JP6172434B2 - 熱電変換素子及びその製造方法 - Google Patents

熱電変換素子及びその製造方法 Download PDF

Info

Publication number
JP6172434B2
JP6172434B2 JP2013026027A JP2013026027A JP6172434B2 JP 6172434 B2 JP6172434 B2 JP 6172434B2 JP 2013026027 A JP2013026027 A JP 2013026027A JP 2013026027 A JP2013026027 A JP 2013026027A JP 6172434 B2 JP6172434 B2 JP 6172434B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
sheet layer
layer
spin
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013026027A
Other languages
English (en)
Other versions
JP2014154850A (ja
Inventor
賢二 廣瀬
賢二 廣瀬
明宏 桐原
明宏 桐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2013026027A priority Critical patent/JP6172434B2/ja
Publication of JP2014154850A publication Critical patent/JP2014154850A/ja
Application granted granted Critical
Publication of JP6172434B2 publication Critical patent/JP6172434B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Description

本発明は、スピンゼーベック効果及び逆スピンホール効果に基づく熱電変換素子、及びその製造方法に関する。
近年、「スピントロニクス(spintronics)」と呼ばれる電子技術が脚光を浴びている。従来のエレクトロニクスは、電子の1つの性質である「電荷」だけを利用してきたが、スピントロニクスは、それに加えて、電子の他の性質である「スピン」をも積極的に利用する。特に、電子のスピン流の流れである「スピン流(spin−current)」は重要な概念である。スピン流のエネルギー散逸は少ないため、スピン流を利用することによって高効率な情報伝達を実現できる可能性がある。従って、スピン流の生成、検出、制御は重要なテーマである。
例えば、電流が流れるとスピン流が生成される現象が知られている。これは、「スピンホール効果(spin−Hall effect)」と呼ばれている。また、その逆の現象として、スピン流が流れると起電力が発生することも知られている。これは、「逆スピンホール効果(inverse spin−Hall effect)」と呼ばれている。逆スピンホール効果を利用することによって、スピン流を検出することができる。尚、スピンホール効果も逆スピンホール効果も、「スピン軌道相互作用(spin orbit coupling)」が大きな物質(例:Pt、Pd)において有意に発現する。
また、最近の研究により、磁性体における「スピンゼーベック効果(spin−Seebeck effect)」の存在も明らかになっている(例えば非特許文献1参照)。スピンゼーベック効果とは、磁性体に温度勾配が印加されると、温度勾配と平行方向にスピン流が誘起される現象である。すなわち、スピンゼーベック効果により、熱がスピン流に変換される(熱スピン流変換)。非特許文献2、3では、イットリウム鉄ガーネット(YIG、Y3Fe5O12)といったバルク磁性絶縁体と金属膜との界面におけるスピンゼーベック効果が報告されている。
温度勾配によって誘起されたスピン流は、上述の逆スピンホール効果を利用して電界(電流、電圧)に変換することが可能である。つまり、スピンゼーベック効果と逆スピンホール効果を併せて利用することによって、温度勾配を電気に変換する「熱電変換」が可能となる。
Uchida et al., "Observation of the spin Seebeck effect", Nature 455, p.778, 2008. Uchida et al., "Spin Seebeck insulator", Nature Materials, 2010, vol. 9, p.894. Uchida et al., "Observation of longitudinal spin−Seebeck effect in magnetic insulators", Applied Physics Letters, 2010, vol.97, p172505.
上述の通り、スピンゼーベック効果によりスピン流を生成する層として、バルク磁性絶縁体を用いる例が知られている。しかしながら、バルク磁性絶縁体を用いた熱電変換素子の場合、その加工は難しく、また、曲げに対する応力耐性も低い。つまり、バルク磁性絶縁体を用いた熱電変換素子を様々な場面で利用することは困難であった。
本発明の1つの目的は、応力耐性に優れたフレキシブルな熱電変換素子を提供することにある。
本発明の1つの観点において、熱電変換素子が提供される。その熱電変換素子は、複数の磁性体微粒子が埋め込まれた絶縁体シート層と、起電層とを備える。起電層は、スピン軌道相互作用を発現する材料で形成され、絶縁体シート層との間でスピン流の伝搬が生じるように設けられる。
本発明の他の観点において、熱電変換素子の製造方法が提供される。その製造方法は、(A)複数の磁性体微粒子が埋め込まれた絶縁体シート層を形成する工程と、(B)絶縁体シート層との間でスピン流の伝搬が生じるように、スピン軌道相互作用を発現する材料で起電層を形成する工程と、を含む。
本発明によれば、応力耐性に優れたフレキシブルな熱電変換素子が実現される。
