Hを記憶する。次いで、ステップS6に進む。
ステップS6では、作業車1が充電ステーション3の近傍に位置するか否か、すなわち作業車1がエリアワイヤ2に沿った全周にわたる周回走行を完了したか否かを判定する。この判定は、例えば充電ステーション3に電流を流してその周囲に特有の磁界を発生させ、それを磁気センサ40L,40Rで検出することにより行う。ステップS6で否定されると、ステップS3に戻り、ステップS6で肯定されるまで同様の処理を繰り返す。ステップS6で肯定されるとステップS7に進む。
ステップS7では、走行制御部312での処理により、作業車1の走行を停止させる。このとき、経路生成部313での処理による走行経路PA(PAc)の生成が完了する。次いで、ステップS8に進む。
ステップS8では、モード切換部311での処理によりトレースモードから作業モードに切り換え、走行経路PAc(境界線)の内側の作業領域ARで作業を開始させる。なお、ステップS7で作業車1の走行を停止させた後に作業車1を充電ステーション3に接続し、作業開始前にバッテリ20に充電するようにしてもよい。
作業モードにおいては、作業モータ17により作業機16を駆動しながら、走行制御部312での処理により作業車1をパラレル走行またはランダム走行させ、芝刈り作業を行う。作業モード時には、作業済み領域特定部316での処理により、Yawセンサ32と車輪速センサ37からの信号により作業車1の位置を検出することで作業済み領域を特定し、作業車1が作業済み領域よりも未作業領域を優先的に走行するよう、作業車1の走行動作を制御する。これにより作業領域AR内で効率的に芝刈り作業を行うことができる。
作業モード時に作業車1が境界線に接近すると、位置特定部315での処理により検出磁界強度Hbと記憶済み磁界強度Haとを比較し、その比較結果に基づき作業車1の位置を特定する。これにより作業車1の位置を精度よく特定(検出)することができる。したがって、作業予定領域の全域を作業車1に万遍なく走行させることができ、芝刈り作業時の刈り残しを防ぐことができる。また、作業車1を充電ステーション3に帰還させる場合に、未作業領域を選択して作業車1を充電ステーション3に帰還させることができ、充電ステーション3への効率的な帰還が可能である。
本実施形態の効果を検証するため、図10に示すエリアワイヤ2に沿って作業車1を実際に周回走行させ、そのときのエリアワイヤ2の内側の磁気センサ(例えば40L)の出力(電圧V)を測定した。その結果を図11に示す。作業車1は図10の充電ステーション3から走行を開始しており、図11の横軸は充電ステーション3からの距離Lである。図11に示すように、磁気センサ40Lの出力は、充電ステーション3からの距離Lに応じてピーク値を伴って変化した。
特に、作業車1は初めに後進および旋回するため(ステップS1、ステップS2)、スタート直後に磁気センサ40Lの磁界強度の出力Vは低下した(図11のa)。その後、作業車1が作業領域ARを内回りする部位(図10のP4、P5)では、磁気センサ40の出力が上昇し(図11のb)、作業車1が作業領域ARを外回りする部位(図10のP6)では出力が低下した(図11のc)。このように磁気センサ40Lの出力は、作業車1の周囲のエリアワイヤ2の配置パターンに応じて変化した。したがって、図11の磁気センサ40Lの出力値を予め記憶し、作業モード時の磁気センサ40L,40Rの検出値と比較することで、作業車1の位置を精度よく特定することができる。
本実施形態によれば以下のような作用効果を奏することができる。
(1)走行モータ18(走行手段の一例)を有する作業車1に、予め敷設されたエリアワイヤ2によって画定される作業領域ARを自律走行させる自律走行作業車の制御装置は、以下のように構成する。すなわち、自律走行作業車の制御装置は、作業車1の車体に車幅方向に互いに離間して配置され、それぞれがエリアワイヤ2を流れる電流によって発生する磁界強度Hを検出する一対の磁気センサ40L,40R(図2)と、作業車1の旋回角θを検出するYawセンサ32(旋回角検出部の一例)と、作業車1の走行距離Lを検出する車輪速センサ37(走行距離検出部の一例)と、作業車1が自律走行により作業を行う作業モードの前のトレースモードにおいて、エリアワイヤ2に沿って作業車1が走行するように一対の磁気センサ40L,40Rのうちの一方の磁気センサ(例えば40L)をエリアワイヤ2の内側に位置させながら一対の磁気センサ40L,40Rのうちの他方の磁気センサ(例えば40R)の検出値に基づき走行モータ18を制御する走行制御部312(ステップS3)と、トレースモード時にYawセンサ32により検出された旋回角θと車輪速センサ37により検出された走行距離Lとに基づき、作業領域ARの境界線に沿った走行経路PAを生成する経路生成部313(ステップS4)と、トレースモード時に一方の磁気センサ40Lにより検出された磁界強度Hを走行経路PAに対応付けて記憶する記憶部314(ステップS5)と、作業モードにおいて、一対の磁気センサ40L,40Rにより検出された磁界強度H(検出磁界強度Hb)と記憶部314に記憶された磁界強度H(記憶済み磁界強度Ha)との比較結果に基づき、作業車1の位置を特定する位置特定部315とを備える。
すなわち、本実施形態では、エリアワイヤ2の内側の磁界強度Hが、エリアワイヤ2からの距離に応じて変化するだけでなく、作業車1の周囲のエリアワイヤ2の配置パターンに応じて変化する点を考慮し、検出磁界強度Hbと記憶済み磁界強度Haとの比較結果に基づき作業車1の位置を特定する。これにより地磁気センサやGPSセンサ等の位置検出センサを用いることなく、作業車1の位置を精度よく検出することができる。また、位置検出センサが不要であるため、装置全体を安価に構成することができる。位置検出センサを設けるためのフレーム構造の見直し等も不要であり、既存の装置にも容易に適用することができる。