図1は、本発明の実施の形態に係る熱電変換素子の構成を示す概略図である。 図2は、絶縁体シート層におけるスピン流の詳細を示す概念図である。 図3は、本発明の実施の形態の変形例に係る熱電変換素子の構成を示す概略図である。
添付図面を参照して、本発明の実施の形態に係る熱電変換素子及びその製造方法を説明する。
1.構成
図1は、本発明の第1の実施の形態に係る熱電変換素子1の構成を示す概略図である。本実施の形態に係る熱電変換素子1は、可とう性(flexibility)を有している。ここで、可とう性とは、可塑性(plasticity)と弾性(elasticity)の両方の概念を含む。すなわち、熱電変換素子1は曲げることが可能である。
より詳細には、図1に示されるように、熱電変換素子1は、絶縁体シート層10と起電層40とを備えている。尚、本明細書において、各層の表面に垂直な方向はZ方向である。Z方向に直交する面内方向は、X方向とY方向である。X方向とY方向は互いに直交している。
絶縁体シート層10は、可とう性を有する絶縁体層である。この絶縁体シート層10の材料としては、加工性及び応力耐性に優れたフレキシブルな構造を有する材料が用いられる。そのような材料の中でも、熱伝導率が低い材料が特に好適である(その理由は後述される)。そのような好適な材料としては、ポリイミド有機樹脂(熱伝導度:0.1〜0.5W/(m・K))等の高分子系有機樹脂が挙げられる。
また、絶縁体シート層10は、スピンゼーベック効果によりスピン流を生成するために磁性体を含有している。より詳細には、本実施の形態によれば、絶縁体シート層10には、多数の磁性体微粒子20がランダムに埋め込まれている。磁性体微粒子20の材料としては、磁性ガーネットが挙げられる。
起電層(導電層)40は、逆スピンホール効果(スピン軌道相互作用)を発現する材料で形成される。より詳細には、起電層40の材料は、スピン軌道相互作用の大きな金属材料を含有する。例えば、スピン軌道相互作用の比較的大きなAuやPt、Pd、Ir、その他f軌道を有する金属材料、またはそれらを含有する合金材料を用いる。また、Cuなどの一般的な金属膜材料に、Au、Pt、Pd、Irなどの材料を0.5〜10%程度ドープするだけでも、同様の効果を得ることができる。あるいは、起電層40は、ITOなどの酸化物であってもよい。
これら絶縁体シート層10と起電層40とは、互いに磁気的に結合するように設けられている。ここで、磁気的に結合する状態とは、スピン流の伝搬が生じる状態を意味する。つまり、起電層40は、絶縁体シート層10との間でスピン流の伝搬が生じるように設けられている。図1で示される例では、起電層40は、絶縁体シート層10の上面に接触するように形成されている。
これら絶縁体シート層10と起電層40の積層により、熱電変換素子1は、スピンゼーベック効果と逆スピンホール効果を利用した熱電変換機能を有することになる。より詳細には、絶縁体シート層10中の磁性体微粒子20は、スピンゼーベック効果によって温度勾配からスピン流を生成(駆動)する。起電層40は、生成されたスピン流を受け取り、逆スピンホール効果によってスピン流から起電力を発生する。ここで、発生する起電力の方向は、磁性体微粒子20の磁化方向と温度勾配方向との外積で与えられる。
第1端子50−1と第2端子50−2は、起電層40で発生した起電力を効率的に取り出すために設けられている。より詳細には、第1端子50−1と第2端子50−2は、起電層40の表面上の離れた位置にそれぞれ接続されるように形成されている。これら第1端子50−1と第2端子50−2を用いることにより、起電層40で発生した起電力を取り出すことができる。
2.絶縁体シート層10の詳細
図2は、絶縁体シート層10に−Z方向の温度勾配が印加された場合に生成されるスピン流を概念的に示している。図2に示されるように、スピンゼーベック効果により、温度勾配に由来したスピン流が絶縁体シート層10中を+Z方向(高温部から低温部へ向かう方向)に流れる。このとき、スピン流は、長距離磁気双極子相互作用により、磁性体微粒子20を伝播していく。このように生成され伝搬したスピン流は、上述の起電層40に流れ込み、そこにおいて逆スピンホール効果によって起電力に変換される。
ここで、起電層40において得られる起電力は、スピン流の大きさに比例して大きくなる。また、そのスピン流の大きさは、絶縁体シート層10に印加される温度差に比例する。従って、起電力を大きくするためには、絶縁体シート層10の上下面間の温度差をなるべく大きく保つことが好ましい。そのためには、絶縁体シート層10の熱伝導率が低いことが好適である。すなわち、熱伝導率の低い材料で絶縁体シート層10を形成することにより、“熱電変換効率”を向上させることができるのである。
加工性及び応力耐性に優れ、且つ、熱伝導率が低い材料としては、ポリイミド有機樹脂(熱伝導度:0.1〜0.5W/(m・K))等の高分子系有機樹脂が挙げられる。比較例として、セラミック材料である磁性ガーネット材料の熱伝導率は、7W/(m・K)である。よって、ポリイミド系有機樹脂を用いた場合、比較例の場合と比べて、10倍以上の熱電変換効率が期待される。
また、絶縁体シート層10に多数の磁性体微粒子20が埋め込まれることにより、スピン流の伝搬が得られる。このときの磁性体微粒子20の充填率及び密度は、絶縁体シート層10の可とう性が失われず、且つ、スピン流の伝播が得られる範囲において決定される。スピン流の伝搬の観点から言えば、すべての磁性体微粒子20が他のいずれかの磁性体微粒子20と接触している構成が最も好ましい。但し、スピン流は長距離に及ぶ磁気双極子相互作用によって伝播するため、一部の磁性体微粒子20が他の磁性体微粒子20と接触していなくても問題はない。例えば、70%以上の磁性体微粒子20が他の磁性体微粒子20のいずれかと接触していればよい。80%以上の磁性体微粒子20が他のいずれかの磁性体微粒子20と接触していると更に好ましい。
また、多数の磁性体微粒子20が絶縁体シート層10にランダムに埋め込まれる。ランダムに配置された磁性体微粒子20の熱伝播は、熱波束拡散の局在化により減少する。このことも、熱伝導性の低下と熱電変換効率の向上に寄与する。尚、熱流は100ナノメートル程度の平均自由工程をもつため、磁性体微粒子20の大きさは、熱波束拡散の局在化が起こる大きさを考慮して、直径50〜150ナノメートルに設定される。