(2)とくに、経路生成部313は、複数のセル51を配列してなるビットマップ上に走行経路PAcを生成し(図8)、記憶部314は、走行経路PAcに対応するビットマップ上のセル51(51a)に対応付けて磁界強度Hを記憶し、位置特定部315は、ビットマップ上のセル51の位置情報により作業車1の位置を特定する。このようにビットマップ50を用いてセル単位で作業車1の位置を特定する場合、磁気センサ40Lの検出値をセル51の属性データとして記憶すればよいので、データ処理が容易である。また、その後の作業もセル単位で行うことで、作業モード時における未作業領域の判定も容易である。
(3)自律走行作業車の制御装置は、位置特定部315により特定された作業車1の位置に基づき、作業車1が作業を行った作業済み領域を特定する作業済み領域特定部316をさらに備える。したがって、作業領域AR内の未作業領域を精度よく把握することができ、作業領域ARの全域にわたり効率よく作業を行うことができる。
(4)走行制御部312は、作業モード時に走行経路PAの一部を作業車1が一時的に走行するように走行モータ18を制御し、位置特定部315が、そのときの検出磁界強度Hbと記憶済み磁界強度Haとの比較結果に基づいて作業車1の位置を特定するように構成した場合、作業車1の位置を一層精度よく特定することができる。すなわち、この場合、作業領域AR内における連続した複数の記憶済み磁界強度Haを検出磁界強度Hbと比較するため、検出磁界強度Hbと記憶済み磁界強度Haとが一致するか否かを精度よく判定することができ、作業車1の位置検出精度が向上する。
(5)一対の磁気センサ40L,40Rは、作業車1の車幅方向中心を通り作業車1の直進方向に向かう中心線CLに対して対称に配置される。このため、エリアワイヤ2に沿って作業車1を時計回りに走行させた場合と反時計回りに走行させた場合とで、エリアワイヤ2の内側の磁気センサ40L,40Rは互いに同一の信号を出力する。したがって、作業車1の周回方向を考慮することなく、作業車1を走行させることができる。
−変形例−
上記実施形態は、例えば以下のような変形が可能である。上記実施形態では、モード切換部311で作業モードとトレースモードとを切り換えるようにしたが、さらに作業車1を充電ステーション3へ帰還させる帰還モードに切り換え可能としてもよい。これらモードを、モード切換部での処理だけでなく、例えば操作スイッチ25の操作によりユーザが手動で切換可能としてもよい。
上記実施形態では、左右一対の走行モータ18L,18Rにより作業車を走行させるようにしたが、走行手段の構成はこれに限らない。例えば、作業車1に内燃機関を搭載し、内燃機関の動力により作業車1を走行するようにしてもよい。前輪13あるいは後輪14を操舵可能なアクチュエータを作業車1に搭載し、アクチュエータの駆動により作業車を旋回させるようにしてもよい。したがって、作業車1の構成は上述したものに限らない。
上記実施形態では、一対の磁気センサ40L,40Rを中心線CLに対して左右対称となるように車体10に配置したが、磁気センサ40L,40Rが車体10に車幅方向に互いに離間して配置されれば、トレースモード時に一方の磁気センサによりエリアワイヤ2の内側の磁気強度Hを検出できる。したがって、磁気センサ40L,40Rは左右対称に配置しなくてもよく、磁気センサ40L,40Rの配置は上述したものに限らない。
上記実施形態では、Yawセンサ32により検出された作業車1の旋回角速度をECU31が時間積分して旋回角を検出(算出)したが、旋回角検出部の構成はこれに限らない。例えば旋回角を直接検出するセンサを設けてもよい。上記実施形態では、車輪速センサ37により検出された左右の後輪14の車輪速度をECU31が時間積分して走行距離を検出(算出)したが、走行距離検出部の構成はこれに限らない。例えば走行距離を直接検出するセンサを設けてもよい。
上記実施形態では、複数のセル51を配列してなるビットマップ50上に走行経路PAcを生成し、走行経路PAcに対応するビットマップ50上のセル51(51a)に対応付けて磁界強度Hを記憶し、ビットマップ50上のセル51の位置情報により作業車1の位置を特定したが、ビットマップ50を用いずに作業車1の位置を特定してもよい。すなわち、トレースモード時に旋回角検出部により検出された旋回角θと走行距離検出部により検出された走行距離Lとに基づき、作業領域ARの境界線に沿った走行経路PAを生成し、トレースモード時に一方の磁気センサ(例えば40L)により検出された磁界強度を走行経路PAに対応付けて記憶し、作業モードにおいて、一対の磁気センサ40L,40Rにより検出された磁界強度Haと記憶された磁界強度Hbとの比較結果に基づき、作業車1の位置を特定するのであれば、自律走行作業車の制御装置の構成はいかなるものでもよい。
上記実施形態は、芝刈り作業車に適用したが、本発明は、これに限らず種々の自律走行作業車に適用可能である。したがって、作業機16の構成は上述したものに限らない。
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態および変形例の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。すなわち、本発明の技術的思想の範囲内で考えられる他の形態についても、本発明の範囲内に含まれる。また、上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能である。
1 自律走行作業車、2 エリアワイヤ、18 走行モータ、31 ECU、32 Yawセンサ、37 車輪速センサ、40L,40R 磁気センサ、312 走行制御部、313 経路生成部、314 記憶部、315 位置特定部、PA 走行経路

Claims (5)

  1. 走行手段を有する作業車に、予め敷設されたエリアワイヤによって画定される作業領域を自律走行させる自律走行作業車の制御装置であって、
    前記作業車の車体に車幅方向に互いに離間して配置され、それぞれが前記エリアワイヤを流れる電流によって発生する磁界強度を検出する一対の磁気センサと、
    前記作業車の旋回角を検出する旋回角検出部と、
    前記作業車の走行距離を検出する走行距離検出部と、
    前記作業車が自律走行により作業を行う作業モードの前のトレースモードにおいて、前記エリアワイヤに沿って前記作業車が走行するように前記一対の磁気センサのうちの一方の磁気センサを前記エリアワイヤの内側に位置させながら前記一対の磁気センサのうちの他方の磁気センサの検出値に基づき前記走行手段を制御するとともに、前記作業モードにおいて、前記一対の磁気センサの検出値に基づき前記作業車が前記作業領域内を自律走行するように前記走行手段を制御する走行制御部と、
    前記トレースモード時に前記旋回角検出部により検出された旋回角と前記走行距離検出部により検出された走行距離とに基づき、前記作業領域の境界線に沿った走行経路を生成する経路生成部と、
    前記トレースモード時に前記一方の磁気センサにより検出された磁界強度を前記走行経路に対応付けて記憶する記憶部と、
    前記作業モードにおいて、前記一対の磁気センサにより検出された磁界強度と前記記憶部に記憶された磁界強度との比較結果に基づき、前記作業車の位置を特定する位置特定部とを備え、
    前記位置特定部は、前記作業モード時に前記作業車が前記境界線に接近して前記一対の磁気センサにより前記記憶部に記憶された磁界強度と同一またはほぼ同一の磁界強度検出されると、前記作業車の位置を特定することを特徴とする自律走行作業車の制御装置。
  2. 請求項1に記載の自律走行作業車の制御装置において、
    前記経路生成部は、複数のセルを配列してなるビットマップ上に前記走行経路を生成し、
    前記記憶部は、前記走行経路に対応する前記ビットマップ上のセルに対応付けて前記磁界強度を記憶し、
    前記位置特定部は、前記ビットマップ上のセルの位置情報により前記作業車の位置を特定することを特徴とする自律走行作業車の制御装置。
  3. 請求項1または2に記載の自律走行作業車の制御装置において、
    前記位置特定部により特定された前記作業車の位置に基づき、前記作業車が作業を行った作業済み領域を特定する作業済み領域特定部をさらに備えることを特徴とする自律走行作業車の制御装置。
  4. 請求項1〜3のいずれか1項に記載の自律走行作業車の制御装置において、
    前記走行制御部は、前記作業モード時に前記走行経路の一部を前記作業車が一時的に走行するように前記走行手段を制御し、
    前記位置特定部は、前記作業車に前記走行経路の一部を一時的に走行させた際に前記一対の磁気センサにより検出された磁界強度と前記記憶部に記憶された磁界強度との比較結果に基づき、前記作業車の位置を特定することを特徴とする自律走行作業車の制御装置。
  5. 請求項1〜4のいずれか1項に記載の自律走行作業車の制御装置において、
    前記一対の磁気センサは、前記作業車の車幅方向中心を通り前記作業車の直進方向に向かう中心線に対して対称に配置されることを特徴とする自律走行作業車の制御装置。
JP2015024537A 2015-02-10 2015-02-10 自律走行作業車の制御装置 Expired - Fee Related JP6193898B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015024537A JP6193898B2 (ja) 2015-02-10 2015-02-10 自律走行作業車の制御装置
ES16154050.5T ES2691233T3 (es) 2015-02-10 2016-02-03 Aparato de control para un vehículo utilitario de navegación autónoma
EP16154050.5A EP3056960B1 (en) 2015-02-10 2016-02-03 Control apparatus for autonomously navigating utility vehicle
US15/016,156 US9888625B2 (en) 2015-02-10 2016-02-04 Control apparatus for autonomously navigating utility vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015024537A JP6193898B2 (ja) 2015-02-10 2015-02-10 自律走行作業車の制御装置