3.効果
以上に説明されたように、本実施の形態によれば、スピンゼーベック効果によりスピン流を生成する層として、多数の磁性体微粒子20が埋め込まれた絶縁体シート層10が用いられる。これにより、加工性及び応力耐性に優れたフレキシブルな熱電変換素子1が実現される。そして、そのような加工性及び応力耐性に優れたフレキシブルな熱電変換素子1は、様々な場面で利用しやすく、好適である。また、シート構造の場合、大面積化も容易であり、低コストで出力を高めることができる。
また、本実施の形態では、ポリイミド有機樹脂等の熱伝導率が低い材料で絶縁体シート層10が形成される。これにより、絶縁体シート層10の上下面間の温度差が大きく保たれ、起電層40に流入するスピン流が強くなり、結果として、起電層40において得られる起電力が大きくなる。すなわち、本実施の形態によれば、熱電変換素子1の熱電変換効率が向上する。
スピン流の伝搬は、絶縁体シート層10にランダムに埋め込まれた多数の磁性体粒子20により実現される。より詳細には、スピン流は、熱伝導率の低い絶縁体シート層10の中を、長距離磁気双極子相互作用によって伝播する。また、ランダムに配置された磁性体微粒子20の熱伝播は、熱波束拡散の局在化により減少する。このことも、熱伝導性の低下と熱電変換効率の向上に寄与する。
4.製造方法
図1を参照して、本実施の形態に係る熱電変換素子1の製造方法を説明する。
まず、絶縁体シート層10の材料である高分子系樹脂材料と、磁性体微粒子20(例:100ナノメートル程度の大きさのガーネット磁性微粒子)とを有機溶媒に溶かし込む。続いて、キャリアプレート上にその溶液を塗布して、高温で乾燥しフィルム化させる。これにより、磁性体微粒子20が埋め込まれた絶縁体シート層10が形成される。このように塗布法を採用することにより、低コストで応力耐性に優れた絶縁シート層10を形成することができる。
次に、起電層40を絶縁体シート層10上に形成する。例えば、印刷法により、起電層40を絶縁体シート層10上に成膜することができる。その後、絶縁体シート層10と起電層40の積層シートが、キャリアプレートから剥がされる。最後に第1端子50−1及び第2端子50−2が取り付けられる。このようにして、シート状の熱電変換素子1が得られる。
5.変形例
上述の通り、起電層40は、絶縁体シート層10との間でスピン流の伝搬が生じるように設けられる。図1で示された例では、絶縁体シート層10と起電層40は直接接触している。しかしながら、積層構造はそれに限られない。絶縁体シート層10と起電層40との間でスピン流の伝搬が生じる限り、他の構成であっても構わない。
例えば、図3に示されるように、絶縁体シート層10と起電層40との間に介在するように磁性薄膜30が形成されてもよい。つまり、起電層40は、磁性薄膜30を介して絶縁体シート層10上に形成されてもよい。この磁性薄膜30は、絶縁体シート層10から起電層40へのスピン注入効率を高める役割を果たす。
図1で示された積層構造の場合、絶縁体シート層10と起電層40との界面における製造プロセスによる乱れのために、起電層40へのスピン注入効率が低下する恐れがある。一方、本変形例では、絶縁体シート層10と起電層40との界面に、スピン伝導を向上させるための磁性薄膜30が挿入されている。これにより、起電層40へのスピン注入効率が増加し、結果として、熱電変換素子1の熱電変換効率が更に向上する。
但し、挿入される磁性薄膜30が厚過ぎるとフレキシブル性が損なわれる。また、磁性薄膜30を成膜する分だけ、製造プロセスが複雑になり、コストが増加する。従って、磁性薄膜30の挿入の要否は、要求される熱電変換効率、フレキシブル性及び製造コストの観点から決定されるとよい。
本実施の形態は、PCや携帯電話等の電子機器から排出される廃熱の電源への再利用、ウェアラブルな電子機器や様々な形状のセンサーへの給電素子といった用途に適用できる。また、本実施の形態は、熱電変換装置として使用されている大面積で様々な形状を有する夜間の太陽電池を補完する予備電源、寒冷地での屋内外の温度差を利用したヒーター、高熱を発生させるリチウム電池電気系統における熱電変換装置における用途にも適用可能である。
以上、本発明の実施の形態が添付の図面を参照することにより説明された。但し、本発明は、上述の実施の形態に限定されず、要旨を逸脱しない範囲で当業者により適宜変更され得る。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
複数の磁性体微粒子が埋め込まれた絶縁体シート層と、
スピン軌道相互作用を発現する材料で形成され、前記絶縁体シート層との間でスピン流の伝搬が生じるように設けられた起電層と
を備える
熱電変換素子。
(付記2)
付記1に記載の熱電変換素子であって、
前記絶縁体シート層の材料は、高分子系有機樹脂である
熱電変換素子。
(付記3)
付記1又は2に記載の熱電変換素子であって、
前記複数の磁性体微粒子は、前記絶縁体シート層にランダムに埋め込まれている
熱電変換素子。
(付記4)
付記1乃至3のいずれか一項に記載の熱電変換素子であって、
前記絶縁体シート層において、前記複数の磁性体微粒子のうち少なくとも一部は互いに接触している
熱電変換素子。
(付記5)
付記1乃至4のいずれか一項に記載の熱電変換素子であって、
前記絶縁体シート層と前記起電層は接触している
熱電変換素子。
(付記6)
付記1乃至4のいずれか一項に記載の熱電変換素子であって、
更に、前記絶縁体シート層と前記起電層との間に介在する磁性薄膜を備える
熱電変換素子。
(付記7)
複数の磁性体微粒子が埋め込まれた絶縁体シート層を形成する工程と、
前記絶縁体シート層との間でスピン流の伝搬が生じるように、スピン軌道相互作用を発現する材料で起電層を形成する工程と
を含む
熱電変換素子の製造方法。
1 熱電変換素子
10 絶縁体シート層
20 磁性体微粒子
30 磁性薄膜
40 起電層
50−1 第1端子
50−2 第2端子

Claims (6)

  1. 直径が50〜150ナノメートルの複数の磁性体微粒子が高分子系有機樹脂に埋め込まれた絶縁体シート層と、
    スピン軌道相互作用を発現する材料で形成され、前記絶縁体シート層との間でスピン流の伝搬が生じるように設けられた起電層と
    を備える
    熱電変換素子。
  2. 請求項1記載の熱電変換素子であって、
    前記複数の磁性体微粒子は、前記絶縁体シート層にランダムに埋め込まれている
    熱電変換素子。
  3. 請求項1又は2に記載の熱電変換素子であって、
    前記絶縁体シート層において、前記複数の磁性体微粒子のうち少なくとも一部は互いに接触している
    熱電変換素子。
  4. 請求項1乃至のいずれか一項に記載の熱電変換素子であって、
    前記絶縁体シート層と前記起電層は接触している
    熱電変換素子。
  5. 請求項1乃至のいずれか一項に記載の熱電変換素子であって、
    更に、前記絶縁体シート層と前記起電層との間に介在する磁性薄膜を備える
    熱電変換素子。
  6. 直径が50〜150ナノメートルの複数の磁性体微粒子が高分子系有機樹脂に埋め込まれた絶縁体シート層を形成する工程と、
    前記絶縁体シート層との間でスピン流の伝搬が生じるように、スピン軌道相互作用を発現する材料で起電層を形成する工程と
    を含む
    熱電変換素子の製造方法。
JP2013026027A 2013-02-13 2013-02-13 熱電変換素子及びその製造方法 Active JP6172434B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026027A JP6172434B2 (ja) 2013-02-13 2013-02-13 熱電変換素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026027A JP6172434B2 (ja) 2013-02-13 2013-02-13 熱電変換素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014154850A JP2014154850A (ja) 2014-08-25
JP6172434B2 true JP6172434B2 (ja) 2017-08-02

Family

ID=51576370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026027A Active JP6172434B2 (ja) 2013-02-13 2013-02-13 熱電変換素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP6172434B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6684076B2 (ja) * 2015-11-06 2020-04-22 アシザワ・ファインテック株式会社 熱電変換素子
KR102062959B1 (ko) * 2017-12-08 2020-01-06 울산과학기술원 플렉서블 복합 소자 및 그 제조방법과 그를 이용하여 제조된 열전 디바이스
KR102046715B1 (ko) * 2018-05-25 2019-12-04 울산과학기술원 페리 자성 재료의 제조방법 및 이를 포함하는 열전 소자

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267850A (ja) * 2007-04-17 2008-11-06 Nec Tokin Corp 受信用アンテナ
JP5267967B2 (ja) * 2007-11-22 2013-08-21 国立大学法人東北大学 スピン流熱変換素子及び熱電変換素子
JP2012253178A (ja) * 2011-06-02 2012-12-20 Nec Corp 熱電変換素子及びその製造方法、並びに熱電変換モジュール
JP6057182B2 (ja) * 2011-07-15 2017-01-11 日本電気株式会社 磁性体素子用の積層体及びこの積層体を備えた熱電変換素子並びにその製造方法

Also Published As

Publication number Publication date
JP2014154850A (ja) 2014-08-25

Similar Documents

Publication Publication Date Title
Yu et al. Large-strain, rigid-to-rigid deformation of bistable electroactive polymers
JP6143051B2 (ja) スピントロニクスデバイス
JP6164217B2 (ja) 熱電変換素子及びその製造方法
WO2012169509A1 (ja) 熱電変換素子
JP5987835B2 (ja) 熱電変換素子
JP6233320B2 (ja) 熱電変換素子及びその製造方法
WO2013047254A1 (ja) 熱電変換機能付き部材及びその製造方法
CN103718302A (zh) 热电转换元件和热电转换方法
JP6241951B2 (ja) 熱電変換素子とその使用方法とその製造方法
JP6172434B2 (ja) 熱電変換素子及びその製造方法
JP6066091B2 (ja) 熱電変換素子及びその製造方法
JP6241618B2 (ja) 熱電変換素子、熱電変換システム、及び熱電変換素子の製造方法
CN109962157B (zh) 一种自旋电子器件及其制备方法
WO2015115056A1 (ja) 熱電変換素子、熱電変換素子モジュールおよび熱電変換素子の製造方法
JP2014154852A (ja) 熱電変換素子及びその製造方法
JPWO2014010286A1 (ja) 熱電変換素子及びその製造方法
JP2018006546A (ja) 熱電変換素子、その製造方法および熱電変換装置
JP2008071720A (ja) バッテリー、バッテリーシステムおよびマイクロ波発信装置
JP6349863B2 (ja) スピン流熱電変換素子とその製造方法および熱電変換装置
Horike et al. Polarity tuning of single-walled carbon nanotube by dipole field of ferroelectric polymer for thermoelectric conversion
JP2014239158A (ja) 熱電変換素子
JP2015065254A (ja) 熱電変換素子及びその製造方法
Hong et al. ZnO flexible high voltage thin film transistors for power management in wearable electronics
WO2018146713A1 (ja) 熱電変換素子およびその製造方法
JP6172439B2 (ja) スピン流熱電変換素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6172434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150