Publications (2)

Publication Number Publication Date
JP2016148937A JP2016148937A (ja) 2016-08-18
JP6193898B2 true JP6193898B2 (ja) 2017-09-06

Family

ID=55310695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015024537A Expired - Fee Related JP6193898B2 (ja) 2015-02-10 2015-02-10 自律走行作業車の制御装置

Country Status (4)

Country Link
US (1) US9888625B2 (ja)
EP (1) EP3056960B1 (ja)
JP (1) JP6193898B2 (ja)
ES (1) ES2691233T3 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016087998A2 (en) 2014-12-02 2016-06-09 Husqvarna Ab All wheel drive robotic vehicle with steering brake
US9538702B2 (en) * 2014-12-22 2017-01-10 Irobot Corporation Robotic mowing of separated lawn areas
JP6212590B2 (ja) * 2016-03-31 2017-10-11 本田技研工業株式会社 自律走行作業車の制御装置
WO2018013045A1 (en) 2016-07-12 2018-01-18 Husqvarna Ab All wheel drive robotic vehicle with steering brake
JP6373930B2 (ja) * 2016-10-31 2018-08-15 本田技研工業株式会社 自律走行車両
GB2556036A (en) * 2016-11-03 2018-05-23 Fleet Line Markers Ltd Service vehicle and management system
EP4029372B1 (en) 2016-12-15 2024-08-14 Positec Power Tools (Suzhou) Co., Ltd. Pet collar system and pet collar control method
JP6681326B2 (ja) 2016-12-27 2020-04-15 本田技研工業株式会社 作業システムおよび作業方法
CN108345298A (zh) * 2017-01-25 2018-07-31 苏州宝时得电动工具有限公司 一种自移动设备及其控制方法和自动工作系统
WO2018142483A1 (ja) * 2017-01-31 2018-08-09 本田技研工業株式会社 無人作業システム、管理サーバー、及び無人作業機
EP3413156A1 (de) * 2017-06-09 2018-12-12 Andreas Stihl AG & Co. KG Verfahren zum ermitteln einer position eines autonomen mobilen grünflächenbearbeitungsroboters und grünflächenbearbeitungssystem
EP3684162B1 (en) * 2017-11-20 2021-01-27 The Toro Company System and method for operating an autonomous robotic working machine within a travelling containment zone
CN107976197A (zh) * 2017-12-03 2018-05-01 丁云广 一种移动平台组合导航方法
US11073828B2 (en) 2017-12-08 2021-07-27 Samsung Electronics Co., Ltd. Compression of semantic information for task and motion planning
SE541895C2 (en) 2018-01-31 2020-01-02 Husqvarna Ab System and method for navigating a robotic lawnmower into a docking position
DE112018007178T5 (de) * 2018-02-28 2020-12-10 Honda Motor Co., Ltd. Steuervorrichtung, bewegliches objekt, steuerverfahren und programm
CN110347144B (zh) * 2018-04-03 2023-06-09 苏州宝时得电动工具有限公司 自移动设备及其自学习方法、可读存储介质
EP4397167A3 (en) 2018-08-08 2024-09-25 The Toro Company Autonomous machine navigation and training using vision system
EP3855878A4 (en) * 2018-09-28 2022-04-27 Techtronic Cordless GP DOCKING STATION FOR USE WITH A AUTONOMOUS TOOL, AUTONOMOUS LAWN MOWER, AND METHOD OF ADDING A AUTONOMOUS TOOL TO A DOCKING STATION
CN109392418A (zh) * 2018-10-09 2019-03-01 常州格力博有限公司 推草机
CN111930107A (zh) * 2019-05-13 2020-11-13 苏州宝时得电动工具有限公司 自行走设备及其控制方法和装置
KR102315678B1 (ko) * 2019-07-05 2021-10-21 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
US20220378268A1 (en) * 2019-11-25 2022-12-01 Murata Machinery, Ltd. Autonomously traveling vehicle, control method, and program
DE112020006471T5 (de) 2020-01-09 2022-10-27 Honda Motor Co., Ltd. Steuervorrichtung und Arbeitsmaschine
CN115166634B (zh) * 2022-05-18 2023-04-11 北京锐士装备科技有限公司 一种多手段结合的无人机飞手定位方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL113913A (en) * 1995-05-30 2000-02-29 Friendly Machines Ltd Navigation method and system
JPH1056817A (ja) * 1996-08-21 1998-03-03 Kubota Corp 移動車の位置検出装置及びそれを用いた誘導制御装置
JP2005025516A (ja) * 2003-07-02 2005-01-27 Fujitsu Ltd 電波状況を自律的にリカバリする移動ロボット
JP5130419B2 (ja) * 2008-05-30 2013-01-30 国立大学法人宇都宮大学 自己位置認識方法及び自己位置認識装置
WO2011115534A1 (en) * 2010-03-17 2011-09-22 Husqvarna Ab Method and system for navigating a robotic garden tool
JP5420510B2 (ja) * 2010-09-30 2014-02-19 本田技研工業株式会社 自律走行作業車の制御装置
EP2622425B1 (en) * 2010-10-01 2018-06-20 Husqvarna AB Method and system for guiding a robotic garden tool
JP5869954B2 (ja) * 2012-05-23 2016-02-24 本田技研工業株式会社 無人走行作業システム
US9788481B2 (en) * 2014-10-28 2017-10-17 Deere & Company Robotic mower navigation system

Also Published As

Publication number Publication date
EP3056960A1 (en) 2016-08-17
JP2016148937A (ja) 2016-08-18
US9888625B2 (en) 2018-02-13
ES2691233T3 (es) 2018-11-26
EP3056960B1 (en) 2018-08-29
US20160227704A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
JP6193898B2 (ja) 自律走行作業車の制御装置
JP5973610B1 (ja) 無人作業車の制御装置
JP6014192B1 (ja) 無人作業車の制御装置
JP6038990B2 (ja) 無人作業車の制御装置
JP6080887B2 (ja) 充電ステーションおよび無人作業車の充電ステーション誘導装置
JP5973609B1 (ja) 無人作業車の制御装置
US8972092B2 (en) Control apparatus for unmanned autonomous operating vehicle
EP2684438B1 (en) Boundary sensor assembly for a robotic lawn mower, robotic lawn mower and robotic lawn mower system
EP2626759B1 (en) Guidance apparatus of unmanned autonomous operating vehicle
US9063547B2 (en) Control apparatus of unmanned autonomous operating vehicle
US9483053B2 (en) Arrangement of area wire for unmanned autonomous operating vehicle and control apparatus of the same
JP6014182B2 (ja) 自律走行作業車の制御装置
US9026299B2 (en) Navigation system and method for autonomous mower
JP5420511B2 (ja) 自律走行作業車の制御装置
JP6498627B2 (ja) 自律走行作業車の制御装置
US11912360B2 (en) Vehicle control method, vehicle control system, and vehicle
JP2016048415A (ja) 自律走行作業車の制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170810

R150 Certificate of patent or registration of utility model

Ref document number: 6193898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees